disas: QOMify alpha specific disas setup
[qemu/cris-port.git] / target-alpha / cpu.h
blobbcd8076abbf0ed91f92aeba2861e50e7ee445aab
1 /*
2 * Alpha emulation cpu definitions for qemu.
4 * Copyright (c) 2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #if !defined (__CPU_ALPHA_H__)
21 #define __CPU_ALPHA_H__
23 #include "config.h"
24 #include "qemu-common.h"
26 #define TARGET_LONG_BITS 64
27 #define ALIGNED_ONLY
29 #define CPUArchState struct CPUAlphaState
31 #include "exec/cpu-defs.h"
33 #include "fpu/softfloat.h"
35 #define ICACHE_LINE_SIZE 32
36 #define DCACHE_LINE_SIZE 32
38 #define TARGET_PAGE_BITS 13
40 #ifdef CONFIG_USER_ONLY
41 /* ??? The kernel likes to give addresses in high memory. If the host has
42 more virtual address space than the guest, this can lead to impossible
43 allocations. Honor the long-standing assumption that only kernel addrs
44 are negative, but otherwise allow allocations anywhere. This could lead
45 to tricky emulation problems for programs doing tagged addressing, but
46 that's far fewer than encounter the impossible allocation problem. */
47 #define TARGET_PHYS_ADDR_SPACE_BITS 63
48 #define TARGET_VIRT_ADDR_SPACE_BITS 63
49 #else
50 /* ??? EV4 has 34 phys addr bits, EV5 has 40, EV6 has 44. */
51 #define TARGET_PHYS_ADDR_SPACE_BITS 44
52 #define TARGET_VIRT_ADDR_SPACE_BITS (30 + TARGET_PAGE_BITS)
53 #endif
55 /* Alpha major type */
56 enum {
57 ALPHA_EV3 = 1,
58 ALPHA_EV4 = 2,
59 ALPHA_SIM = 3,
60 ALPHA_LCA = 4,
61 ALPHA_EV5 = 5, /* 21164 */
62 ALPHA_EV45 = 6, /* 21064A */
63 ALPHA_EV56 = 7, /* 21164A */
66 /* EV4 minor type */
67 enum {
68 ALPHA_EV4_2 = 0,
69 ALPHA_EV4_3 = 1,
72 /* LCA minor type */
73 enum {
74 ALPHA_LCA_1 = 1, /* 21066 */
75 ALPHA_LCA_2 = 2, /* 20166 */
76 ALPHA_LCA_3 = 3, /* 21068 */
77 ALPHA_LCA_4 = 4, /* 21068 */
78 ALPHA_LCA_5 = 5, /* 21066A */
79 ALPHA_LCA_6 = 6, /* 21068A */
82 /* EV5 minor type */
83 enum {
84 ALPHA_EV5_1 = 1, /* Rev BA, CA */
85 ALPHA_EV5_2 = 2, /* Rev DA, EA */
86 ALPHA_EV5_3 = 3, /* Pass 3 */
87 ALPHA_EV5_4 = 4, /* Pass 3.2 */
88 ALPHA_EV5_5 = 5, /* Pass 4 */
91 /* EV45 minor type */
92 enum {
93 ALPHA_EV45_1 = 1, /* Pass 1 */
94 ALPHA_EV45_2 = 2, /* Pass 1.1 */
95 ALPHA_EV45_3 = 3, /* Pass 2 */
98 /* EV56 minor type */
99 enum {
100 ALPHA_EV56_1 = 1, /* Pass 1 */
101 ALPHA_EV56_2 = 2, /* Pass 2 */
104 enum {
105 IMPLVER_2106x = 0, /* EV4, EV45 & LCA45 */
106 IMPLVER_21164 = 1, /* EV5, EV56 & PCA45 */
107 IMPLVER_21264 = 2, /* EV6, EV67 & EV68x */
108 IMPLVER_21364 = 3, /* EV7 & EV79 */
111 enum {
112 AMASK_BWX = 0x00000001,
113 AMASK_FIX = 0x00000002,
114 AMASK_CIX = 0x00000004,
115 AMASK_MVI = 0x00000100,
116 AMASK_TRAP = 0x00000200,
117 AMASK_PREFETCH = 0x00001000,
120 enum {
121 VAX_ROUND_NORMAL = 0,
122 VAX_ROUND_CHOPPED,
125 enum {
126 IEEE_ROUND_NORMAL = 0,
127 IEEE_ROUND_DYNAMIC,
128 IEEE_ROUND_PLUS,
129 IEEE_ROUND_MINUS,
130 IEEE_ROUND_CHOPPED,
133 /* IEEE floating-point operations encoding */
134 /* Trap mode */
135 enum {
136 FP_TRAP_I = 0x0,
137 FP_TRAP_U = 0x1,
138 FP_TRAP_S = 0x4,
139 FP_TRAP_SU = 0x5,
140 FP_TRAP_SUI = 0x7,
143 /* Rounding mode */
144 enum {
145 FP_ROUND_CHOPPED = 0x0,
146 FP_ROUND_MINUS = 0x1,
147 FP_ROUND_NORMAL = 0x2,
148 FP_ROUND_DYNAMIC = 0x3,
151 /* FPCR bits -- right-shifted 32 so we can use a uint32_t. */
152 #define FPCR_SUM (1U << (63 - 32))
153 #define FPCR_INED (1U << (62 - 32))
154 #define FPCR_UNFD (1U << (61 - 32))
155 #define FPCR_UNDZ (1U << (60 - 32))
156 #define FPCR_DYN_SHIFT (58 - 32)
157 #define FPCR_DYN_CHOPPED (0U << FPCR_DYN_SHIFT)
158 #define FPCR_DYN_MINUS (1U << FPCR_DYN_SHIFT)
159 #define FPCR_DYN_NORMAL (2U << FPCR_DYN_SHIFT)
160 #define FPCR_DYN_PLUS (3U << FPCR_DYN_SHIFT)
161 #define FPCR_DYN_MASK (3U << FPCR_DYN_SHIFT)
162 #define FPCR_IOV (1U << (57 - 32))
163 #define FPCR_INE (1U << (56 - 32))
164 #define FPCR_UNF (1U << (55 - 32))
165 #define FPCR_OVF (1U << (54 - 32))
166 #define FPCR_DZE (1U << (53 - 32))
167 #define FPCR_INV (1U << (52 - 32))
168 #define FPCR_OVFD (1U << (51 - 32))
169 #define FPCR_DZED (1U << (50 - 32))
170 #define FPCR_INVD (1U << (49 - 32))
171 #define FPCR_DNZ (1U << (48 - 32))
172 #define FPCR_DNOD (1U << (47 - 32))
173 #define FPCR_STATUS_MASK (FPCR_IOV | FPCR_INE | FPCR_UNF \
174 | FPCR_OVF | FPCR_DZE | FPCR_INV)
176 /* The silly software trap enables implemented by the kernel emulation.
177 These are more or less architecturally required, since the real hardware
178 has read-as-zero bits in the FPCR when the features aren't implemented.
179 For the purposes of QEMU, we pretend the FPCR can hold everything. */
180 #define SWCR_TRAP_ENABLE_INV (1U << 1)
181 #define SWCR_TRAP_ENABLE_DZE (1U << 2)
182 #define SWCR_TRAP_ENABLE_OVF (1U << 3)
183 #define SWCR_TRAP_ENABLE_UNF (1U << 4)
184 #define SWCR_TRAP_ENABLE_INE (1U << 5)
185 #define SWCR_TRAP_ENABLE_DNO (1U << 6)
186 #define SWCR_TRAP_ENABLE_MASK ((1U << 7) - (1U << 1))
188 #define SWCR_MAP_DMZ (1U << 12)
189 #define SWCR_MAP_UMZ (1U << 13)
190 #define SWCR_MAP_MASK (SWCR_MAP_DMZ | SWCR_MAP_UMZ)
192 #define SWCR_STATUS_INV (1U << 17)
193 #define SWCR_STATUS_DZE (1U << 18)
194 #define SWCR_STATUS_OVF (1U << 19)
195 #define SWCR_STATUS_UNF (1U << 20)
196 #define SWCR_STATUS_INE (1U << 21)
197 #define SWCR_STATUS_DNO (1U << 22)
198 #define SWCR_STATUS_MASK ((1U << 23) - (1U << 17))
200 #define SWCR_MASK (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK | SWCR_STATUS_MASK)
202 /* MMU modes definitions */
204 /* Alpha has 5 MMU modes: PALcode, kernel, executive, supervisor, and user.
205 The Unix PALcode only exposes the kernel and user modes; presumably
206 executive and supervisor are used by VMS.
208 PALcode itself uses physical mode for code and kernel mode for data;
209 there are PALmode instructions that can access data via physical mode
210 or via an os-installed "alternate mode", which is one of the 4 above.
212 QEMU does not currently properly distinguish between code/data when
213 looking up addresses. To avoid having to address this issue, our
214 emulated PALcode will cheat and use the KSEG mapping for its code+data
215 rather than physical addresses.
217 Moreover, we're only emulating Unix PALcode, and not attempting VMS.
219 All of which allows us to drop all but kernel and user modes.
220 Elide the unused MMU modes to save space. */
222 #define NB_MMU_MODES 2
224 #define MMU_MODE0_SUFFIX _kernel
225 #define MMU_MODE1_SUFFIX _user
226 #define MMU_KERNEL_IDX 0
227 #define MMU_USER_IDX 1
229 typedef struct CPUAlphaState CPUAlphaState;
231 struct CPUAlphaState {
232 uint64_t ir[31];
233 float64 fir[31];
234 uint64_t pc;
235 uint64_t unique;
236 uint64_t lock_addr;
237 uint64_t lock_st_addr;
238 uint64_t lock_value;
240 /* The FPCR, and disassembled portions thereof. */
241 uint32_t fpcr;
242 uint32_t fpcr_exc_enable;
243 float_status fp_status;
244 uint8_t fpcr_dyn_round;
245 uint8_t fpcr_flush_to_zero;
247 /* The Internal Processor Registers. Some of these we assume always
248 exist for use in user-mode. */
249 uint8_t ps;
250 uint8_t intr_flag;
251 uint8_t pal_mode;
252 uint8_t fen;
254 uint32_t pcc_ofs;
256 /* These pass data from the exception logic in the translator and
257 helpers to the OS entry point. This is used for both system
258 emulation and user-mode. */
259 uint64_t trap_arg0;
260 uint64_t trap_arg1;
261 uint64_t trap_arg2;
263 #if !defined(CONFIG_USER_ONLY)
264 /* The internal data required by our emulation of the Unix PALcode. */
265 uint64_t exc_addr;
266 uint64_t palbr;
267 uint64_t ptbr;
268 uint64_t vptptr;
269 uint64_t sysval;
270 uint64_t usp;
271 uint64_t shadow[8];
272 uint64_t scratch[24];
273 #endif
275 /* This alarm doesn't exist in real hardware; we wish it did. */
276 uint64_t alarm_expire;
278 /* Those resources are used only in QEMU core */
279 CPU_COMMON
281 int error_code;
283 uint32_t features;
284 uint32_t amask;
285 int implver;
288 #define cpu_list alpha_cpu_list
289 #define cpu_exec cpu_alpha_exec
290 #define cpu_signal_handler cpu_alpha_signal_handler
292 #include "exec/cpu-all.h"
293 #include "cpu-qom.h"
295 enum {
296 FEATURE_ASN = 0x00000001,
297 FEATURE_SPS = 0x00000002,
298 FEATURE_VIRBND = 0x00000004,
299 FEATURE_TBCHK = 0x00000008,
302 enum {
303 EXCP_RESET,
304 EXCP_MCHK,
305 EXCP_SMP_INTERRUPT,
306 EXCP_CLK_INTERRUPT,
307 EXCP_DEV_INTERRUPT,
308 EXCP_MMFAULT,
309 EXCP_UNALIGN,
310 EXCP_OPCDEC,
311 EXCP_ARITH,
312 EXCP_FEN,
313 EXCP_CALL_PAL,
314 /* For Usermode emulation. */
315 EXCP_STL_C,
316 EXCP_STQ_C,
319 /* Alpha-specific interrupt pending bits. */
320 #define CPU_INTERRUPT_TIMER CPU_INTERRUPT_TGT_EXT_0
321 #define CPU_INTERRUPT_SMP CPU_INTERRUPT_TGT_EXT_1
322 #define CPU_INTERRUPT_MCHK CPU_INTERRUPT_TGT_EXT_2
324 /* OSF/1 Page table bits. */
325 enum {
326 PTE_VALID = 0x0001,
327 PTE_FOR = 0x0002, /* used for page protection (fault on read) */
328 PTE_FOW = 0x0004, /* used for page protection (fault on write) */
329 PTE_FOE = 0x0008, /* used for page protection (fault on exec) */
330 PTE_ASM = 0x0010,
331 PTE_KRE = 0x0100,
332 PTE_URE = 0x0200,
333 PTE_KWE = 0x1000,
334 PTE_UWE = 0x2000
337 /* Hardware interrupt (entInt) constants. */
338 enum {
339 INT_K_IP,
340 INT_K_CLK,
341 INT_K_MCHK,
342 INT_K_DEV,
343 INT_K_PERF,
346 /* Memory management (entMM) constants. */
347 enum {
348 MM_K_TNV,
349 MM_K_ACV,
350 MM_K_FOR,
351 MM_K_FOE,
352 MM_K_FOW
355 /* Arithmetic exception (entArith) constants. */
356 enum {
357 EXC_M_SWC = 1, /* Software completion */
358 EXC_M_INV = 2, /* Invalid operation */
359 EXC_M_DZE = 4, /* Division by zero */
360 EXC_M_FOV = 8, /* Overflow */
361 EXC_M_UNF = 16, /* Underflow */
362 EXC_M_INE = 32, /* Inexact result */
363 EXC_M_IOV = 64 /* Integer Overflow */
366 /* Processor status constants. */
367 enum {
368 /* Low 3 bits are interrupt mask level. */
369 PS_INT_MASK = 7,
371 /* Bits 4 and 5 are the mmu mode. The VMS PALcode uses all 4 modes;
372 The Unix PALcode only uses bit 4. */
373 PS_USER_MODE = 8
376 static inline int cpu_mmu_index(CPUAlphaState *env, bool ifetch)
378 if (env->pal_mode) {
379 return MMU_KERNEL_IDX;
380 } else if (env->ps & PS_USER_MODE) {
381 return MMU_USER_IDX;
382 } else {
383 return MMU_KERNEL_IDX;
387 enum {
388 IR_V0 = 0,
389 IR_T0 = 1,
390 IR_T1 = 2,
391 IR_T2 = 3,
392 IR_T3 = 4,
393 IR_T4 = 5,
394 IR_T5 = 6,
395 IR_T6 = 7,
396 IR_T7 = 8,
397 IR_S0 = 9,
398 IR_S1 = 10,
399 IR_S2 = 11,
400 IR_S3 = 12,
401 IR_S4 = 13,
402 IR_S5 = 14,
403 IR_S6 = 15,
404 IR_FP = IR_S6,
405 IR_A0 = 16,
406 IR_A1 = 17,
407 IR_A2 = 18,
408 IR_A3 = 19,
409 IR_A4 = 20,
410 IR_A5 = 21,
411 IR_T8 = 22,
412 IR_T9 = 23,
413 IR_T10 = 24,
414 IR_T11 = 25,
415 IR_RA = 26,
416 IR_T12 = 27,
417 IR_PV = IR_T12,
418 IR_AT = 28,
419 IR_GP = 29,
420 IR_SP = 30,
421 IR_ZERO = 31,
424 void alpha_translate_init(void);
426 AlphaCPU *cpu_alpha_init(const char *cpu_model);
428 #define cpu_init(cpu_model) CPU(cpu_alpha_init(cpu_model))
430 void alpha_cpu_list(FILE *f, fprintf_function cpu_fprintf);
431 int cpu_alpha_exec(CPUState *cpu);
432 /* you can call this signal handler from your SIGBUS and SIGSEGV
433 signal handlers to inform the virtual CPU of exceptions. non zero
434 is returned if the signal was handled by the virtual CPU. */
435 int cpu_alpha_signal_handler(int host_signum, void *pinfo,
436 void *puc);
437 int alpha_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int rw,
438 int mmu_idx);
439 void do_restore_state(CPUAlphaState *, uintptr_t retaddr);
440 void QEMU_NORETURN dynamic_excp(CPUAlphaState *, uintptr_t, int, int);
441 void QEMU_NORETURN arith_excp(CPUAlphaState *, uintptr_t, int, uint64_t);
443 uint64_t cpu_alpha_load_fpcr (CPUAlphaState *env);
444 void cpu_alpha_store_fpcr (CPUAlphaState *env, uint64_t val);
445 uint64_t cpu_alpha_load_gr(CPUAlphaState *env, unsigned reg);
446 void cpu_alpha_store_gr(CPUAlphaState *env, unsigned reg, uint64_t val);
447 #ifndef CONFIG_USER_ONLY
448 QEMU_NORETURN void alpha_cpu_unassigned_access(CPUState *cpu, hwaddr addr,
449 bool is_write, bool is_exec,
450 int unused, unsigned size);
451 #endif
453 /* Bits in TB->FLAGS that control how translation is processed. */
454 enum {
455 TB_FLAGS_PAL_MODE = 1,
456 TB_FLAGS_FEN = 2,
457 TB_FLAGS_USER_MODE = 8,
459 TB_FLAGS_AMASK_SHIFT = 4,
460 TB_FLAGS_AMASK_BWX = AMASK_BWX << TB_FLAGS_AMASK_SHIFT,
461 TB_FLAGS_AMASK_FIX = AMASK_FIX << TB_FLAGS_AMASK_SHIFT,
462 TB_FLAGS_AMASK_CIX = AMASK_CIX << TB_FLAGS_AMASK_SHIFT,
463 TB_FLAGS_AMASK_MVI = AMASK_MVI << TB_FLAGS_AMASK_SHIFT,
464 TB_FLAGS_AMASK_TRAP = AMASK_TRAP << TB_FLAGS_AMASK_SHIFT,
465 TB_FLAGS_AMASK_PREFETCH = AMASK_PREFETCH << TB_FLAGS_AMASK_SHIFT,
468 static inline void cpu_get_tb_cpu_state(CPUAlphaState *env, target_ulong *pc,
469 target_ulong *cs_base, int *pflags)
471 int flags = 0;
473 *pc = env->pc;
474 *cs_base = 0;
476 if (env->pal_mode) {
477 flags = TB_FLAGS_PAL_MODE;
478 } else {
479 flags = env->ps & PS_USER_MODE;
481 if (env->fen) {
482 flags |= TB_FLAGS_FEN;
484 flags |= env->amask << TB_FLAGS_AMASK_SHIFT;
486 *pflags = flags;
489 #include "exec/exec-all.h"
491 #endif /* !defined (__CPU_ALPHA_H__) */