kvmclock: clock should count only if vm is running
[qemu/cris-port.git] / gdbstub.c
blob3101a4340428cd52d8eecc383adcb992dc839266
1 /*
2 * gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #include "qemu-common.h"
21 #ifdef CONFIG_USER_ONLY
22 #include <stdlib.h>
23 #include <stdio.h>
24 #include <stdarg.h>
25 #include <string.h>
26 #include <errno.h>
27 #include <unistd.h>
28 #include <fcntl.h>
30 #include "qemu.h"
31 #else
32 #include "monitor/monitor.h"
33 #include "sysemu/char.h"
34 #include "sysemu/sysemu.h"
35 #include "exec/gdbstub.h"
36 #endif
38 #define MAX_PACKET_LENGTH 4096
40 #include "cpu.h"
41 #include "qemu/sockets.h"
42 #include "sysemu/kvm.h"
43 #include "qemu/bitops.h"
45 #ifndef TARGET_CPU_MEMORY_RW_DEBUG
46 static inline int target_memory_rw_debug(CPUArchState *env, target_ulong addr,
47 uint8_t *buf, int len, int is_write)
49 return cpu_memory_rw_debug(env, addr, buf, len, is_write);
51 #else
52 /* target_memory_rw_debug() defined in cpu.h */
53 #endif
55 enum {
56 GDB_SIGNAL_0 = 0,
57 GDB_SIGNAL_INT = 2,
58 GDB_SIGNAL_QUIT = 3,
59 GDB_SIGNAL_TRAP = 5,
60 GDB_SIGNAL_ABRT = 6,
61 GDB_SIGNAL_ALRM = 14,
62 GDB_SIGNAL_IO = 23,
63 GDB_SIGNAL_XCPU = 24,
64 GDB_SIGNAL_UNKNOWN = 143
67 #ifdef CONFIG_USER_ONLY
69 /* Map target signal numbers to GDB protocol signal numbers and vice
70 * versa. For user emulation's currently supported systems, we can
71 * assume most signals are defined.
74 static int gdb_signal_table[] = {
76 TARGET_SIGHUP,
77 TARGET_SIGINT,
78 TARGET_SIGQUIT,
79 TARGET_SIGILL,
80 TARGET_SIGTRAP,
81 TARGET_SIGABRT,
82 -1, /* SIGEMT */
83 TARGET_SIGFPE,
84 TARGET_SIGKILL,
85 TARGET_SIGBUS,
86 TARGET_SIGSEGV,
87 TARGET_SIGSYS,
88 TARGET_SIGPIPE,
89 TARGET_SIGALRM,
90 TARGET_SIGTERM,
91 TARGET_SIGURG,
92 TARGET_SIGSTOP,
93 TARGET_SIGTSTP,
94 TARGET_SIGCONT,
95 TARGET_SIGCHLD,
96 TARGET_SIGTTIN,
97 TARGET_SIGTTOU,
98 TARGET_SIGIO,
99 TARGET_SIGXCPU,
100 TARGET_SIGXFSZ,
101 TARGET_SIGVTALRM,
102 TARGET_SIGPROF,
103 TARGET_SIGWINCH,
104 -1, /* SIGLOST */
105 TARGET_SIGUSR1,
106 TARGET_SIGUSR2,
107 #ifdef TARGET_SIGPWR
108 TARGET_SIGPWR,
109 #else
111 #endif
112 -1, /* SIGPOLL */
124 #ifdef __SIGRTMIN
125 __SIGRTMIN + 1,
126 __SIGRTMIN + 2,
127 __SIGRTMIN + 3,
128 __SIGRTMIN + 4,
129 __SIGRTMIN + 5,
130 __SIGRTMIN + 6,
131 __SIGRTMIN + 7,
132 __SIGRTMIN + 8,
133 __SIGRTMIN + 9,
134 __SIGRTMIN + 10,
135 __SIGRTMIN + 11,
136 __SIGRTMIN + 12,
137 __SIGRTMIN + 13,
138 __SIGRTMIN + 14,
139 __SIGRTMIN + 15,
140 __SIGRTMIN + 16,
141 __SIGRTMIN + 17,
142 __SIGRTMIN + 18,
143 __SIGRTMIN + 19,
144 __SIGRTMIN + 20,
145 __SIGRTMIN + 21,
146 __SIGRTMIN + 22,
147 __SIGRTMIN + 23,
148 __SIGRTMIN + 24,
149 __SIGRTMIN + 25,
150 __SIGRTMIN + 26,
151 __SIGRTMIN + 27,
152 __SIGRTMIN + 28,
153 __SIGRTMIN + 29,
154 __SIGRTMIN + 30,
155 __SIGRTMIN + 31,
156 -1, /* SIGCANCEL */
157 __SIGRTMIN,
158 __SIGRTMIN + 32,
159 __SIGRTMIN + 33,
160 __SIGRTMIN + 34,
161 __SIGRTMIN + 35,
162 __SIGRTMIN + 36,
163 __SIGRTMIN + 37,
164 __SIGRTMIN + 38,
165 __SIGRTMIN + 39,
166 __SIGRTMIN + 40,
167 __SIGRTMIN + 41,
168 __SIGRTMIN + 42,
169 __SIGRTMIN + 43,
170 __SIGRTMIN + 44,
171 __SIGRTMIN + 45,
172 __SIGRTMIN + 46,
173 __SIGRTMIN + 47,
174 __SIGRTMIN + 48,
175 __SIGRTMIN + 49,
176 __SIGRTMIN + 50,
177 __SIGRTMIN + 51,
178 __SIGRTMIN + 52,
179 __SIGRTMIN + 53,
180 __SIGRTMIN + 54,
181 __SIGRTMIN + 55,
182 __SIGRTMIN + 56,
183 __SIGRTMIN + 57,
184 __SIGRTMIN + 58,
185 __SIGRTMIN + 59,
186 __SIGRTMIN + 60,
187 __SIGRTMIN + 61,
188 __SIGRTMIN + 62,
189 __SIGRTMIN + 63,
190 __SIGRTMIN + 64,
191 __SIGRTMIN + 65,
192 __SIGRTMIN + 66,
193 __SIGRTMIN + 67,
194 __SIGRTMIN + 68,
195 __SIGRTMIN + 69,
196 __SIGRTMIN + 70,
197 __SIGRTMIN + 71,
198 __SIGRTMIN + 72,
199 __SIGRTMIN + 73,
200 __SIGRTMIN + 74,
201 __SIGRTMIN + 75,
202 __SIGRTMIN + 76,
203 __SIGRTMIN + 77,
204 __SIGRTMIN + 78,
205 __SIGRTMIN + 79,
206 __SIGRTMIN + 80,
207 __SIGRTMIN + 81,
208 __SIGRTMIN + 82,
209 __SIGRTMIN + 83,
210 __SIGRTMIN + 84,
211 __SIGRTMIN + 85,
212 __SIGRTMIN + 86,
213 __SIGRTMIN + 87,
214 __SIGRTMIN + 88,
215 __SIGRTMIN + 89,
216 __SIGRTMIN + 90,
217 __SIGRTMIN + 91,
218 __SIGRTMIN + 92,
219 __SIGRTMIN + 93,
220 __SIGRTMIN + 94,
221 __SIGRTMIN + 95,
222 -1, /* SIGINFO */
223 -1, /* UNKNOWN */
224 -1, /* DEFAULT */
231 #endif
233 #else
234 /* In system mode we only need SIGINT and SIGTRAP; other signals
235 are not yet supported. */
237 enum {
238 TARGET_SIGINT = 2,
239 TARGET_SIGTRAP = 5
242 static int gdb_signal_table[] = {
245 TARGET_SIGINT,
248 TARGET_SIGTRAP
250 #endif
252 #ifdef CONFIG_USER_ONLY
253 static int target_signal_to_gdb (int sig)
255 int i;
256 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
257 if (gdb_signal_table[i] == sig)
258 return i;
259 return GDB_SIGNAL_UNKNOWN;
261 #endif
263 static int gdb_signal_to_target (int sig)
265 if (sig < ARRAY_SIZE (gdb_signal_table))
266 return gdb_signal_table[sig];
267 else
268 return -1;
271 //#define DEBUG_GDB
273 typedef struct GDBRegisterState {
274 int base_reg;
275 int num_regs;
276 gdb_reg_cb get_reg;
277 gdb_reg_cb set_reg;
278 const char *xml;
279 struct GDBRegisterState *next;
280 } GDBRegisterState;
282 enum RSState {
283 RS_INACTIVE,
284 RS_IDLE,
285 RS_GETLINE,
286 RS_CHKSUM1,
287 RS_CHKSUM2,
289 typedef struct GDBState {
290 CPUArchState *c_cpu; /* current CPU for step/continue ops */
291 CPUArchState *g_cpu; /* current CPU for other ops */
292 CPUArchState *query_cpu; /* for q{f|s}ThreadInfo */
293 enum RSState state; /* parsing state */
294 char line_buf[MAX_PACKET_LENGTH];
295 int line_buf_index;
296 int line_csum;
297 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
298 int last_packet_len;
299 int signal;
300 #ifdef CONFIG_USER_ONLY
301 int fd;
302 int running_state;
303 #else
304 CharDriverState *chr;
305 CharDriverState *mon_chr;
306 #endif
307 char syscall_buf[256];
308 gdb_syscall_complete_cb current_syscall_cb;
309 } GDBState;
311 /* By default use no IRQs and no timers while single stepping so as to
312 * make single stepping like an ICE HW step.
314 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
316 static GDBState *gdbserver_state;
318 /* This is an ugly hack to cope with both new and old gdb.
319 If gdb sends qXfer:features:read then assume we're talking to a newish
320 gdb that understands target descriptions. */
321 static int gdb_has_xml;
323 #ifdef CONFIG_USER_ONLY
324 /* XXX: This is not thread safe. Do we care? */
325 static int gdbserver_fd = -1;
327 static int get_char(GDBState *s)
329 uint8_t ch;
330 int ret;
332 for(;;) {
333 ret = qemu_recv(s->fd, &ch, 1, 0);
334 if (ret < 0) {
335 if (errno == ECONNRESET)
336 s->fd = -1;
337 if (errno != EINTR && errno != EAGAIN)
338 return -1;
339 } else if (ret == 0) {
340 close(s->fd);
341 s->fd = -1;
342 return -1;
343 } else {
344 break;
347 return ch;
349 #endif
351 static enum {
352 GDB_SYS_UNKNOWN,
353 GDB_SYS_ENABLED,
354 GDB_SYS_DISABLED,
355 } gdb_syscall_mode;
357 /* If gdb is connected when the first semihosting syscall occurs then use
358 remote gdb syscalls. Otherwise use native file IO. */
359 int use_gdb_syscalls(void)
361 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
362 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
363 : GDB_SYS_DISABLED);
365 return gdb_syscall_mode == GDB_SYS_ENABLED;
368 /* Resume execution. */
369 static inline void gdb_continue(GDBState *s)
371 #ifdef CONFIG_USER_ONLY
372 s->running_state = 1;
373 #else
374 if (runstate_check(RUN_STATE_GUEST_PANICKED)) {
375 runstate_set(RUN_STATE_DEBUG);
377 if (!runstate_needs_reset()) {
378 vm_start();
380 #endif
383 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
385 #ifdef CONFIG_USER_ONLY
386 int ret;
388 while (len > 0) {
389 ret = send(s->fd, buf, len, 0);
390 if (ret < 0) {
391 if (errno != EINTR && errno != EAGAIN)
392 return;
393 } else {
394 buf += ret;
395 len -= ret;
398 #else
399 qemu_chr_fe_write(s->chr, buf, len);
400 #endif
403 static inline int fromhex(int v)
405 if (v >= '0' && v <= '9')
406 return v - '0';
407 else if (v >= 'A' && v <= 'F')
408 return v - 'A' + 10;
409 else if (v >= 'a' && v <= 'f')
410 return v - 'a' + 10;
411 else
412 return 0;
415 static inline int tohex(int v)
417 if (v < 10)
418 return v + '0';
419 else
420 return v - 10 + 'a';
423 static void memtohex(char *buf, const uint8_t *mem, int len)
425 int i, c;
426 char *q;
427 q = buf;
428 for(i = 0; i < len; i++) {
429 c = mem[i];
430 *q++ = tohex(c >> 4);
431 *q++ = tohex(c & 0xf);
433 *q = '\0';
436 static void hextomem(uint8_t *mem, const char *buf, int len)
438 int i;
440 for(i = 0; i < len; i++) {
441 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
442 buf += 2;
446 /* return -1 if error, 0 if OK */
447 static int put_packet_binary(GDBState *s, const char *buf, int len)
449 int csum, i;
450 uint8_t *p;
452 for(;;) {
453 p = s->last_packet;
454 *(p++) = '$';
455 memcpy(p, buf, len);
456 p += len;
457 csum = 0;
458 for(i = 0; i < len; i++) {
459 csum += buf[i];
461 *(p++) = '#';
462 *(p++) = tohex((csum >> 4) & 0xf);
463 *(p++) = tohex((csum) & 0xf);
465 s->last_packet_len = p - s->last_packet;
466 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
468 #ifdef CONFIG_USER_ONLY
469 i = get_char(s);
470 if (i < 0)
471 return -1;
472 if (i == '+')
473 break;
474 #else
475 break;
476 #endif
478 return 0;
481 /* return -1 if error, 0 if OK */
482 static int put_packet(GDBState *s, const char *buf)
484 #ifdef DEBUG_GDB
485 printf("reply='%s'\n", buf);
486 #endif
488 return put_packet_binary(s, buf, strlen(buf));
491 /* The GDB remote protocol transfers values in target byte order. This means
492 we can use the raw memory access routines to access the value buffer.
493 Conveniently, these also handle the case where the buffer is mis-aligned.
495 #define GET_REG8(val) do { \
496 stb_p(mem_buf, val); \
497 return 1; \
498 } while(0)
499 #define GET_REG16(val) do { \
500 stw_p(mem_buf, val); \
501 return 2; \
502 } while(0)
503 #define GET_REG32(val) do { \
504 stl_p(mem_buf, val); \
505 return 4; \
506 } while(0)
507 #define GET_REG64(val) do { \
508 stq_p(mem_buf, val); \
509 return 8; \
510 } while(0)
512 #if TARGET_LONG_BITS == 64
513 #define GET_REGL(val) GET_REG64(val)
514 #define ldtul_p(addr) ldq_p(addr)
515 #else
516 #define GET_REGL(val) GET_REG32(val)
517 #define ldtul_p(addr) ldl_p(addr)
518 #endif
520 #if defined(TARGET_I386)
522 #ifdef TARGET_X86_64
523 static const int gpr_map[16] = {
524 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
525 8, 9, 10, 11, 12, 13, 14, 15
527 #else
528 #define gpr_map gpr_map32
529 #endif
530 static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
532 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
534 #define IDX_IP_REG CPU_NB_REGS
535 #define IDX_FLAGS_REG (IDX_IP_REG + 1)
536 #define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
537 #define IDX_FP_REGS (IDX_SEG_REGS + 6)
538 #define IDX_XMM_REGS (IDX_FP_REGS + 16)
539 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
541 static int cpu_gdb_read_register(CPUX86State *env, uint8_t *mem_buf, int n)
543 if (n < CPU_NB_REGS) {
544 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
545 GET_REG64(env->regs[gpr_map[n]]);
546 } else if (n < CPU_NB_REGS32) {
547 GET_REG32(env->regs[gpr_map32[n]]);
549 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
550 #ifdef USE_X86LDOUBLE
551 /* FIXME: byteswap float values - after fixing fpregs layout. */
552 memcpy(mem_buf, &env->fpregs[n - IDX_FP_REGS], 10);
553 #else
554 memset(mem_buf, 0, 10);
555 #endif
556 return 10;
557 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
558 n -= IDX_XMM_REGS;
559 if (n < CPU_NB_REGS32 ||
560 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
561 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
562 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
563 return 16;
565 } else {
566 switch (n) {
567 case IDX_IP_REG:
568 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
569 GET_REG64(env->eip);
570 } else {
571 GET_REG32(env->eip);
573 case IDX_FLAGS_REG: GET_REG32(env->eflags);
575 case IDX_SEG_REGS: GET_REG32(env->segs[R_CS].selector);
576 case IDX_SEG_REGS + 1: GET_REG32(env->segs[R_SS].selector);
577 case IDX_SEG_REGS + 2: GET_REG32(env->segs[R_DS].selector);
578 case IDX_SEG_REGS + 3: GET_REG32(env->segs[R_ES].selector);
579 case IDX_SEG_REGS + 4: GET_REG32(env->segs[R_FS].selector);
580 case IDX_SEG_REGS + 5: GET_REG32(env->segs[R_GS].selector);
582 case IDX_FP_REGS + 8: GET_REG32(env->fpuc);
583 case IDX_FP_REGS + 9: GET_REG32((env->fpus & ~0x3800) |
584 (env->fpstt & 0x7) << 11);
585 case IDX_FP_REGS + 10: GET_REG32(0); /* ftag */
586 case IDX_FP_REGS + 11: GET_REG32(0); /* fiseg */
587 case IDX_FP_REGS + 12: GET_REG32(0); /* fioff */
588 case IDX_FP_REGS + 13: GET_REG32(0); /* foseg */
589 case IDX_FP_REGS + 14: GET_REG32(0); /* fooff */
590 case IDX_FP_REGS + 15: GET_REG32(0); /* fop */
592 case IDX_MXCSR_REG: GET_REG32(env->mxcsr);
595 return 0;
598 static int cpu_x86_gdb_load_seg(CPUX86State *env, int sreg, uint8_t *mem_buf)
600 uint16_t selector = ldl_p(mem_buf);
602 if (selector != env->segs[sreg].selector) {
603 #if defined(CONFIG_USER_ONLY)
604 cpu_x86_load_seg(env, sreg, selector);
605 #else
606 unsigned int limit, flags;
607 target_ulong base;
609 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
610 base = selector << 4;
611 limit = 0xffff;
612 flags = 0;
613 } else {
614 if (!cpu_x86_get_descr_debug(env, selector, &base, &limit, &flags))
615 return 4;
617 cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags);
618 #endif
620 return 4;
623 static int cpu_gdb_write_register(CPUX86State *env, uint8_t *mem_buf, int n)
625 uint32_t tmp;
627 if (n < CPU_NB_REGS) {
628 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
629 env->regs[gpr_map[n]] = ldtul_p(mem_buf);
630 return sizeof(target_ulong);
631 } else if (n < CPU_NB_REGS32) {
632 n = gpr_map32[n];
633 env->regs[n] &= ~0xffffffffUL;
634 env->regs[n] |= (uint32_t)ldl_p(mem_buf);
635 return 4;
637 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
638 #ifdef USE_X86LDOUBLE
639 /* FIXME: byteswap float values - after fixing fpregs layout. */
640 memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10);
641 #endif
642 return 10;
643 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
644 n -= IDX_XMM_REGS;
645 if (n < CPU_NB_REGS32 ||
646 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
647 env->xmm_regs[n].XMM_Q(0) = ldq_p(mem_buf);
648 env->xmm_regs[n].XMM_Q(1) = ldq_p(mem_buf + 8);
649 return 16;
651 } else {
652 switch (n) {
653 case IDX_IP_REG:
654 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
655 env->eip = ldq_p(mem_buf);
656 return 8;
657 } else {
658 env->eip &= ~0xffffffffUL;
659 env->eip |= (uint32_t)ldl_p(mem_buf);
660 return 4;
662 case IDX_FLAGS_REG:
663 env->eflags = ldl_p(mem_buf);
664 return 4;
666 case IDX_SEG_REGS: return cpu_x86_gdb_load_seg(env, R_CS, mem_buf);
667 case IDX_SEG_REGS + 1: return cpu_x86_gdb_load_seg(env, R_SS, mem_buf);
668 case IDX_SEG_REGS + 2: return cpu_x86_gdb_load_seg(env, R_DS, mem_buf);
669 case IDX_SEG_REGS + 3: return cpu_x86_gdb_load_seg(env, R_ES, mem_buf);
670 case IDX_SEG_REGS + 4: return cpu_x86_gdb_load_seg(env, R_FS, mem_buf);
671 case IDX_SEG_REGS + 5: return cpu_x86_gdb_load_seg(env, R_GS, mem_buf);
673 case IDX_FP_REGS + 8:
674 env->fpuc = ldl_p(mem_buf);
675 return 4;
676 case IDX_FP_REGS + 9:
677 tmp = ldl_p(mem_buf);
678 env->fpstt = (tmp >> 11) & 7;
679 env->fpus = tmp & ~0x3800;
680 return 4;
681 case IDX_FP_REGS + 10: /* ftag */ return 4;
682 case IDX_FP_REGS + 11: /* fiseg */ return 4;
683 case IDX_FP_REGS + 12: /* fioff */ return 4;
684 case IDX_FP_REGS + 13: /* foseg */ return 4;
685 case IDX_FP_REGS + 14: /* fooff */ return 4;
686 case IDX_FP_REGS + 15: /* fop */ return 4;
688 case IDX_MXCSR_REG:
689 env->mxcsr = ldl_p(mem_buf);
690 return 4;
693 /* Unrecognised register. */
694 return 0;
697 #elif defined (TARGET_PPC)
699 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
700 expects whatever the target description contains. Due to a
701 historical mishap the FP registers appear in between core integer
702 regs and PC, MSR, CR, and so forth. We hack round this by giving the
703 FP regs zero size when talking to a newer gdb. */
704 #define NUM_CORE_REGS 71
705 #if defined (TARGET_PPC64)
706 #define GDB_CORE_XML "power64-core.xml"
707 #else
708 #define GDB_CORE_XML "power-core.xml"
709 #endif
711 static int cpu_gdb_read_register(CPUPPCState *env, uint8_t *mem_buf, int n)
713 if (n < 32) {
714 /* gprs */
715 GET_REGL(env->gpr[n]);
716 } else if (n < 64) {
717 /* fprs */
718 if (gdb_has_xml)
719 return 0;
720 stfq_p(mem_buf, env->fpr[n-32]);
721 return 8;
722 } else {
723 switch (n) {
724 case 64: GET_REGL(env->nip);
725 case 65: GET_REGL(env->msr);
726 case 66:
728 uint32_t cr = 0;
729 int i;
730 for (i = 0; i < 8; i++)
731 cr |= env->crf[i] << (32 - ((i + 1) * 4));
732 GET_REG32(cr);
734 case 67: GET_REGL(env->lr);
735 case 68: GET_REGL(env->ctr);
736 case 69: GET_REGL(env->xer);
737 case 70:
739 if (gdb_has_xml)
740 return 0;
741 GET_REG32(env->fpscr);
745 return 0;
748 static int cpu_gdb_write_register(CPUPPCState *env, uint8_t *mem_buf, int n)
750 if (n < 32) {
751 /* gprs */
752 env->gpr[n] = ldtul_p(mem_buf);
753 return sizeof(target_ulong);
754 } else if (n < 64) {
755 /* fprs */
756 if (gdb_has_xml)
757 return 0;
758 env->fpr[n-32] = ldfq_p(mem_buf);
759 return 8;
760 } else {
761 switch (n) {
762 case 64:
763 env->nip = ldtul_p(mem_buf);
764 return sizeof(target_ulong);
765 case 65:
766 ppc_store_msr(env, ldtul_p(mem_buf));
767 return sizeof(target_ulong);
768 case 66:
770 uint32_t cr = ldl_p(mem_buf);
771 int i;
772 for (i = 0; i < 8; i++)
773 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
774 return 4;
776 case 67:
777 env->lr = ldtul_p(mem_buf);
778 return sizeof(target_ulong);
779 case 68:
780 env->ctr = ldtul_p(mem_buf);
781 return sizeof(target_ulong);
782 case 69:
783 env->xer = ldtul_p(mem_buf);
784 return sizeof(target_ulong);
785 case 70:
786 /* fpscr */
787 if (gdb_has_xml)
788 return 0;
789 store_fpscr(env, ldtul_p(mem_buf), 0xffffffff);
790 return sizeof(target_ulong);
793 return 0;
796 #elif defined (TARGET_SPARC)
798 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
799 #define NUM_CORE_REGS 86
800 #else
801 #define NUM_CORE_REGS 72
802 #endif
804 #ifdef TARGET_ABI32
805 #define GET_REGA(val) GET_REG32(val)
806 #else
807 #define GET_REGA(val) GET_REGL(val)
808 #endif
810 static int cpu_gdb_read_register(CPUSPARCState *env, uint8_t *mem_buf, int n)
812 if (n < 8) {
813 /* g0..g7 */
814 GET_REGA(env->gregs[n]);
816 if (n < 32) {
817 /* register window */
818 GET_REGA(env->regwptr[n - 8]);
820 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
821 if (n < 64) {
822 /* fprs */
823 if (n & 1) {
824 GET_REG32(env->fpr[(n - 32) / 2].l.lower);
825 } else {
826 GET_REG32(env->fpr[(n - 32) / 2].l.upper);
829 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
830 switch (n) {
831 case 64: GET_REGA(env->y);
832 case 65: GET_REGA(cpu_get_psr(env));
833 case 66: GET_REGA(env->wim);
834 case 67: GET_REGA(env->tbr);
835 case 68: GET_REGA(env->pc);
836 case 69: GET_REGA(env->npc);
837 case 70: GET_REGA(env->fsr);
838 case 71: GET_REGA(0); /* csr */
839 default: GET_REGA(0);
841 #else
842 if (n < 64) {
843 /* f0-f31 */
844 if (n & 1) {
845 GET_REG32(env->fpr[(n - 32) / 2].l.lower);
846 } else {
847 GET_REG32(env->fpr[(n - 32) / 2].l.upper);
850 if (n < 80) {
851 /* f32-f62 (double width, even numbers only) */
852 GET_REG64(env->fpr[(n - 32) / 2].ll);
854 switch (n) {
855 case 80: GET_REGL(env->pc);
856 case 81: GET_REGL(env->npc);
857 case 82: GET_REGL((cpu_get_ccr(env) << 32) |
858 ((env->asi & 0xff) << 24) |
859 ((env->pstate & 0xfff) << 8) |
860 cpu_get_cwp64(env));
861 case 83: GET_REGL(env->fsr);
862 case 84: GET_REGL(env->fprs);
863 case 85: GET_REGL(env->y);
865 #endif
866 return 0;
869 static int cpu_gdb_write_register(CPUSPARCState *env, uint8_t *mem_buf, int n)
871 #if defined(TARGET_ABI32)
872 abi_ulong tmp;
874 tmp = ldl_p(mem_buf);
875 #else
876 target_ulong tmp;
878 tmp = ldtul_p(mem_buf);
879 #endif
881 if (n < 8) {
882 /* g0..g7 */
883 env->gregs[n] = tmp;
884 } else if (n < 32) {
885 /* register window */
886 env->regwptr[n - 8] = tmp;
888 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
889 else if (n < 64) {
890 /* fprs */
891 /* f0-f31 */
892 if (n & 1) {
893 env->fpr[(n - 32) / 2].l.lower = tmp;
894 } else {
895 env->fpr[(n - 32) / 2].l.upper = tmp;
897 } else {
898 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
899 switch (n) {
900 case 64: env->y = tmp; break;
901 case 65: cpu_put_psr(env, tmp); break;
902 case 66: env->wim = tmp; break;
903 case 67: env->tbr = tmp; break;
904 case 68: env->pc = tmp; break;
905 case 69: env->npc = tmp; break;
906 case 70: env->fsr = tmp; break;
907 default: return 0;
910 return 4;
911 #else
912 else if (n < 64) {
913 /* f0-f31 */
914 tmp = ldl_p(mem_buf);
915 if (n & 1) {
916 env->fpr[(n - 32) / 2].l.lower = tmp;
917 } else {
918 env->fpr[(n - 32) / 2].l.upper = tmp;
920 return 4;
921 } else if (n < 80) {
922 /* f32-f62 (double width, even numbers only) */
923 env->fpr[(n - 32) / 2].ll = tmp;
924 } else {
925 switch (n) {
926 case 80: env->pc = tmp; break;
927 case 81: env->npc = tmp; break;
928 case 82:
929 cpu_put_ccr(env, tmp >> 32);
930 env->asi = (tmp >> 24) & 0xff;
931 env->pstate = (tmp >> 8) & 0xfff;
932 cpu_put_cwp64(env, tmp & 0xff);
933 break;
934 case 83: env->fsr = tmp; break;
935 case 84: env->fprs = tmp; break;
936 case 85: env->y = tmp; break;
937 default: return 0;
940 return 8;
941 #endif
943 #elif defined (TARGET_ARM)
945 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
946 whatever the target description contains. Due to a historical mishap
947 the FPA registers appear in between core integer regs and the CPSR.
948 We hack round this by giving the FPA regs zero size when talking to a
949 newer gdb. */
950 #define NUM_CORE_REGS 26
951 #define GDB_CORE_XML "arm-core.xml"
953 static int cpu_gdb_read_register(CPUARMState *env, uint8_t *mem_buf, int n)
955 if (n < 16) {
956 /* Core integer register. */
957 GET_REG32(env->regs[n]);
959 if (n < 24) {
960 /* FPA registers. */
961 if (gdb_has_xml)
962 return 0;
963 memset(mem_buf, 0, 12);
964 return 12;
966 switch (n) {
967 case 24:
968 /* FPA status register. */
969 if (gdb_has_xml)
970 return 0;
971 GET_REG32(0);
972 case 25:
973 /* CPSR */
974 GET_REG32(cpsr_read(env));
976 /* Unknown register. */
977 return 0;
980 static int cpu_gdb_write_register(CPUARMState *env, uint8_t *mem_buf, int n)
982 uint32_t tmp;
984 tmp = ldl_p(mem_buf);
986 /* Mask out low bit of PC to workaround gdb bugs. This will probably
987 cause problems if we ever implement the Jazelle DBX extensions. */
988 if (n == 15)
989 tmp &= ~1;
991 if (n < 16) {
992 /* Core integer register. */
993 env->regs[n] = tmp;
994 return 4;
996 if (n < 24) { /* 16-23 */
997 /* FPA registers (ignored). */
998 if (gdb_has_xml)
999 return 0;
1000 return 12;
1002 switch (n) {
1003 case 24:
1004 /* FPA status register (ignored). */
1005 if (gdb_has_xml)
1006 return 0;
1007 return 4;
1008 case 25:
1009 /* CPSR */
1010 cpsr_write (env, tmp, 0xffffffff);
1011 return 4;
1013 /* Unknown register. */
1014 return 0;
1017 #elif defined (TARGET_M68K)
1019 #define NUM_CORE_REGS 18
1021 #define GDB_CORE_XML "cf-core.xml"
1023 static int cpu_gdb_read_register(CPUM68KState *env, uint8_t *mem_buf, int n)
1025 if (n < 8) {
1026 /* D0-D7 */
1027 GET_REG32(env->dregs[n]);
1028 } else if (n < 16) {
1029 /* A0-A7 */
1030 GET_REG32(env->aregs[n - 8]);
1031 } else {
1032 switch (n) {
1033 case 16: GET_REG32(env->sr);
1034 case 17: GET_REG32(env->pc);
1037 /* FP registers not included here because they vary between
1038 ColdFire and m68k. Use XML bits for these. */
1039 return 0;
1042 static int cpu_gdb_write_register(CPUM68KState *env, uint8_t *mem_buf, int n)
1044 uint32_t tmp;
1046 tmp = ldl_p(mem_buf);
1048 if (n < 8) {
1049 /* D0-D7 */
1050 env->dregs[n] = tmp;
1051 } else if (n < 16) {
1052 /* A0-A7 */
1053 env->aregs[n - 8] = tmp;
1054 } else {
1055 switch (n) {
1056 case 16: env->sr = tmp; break;
1057 case 17: env->pc = tmp; break;
1058 default: return 0;
1061 return 4;
1063 #elif defined (TARGET_MIPS)
1065 #define NUM_CORE_REGS 73
1067 static int cpu_gdb_read_register(CPUMIPSState *env, uint8_t *mem_buf, int n)
1069 if (n < 32) {
1070 GET_REGL(env->active_tc.gpr[n]);
1072 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
1073 if (n >= 38 && n < 70) {
1074 if (env->CP0_Status & (1 << CP0St_FR))
1075 GET_REGL(env->active_fpu.fpr[n - 38].d);
1076 else
1077 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
1079 switch (n) {
1080 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
1081 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
1084 switch (n) {
1085 case 32: GET_REGL((int32_t)env->CP0_Status);
1086 case 33: GET_REGL(env->active_tc.LO[0]);
1087 case 34: GET_REGL(env->active_tc.HI[0]);
1088 case 35: GET_REGL(env->CP0_BadVAddr);
1089 case 36: GET_REGL((int32_t)env->CP0_Cause);
1090 case 37: GET_REGL(env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16));
1091 case 72: GET_REGL(0); /* fp */
1092 case 89: GET_REGL((int32_t)env->CP0_PRid);
1094 if (n >= 73 && n <= 88) {
1095 /* 16 embedded regs. */
1096 GET_REGL(0);
1099 return 0;
1102 /* convert MIPS rounding mode in FCR31 to IEEE library */
1103 static unsigned int ieee_rm[] =
1105 float_round_nearest_even,
1106 float_round_to_zero,
1107 float_round_up,
1108 float_round_down
1110 #define RESTORE_ROUNDING_MODE \
1111 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1113 static int cpu_gdb_write_register(CPUMIPSState *env, uint8_t *mem_buf, int n)
1115 target_ulong tmp;
1117 tmp = ldtul_p(mem_buf);
1119 if (n < 32) {
1120 env->active_tc.gpr[n] = tmp;
1121 return sizeof(target_ulong);
1123 if (env->CP0_Config1 & (1 << CP0C1_FP)
1124 && n >= 38 && n < 73) {
1125 if (n < 70) {
1126 if (env->CP0_Status & (1 << CP0St_FR))
1127 env->active_fpu.fpr[n - 38].d = tmp;
1128 else
1129 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
1131 switch (n) {
1132 case 70:
1133 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
1134 /* set rounding mode */
1135 RESTORE_ROUNDING_MODE;
1136 break;
1137 case 71: env->active_fpu.fcr0 = tmp; break;
1139 return sizeof(target_ulong);
1141 switch (n) {
1142 case 32: env->CP0_Status = tmp; break;
1143 case 33: env->active_tc.LO[0] = tmp; break;
1144 case 34: env->active_tc.HI[0] = tmp; break;
1145 case 35: env->CP0_BadVAddr = tmp; break;
1146 case 36: env->CP0_Cause = tmp; break;
1147 case 37:
1148 env->active_tc.PC = tmp & ~(target_ulong)1;
1149 if (tmp & 1) {
1150 env->hflags |= MIPS_HFLAG_M16;
1151 } else {
1152 env->hflags &= ~(MIPS_HFLAG_M16);
1154 break;
1155 case 72: /* fp, ignored */ break;
1156 default:
1157 if (n > 89)
1158 return 0;
1159 /* Other registers are readonly. Ignore writes. */
1160 break;
1163 return sizeof(target_ulong);
1165 #elif defined(TARGET_OPENRISC)
1167 #define NUM_CORE_REGS (32 + 3)
1169 static int cpu_gdb_read_register(CPUOpenRISCState *env, uint8_t *mem_buf, int n)
1171 if (n < 32) {
1172 GET_REG32(env->gpr[n]);
1173 } else {
1174 switch (n) {
1175 case 32: /* PPC */
1176 GET_REG32(env->ppc);
1177 break;
1179 case 33: /* NPC */
1180 GET_REG32(env->npc);
1181 break;
1183 case 34: /* SR */
1184 GET_REG32(env->sr);
1185 break;
1187 default:
1188 break;
1191 return 0;
1194 static int cpu_gdb_write_register(CPUOpenRISCState *env,
1195 uint8_t *mem_buf, int n)
1197 uint32_t tmp;
1199 if (n > NUM_CORE_REGS) {
1200 return 0;
1203 tmp = ldl_p(mem_buf);
1205 if (n < 32) {
1206 env->gpr[n] = tmp;
1207 } else {
1208 switch (n) {
1209 case 32: /* PPC */
1210 env->ppc = tmp;
1211 break;
1213 case 33: /* NPC */
1214 env->npc = tmp;
1215 break;
1217 case 34: /* SR */
1218 env->sr = tmp;
1219 break;
1221 default:
1222 break;
1225 return 4;
1227 #elif defined (TARGET_SH4)
1229 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1230 /* FIXME: We should use XML for this. */
1232 #define NUM_CORE_REGS 59
1234 static int cpu_gdb_read_register(CPUSH4State *env, uint8_t *mem_buf, int n)
1236 switch (n) {
1237 case 0 ... 7:
1238 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1239 GET_REGL(env->gregs[n + 16]);
1240 } else {
1241 GET_REGL(env->gregs[n]);
1243 case 8 ... 15:
1244 GET_REGL(env->gregs[n]);
1245 case 16:
1246 GET_REGL(env->pc);
1247 case 17:
1248 GET_REGL(env->pr);
1249 case 18:
1250 GET_REGL(env->gbr);
1251 case 19:
1252 GET_REGL(env->vbr);
1253 case 20:
1254 GET_REGL(env->mach);
1255 case 21:
1256 GET_REGL(env->macl);
1257 case 22:
1258 GET_REGL(env->sr);
1259 case 23:
1260 GET_REGL(env->fpul);
1261 case 24:
1262 GET_REGL(env->fpscr);
1263 case 25 ... 40:
1264 if (env->fpscr & FPSCR_FR) {
1265 stfl_p(mem_buf, env->fregs[n - 9]);
1266 } else {
1267 stfl_p(mem_buf, env->fregs[n - 25]);
1269 return 4;
1270 case 41:
1271 GET_REGL(env->ssr);
1272 case 42:
1273 GET_REGL(env->spc);
1274 case 43 ... 50:
1275 GET_REGL(env->gregs[n - 43]);
1276 case 51 ... 58:
1277 GET_REGL(env->gregs[n - (51 - 16)]);
1280 return 0;
1283 static int cpu_gdb_write_register(CPUSH4State *env, uint8_t *mem_buf, int n)
1285 switch (n) {
1286 case 0 ... 7:
1287 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1288 env->gregs[n + 16] = ldl_p(mem_buf);
1289 } else {
1290 env->gregs[n] = ldl_p(mem_buf);
1292 break;
1293 case 8 ... 15:
1294 env->gregs[n] = ldl_p(mem_buf);
1295 break;
1296 case 16:
1297 env->pc = ldl_p(mem_buf);
1298 break;
1299 case 17:
1300 env->pr = ldl_p(mem_buf);
1301 break;
1302 case 18:
1303 env->gbr = ldl_p(mem_buf);
1304 break;
1305 case 19:
1306 env->vbr = ldl_p(mem_buf);
1307 break;
1308 case 20:
1309 env->mach = ldl_p(mem_buf);
1310 break;
1311 case 21:
1312 env->macl = ldl_p(mem_buf);
1313 break;
1314 case 22:
1315 env->sr = ldl_p(mem_buf);
1316 break;
1317 case 23:
1318 env->fpul = ldl_p(mem_buf);
1319 break;
1320 case 24:
1321 env->fpscr = ldl_p(mem_buf);
1322 break;
1323 case 25 ... 40:
1324 if (env->fpscr & FPSCR_FR) {
1325 env->fregs[n - 9] = ldfl_p(mem_buf);
1326 } else {
1327 env->fregs[n - 25] = ldfl_p(mem_buf);
1329 break;
1330 case 41:
1331 env->ssr = ldl_p(mem_buf);
1332 break;
1333 case 42:
1334 env->spc = ldl_p(mem_buf);
1335 break;
1336 case 43 ... 50:
1337 env->gregs[n - 43] = ldl_p(mem_buf);
1338 break;
1339 case 51 ... 58:
1340 env->gregs[n - (51 - 16)] = ldl_p(mem_buf);
1341 break;
1342 default: return 0;
1345 return 4;
1347 #elif defined (TARGET_MICROBLAZE)
1349 #define NUM_CORE_REGS (32 + 5)
1351 static int cpu_gdb_read_register(CPUMBState *env, uint8_t *mem_buf, int n)
1353 if (n < 32) {
1354 GET_REG32(env->regs[n]);
1355 } else {
1356 GET_REG32(env->sregs[n - 32]);
1358 return 0;
1361 static int cpu_gdb_write_register(CPUMBState *env, uint8_t *mem_buf, int n)
1363 uint32_t tmp;
1365 if (n > NUM_CORE_REGS)
1366 return 0;
1368 tmp = ldl_p(mem_buf);
1370 if (n < 32) {
1371 env->regs[n] = tmp;
1372 } else {
1373 env->sregs[n - 32] = tmp;
1375 return 4;
1377 #elif defined (TARGET_CRIS)
1379 #define NUM_CORE_REGS 49
1381 static int
1382 read_register_crisv10(CPUCRISState *env, uint8_t *mem_buf, int n)
1384 if (n < 15) {
1385 GET_REG32(env->regs[n]);
1388 if (n == 15) {
1389 GET_REG32(env->pc);
1392 if (n < 32) {
1393 switch (n) {
1394 case 16:
1395 GET_REG8(env->pregs[n - 16]);
1396 break;
1397 case 17:
1398 GET_REG8(env->pregs[n - 16]);
1399 break;
1400 case 20:
1401 case 21:
1402 GET_REG16(env->pregs[n - 16]);
1403 break;
1404 default:
1405 if (n >= 23) {
1406 GET_REG32(env->pregs[n - 16]);
1408 break;
1411 return 0;
1414 static int cpu_gdb_read_register(CPUCRISState *env, uint8_t *mem_buf, int n)
1416 uint8_t srs;
1418 if (env->pregs[PR_VR] < 32)
1419 return read_register_crisv10(env, mem_buf, n);
1421 srs = env->pregs[PR_SRS];
1422 if (n < 16) {
1423 GET_REG32(env->regs[n]);
1426 if (n >= 21 && n < 32) {
1427 GET_REG32(env->pregs[n - 16]);
1429 if (n >= 33 && n < 49) {
1430 GET_REG32(env->sregs[srs][n - 33]);
1432 switch (n) {
1433 case 16: GET_REG8(env->pregs[0]);
1434 case 17: GET_REG8(env->pregs[1]);
1435 case 18: GET_REG32(env->pregs[2]);
1436 case 19: GET_REG8(srs);
1437 case 20: GET_REG16(env->pregs[4]);
1438 case 32: GET_REG32(env->pc);
1441 return 0;
1444 static int cpu_gdb_write_register(CPUCRISState *env, uint8_t *mem_buf, int n)
1446 uint32_t tmp;
1448 if (n > 49)
1449 return 0;
1451 tmp = ldl_p(mem_buf);
1453 if (n < 16) {
1454 env->regs[n] = tmp;
1457 if (n >= 21 && n < 32) {
1458 env->pregs[n - 16] = tmp;
1461 /* FIXME: Should support function regs be writable? */
1462 switch (n) {
1463 case 16: return 1;
1464 case 17: return 1;
1465 case 18: env->pregs[PR_PID] = tmp; break;
1466 case 19: return 1;
1467 case 20: return 2;
1468 case 32: env->pc = tmp; break;
1471 return 4;
1473 #elif defined (TARGET_ALPHA)
1475 #define NUM_CORE_REGS 67
1477 static int cpu_gdb_read_register(CPUAlphaState *env, uint8_t *mem_buf, int n)
1479 uint64_t val;
1480 CPU_DoubleU d;
1482 switch (n) {
1483 case 0 ... 30:
1484 val = env->ir[n];
1485 break;
1486 case 32 ... 62:
1487 d.d = env->fir[n - 32];
1488 val = d.ll;
1489 break;
1490 case 63:
1491 val = cpu_alpha_load_fpcr(env);
1492 break;
1493 case 64:
1494 val = env->pc;
1495 break;
1496 case 66:
1497 val = env->unique;
1498 break;
1499 case 31:
1500 case 65:
1501 /* 31 really is the zero register; 65 is unassigned in the
1502 gdb protocol, but is still required to occupy 8 bytes. */
1503 val = 0;
1504 break;
1505 default:
1506 return 0;
1508 GET_REGL(val);
1511 static int cpu_gdb_write_register(CPUAlphaState *env, uint8_t *mem_buf, int n)
1513 target_ulong tmp = ldtul_p(mem_buf);
1514 CPU_DoubleU d;
1516 switch (n) {
1517 case 0 ... 30:
1518 env->ir[n] = tmp;
1519 break;
1520 case 32 ... 62:
1521 d.ll = tmp;
1522 env->fir[n - 32] = d.d;
1523 break;
1524 case 63:
1525 cpu_alpha_store_fpcr(env, tmp);
1526 break;
1527 case 64:
1528 env->pc = tmp;
1529 break;
1530 case 66:
1531 env->unique = tmp;
1532 break;
1533 case 31:
1534 case 65:
1535 /* 31 really is the zero register; 65 is unassigned in the
1536 gdb protocol, but is still required to occupy 8 bytes. */
1537 break;
1538 default:
1539 return 0;
1541 return 8;
1543 #elif defined (TARGET_S390X)
1545 #define NUM_CORE_REGS S390_NUM_REGS
1547 static int cpu_gdb_read_register(CPUS390XState *env, uint8_t *mem_buf, int n)
1549 uint64_t val;
1550 int cc_op;
1552 switch (n) {
1553 case S390_PSWM_REGNUM:
1554 cc_op = calc_cc(env, env->cc_op, env->cc_src, env->cc_dst, env->cc_vr);
1555 val = deposit64(env->psw.mask, 44, 2, cc_op);
1556 GET_REGL(val);
1557 break;
1558 case S390_PSWA_REGNUM:
1559 GET_REGL(env->psw.addr);
1560 break;
1561 case S390_R0_REGNUM ... S390_R15_REGNUM:
1562 GET_REGL(env->regs[n-S390_R0_REGNUM]);
1563 break;
1564 case S390_A0_REGNUM ... S390_A15_REGNUM:
1565 GET_REG32(env->aregs[n-S390_A0_REGNUM]);
1566 break;
1567 case S390_FPC_REGNUM:
1568 GET_REG32(env->fpc);
1569 break;
1570 case S390_F0_REGNUM ... S390_F15_REGNUM:
1571 GET_REG64(env->fregs[n-S390_F0_REGNUM].ll);
1572 break;
1575 return 0;
1578 static int cpu_gdb_write_register(CPUS390XState *env, uint8_t *mem_buf, int n)
1580 target_ulong tmpl;
1581 uint32_t tmp32;
1582 int r = 8;
1583 tmpl = ldtul_p(mem_buf);
1584 tmp32 = ldl_p(mem_buf);
1586 switch (n) {
1587 case S390_PSWM_REGNUM:
1588 env->psw.mask = tmpl;
1589 env->cc_op = extract64(tmpl, 44, 2);
1590 break;
1591 case S390_PSWA_REGNUM:
1592 env->psw.addr = tmpl;
1593 break;
1594 case S390_R0_REGNUM ... S390_R15_REGNUM:
1595 env->regs[n-S390_R0_REGNUM] = tmpl;
1596 break;
1597 case S390_A0_REGNUM ... S390_A15_REGNUM:
1598 env->aregs[n-S390_A0_REGNUM] = tmp32;
1599 r = 4;
1600 break;
1601 case S390_FPC_REGNUM:
1602 env->fpc = tmp32;
1603 r = 4;
1604 break;
1605 case S390_F0_REGNUM ... S390_F15_REGNUM:
1606 env->fregs[n-S390_F0_REGNUM].ll = tmpl;
1607 break;
1608 default:
1609 return 0;
1611 return r;
1613 #elif defined (TARGET_LM32)
1615 #include "hw/lm32/lm32_pic.h"
1616 #define NUM_CORE_REGS (32 + 7)
1618 static int cpu_gdb_read_register(CPULM32State *env, uint8_t *mem_buf, int n)
1620 if (n < 32) {
1621 GET_REG32(env->regs[n]);
1622 } else {
1623 switch (n) {
1624 case 32:
1625 GET_REG32(env->pc);
1626 break;
1627 /* FIXME: put in right exception ID */
1628 case 33:
1629 GET_REG32(0);
1630 break;
1631 case 34:
1632 GET_REG32(env->eba);
1633 break;
1634 case 35:
1635 GET_REG32(env->deba);
1636 break;
1637 case 36:
1638 GET_REG32(env->ie);
1639 break;
1640 case 37:
1641 GET_REG32(lm32_pic_get_im(env->pic_state));
1642 break;
1643 case 38:
1644 GET_REG32(lm32_pic_get_ip(env->pic_state));
1645 break;
1648 return 0;
1651 static int cpu_gdb_write_register(CPULM32State *env, uint8_t *mem_buf, int n)
1653 uint32_t tmp;
1655 if (n > NUM_CORE_REGS) {
1656 return 0;
1659 tmp = ldl_p(mem_buf);
1661 if (n < 32) {
1662 env->regs[n] = tmp;
1663 } else {
1664 switch (n) {
1665 case 32:
1666 env->pc = tmp;
1667 break;
1668 case 34:
1669 env->eba = tmp;
1670 break;
1671 case 35:
1672 env->deba = tmp;
1673 break;
1674 case 36:
1675 env->ie = tmp;
1676 break;
1677 case 37:
1678 lm32_pic_set_im(env->pic_state, tmp);
1679 break;
1680 case 38:
1681 lm32_pic_set_ip(env->pic_state, tmp);
1682 break;
1685 return 4;
1687 #elif defined(TARGET_XTENSA)
1689 /* Use num_core_regs to see only non-privileged registers in an unmodified gdb.
1690 * Use num_regs to see all registers. gdb modification is required for that:
1691 * reset bit 0 in the 'flags' field of the registers definitions in the
1692 * gdb/xtensa-config.c inside gdb source tree or inside gdb overlay.
1694 #define NUM_CORE_REGS (env->config->gdb_regmap.num_regs)
1695 #define num_g_regs NUM_CORE_REGS
1697 static int cpu_gdb_read_register(CPUXtensaState *env, uint8_t *mem_buf, int n)
1699 const XtensaGdbReg *reg = env->config->gdb_regmap.reg + n;
1701 if (n < 0 || n >= env->config->gdb_regmap.num_regs) {
1702 return 0;
1705 switch (reg->type) {
1706 case 9: /*pc*/
1707 GET_REG32(env->pc);
1708 break;
1710 case 1: /*ar*/
1711 xtensa_sync_phys_from_window(env);
1712 GET_REG32(env->phys_regs[(reg->targno & 0xff) % env->config->nareg]);
1713 break;
1715 case 2: /*SR*/
1716 GET_REG32(env->sregs[reg->targno & 0xff]);
1717 break;
1719 case 3: /*UR*/
1720 GET_REG32(env->uregs[reg->targno & 0xff]);
1721 break;
1723 case 4: /*f*/
1724 GET_REG32(float32_val(env->fregs[reg->targno & 0x0f]));
1725 break;
1727 case 8: /*a*/
1728 GET_REG32(env->regs[reg->targno & 0x0f]);
1729 break;
1731 default:
1732 qemu_log("%s from reg %d of unsupported type %d\n",
1733 __func__, n, reg->type);
1734 return 0;
1738 static int cpu_gdb_write_register(CPUXtensaState *env, uint8_t *mem_buf, int n)
1740 uint32_t tmp;
1741 const XtensaGdbReg *reg = env->config->gdb_regmap.reg + n;
1743 if (n < 0 || n >= env->config->gdb_regmap.num_regs) {
1744 return 0;
1747 tmp = ldl_p(mem_buf);
1749 switch (reg->type) {
1750 case 9: /*pc*/
1751 env->pc = tmp;
1752 break;
1754 case 1: /*ar*/
1755 env->phys_regs[(reg->targno & 0xff) % env->config->nareg] = tmp;
1756 xtensa_sync_window_from_phys(env);
1757 break;
1759 case 2: /*SR*/
1760 env->sregs[reg->targno & 0xff] = tmp;
1761 break;
1763 case 3: /*UR*/
1764 env->uregs[reg->targno & 0xff] = tmp;
1765 break;
1767 case 4: /*f*/
1768 env->fregs[reg->targno & 0x0f] = make_float32(tmp);
1769 break;
1771 case 8: /*a*/
1772 env->regs[reg->targno & 0x0f] = tmp;
1773 break;
1775 default:
1776 qemu_log("%s to reg %d of unsupported type %d\n",
1777 __func__, n, reg->type);
1778 return 0;
1781 return 4;
1783 #else
1785 #define NUM_CORE_REGS 0
1787 static int cpu_gdb_read_register(CPUArchState *env, uint8_t *mem_buf, int n)
1789 return 0;
1792 static int cpu_gdb_write_register(CPUArchState *env, uint8_t *mem_buf, int n)
1794 return 0;
1797 #endif
1799 #if !defined(TARGET_XTENSA)
1800 static int num_g_regs = NUM_CORE_REGS;
1801 #endif
1803 #ifdef GDB_CORE_XML
1804 /* Encode data using the encoding for 'x' packets. */
1805 static int memtox(char *buf, const char *mem, int len)
1807 char *p = buf;
1808 char c;
1810 while (len--) {
1811 c = *(mem++);
1812 switch (c) {
1813 case '#': case '$': case '*': case '}':
1814 *(p++) = '}';
1815 *(p++) = c ^ 0x20;
1816 break;
1817 default:
1818 *(p++) = c;
1819 break;
1822 return p - buf;
1825 static const char *get_feature_xml(const char *p, const char **newp)
1827 size_t len;
1828 int i;
1829 const char *name;
1830 static char target_xml[1024];
1832 len = 0;
1833 while (p[len] && p[len] != ':')
1834 len++;
1835 *newp = p + len;
1837 name = NULL;
1838 if (strncmp(p, "target.xml", len) == 0) {
1839 /* Generate the XML description for this CPU. */
1840 if (!target_xml[0]) {
1841 GDBRegisterState *r;
1843 snprintf(target_xml, sizeof(target_xml),
1844 "<?xml version=\"1.0\"?>"
1845 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1846 "<target>"
1847 "<xi:include href=\"%s\"/>",
1848 GDB_CORE_XML);
1850 for (r = first_cpu->gdb_regs; r; r = r->next) {
1851 pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\"");
1852 pstrcat(target_xml, sizeof(target_xml), r->xml);
1853 pstrcat(target_xml, sizeof(target_xml), "\"/>");
1855 pstrcat(target_xml, sizeof(target_xml), "</target>");
1857 return target_xml;
1859 for (i = 0; ; i++) {
1860 name = xml_builtin[i][0];
1861 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1862 break;
1864 return name ? xml_builtin[i][1] : NULL;
1866 #endif
1868 static int gdb_read_register(CPUArchState *env, uint8_t *mem_buf, int reg)
1870 GDBRegisterState *r;
1872 if (reg < NUM_CORE_REGS)
1873 return cpu_gdb_read_register(env, mem_buf, reg);
1875 for (r = env->gdb_regs; r; r = r->next) {
1876 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1877 return r->get_reg(env, mem_buf, reg - r->base_reg);
1880 return 0;
1883 static int gdb_write_register(CPUArchState *env, uint8_t *mem_buf, int reg)
1885 GDBRegisterState *r;
1887 if (reg < NUM_CORE_REGS)
1888 return cpu_gdb_write_register(env, mem_buf, reg);
1890 for (r = env->gdb_regs; r; r = r->next) {
1891 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1892 return r->set_reg(env, mem_buf, reg - r->base_reg);
1895 return 0;
1898 #if !defined(TARGET_XTENSA)
1899 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1900 specifies the first register number and these registers are included in
1901 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1902 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1905 void gdb_register_coprocessor(CPUArchState * env,
1906 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1907 int num_regs, const char *xml, int g_pos)
1909 GDBRegisterState *s;
1910 GDBRegisterState **p;
1911 static int last_reg = NUM_CORE_REGS;
1913 p = &env->gdb_regs;
1914 while (*p) {
1915 /* Check for duplicates. */
1916 if (strcmp((*p)->xml, xml) == 0)
1917 return;
1918 p = &(*p)->next;
1921 s = g_new0(GDBRegisterState, 1);
1922 s->base_reg = last_reg;
1923 s->num_regs = num_regs;
1924 s->get_reg = get_reg;
1925 s->set_reg = set_reg;
1926 s->xml = xml;
1928 /* Add to end of list. */
1929 last_reg += num_regs;
1930 *p = s;
1931 if (g_pos) {
1932 if (g_pos != s->base_reg) {
1933 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1934 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1935 } else {
1936 num_g_regs = last_reg;
1940 #endif
1942 #ifndef CONFIG_USER_ONLY
1943 static const int xlat_gdb_type[] = {
1944 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1945 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1946 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1948 #endif
1950 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1952 CPUArchState *env;
1953 int err = 0;
1955 if (kvm_enabled())
1956 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1958 switch (type) {
1959 case GDB_BREAKPOINT_SW:
1960 case GDB_BREAKPOINT_HW:
1961 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1962 err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
1963 if (err)
1964 break;
1966 return err;
1967 #ifndef CONFIG_USER_ONLY
1968 case GDB_WATCHPOINT_WRITE:
1969 case GDB_WATCHPOINT_READ:
1970 case GDB_WATCHPOINT_ACCESS:
1971 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1972 err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
1973 NULL);
1974 if (err)
1975 break;
1977 return err;
1978 #endif
1979 default:
1980 return -ENOSYS;
1984 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1986 CPUArchState *env;
1987 int err = 0;
1989 if (kvm_enabled())
1990 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1992 switch (type) {
1993 case GDB_BREAKPOINT_SW:
1994 case GDB_BREAKPOINT_HW:
1995 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1996 err = cpu_breakpoint_remove(env, addr, BP_GDB);
1997 if (err)
1998 break;
2000 return err;
2001 #ifndef CONFIG_USER_ONLY
2002 case GDB_WATCHPOINT_WRITE:
2003 case GDB_WATCHPOINT_READ:
2004 case GDB_WATCHPOINT_ACCESS:
2005 for (env = first_cpu; env != NULL; env = env->next_cpu) {
2006 err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
2007 if (err)
2008 break;
2010 return err;
2011 #endif
2012 default:
2013 return -ENOSYS;
2017 static void gdb_breakpoint_remove_all(void)
2019 CPUArchState *env;
2021 if (kvm_enabled()) {
2022 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
2023 return;
2026 for (env = first_cpu; env != NULL; env = env->next_cpu) {
2027 cpu_breakpoint_remove_all(env, BP_GDB);
2028 #ifndef CONFIG_USER_ONLY
2029 cpu_watchpoint_remove_all(env, BP_GDB);
2030 #endif
2034 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
2036 cpu_synchronize_state(ENV_GET_CPU(s->c_cpu));
2037 #if defined(TARGET_I386)
2038 s->c_cpu->eip = pc;
2039 #elif defined (TARGET_PPC)
2040 s->c_cpu->nip = pc;
2041 #elif defined (TARGET_SPARC)
2042 s->c_cpu->pc = pc;
2043 s->c_cpu->npc = pc + 4;
2044 #elif defined (TARGET_ARM)
2045 s->c_cpu->regs[15] = pc;
2046 #elif defined (TARGET_SH4)
2047 s->c_cpu->pc = pc;
2048 #elif defined (TARGET_MIPS)
2049 s->c_cpu->active_tc.PC = pc & ~(target_ulong)1;
2050 if (pc & 1) {
2051 s->c_cpu->hflags |= MIPS_HFLAG_M16;
2052 } else {
2053 s->c_cpu->hflags &= ~(MIPS_HFLAG_M16);
2055 #elif defined (TARGET_MICROBLAZE)
2056 s->c_cpu->sregs[SR_PC] = pc;
2057 #elif defined(TARGET_OPENRISC)
2058 s->c_cpu->pc = pc;
2059 #elif defined (TARGET_CRIS)
2060 s->c_cpu->pc = pc;
2061 #elif defined (TARGET_ALPHA)
2062 s->c_cpu->pc = pc;
2063 #elif defined (TARGET_S390X)
2064 s->c_cpu->psw.addr = pc;
2065 #elif defined (TARGET_LM32)
2066 s->c_cpu->pc = pc;
2067 #elif defined(TARGET_XTENSA)
2068 s->c_cpu->pc = pc;
2069 #endif
2072 static CPUArchState *find_cpu(uint32_t thread_id)
2074 CPUState *cpu;
2076 cpu = qemu_get_cpu(thread_id);
2077 if (cpu == NULL) {
2078 return NULL;
2080 return cpu->env_ptr;
2083 static int gdb_handle_packet(GDBState *s, const char *line_buf)
2085 CPUArchState *env;
2086 const char *p;
2087 uint32_t thread;
2088 int ch, reg_size, type, res;
2089 char buf[MAX_PACKET_LENGTH];
2090 uint8_t mem_buf[MAX_PACKET_LENGTH];
2091 uint8_t *registers;
2092 target_ulong addr, len;
2094 #ifdef DEBUG_GDB
2095 printf("command='%s'\n", line_buf);
2096 #endif
2097 p = line_buf;
2098 ch = *p++;
2099 switch(ch) {
2100 case '?':
2101 /* TODO: Make this return the correct value for user-mode. */
2102 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
2103 cpu_index(ENV_GET_CPU(s->c_cpu)));
2104 put_packet(s, buf);
2105 /* Remove all the breakpoints when this query is issued,
2106 * because gdb is doing and initial connect and the state
2107 * should be cleaned up.
2109 gdb_breakpoint_remove_all();
2110 break;
2111 case 'c':
2112 if (*p != '\0') {
2113 addr = strtoull(p, (char **)&p, 16);
2114 gdb_set_cpu_pc(s, addr);
2116 s->signal = 0;
2117 gdb_continue(s);
2118 return RS_IDLE;
2119 case 'C':
2120 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
2121 if (s->signal == -1)
2122 s->signal = 0;
2123 gdb_continue(s);
2124 return RS_IDLE;
2125 case 'v':
2126 if (strncmp(p, "Cont", 4) == 0) {
2127 int res_signal, res_thread;
2129 p += 4;
2130 if (*p == '?') {
2131 put_packet(s, "vCont;c;C;s;S");
2132 break;
2134 res = 0;
2135 res_signal = 0;
2136 res_thread = 0;
2137 while (*p) {
2138 int action, signal;
2140 if (*p++ != ';') {
2141 res = 0;
2142 break;
2144 action = *p++;
2145 signal = 0;
2146 if (action == 'C' || action == 'S') {
2147 signal = strtoul(p, (char **)&p, 16);
2148 } else if (action != 'c' && action != 's') {
2149 res = 0;
2150 break;
2152 thread = 0;
2153 if (*p == ':') {
2154 thread = strtoull(p+1, (char **)&p, 16);
2156 action = tolower(action);
2157 if (res == 0 || (res == 'c' && action == 's')) {
2158 res = action;
2159 res_signal = signal;
2160 res_thread = thread;
2163 if (res) {
2164 if (res_thread != -1 && res_thread != 0) {
2165 env = find_cpu(res_thread);
2166 if (env == NULL) {
2167 put_packet(s, "E22");
2168 break;
2170 s->c_cpu = env;
2172 if (res == 's') {
2173 cpu_single_step(s->c_cpu, sstep_flags);
2175 s->signal = res_signal;
2176 gdb_continue(s);
2177 return RS_IDLE;
2179 break;
2180 } else {
2181 goto unknown_command;
2183 case 'k':
2184 #ifdef CONFIG_USER_ONLY
2185 /* Kill the target */
2186 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
2187 exit(0);
2188 #endif
2189 case 'D':
2190 /* Detach packet */
2191 gdb_breakpoint_remove_all();
2192 gdb_syscall_mode = GDB_SYS_DISABLED;
2193 gdb_continue(s);
2194 put_packet(s, "OK");
2195 break;
2196 case 's':
2197 if (*p != '\0') {
2198 addr = strtoull(p, (char **)&p, 16);
2199 gdb_set_cpu_pc(s, addr);
2201 cpu_single_step(s->c_cpu, sstep_flags);
2202 gdb_continue(s);
2203 return RS_IDLE;
2204 case 'F':
2206 target_ulong ret;
2207 target_ulong err;
2209 ret = strtoull(p, (char **)&p, 16);
2210 if (*p == ',') {
2211 p++;
2212 err = strtoull(p, (char **)&p, 16);
2213 } else {
2214 err = 0;
2216 if (*p == ',')
2217 p++;
2218 type = *p;
2219 if (s->current_syscall_cb) {
2220 s->current_syscall_cb(s->c_cpu, ret, err);
2221 s->current_syscall_cb = NULL;
2223 if (type == 'C') {
2224 put_packet(s, "T02");
2225 } else {
2226 gdb_continue(s);
2229 break;
2230 case 'g':
2231 cpu_synchronize_state(ENV_GET_CPU(s->g_cpu));
2232 env = s->g_cpu;
2233 len = 0;
2234 for (addr = 0; addr < num_g_regs; addr++) {
2235 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
2236 len += reg_size;
2238 memtohex(buf, mem_buf, len);
2239 put_packet(s, buf);
2240 break;
2241 case 'G':
2242 cpu_synchronize_state(ENV_GET_CPU(s->g_cpu));
2243 env = s->g_cpu;
2244 registers = mem_buf;
2245 len = strlen(p) / 2;
2246 hextomem((uint8_t *)registers, p, len);
2247 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
2248 reg_size = gdb_write_register(s->g_cpu, registers, addr);
2249 len -= reg_size;
2250 registers += reg_size;
2252 put_packet(s, "OK");
2253 break;
2254 case 'm':
2255 addr = strtoull(p, (char **)&p, 16);
2256 if (*p == ',')
2257 p++;
2258 len = strtoull(p, NULL, 16);
2259 if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
2260 put_packet (s, "E14");
2261 } else {
2262 memtohex(buf, mem_buf, len);
2263 put_packet(s, buf);
2265 break;
2266 case 'M':
2267 addr = strtoull(p, (char **)&p, 16);
2268 if (*p == ',')
2269 p++;
2270 len = strtoull(p, (char **)&p, 16);
2271 if (*p == ':')
2272 p++;
2273 hextomem(mem_buf, p, len);
2274 if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0) {
2275 put_packet(s, "E14");
2276 } else {
2277 put_packet(s, "OK");
2279 break;
2280 case 'p':
2281 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
2282 This works, but can be very slow. Anything new enough to
2283 understand XML also knows how to use this properly. */
2284 if (!gdb_has_xml)
2285 goto unknown_command;
2286 addr = strtoull(p, (char **)&p, 16);
2287 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
2288 if (reg_size) {
2289 memtohex(buf, mem_buf, reg_size);
2290 put_packet(s, buf);
2291 } else {
2292 put_packet(s, "E14");
2294 break;
2295 case 'P':
2296 if (!gdb_has_xml)
2297 goto unknown_command;
2298 addr = strtoull(p, (char **)&p, 16);
2299 if (*p == '=')
2300 p++;
2301 reg_size = strlen(p) / 2;
2302 hextomem(mem_buf, p, reg_size);
2303 gdb_write_register(s->g_cpu, mem_buf, addr);
2304 put_packet(s, "OK");
2305 break;
2306 case 'Z':
2307 case 'z':
2308 type = strtoul(p, (char **)&p, 16);
2309 if (*p == ',')
2310 p++;
2311 addr = strtoull(p, (char **)&p, 16);
2312 if (*p == ',')
2313 p++;
2314 len = strtoull(p, (char **)&p, 16);
2315 if (ch == 'Z')
2316 res = gdb_breakpoint_insert(addr, len, type);
2317 else
2318 res = gdb_breakpoint_remove(addr, len, type);
2319 if (res >= 0)
2320 put_packet(s, "OK");
2321 else if (res == -ENOSYS)
2322 put_packet(s, "");
2323 else
2324 put_packet(s, "E22");
2325 break;
2326 case 'H':
2327 type = *p++;
2328 thread = strtoull(p, (char **)&p, 16);
2329 if (thread == -1 || thread == 0) {
2330 put_packet(s, "OK");
2331 break;
2333 env = find_cpu(thread);
2334 if (env == NULL) {
2335 put_packet(s, "E22");
2336 break;
2338 switch (type) {
2339 case 'c':
2340 s->c_cpu = env;
2341 put_packet(s, "OK");
2342 break;
2343 case 'g':
2344 s->g_cpu = env;
2345 put_packet(s, "OK");
2346 break;
2347 default:
2348 put_packet(s, "E22");
2349 break;
2351 break;
2352 case 'T':
2353 thread = strtoull(p, (char **)&p, 16);
2354 env = find_cpu(thread);
2356 if (env != NULL) {
2357 put_packet(s, "OK");
2358 } else {
2359 put_packet(s, "E22");
2361 break;
2362 case 'q':
2363 case 'Q':
2364 /* parse any 'q' packets here */
2365 if (!strcmp(p,"qemu.sstepbits")) {
2366 /* Query Breakpoint bit definitions */
2367 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
2368 SSTEP_ENABLE,
2369 SSTEP_NOIRQ,
2370 SSTEP_NOTIMER);
2371 put_packet(s, buf);
2372 break;
2373 } else if (strncmp(p,"qemu.sstep",10) == 0) {
2374 /* Display or change the sstep_flags */
2375 p += 10;
2376 if (*p != '=') {
2377 /* Display current setting */
2378 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
2379 put_packet(s, buf);
2380 break;
2382 p++;
2383 type = strtoul(p, (char **)&p, 16);
2384 sstep_flags = type;
2385 put_packet(s, "OK");
2386 break;
2387 } else if (strcmp(p,"C") == 0) {
2388 /* "Current thread" remains vague in the spec, so always return
2389 * the first CPU (gdb returns the first thread). */
2390 put_packet(s, "QC1");
2391 break;
2392 } else if (strcmp(p,"fThreadInfo") == 0) {
2393 s->query_cpu = first_cpu;
2394 goto report_cpuinfo;
2395 } else if (strcmp(p,"sThreadInfo") == 0) {
2396 report_cpuinfo:
2397 if (s->query_cpu) {
2398 snprintf(buf, sizeof(buf), "m%x",
2399 cpu_index(ENV_GET_CPU(s->query_cpu)));
2400 put_packet(s, buf);
2401 s->query_cpu = s->query_cpu->next_cpu;
2402 } else
2403 put_packet(s, "l");
2404 break;
2405 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
2406 thread = strtoull(p+16, (char **)&p, 16);
2407 env = find_cpu(thread);
2408 if (env != NULL) {
2409 CPUState *cpu = ENV_GET_CPU(env);
2410 cpu_synchronize_state(cpu);
2411 len = snprintf((char *)mem_buf, sizeof(mem_buf),
2412 "CPU#%d [%s]", cpu->cpu_index,
2413 cpu->halted ? "halted " : "running");
2414 memtohex(buf, mem_buf, len);
2415 put_packet(s, buf);
2417 break;
2419 #ifdef CONFIG_USER_ONLY
2420 else if (strncmp(p, "Offsets", 7) == 0) {
2421 TaskState *ts = s->c_cpu->opaque;
2423 snprintf(buf, sizeof(buf),
2424 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
2425 ";Bss=" TARGET_ABI_FMT_lx,
2426 ts->info->code_offset,
2427 ts->info->data_offset,
2428 ts->info->data_offset);
2429 put_packet(s, buf);
2430 break;
2432 #else /* !CONFIG_USER_ONLY */
2433 else if (strncmp(p, "Rcmd,", 5) == 0) {
2434 int len = strlen(p + 5);
2436 if ((len % 2) != 0) {
2437 put_packet(s, "E01");
2438 break;
2440 hextomem(mem_buf, p + 5, len);
2441 len = len / 2;
2442 mem_buf[len++] = 0;
2443 qemu_chr_be_write(s->mon_chr, mem_buf, len);
2444 put_packet(s, "OK");
2445 break;
2447 #endif /* !CONFIG_USER_ONLY */
2448 if (strncmp(p, "Supported", 9) == 0) {
2449 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
2450 #ifdef GDB_CORE_XML
2451 pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
2452 #endif
2453 put_packet(s, buf);
2454 break;
2456 #ifdef GDB_CORE_XML
2457 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
2458 const char *xml;
2459 target_ulong total_len;
2461 gdb_has_xml = 1;
2462 p += 19;
2463 xml = get_feature_xml(p, &p);
2464 if (!xml) {
2465 snprintf(buf, sizeof(buf), "E00");
2466 put_packet(s, buf);
2467 break;
2470 if (*p == ':')
2471 p++;
2472 addr = strtoul(p, (char **)&p, 16);
2473 if (*p == ',')
2474 p++;
2475 len = strtoul(p, (char **)&p, 16);
2477 total_len = strlen(xml);
2478 if (addr > total_len) {
2479 snprintf(buf, sizeof(buf), "E00");
2480 put_packet(s, buf);
2481 break;
2483 if (len > (MAX_PACKET_LENGTH - 5) / 2)
2484 len = (MAX_PACKET_LENGTH - 5) / 2;
2485 if (len < total_len - addr) {
2486 buf[0] = 'm';
2487 len = memtox(buf + 1, xml + addr, len);
2488 } else {
2489 buf[0] = 'l';
2490 len = memtox(buf + 1, xml + addr, total_len - addr);
2492 put_packet_binary(s, buf, len + 1);
2493 break;
2495 #endif
2496 /* Unrecognised 'q' command. */
2497 goto unknown_command;
2499 default:
2500 unknown_command:
2501 /* put empty packet */
2502 buf[0] = '\0';
2503 put_packet(s, buf);
2504 break;
2506 return RS_IDLE;
2509 void gdb_set_stop_cpu(CPUState *cpu)
2511 CPUArchState *env = cpu->env_ptr;
2513 gdbserver_state->c_cpu = env;
2514 gdbserver_state->g_cpu = env;
2517 #ifndef CONFIG_USER_ONLY
2518 static void gdb_vm_state_change(void *opaque, int running, RunState state)
2520 GDBState *s = gdbserver_state;
2521 CPUArchState *env = s->c_cpu;
2522 CPUState *cpu = ENV_GET_CPU(env);
2523 char buf[256];
2524 const char *type;
2525 int ret;
2527 if (running || s->state == RS_INACTIVE) {
2528 return;
2530 /* Is there a GDB syscall waiting to be sent? */
2531 if (s->current_syscall_cb) {
2532 put_packet(s, s->syscall_buf);
2533 return;
2535 switch (state) {
2536 case RUN_STATE_DEBUG:
2537 if (env->watchpoint_hit) {
2538 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
2539 case BP_MEM_READ:
2540 type = "r";
2541 break;
2542 case BP_MEM_ACCESS:
2543 type = "a";
2544 break;
2545 default:
2546 type = "";
2547 break;
2549 snprintf(buf, sizeof(buf),
2550 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
2551 GDB_SIGNAL_TRAP, cpu_index(cpu), type,
2552 env->watchpoint_hit->vaddr);
2553 env->watchpoint_hit = NULL;
2554 goto send_packet;
2556 tb_flush(env);
2557 ret = GDB_SIGNAL_TRAP;
2558 break;
2559 case RUN_STATE_PAUSED:
2560 ret = GDB_SIGNAL_INT;
2561 break;
2562 case RUN_STATE_SHUTDOWN:
2563 ret = GDB_SIGNAL_QUIT;
2564 break;
2565 case RUN_STATE_IO_ERROR:
2566 ret = GDB_SIGNAL_IO;
2567 break;
2568 case RUN_STATE_WATCHDOG:
2569 ret = GDB_SIGNAL_ALRM;
2570 break;
2571 case RUN_STATE_INTERNAL_ERROR:
2572 ret = GDB_SIGNAL_ABRT;
2573 break;
2574 case RUN_STATE_SAVE_VM:
2575 case RUN_STATE_RESTORE_VM:
2576 return;
2577 case RUN_STATE_FINISH_MIGRATE:
2578 ret = GDB_SIGNAL_XCPU;
2579 break;
2580 default:
2581 ret = GDB_SIGNAL_UNKNOWN;
2582 break;
2584 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, cpu_index(cpu));
2586 send_packet:
2587 put_packet(s, buf);
2589 /* disable single step if it was enabled */
2590 cpu_single_step(env, 0);
2592 #endif
2594 /* Send a gdb syscall request.
2595 This accepts limited printf-style format specifiers, specifically:
2596 %x - target_ulong argument printed in hex.
2597 %lx - 64-bit argument printed in hex.
2598 %s - string pointer (target_ulong) and length (int) pair. */
2599 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
2601 va_list va;
2602 char *p;
2603 char *p_end;
2604 target_ulong addr;
2605 uint64_t i64;
2606 GDBState *s;
2608 s = gdbserver_state;
2609 if (!s)
2610 return;
2611 s->current_syscall_cb = cb;
2612 #ifndef CONFIG_USER_ONLY
2613 vm_stop(RUN_STATE_DEBUG);
2614 #endif
2615 va_start(va, fmt);
2616 p = s->syscall_buf;
2617 p_end = &s->syscall_buf[sizeof(s->syscall_buf)];
2618 *(p++) = 'F';
2619 while (*fmt) {
2620 if (*fmt == '%') {
2621 fmt++;
2622 switch (*fmt++) {
2623 case 'x':
2624 addr = va_arg(va, target_ulong);
2625 p += snprintf(p, p_end - p, TARGET_FMT_lx, addr);
2626 break;
2627 case 'l':
2628 if (*(fmt++) != 'x')
2629 goto bad_format;
2630 i64 = va_arg(va, uint64_t);
2631 p += snprintf(p, p_end - p, "%" PRIx64, i64);
2632 break;
2633 case 's':
2634 addr = va_arg(va, target_ulong);
2635 p += snprintf(p, p_end - p, TARGET_FMT_lx "/%x",
2636 addr, va_arg(va, int));
2637 break;
2638 default:
2639 bad_format:
2640 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
2641 fmt - 1);
2642 break;
2644 } else {
2645 *(p++) = *(fmt++);
2648 *p = 0;
2649 va_end(va);
2650 #ifdef CONFIG_USER_ONLY
2651 put_packet(s, s->syscall_buf);
2652 gdb_handlesig(s->c_cpu, 0);
2653 #else
2654 /* In this case wait to send the syscall packet until notification that
2655 the CPU has stopped. This must be done because if the packet is sent
2656 now the reply from the syscall request could be received while the CPU
2657 is still in the running state, which can cause packets to be dropped
2658 and state transition 'T' packets to be sent while the syscall is still
2659 being processed. */
2660 cpu_exit(ENV_GET_CPU(s->c_cpu));
2661 #endif
2664 static void gdb_read_byte(GDBState *s, int ch)
2666 int i, csum;
2667 uint8_t reply;
2669 #ifndef CONFIG_USER_ONLY
2670 if (s->last_packet_len) {
2671 /* Waiting for a response to the last packet. If we see the start
2672 of a new command then abandon the previous response. */
2673 if (ch == '-') {
2674 #ifdef DEBUG_GDB
2675 printf("Got NACK, retransmitting\n");
2676 #endif
2677 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2679 #ifdef DEBUG_GDB
2680 else if (ch == '+')
2681 printf("Got ACK\n");
2682 else
2683 printf("Got '%c' when expecting ACK/NACK\n", ch);
2684 #endif
2685 if (ch == '+' || ch == '$')
2686 s->last_packet_len = 0;
2687 if (ch != '$')
2688 return;
2690 if (runstate_is_running()) {
2691 /* when the CPU is running, we cannot do anything except stop
2692 it when receiving a char */
2693 vm_stop(RUN_STATE_PAUSED);
2694 } else
2695 #endif
2697 switch(s->state) {
2698 case RS_IDLE:
2699 if (ch == '$') {
2700 s->line_buf_index = 0;
2701 s->state = RS_GETLINE;
2703 break;
2704 case RS_GETLINE:
2705 if (ch == '#') {
2706 s->state = RS_CHKSUM1;
2707 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2708 s->state = RS_IDLE;
2709 } else {
2710 s->line_buf[s->line_buf_index++] = ch;
2712 break;
2713 case RS_CHKSUM1:
2714 s->line_buf[s->line_buf_index] = '\0';
2715 s->line_csum = fromhex(ch) << 4;
2716 s->state = RS_CHKSUM2;
2717 break;
2718 case RS_CHKSUM2:
2719 s->line_csum |= fromhex(ch);
2720 csum = 0;
2721 for(i = 0; i < s->line_buf_index; i++) {
2722 csum += s->line_buf[i];
2724 if (s->line_csum != (csum & 0xff)) {
2725 reply = '-';
2726 put_buffer(s, &reply, 1);
2727 s->state = RS_IDLE;
2728 } else {
2729 reply = '+';
2730 put_buffer(s, &reply, 1);
2731 s->state = gdb_handle_packet(s, s->line_buf);
2733 break;
2734 default:
2735 abort();
2740 /* Tell the remote gdb that the process has exited. */
2741 void gdb_exit(CPUArchState *env, int code)
2743 GDBState *s;
2744 char buf[4];
2746 s = gdbserver_state;
2747 if (!s) {
2748 return;
2750 #ifdef CONFIG_USER_ONLY
2751 if (gdbserver_fd < 0 || s->fd < 0) {
2752 return;
2754 #endif
2756 snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
2757 put_packet(s, buf);
2759 #ifndef CONFIG_USER_ONLY
2760 if (s->chr) {
2761 qemu_chr_delete(s->chr);
2763 #endif
2766 #ifdef CONFIG_USER_ONLY
2768 gdb_queuesig (void)
2770 GDBState *s;
2772 s = gdbserver_state;
2774 if (gdbserver_fd < 0 || s->fd < 0)
2775 return 0;
2776 else
2777 return 1;
2781 gdb_handlesig (CPUArchState *env, int sig)
2783 GDBState *s;
2784 char buf[256];
2785 int n;
2787 s = gdbserver_state;
2788 if (gdbserver_fd < 0 || s->fd < 0)
2789 return sig;
2791 /* disable single step if it was enabled */
2792 cpu_single_step(env, 0);
2793 tb_flush(env);
2795 if (sig != 0)
2797 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
2798 put_packet(s, buf);
2800 /* put_packet() might have detected that the peer terminated the
2801 connection. */
2802 if (s->fd < 0)
2803 return sig;
2805 sig = 0;
2806 s->state = RS_IDLE;
2807 s->running_state = 0;
2808 while (s->running_state == 0) {
2809 n = read (s->fd, buf, 256);
2810 if (n > 0)
2812 int i;
2814 for (i = 0; i < n; i++)
2815 gdb_read_byte (s, buf[i]);
2817 else if (n == 0 || errno != EAGAIN)
2819 /* XXX: Connection closed. Should probably wait for another
2820 connection before continuing. */
2821 return sig;
2824 sig = s->signal;
2825 s->signal = 0;
2826 return sig;
2829 /* Tell the remote gdb that the process has exited due to SIG. */
2830 void gdb_signalled(CPUArchState *env, int sig)
2832 GDBState *s;
2833 char buf[4];
2835 s = gdbserver_state;
2836 if (gdbserver_fd < 0 || s->fd < 0)
2837 return;
2839 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
2840 put_packet(s, buf);
2843 static void gdb_accept(void)
2845 GDBState *s;
2846 struct sockaddr_in sockaddr;
2847 socklen_t len;
2848 int fd;
2850 for(;;) {
2851 len = sizeof(sockaddr);
2852 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2853 if (fd < 0 && errno != EINTR) {
2854 perror("accept");
2855 return;
2856 } else if (fd >= 0) {
2857 #ifndef _WIN32
2858 fcntl(fd, F_SETFD, FD_CLOEXEC);
2859 #endif
2860 break;
2864 /* set short latency */
2865 socket_set_nodelay(fd);
2867 s = g_malloc0(sizeof(GDBState));
2868 s->c_cpu = first_cpu;
2869 s->g_cpu = first_cpu;
2870 s->fd = fd;
2871 gdb_has_xml = 0;
2873 gdbserver_state = s;
2875 fcntl(fd, F_SETFL, O_NONBLOCK);
2878 static int gdbserver_open(int port)
2880 struct sockaddr_in sockaddr;
2881 int fd, val, ret;
2883 fd = socket(PF_INET, SOCK_STREAM, 0);
2884 if (fd < 0) {
2885 perror("socket");
2886 return -1;
2888 #ifndef _WIN32
2889 fcntl(fd, F_SETFD, FD_CLOEXEC);
2890 #endif
2892 /* allow fast reuse */
2893 val = 1;
2894 qemu_setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &val, sizeof(val));
2896 sockaddr.sin_family = AF_INET;
2897 sockaddr.sin_port = htons(port);
2898 sockaddr.sin_addr.s_addr = 0;
2899 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2900 if (ret < 0) {
2901 perror("bind");
2902 close(fd);
2903 return -1;
2905 ret = listen(fd, 0);
2906 if (ret < 0) {
2907 perror("listen");
2908 close(fd);
2909 return -1;
2911 return fd;
2914 int gdbserver_start(int port)
2916 gdbserver_fd = gdbserver_open(port);
2917 if (gdbserver_fd < 0)
2918 return -1;
2919 /* accept connections */
2920 gdb_accept();
2921 return 0;
2924 /* Disable gdb stub for child processes. */
2925 void gdbserver_fork(CPUArchState *env)
2927 GDBState *s = gdbserver_state;
2928 if (gdbserver_fd < 0 || s->fd < 0)
2929 return;
2930 close(s->fd);
2931 s->fd = -1;
2932 cpu_breakpoint_remove_all(env, BP_GDB);
2933 cpu_watchpoint_remove_all(env, BP_GDB);
2935 #else
2936 static int gdb_chr_can_receive(void *opaque)
2938 /* We can handle an arbitrarily large amount of data.
2939 Pick the maximum packet size, which is as good as anything. */
2940 return MAX_PACKET_LENGTH;
2943 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2945 int i;
2947 for (i = 0; i < size; i++) {
2948 gdb_read_byte(gdbserver_state, buf[i]);
2952 static void gdb_chr_event(void *opaque, int event)
2954 switch (event) {
2955 case CHR_EVENT_OPENED:
2956 vm_stop(RUN_STATE_PAUSED);
2957 gdb_has_xml = 0;
2958 break;
2959 default:
2960 break;
2964 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2966 char buf[MAX_PACKET_LENGTH];
2968 buf[0] = 'O';
2969 if (len > (MAX_PACKET_LENGTH/2) - 1)
2970 len = (MAX_PACKET_LENGTH/2) - 1;
2971 memtohex(buf + 1, (uint8_t *)msg, len);
2972 put_packet(s, buf);
2975 static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len)
2977 const char *p = (const char *)buf;
2978 int max_sz;
2980 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2981 for (;;) {
2982 if (len <= max_sz) {
2983 gdb_monitor_output(gdbserver_state, p, len);
2984 break;
2986 gdb_monitor_output(gdbserver_state, p, max_sz);
2987 p += max_sz;
2988 len -= max_sz;
2990 return len;
2993 #ifndef _WIN32
2994 static void gdb_sigterm_handler(int signal)
2996 if (runstate_is_running()) {
2997 vm_stop(RUN_STATE_PAUSED);
3000 #endif
3002 int gdbserver_start(const char *device)
3004 GDBState *s;
3005 char gdbstub_device_name[128];
3006 CharDriverState *chr = NULL;
3007 CharDriverState *mon_chr;
3009 if (!device)
3010 return -1;
3011 if (strcmp(device, "none") != 0) {
3012 if (strstart(device, "tcp:", NULL)) {
3013 /* enforce required TCP attributes */
3014 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
3015 "%s,nowait,nodelay,server", device);
3016 device = gdbstub_device_name;
3018 #ifndef _WIN32
3019 else if (strcmp(device, "stdio") == 0) {
3020 struct sigaction act;
3022 memset(&act, 0, sizeof(act));
3023 act.sa_handler = gdb_sigterm_handler;
3024 sigaction(SIGINT, &act, NULL);
3026 #endif
3027 chr = qemu_chr_new("gdb", device, NULL);
3028 if (!chr)
3029 return -1;
3031 qemu_chr_fe_claim_no_fail(chr);
3032 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
3033 gdb_chr_event, NULL);
3036 s = gdbserver_state;
3037 if (!s) {
3038 s = g_malloc0(sizeof(GDBState));
3039 gdbserver_state = s;
3041 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
3043 /* Initialize a monitor terminal for gdb */
3044 mon_chr = g_malloc0(sizeof(*mon_chr));
3045 mon_chr->chr_write = gdb_monitor_write;
3046 monitor_init(mon_chr, 0);
3047 } else {
3048 if (s->chr)
3049 qemu_chr_delete(s->chr);
3050 mon_chr = s->mon_chr;
3051 memset(s, 0, sizeof(GDBState));
3053 s->c_cpu = first_cpu;
3054 s->g_cpu = first_cpu;
3055 s->chr = chr;
3056 s->state = chr ? RS_IDLE : RS_INACTIVE;
3057 s->mon_chr = mon_chr;
3058 s->current_syscall_cb = NULL;
3060 return 0;
3062 #endif