4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
29 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30 #define PAGE_SIZE TARGET_PAGE_SIZE
35 #define dprintf(fmt, ...) \
36 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38 #define dprintf(fmt, ...) \
42 typedef struct KVMSlot
44 target_phys_addr_t start_addr
;
45 ram_addr_t memory_size
;
46 ram_addr_t phys_offset
;
51 typedef struct kvm_dirty_log KVMDirtyLog
;
62 int broken_set_mem_region
;
64 #ifdef KVM_CAP_SET_GUEST_DEBUG
65 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
67 int irqchip_in_kernel
;
71 static KVMState
*kvm_state
;
73 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
77 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
78 /* KVM private memory slots */
81 if (s
->slots
[i
].memory_size
== 0)
85 fprintf(stderr
, "%s: no free slot available\n", __func__
);
89 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
90 target_phys_addr_t start_addr
,
91 target_phys_addr_t end_addr
)
95 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
96 KVMSlot
*mem
= &s
->slots
[i
];
98 if (start_addr
== mem
->start_addr
&&
99 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
108 * Find overlapping slot with lowest start address
110 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
111 target_phys_addr_t start_addr
,
112 target_phys_addr_t end_addr
)
114 KVMSlot
*found
= NULL
;
117 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
118 KVMSlot
*mem
= &s
->slots
[i
];
120 if (mem
->memory_size
== 0 ||
121 (found
&& found
->start_addr
< mem
->start_addr
)) {
125 if (end_addr
> mem
->start_addr
&&
126 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
134 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
136 struct kvm_userspace_memory_region mem
;
138 mem
.slot
= slot
->slot
;
139 mem
.guest_phys_addr
= slot
->start_addr
;
140 mem
.memory_size
= slot
->memory_size
;
141 mem
.userspace_addr
= (unsigned long)qemu_get_ram_ptr(slot
->phys_offset
);
142 mem
.flags
= slot
->flags
;
143 if (s
->migration_log
) {
144 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
146 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
149 static void kvm_reset_vcpu(void *opaque
)
151 CPUState
*env
= opaque
;
153 if (kvm_arch_put_registers(env
)) {
154 fprintf(stderr
, "Fatal: kvm vcpu reset failed\n");
159 int kvm_irqchip_in_kernel(void)
161 return kvm_state
->irqchip_in_kernel
;
164 int kvm_pit_in_kernel(void)
166 return kvm_state
->pit_in_kernel
;
170 int kvm_init_vcpu(CPUState
*env
)
172 KVMState
*s
= kvm_state
;
176 dprintf("kvm_init_vcpu\n");
178 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, env
->cpu_index
);
180 dprintf("kvm_create_vcpu failed\n");
187 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
189 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
193 env
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
195 if (env
->kvm_run
== MAP_FAILED
) {
197 dprintf("mmap'ing vcpu state failed\n");
201 ret
= kvm_arch_init_vcpu(env
);
203 qemu_register_reset(kvm_reset_vcpu
, env
);
204 ret
= kvm_arch_put_registers(env
);
210 int kvm_put_mp_state(CPUState
*env
)
212 struct kvm_mp_state mp_state
= { .mp_state
= env
->mp_state
};
214 return kvm_vcpu_ioctl(env
, KVM_SET_MP_STATE
, &mp_state
);
217 int kvm_get_mp_state(CPUState
*env
)
219 struct kvm_mp_state mp_state
;
222 ret
= kvm_vcpu_ioctl(env
, KVM_GET_MP_STATE
, &mp_state
);
226 env
->mp_state
= mp_state
.mp_state
;
231 * dirty pages logging control
233 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr
,
234 ram_addr_t size
, int flags
, int mask
)
236 KVMState
*s
= kvm_state
;
237 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
241 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
242 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
243 (target_phys_addr_t
)(phys_addr
+ size
- 1));
247 old_flags
= mem
->flags
;
249 flags
= (mem
->flags
& ~mask
) | flags
;
252 /* If nothing changed effectively, no need to issue ioctl */
253 if (s
->migration_log
) {
254 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
256 if (flags
== old_flags
) {
260 return kvm_set_user_memory_region(s
, mem
);
263 int kvm_log_start(target_phys_addr_t phys_addr
, ram_addr_t size
)
265 return kvm_dirty_pages_log_change(phys_addr
, size
,
266 KVM_MEM_LOG_DIRTY_PAGES
,
267 KVM_MEM_LOG_DIRTY_PAGES
);
270 int kvm_log_stop(target_phys_addr_t phys_addr
, ram_addr_t size
)
272 return kvm_dirty_pages_log_change(phys_addr
, size
,
274 KVM_MEM_LOG_DIRTY_PAGES
);
277 int kvm_set_migration_log(int enable
)
279 KVMState
*s
= kvm_state
;
283 s
->migration_log
= enable
;
285 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
288 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
291 err
= kvm_set_user_memory_region(s
, mem
);
299 static int test_le_bit(unsigned long nr
, unsigned char *addr
)
301 return (addr
[nr
>> 3] >> (nr
& 7)) & 1;
305 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
306 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
307 * This means all bits are set to dirty.
309 * @start_add: start of logged region.
310 * @end_addr: end of logged region.
312 int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
313 target_phys_addr_t end_addr
)
315 KVMState
*s
= kvm_state
;
316 unsigned long size
, allocated_size
= 0;
317 target_phys_addr_t phys_addr
;
323 d
.dirty_bitmap
= NULL
;
324 while (start_addr
< end_addr
) {
325 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
330 size
= ((mem
->memory_size
>> TARGET_PAGE_BITS
) + 7) / 8;
331 if (!d
.dirty_bitmap
) {
332 d
.dirty_bitmap
= qemu_malloc(size
);
333 } else if (size
> allocated_size
) {
334 d
.dirty_bitmap
= qemu_realloc(d
.dirty_bitmap
, size
);
336 allocated_size
= size
;
337 memset(d
.dirty_bitmap
, 0, allocated_size
);
341 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
342 dprintf("ioctl failed %d\n", errno
);
347 for (phys_addr
= mem
->start_addr
, addr
= mem
->phys_offset
;
348 phys_addr
< mem
->start_addr
+ mem
->memory_size
;
349 phys_addr
+= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
350 unsigned char *bitmap
= (unsigned char *)d
.dirty_bitmap
;
351 unsigned nr
= (phys_addr
- mem
->start_addr
) >> TARGET_PAGE_BITS
;
353 if (test_le_bit(nr
, bitmap
)) {
354 cpu_physical_memory_set_dirty(addr
);
357 start_addr
= phys_addr
;
359 qemu_free(d
.dirty_bitmap
);
364 int kvm_coalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
367 #ifdef KVM_CAP_COALESCED_MMIO
368 KVMState
*s
= kvm_state
;
370 if (s
->coalesced_mmio
) {
371 struct kvm_coalesced_mmio_zone zone
;
376 ret
= kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
383 int kvm_uncoalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
386 #ifdef KVM_CAP_COALESCED_MMIO
387 KVMState
*s
= kvm_state
;
389 if (s
->coalesced_mmio
) {
390 struct kvm_coalesced_mmio_zone zone
;
395 ret
= kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
402 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
406 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
414 int kvm_init(int smp_cpus
)
416 static const char upgrade_note
[] =
417 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
418 "(see http://sourceforge.net/projects/kvm).\n";
424 fprintf(stderr
, "No SMP KVM support, use '-smp 1'\n");
428 s
= qemu_mallocz(sizeof(KVMState
));
430 #ifdef KVM_CAP_SET_GUEST_DEBUG
431 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
433 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++)
434 s
->slots
[i
].slot
= i
;
437 s
->fd
= open("/dev/kvm", O_RDWR
);
439 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
444 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
445 if (ret
< KVM_API_VERSION
) {
448 fprintf(stderr
, "kvm version too old\n");
452 if (ret
> KVM_API_VERSION
) {
454 fprintf(stderr
, "kvm version not supported\n");
458 s
->vmfd
= kvm_ioctl(s
, KVM_CREATE_VM
, 0);
462 /* initially, KVM allocated its own memory and we had to jump through
463 * hooks to make phys_ram_base point to this. Modern versions of KVM
464 * just use a user allocated buffer so we can use regular pages
465 * unmodified. Make sure we have a sufficiently modern version of KVM.
467 if (!kvm_check_extension(s
, KVM_CAP_USER_MEMORY
)) {
469 fprintf(stderr
, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
474 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
475 * destroyed properly. Since we rely on this capability, refuse to work
476 * with any kernel without this capability. */
477 if (!kvm_check_extension(s
, KVM_CAP_DESTROY_MEMORY_REGION_WORKS
)) {
481 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
486 #ifdef KVM_CAP_COALESCED_MMIO
487 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
489 s
->coalesced_mmio
= 0;
492 s
->broken_set_mem_region
= 1;
493 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
494 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
496 s
->broken_set_mem_region
= 0;
500 ret
= kvm_arch_init(s
, smp_cpus
);
520 static int kvm_handle_io(uint16_t port
, void *data
, int direction
, int size
,
526 for (i
= 0; i
< count
; i
++) {
527 if (direction
== KVM_EXIT_IO_IN
) {
530 stb_p(ptr
, cpu_inb(port
));
533 stw_p(ptr
, cpu_inw(port
));
536 stl_p(ptr
, cpu_inl(port
));
542 cpu_outb(port
, ldub_p(ptr
));
545 cpu_outw(port
, lduw_p(ptr
));
548 cpu_outl(port
, ldl_p(ptr
));
559 static void kvm_run_coalesced_mmio(CPUState
*env
, struct kvm_run
*run
)
561 #ifdef KVM_CAP_COALESCED_MMIO
562 KVMState
*s
= kvm_state
;
563 if (s
->coalesced_mmio
) {
564 struct kvm_coalesced_mmio_ring
*ring
;
566 ring
= (void *)run
+ (s
->coalesced_mmio
* TARGET_PAGE_SIZE
);
567 while (ring
->first
!= ring
->last
) {
568 struct kvm_coalesced_mmio
*ent
;
570 ent
= &ring
->coalesced_mmio
[ring
->first
];
572 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
573 /* FIXME smp_wmb() */
574 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
580 void kvm_cpu_synchronize_state(CPUState
*env
)
582 if (!env
->kvm_state
->regs_modified
) {
583 kvm_arch_get_registers(env
);
584 env
->kvm_state
->regs_modified
= 1;
588 int kvm_cpu_exec(CPUState
*env
)
590 struct kvm_run
*run
= env
->kvm_run
;
593 dprintf("kvm_cpu_exec()\n");
596 if (env
->exit_request
) {
597 dprintf("interrupt exit requested\n");
602 if (env
->kvm_state
->regs_modified
) {
603 kvm_arch_put_registers(env
);
604 env
->kvm_state
->regs_modified
= 0;
607 kvm_arch_pre_run(env
, run
);
608 qemu_mutex_unlock_iothread();
609 ret
= kvm_vcpu_ioctl(env
, KVM_RUN
, 0);
610 qemu_mutex_lock_iothread();
611 kvm_arch_post_run(env
, run
);
613 if (ret
== -EINTR
|| ret
== -EAGAIN
) {
614 dprintf("io window exit\n");
620 dprintf("kvm run failed %s\n", strerror(-ret
));
624 kvm_run_coalesced_mmio(env
, run
);
626 ret
= 0; /* exit loop */
627 switch (run
->exit_reason
) {
629 dprintf("handle_io\n");
630 ret
= kvm_handle_io(run
->io
.port
,
631 (uint8_t *)run
+ run
->io
.data_offset
,
637 dprintf("handle_mmio\n");
638 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
644 case KVM_EXIT_IRQ_WINDOW_OPEN
:
645 dprintf("irq_window_open\n");
647 case KVM_EXIT_SHUTDOWN
:
648 dprintf("shutdown\n");
649 qemu_system_reset_request();
652 case KVM_EXIT_UNKNOWN
:
653 dprintf("kvm_exit_unknown\n");
655 case KVM_EXIT_FAIL_ENTRY
:
656 dprintf("kvm_exit_fail_entry\n");
658 case KVM_EXIT_EXCEPTION
:
659 dprintf("kvm_exit_exception\n");
662 dprintf("kvm_exit_debug\n");
663 #ifdef KVM_CAP_SET_GUEST_DEBUG
664 if (kvm_arch_debug(&run
->debug
.arch
)) {
665 gdb_set_stop_cpu(env
);
667 env
->exception_index
= EXCP_DEBUG
;
670 /* re-enter, this exception was guest-internal */
672 #endif /* KVM_CAP_SET_GUEST_DEBUG */
675 dprintf("kvm_arch_handle_exit\n");
676 ret
= kvm_arch_handle_exit(env
, run
);
681 if (env
->exit_request
) {
682 env
->exit_request
= 0;
683 env
->exception_index
= EXCP_INTERRUPT
;
689 void kvm_set_phys_mem(target_phys_addr_t start_addr
,
691 ram_addr_t phys_offset
)
693 KVMState
*s
= kvm_state
;
694 ram_addr_t flags
= phys_offset
& ~TARGET_PAGE_MASK
;
698 if (start_addr
& ~TARGET_PAGE_MASK
) {
699 if (flags
>= IO_MEM_UNASSIGNED
) {
700 if (!kvm_lookup_overlapping_slot(s
, start_addr
,
701 start_addr
+ size
)) {
704 fprintf(stderr
, "Unaligned split of a KVM memory slot\n");
706 fprintf(stderr
, "Only page-aligned memory slots supported\n");
711 /* KVM does not support read-only slots */
712 phys_offset
&= ~IO_MEM_ROM
;
715 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
720 if (flags
< IO_MEM_UNASSIGNED
&& start_addr
>= mem
->start_addr
&&
721 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
722 (phys_offset
- start_addr
== mem
->phys_offset
- mem
->start_addr
)) {
723 /* The new slot fits into the existing one and comes with
724 * identical parameters - nothing to be done. */
730 /* unregister the overlapping slot */
731 mem
->memory_size
= 0;
732 err
= kvm_set_user_memory_region(s
, mem
);
734 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
735 __func__
, strerror(-err
));
739 /* Workaround for older KVM versions: we can't join slots, even not by
740 * unregistering the previous ones and then registering the larger
741 * slot. We have to maintain the existing fragmentation. Sigh.
743 * This workaround assumes that the new slot starts at the same
744 * address as the first existing one. If not or if some overlapping
745 * slot comes around later, we will fail (not seen in practice so far)
746 * - and actually require a recent KVM version. */
747 if (s
->broken_set_mem_region
&&
748 old
.start_addr
== start_addr
&& old
.memory_size
< size
&&
749 flags
< IO_MEM_UNASSIGNED
) {
750 mem
= kvm_alloc_slot(s
);
751 mem
->memory_size
= old
.memory_size
;
752 mem
->start_addr
= old
.start_addr
;
753 mem
->phys_offset
= old
.phys_offset
;
756 err
= kvm_set_user_memory_region(s
, mem
);
758 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
763 start_addr
+= old
.memory_size
;
764 phys_offset
+= old
.memory_size
;
765 size
-= old
.memory_size
;
769 /* register prefix slot */
770 if (old
.start_addr
< start_addr
) {
771 mem
= kvm_alloc_slot(s
);
772 mem
->memory_size
= start_addr
- old
.start_addr
;
773 mem
->start_addr
= old
.start_addr
;
774 mem
->phys_offset
= old
.phys_offset
;
777 err
= kvm_set_user_memory_region(s
, mem
);
779 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
780 __func__
, strerror(-err
));
785 /* register suffix slot */
786 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
787 ram_addr_t size_delta
;
789 mem
= kvm_alloc_slot(s
);
790 mem
->start_addr
= start_addr
+ size
;
791 size_delta
= mem
->start_addr
- old
.start_addr
;
792 mem
->memory_size
= old
.memory_size
- size_delta
;
793 mem
->phys_offset
= old
.phys_offset
+ size_delta
;
796 err
= kvm_set_user_memory_region(s
, mem
);
798 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
799 __func__
, strerror(-err
));
805 /* in case the KVM bug workaround already "consumed" the new slot */
809 /* KVM does not need to know about this memory */
810 if (flags
>= IO_MEM_UNASSIGNED
)
813 mem
= kvm_alloc_slot(s
);
814 mem
->memory_size
= size
;
815 mem
->start_addr
= start_addr
;
816 mem
->phys_offset
= phys_offset
;
819 err
= kvm_set_user_memory_region(s
, mem
);
821 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
827 int kvm_ioctl(KVMState
*s
, int type
, ...)
834 arg
= va_arg(ap
, void *);
837 ret
= ioctl(s
->fd
, type
, arg
);
844 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
851 arg
= va_arg(ap
, void *);
854 ret
= ioctl(s
->vmfd
, type
, arg
);
861 int kvm_vcpu_ioctl(CPUState
*env
, int type
, ...)
868 arg
= va_arg(ap
, void *);
871 ret
= ioctl(env
->kvm_fd
, type
, arg
);
878 int kvm_has_sync_mmu(void)
880 #ifdef KVM_CAP_SYNC_MMU
881 KVMState
*s
= kvm_state
;
883 return kvm_check_extension(s
, KVM_CAP_SYNC_MMU
);
889 void kvm_setup_guest_memory(void *start
, size_t size
)
891 if (!kvm_has_sync_mmu()) {
893 int ret
= madvise(start
, size
, MADV_DONTFORK
);
901 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
907 #ifdef KVM_CAP_SET_GUEST_DEBUG
908 static void on_vcpu(CPUState
*env
, void (*func
)(void *data
), void *data
)
910 #ifdef CONFIG_IOTHREAD
911 if (env
== cpu_single_env
) {
921 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*env
,
924 struct kvm_sw_breakpoint
*bp
;
926 QTAILQ_FOREACH(bp
, &env
->kvm_state
->kvm_sw_breakpoints
, entry
) {
933 int kvm_sw_breakpoints_active(CPUState
*env
)
935 return !QTAILQ_EMPTY(&env
->kvm_state
->kvm_sw_breakpoints
);
938 struct kvm_set_guest_debug_data
{
939 struct kvm_guest_debug dbg
;
944 static void kvm_invoke_set_guest_debug(void *data
)
946 struct kvm_set_guest_debug_data
*dbg_data
= data
;
947 CPUState
*env
= dbg_data
->env
;
949 if (env
->kvm_state
->regs_modified
) {
950 kvm_arch_put_registers(env
);
951 env
->kvm_state
->regs_modified
= 0;
953 dbg_data
->err
= kvm_vcpu_ioctl(env
, KVM_SET_GUEST_DEBUG
, &dbg_data
->dbg
);
956 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
958 struct kvm_set_guest_debug_data data
;
960 data
.dbg
.control
= 0;
961 if (env
->singlestep_enabled
)
962 data
.dbg
.control
= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
964 kvm_arch_update_guest_debug(env
, &data
.dbg
);
965 data
.dbg
.control
|= reinject_trap
;
968 on_vcpu(env
, kvm_invoke_set_guest_debug
, &data
);
972 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
973 target_ulong len
, int type
)
975 struct kvm_sw_breakpoint
*bp
;
979 if (type
== GDB_BREAKPOINT_SW
) {
980 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
986 bp
= qemu_malloc(sizeof(struct kvm_sw_breakpoint
));
992 err
= kvm_arch_insert_sw_breakpoint(current_env
, bp
);
998 QTAILQ_INSERT_HEAD(¤t_env
->kvm_state
->kvm_sw_breakpoints
,
1001 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
1006 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1007 err
= kvm_update_guest_debug(env
, 0);
1014 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1015 target_ulong len
, int type
)
1017 struct kvm_sw_breakpoint
*bp
;
1021 if (type
== GDB_BREAKPOINT_SW
) {
1022 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1026 if (bp
->use_count
> 1) {
1031 err
= kvm_arch_remove_sw_breakpoint(current_env
, bp
);
1035 QTAILQ_REMOVE(¤t_env
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1038 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
1043 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1044 err
= kvm_update_guest_debug(env
, 0);
1051 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1053 struct kvm_sw_breakpoint
*bp
, *next
;
1054 KVMState
*s
= current_env
->kvm_state
;
1057 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
1058 if (kvm_arch_remove_sw_breakpoint(current_env
, bp
) != 0) {
1059 /* Try harder to find a CPU that currently sees the breakpoint. */
1060 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1061 if (kvm_arch_remove_sw_breakpoint(env
, bp
) == 0)
1066 kvm_arch_remove_all_hw_breakpoints();
1068 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
1069 kvm_update_guest_debug(env
, 0);
1072 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1074 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1079 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1080 target_ulong len
, int type
)
1085 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1086 target_ulong len
, int type
)
1091 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1094 #endif /* !KVM_CAP_SET_GUEST_DEBUG */