x86: switch to AREG0 free mode
[qemu/blueswirl.git] / block / qcow2-cluster.c
blobc173fcd488e2fecc9be1258dec8fe32a3d1e5d9b
1 /*
2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include <zlib.h>
27 #include "qemu-common.h"
28 #include "block_int.h"
29 #include "block/qcow2.h"
30 #include "trace.h"
32 int qcow2_grow_l1_table(BlockDriverState *bs, int min_size, bool exact_size)
34 BDRVQcowState *s = bs->opaque;
35 int new_l1_size, new_l1_size2, ret, i;
36 uint64_t *new_l1_table;
37 int64_t new_l1_table_offset;
38 uint8_t data[12];
40 if (min_size <= s->l1_size)
41 return 0;
43 if (exact_size) {
44 new_l1_size = min_size;
45 } else {
46 /* Bump size up to reduce the number of times we have to grow */
47 new_l1_size = s->l1_size;
48 if (new_l1_size == 0) {
49 new_l1_size = 1;
51 while (min_size > new_l1_size) {
52 new_l1_size = (new_l1_size * 3 + 1) / 2;
56 #ifdef DEBUG_ALLOC2
57 fprintf(stderr, "grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
58 #endif
60 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
61 new_l1_table = g_malloc0(align_offset(new_l1_size2, 512));
62 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
64 /* write new table (align to cluster) */
65 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
66 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
67 if (new_l1_table_offset < 0) {
68 g_free(new_l1_table);
69 return new_l1_table_offset;
72 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
73 if (ret < 0) {
74 goto fail;
77 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
78 for(i = 0; i < s->l1_size; i++)
79 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
80 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
81 if (ret < 0)
82 goto fail;
83 for(i = 0; i < s->l1_size; i++)
84 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
86 /* set new table */
87 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
88 cpu_to_be32w((uint32_t*)data, new_l1_size);
89 cpu_to_be64wu((uint64_t*)(data + 4), new_l1_table_offset);
90 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
91 if (ret < 0) {
92 goto fail;
94 g_free(s->l1_table);
95 qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
96 s->l1_table_offset = new_l1_table_offset;
97 s->l1_table = new_l1_table;
98 s->l1_size = new_l1_size;
99 return 0;
100 fail:
101 g_free(new_l1_table);
102 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2);
103 return ret;
107 * l2_load
109 * Loads a L2 table into memory. If the table is in the cache, the cache
110 * is used; otherwise the L2 table is loaded from the image file.
112 * Returns a pointer to the L2 table on success, or NULL if the read from
113 * the image file failed.
116 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
117 uint64_t **l2_table)
119 BDRVQcowState *s = bs->opaque;
120 int ret;
122 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
124 return ret;
128 * Writes one sector of the L1 table to the disk (can't update single entries
129 * and we really don't want bdrv_pread to perform a read-modify-write)
131 #define L1_ENTRIES_PER_SECTOR (512 / 8)
132 static int write_l1_entry(BlockDriverState *bs, int l1_index)
134 BDRVQcowState *s = bs->opaque;
135 uint64_t buf[L1_ENTRIES_PER_SECTOR];
136 int l1_start_index;
137 int i, ret;
139 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
140 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
141 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
144 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
145 ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
146 buf, sizeof(buf));
147 if (ret < 0) {
148 return ret;
151 return 0;
155 * l2_allocate
157 * Allocate a new l2 entry in the file. If l1_index points to an already
158 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
159 * table) copy the contents of the old L2 table into the newly allocated one.
160 * Otherwise the new table is initialized with zeros.
164 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
166 BDRVQcowState *s = bs->opaque;
167 uint64_t old_l2_offset;
168 uint64_t *l2_table;
169 int64_t l2_offset;
170 int ret;
172 old_l2_offset = s->l1_table[l1_index];
174 trace_qcow2_l2_allocate(bs, l1_index);
176 /* allocate a new l2 entry */
178 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
179 if (l2_offset < 0) {
180 return l2_offset;
183 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
184 if (ret < 0) {
185 goto fail;
188 /* allocate a new entry in the l2 cache */
190 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
191 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
192 if (ret < 0) {
193 return ret;
196 l2_table = *table;
198 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
199 /* if there was no old l2 table, clear the new table */
200 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
201 } else {
202 uint64_t* old_table;
204 /* if there was an old l2 table, read it from the disk */
205 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
206 ret = qcow2_cache_get(bs, s->l2_table_cache,
207 old_l2_offset & L1E_OFFSET_MASK,
208 (void**) &old_table);
209 if (ret < 0) {
210 goto fail;
213 memcpy(l2_table, old_table, s->cluster_size);
215 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table);
216 if (ret < 0) {
217 goto fail;
221 /* write the l2 table to the file */
222 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
224 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
225 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
226 ret = qcow2_cache_flush(bs, s->l2_table_cache);
227 if (ret < 0) {
228 goto fail;
231 /* update the L1 entry */
232 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
233 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
234 ret = write_l1_entry(bs, l1_index);
235 if (ret < 0) {
236 goto fail;
239 *table = l2_table;
240 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
241 return 0;
243 fail:
244 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
245 qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
246 s->l1_table[l1_index] = old_l2_offset;
247 return ret;
251 * Checks how many clusters in a given L2 table are contiguous in the image
252 * file. As soon as one of the flags in the bitmask stop_flags changes compared
253 * to the first cluster, the search is stopped and the cluster is not counted
254 * as contiguous. (This allows it, for example, to stop at the first compressed
255 * cluster which may require a different handling)
257 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
258 uint64_t *l2_table, uint64_t start, uint64_t stop_flags)
260 int i;
261 uint64_t mask = stop_flags | L2E_OFFSET_MASK;
262 uint64_t offset = be64_to_cpu(l2_table[0]) & mask;
264 if (!offset)
265 return 0;
267 for (i = start; i < start + nb_clusters; i++) {
268 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
269 if (offset + (uint64_t) i * cluster_size != l2_entry) {
270 break;
274 return (i - start);
277 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
279 int i;
281 for (i = 0; i < nb_clusters; i++) {
282 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
284 if (type != QCOW2_CLUSTER_UNALLOCATED) {
285 break;
289 return i;
292 /* The crypt function is compatible with the linux cryptoloop
293 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
294 supported */
295 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
296 uint8_t *out_buf, const uint8_t *in_buf,
297 int nb_sectors, int enc,
298 const AES_KEY *key)
300 union {
301 uint64_t ll[2];
302 uint8_t b[16];
303 } ivec;
304 int i;
306 for(i = 0; i < nb_sectors; i++) {
307 ivec.ll[0] = cpu_to_le64(sector_num);
308 ivec.ll[1] = 0;
309 AES_cbc_encrypt(in_buf, out_buf, 512, key,
310 ivec.b, enc);
311 sector_num++;
312 in_buf += 512;
313 out_buf += 512;
317 static int coroutine_fn copy_sectors(BlockDriverState *bs,
318 uint64_t start_sect,
319 uint64_t cluster_offset,
320 int n_start, int n_end)
322 BDRVQcowState *s = bs->opaque;
323 QEMUIOVector qiov;
324 struct iovec iov;
325 int n, ret;
328 * If this is the last cluster and it is only partially used, we must only
329 * copy until the end of the image, or bdrv_check_request will fail for the
330 * bdrv_read/write calls below.
332 if (start_sect + n_end > bs->total_sectors) {
333 n_end = bs->total_sectors - start_sect;
336 n = n_end - n_start;
337 if (n <= 0) {
338 return 0;
341 iov.iov_len = n * BDRV_SECTOR_SIZE;
342 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
344 qemu_iovec_init_external(&qiov, &iov, 1);
346 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
348 /* Call .bdrv_co_readv() directly instead of using the public block-layer
349 * interface. This avoids double I/O throttling and request tracking,
350 * which can lead to deadlock when block layer copy-on-read is enabled.
352 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
353 if (ret < 0) {
354 goto out;
357 if (s->crypt_method) {
358 qcow2_encrypt_sectors(s, start_sect + n_start,
359 iov.iov_base, iov.iov_base, n, 1,
360 &s->aes_encrypt_key);
363 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
364 ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
365 if (ret < 0) {
366 goto out;
369 ret = 0;
370 out:
371 qemu_vfree(iov.iov_base);
372 return ret;
377 * get_cluster_offset
379 * For a given offset of the disk image, find the cluster offset in
380 * qcow2 file. The offset is stored in *cluster_offset.
382 * on entry, *num is the number of contiguous sectors we'd like to
383 * access following offset.
385 * on exit, *num is the number of contiguous sectors we can read.
387 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
388 * cases.
390 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
391 int *num, uint64_t *cluster_offset)
393 BDRVQcowState *s = bs->opaque;
394 unsigned int l1_index, l2_index;
395 uint64_t l2_offset, *l2_table;
396 int l1_bits, c;
397 unsigned int index_in_cluster, nb_clusters;
398 uint64_t nb_available, nb_needed;
399 int ret;
401 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
402 nb_needed = *num + index_in_cluster;
404 l1_bits = s->l2_bits + s->cluster_bits;
406 /* compute how many bytes there are between the offset and
407 * the end of the l1 entry
410 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
412 /* compute the number of available sectors */
414 nb_available = (nb_available >> 9) + index_in_cluster;
416 if (nb_needed > nb_available) {
417 nb_needed = nb_available;
420 *cluster_offset = 0;
422 /* seek the the l2 offset in the l1 table */
424 l1_index = offset >> l1_bits;
425 if (l1_index >= s->l1_size) {
426 ret = QCOW2_CLUSTER_UNALLOCATED;
427 goto out;
430 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
431 if (!l2_offset) {
432 ret = QCOW2_CLUSTER_UNALLOCATED;
433 goto out;
436 /* load the l2 table in memory */
438 ret = l2_load(bs, l2_offset, &l2_table);
439 if (ret < 0) {
440 return ret;
443 /* find the cluster offset for the given disk offset */
445 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
446 *cluster_offset = be64_to_cpu(l2_table[l2_index]);
447 nb_clusters = size_to_clusters(s, nb_needed << 9);
449 ret = qcow2_get_cluster_type(*cluster_offset);
450 switch (ret) {
451 case QCOW2_CLUSTER_COMPRESSED:
452 /* Compressed clusters can only be processed one by one */
453 c = 1;
454 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
455 break;
456 case QCOW2_CLUSTER_ZERO:
457 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
458 &l2_table[l2_index], 0,
459 QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO);
460 *cluster_offset = 0;
461 break;
462 case QCOW2_CLUSTER_UNALLOCATED:
463 /* how many empty clusters ? */
464 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
465 *cluster_offset = 0;
466 break;
467 case QCOW2_CLUSTER_NORMAL:
468 /* how many allocated clusters ? */
469 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
470 &l2_table[l2_index], 0,
471 QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO);
472 *cluster_offset &= L2E_OFFSET_MASK;
473 break;
474 default:
475 abort();
478 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
480 nb_available = (c * s->cluster_sectors);
482 out:
483 if (nb_available > nb_needed)
484 nb_available = nb_needed;
486 *num = nb_available - index_in_cluster;
488 return ret;
492 * get_cluster_table
494 * for a given disk offset, load (and allocate if needed)
495 * the l2 table.
497 * the l2 table offset in the qcow2 file and the cluster index
498 * in the l2 table are given to the caller.
500 * Returns 0 on success, -errno in failure case
502 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
503 uint64_t **new_l2_table,
504 int *new_l2_index)
506 BDRVQcowState *s = bs->opaque;
507 unsigned int l1_index, l2_index;
508 uint64_t l2_offset;
509 uint64_t *l2_table = NULL;
510 int ret;
512 /* seek the the l2 offset in the l1 table */
514 l1_index = offset >> (s->l2_bits + s->cluster_bits);
515 if (l1_index >= s->l1_size) {
516 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
517 if (ret < 0) {
518 return ret;
522 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
524 /* seek the l2 table of the given l2 offset */
526 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
527 /* load the l2 table in memory */
528 ret = l2_load(bs, l2_offset, &l2_table);
529 if (ret < 0) {
530 return ret;
532 } else {
533 /* First allocate a new L2 table (and do COW if needed) */
534 ret = l2_allocate(bs, l1_index, &l2_table);
535 if (ret < 0) {
536 return ret;
539 /* Then decrease the refcount of the old table */
540 if (l2_offset) {
541 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
543 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
546 /* find the cluster offset for the given disk offset */
548 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
550 *new_l2_table = l2_table;
551 *new_l2_index = l2_index;
553 return 0;
557 * alloc_compressed_cluster_offset
559 * For a given offset of the disk image, return cluster offset in
560 * qcow2 file.
562 * If the offset is not found, allocate a new compressed cluster.
564 * Return the cluster offset if successful,
565 * Return 0, otherwise.
569 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
570 uint64_t offset,
571 int compressed_size)
573 BDRVQcowState *s = bs->opaque;
574 int l2_index, ret;
575 uint64_t *l2_table;
576 int64_t cluster_offset;
577 int nb_csectors;
579 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
580 if (ret < 0) {
581 return 0;
584 /* Compression can't overwrite anything. Fail if the cluster was already
585 * allocated. */
586 cluster_offset = be64_to_cpu(l2_table[l2_index]);
587 if (cluster_offset & L2E_OFFSET_MASK) {
588 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
589 return 0;
592 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
593 if (cluster_offset < 0) {
594 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
595 return 0;
598 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
599 (cluster_offset >> 9);
601 cluster_offset |= QCOW_OFLAG_COMPRESSED |
602 ((uint64_t)nb_csectors << s->csize_shift);
604 /* update L2 table */
606 /* compressed clusters never have the copied flag */
608 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
609 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
610 l2_table[l2_index] = cpu_to_be64(cluster_offset);
611 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
612 if (ret < 0) {
613 return 0;
616 return cluster_offset;
619 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
621 BDRVQcowState *s = bs->opaque;
622 int i, j = 0, l2_index, ret;
623 uint64_t *old_cluster, start_sect, *l2_table;
624 uint64_t cluster_offset = m->alloc_offset;
625 bool cow = false;
627 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
629 if (m->nb_clusters == 0)
630 return 0;
632 old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t));
634 /* copy content of unmodified sectors */
635 start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9;
636 if (m->n_start) {
637 cow = true;
638 qemu_co_mutex_unlock(&s->lock);
639 ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start);
640 qemu_co_mutex_lock(&s->lock);
641 if (ret < 0)
642 goto err;
645 if (m->nb_available & (s->cluster_sectors - 1)) {
646 uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1);
647 cow = true;
648 qemu_co_mutex_unlock(&s->lock);
649 ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9),
650 m->nb_available - end, s->cluster_sectors);
651 qemu_co_mutex_lock(&s->lock);
652 if (ret < 0)
653 goto err;
657 * Update L2 table.
659 * Before we update the L2 table to actually point to the new cluster, we
660 * need to be sure that the refcounts have been increased and COW was
661 * handled.
663 if (cow) {
664 qcow2_cache_depends_on_flush(s->l2_table_cache);
667 qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
668 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
669 if (ret < 0) {
670 goto err;
672 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
674 for (i = 0; i < m->nb_clusters; i++) {
675 /* if two concurrent writes happen to the same unallocated cluster
676 * each write allocates separate cluster and writes data concurrently.
677 * The first one to complete updates l2 table with pointer to its
678 * cluster the second one has to do RMW (which is done above by
679 * copy_sectors()), update l2 table with its cluster pointer and free
680 * old cluster. This is what this loop does */
681 if(l2_table[l2_index + i] != 0)
682 old_cluster[j++] = l2_table[l2_index + i];
684 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
685 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
689 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
690 if (ret < 0) {
691 goto err;
695 * If this was a COW, we need to decrease the refcount of the old cluster.
696 * Also flush bs->file to get the right order for L2 and refcount update.
698 if (j != 0) {
699 for (i = 0; i < j; i++) {
700 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1);
704 ret = 0;
705 err:
706 g_free(old_cluster);
707 return ret;
711 * Returns the number of contiguous clusters that can be used for an allocating
712 * write, but require COW to be performed (this includes yet unallocated space,
713 * which must copy from the backing file)
715 static int count_cow_clusters(BDRVQcowState *s, int nb_clusters,
716 uint64_t *l2_table, int l2_index)
718 int i;
720 for (i = 0; i < nb_clusters; i++) {
721 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
722 int cluster_type = qcow2_get_cluster_type(l2_entry);
724 switch(cluster_type) {
725 case QCOW2_CLUSTER_NORMAL:
726 if (l2_entry & QCOW_OFLAG_COPIED) {
727 goto out;
729 break;
730 case QCOW2_CLUSTER_UNALLOCATED:
731 case QCOW2_CLUSTER_COMPRESSED:
732 case QCOW2_CLUSTER_ZERO:
733 break;
734 default:
735 abort();
739 out:
740 assert(i <= nb_clusters);
741 return i;
745 * Allocates new clusters for the given guest_offset.
747 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
748 * contain the number of clusters that have been allocated and are contiguous
749 * in the image file.
751 * If *host_offset is non-zero, it specifies the offset in the image file at
752 * which the new clusters must start. *nb_clusters can be 0 on return in this
753 * case if the cluster at host_offset is already in use. If *host_offset is
754 * zero, the clusters can be allocated anywhere in the image file.
756 * *host_offset is updated to contain the offset into the image file at which
757 * the first allocated cluster starts.
759 * Return 0 on success and -errno in error cases. -EAGAIN means that the
760 * function has been waiting for another request and the allocation must be
761 * restarted, but the whole request should not be failed.
763 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
764 uint64_t *host_offset, unsigned int *nb_clusters)
766 BDRVQcowState *s = bs->opaque;
767 QCowL2Meta *old_alloc;
769 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
770 *host_offset, *nb_clusters);
773 * Check if there already is an AIO write request in flight which allocates
774 * the same cluster. In this case we need to wait until the previous
775 * request has completed and updated the L2 table accordingly.
777 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
779 uint64_t start = guest_offset >> s->cluster_bits;
780 uint64_t end = start + *nb_clusters;
781 uint64_t old_start = old_alloc->offset >> s->cluster_bits;
782 uint64_t old_end = old_start + old_alloc->nb_clusters;
784 if (end < old_start || start > old_end) {
785 /* No intersection */
786 } else {
787 if (start < old_start) {
788 /* Stop at the start of a running allocation */
789 *nb_clusters = old_start - start;
790 } else {
791 *nb_clusters = 0;
794 if (*nb_clusters == 0) {
795 /* Wait for the dependency to complete. We need to recheck
796 * the free/allocated clusters when we continue. */
797 qemu_co_mutex_unlock(&s->lock);
798 qemu_co_queue_wait(&old_alloc->dependent_requests);
799 qemu_co_mutex_lock(&s->lock);
800 return -EAGAIN;
805 if (!*nb_clusters) {
806 abort();
809 /* Allocate new clusters */
810 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
811 if (*host_offset == 0) {
812 int64_t cluster_offset =
813 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
814 if (cluster_offset < 0) {
815 return cluster_offset;
817 *host_offset = cluster_offset;
818 return 0;
819 } else {
820 int ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
821 if (ret < 0) {
822 return ret;
824 *nb_clusters = ret;
825 return 0;
830 * alloc_cluster_offset
832 * For a given offset on the virtual disk, find the cluster offset in qcow2
833 * file. If the offset is not found, allocate a new cluster.
835 * If the cluster was already allocated, m->nb_clusters is set to 0 and
836 * other fields in m are meaningless.
838 * If the cluster is newly allocated, m->nb_clusters is set to the number of
839 * contiguous clusters that have been allocated. In this case, the other
840 * fields of m are valid and contain information about the first allocated
841 * cluster.
843 * If the request conflicts with another write request in flight, the coroutine
844 * is queued and will be reentered when the dependency has completed.
846 * Return 0 on success and -errno in error cases
848 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
849 int n_start, int n_end, int *num, QCowL2Meta *m)
851 BDRVQcowState *s = bs->opaque;
852 int l2_index, ret, sectors;
853 uint64_t *l2_table;
854 unsigned int nb_clusters, keep_clusters;
855 uint64_t cluster_offset;
857 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset,
858 n_start, n_end);
860 /* Find L2 entry for the first involved cluster */
861 again:
862 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
863 if (ret < 0) {
864 return ret;
868 * Calculate the number of clusters to look for. We stop at L2 table
869 * boundaries to keep things simple.
871 nb_clusters = MIN(size_to_clusters(s, n_end << BDRV_SECTOR_BITS),
872 s->l2_size - l2_index);
874 cluster_offset = be64_to_cpu(l2_table[l2_index]);
877 * Check how many clusters are already allocated and don't need COW, and how
878 * many need a new allocation.
880 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
881 && (cluster_offset & QCOW_OFLAG_COPIED))
883 /* We keep all QCOW_OFLAG_COPIED clusters */
884 keep_clusters =
885 count_contiguous_clusters(nb_clusters, s->cluster_size,
886 &l2_table[l2_index], 0,
887 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
888 assert(keep_clusters <= nb_clusters);
889 nb_clusters -= keep_clusters;
890 } else {
891 keep_clusters = 0;
892 cluster_offset = 0;
895 if (nb_clusters > 0) {
896 /* For the moment, overwrite compressed clusters one by one */
897 uint64_t entry = be64_to_cpu(l2_table[l2_index + keep_clusters]);
898 if (entry & QCOW_OFLAG_COMPRESSED) {
899 nb_clusters = 1;
900 } else {
901 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table,
902 l2_index + keep_clusters);
906 cluster_offset &= L2E_OFFSET_MASK;
909 * The L2 table isn't used any more after this. As long as the cache works
910 * synchronously, it's important to release it before calling
911 * do_alloc_cluster_offset, which may yield if we need to wait for another
912 * request to complete. If we still had the reference, we could use up the
913 * whole cache with sleeping requests.
915 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
916 if (ret < 0) {
917 return ret;
920 /* If there is something left to allocate, do that now */
921 *m = (QCowL2Meta) {
922 .cluster_offset = cluster_offset,
923 .nb_clusters = 0,
925 qemu_co_queue_init(&m->dependent_requests);
927 if (nb_clusters > 0) {
928 uint64_t alloc_offset;
929 uint64_t alloc_cluster_offset;
930 uint64_t keep_bytes = keep_clusters * s->cluster_size;
932 /* Calculate start and size of allocation */
933 alloc_offset = offset + keep_bytes;
935 if (keep_clusters == 0) {
936 alloc_cluster_offset = 0;
937 } else {
938 alloc_cluster_offset = cluster_offset + keep_bytes;
941 /* Allocate, if necessary at a given offset in the image file */
942 ret = do_alloc_cluster_offset(bs, alloc_offset, &alloc_cluster_offset,
943 &nb_clusters);
944 if (ret == -EAGAIN) {
945 goto again;
946 } else if (ret < 0) {
947 goto fail;
950 /* save info needed for meta data update */
951 if (nb_clusters > 0) {
952 int requested_sectors = n_end - keep_clusters * s->cluster_sectors;
953 int avail_sectors = (keep_clusters + nb_clusters)
954 << (s->cluster_bits - BDRV_SECTOR_BITS);
956 *m = (QCowL2Meta) {
957 .cluster_offset = keep_clusters == 0 ?
958 alloc_cluster_offset : cluster_offset,
959 .alloc_offset = alloc_cluster_offset,
960 .offset = alloc_offset,
961 .n_start = keep_clusters == 0 ? n_start : 0,
962 .nb_clusters = nb_clusters,
963 .nb_available = MIN(requested_sectors, avail_sectors),
965 qemu_co_queue_init(&m->dependent_requests);
966 QLIST_INSERT_HEAD(&s->cluster_allocs, m, next_in_flight);
970 /* Some cleanup work */
971 sectors = (keep_clusters + nb_clusters) << (s->cluster_bits - 9);
972 if (sectors > n_end) {
973 sectors = n_end;
976 assert(sectors > n_start);
977 *num = sectors - n_start;
979 return 0;
981 fail:
982 if (m->nb_clusters > 0) {
983 QLIST_REMOVE(m, next_in_flight);
985 return ret;
988 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
989 const uint8_t *buf, int buf_size)
991 z_stream strm1, *strm = &strm1;
992 int ret, out_len;
994 memset(strm, 0, sizeof(*strm));
996 strm->next_in = (uint8_t *)buf;
997 strm->avail_in = buf_size;
998 strm->next_out = out_buf;
999 strm->avail_out = out_buf_size;
1001 ret = inflateInit2(strm, -12);
1002 if (ret != Z_OK)
1003 return -1;
1004 ret = inflate(strm, Z_FINISH);
1005 out_len = strm->next_out - out_buf;
1006 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1007 out_len != out_buf_size) {
1008 inflateEnd(strm);
1009 return -1;
1011 inflateEnd(strm);
1012 return 0;
1015 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1017 BDRVQcowState *s = bs->opaque;
1018 int ret, csize, nb_csectors, sector_offset;
1019 uint64_t coffset;
1021 coffset = cluster_offset & s->cluster_offset_mask;
1022 if (s->cluster_cache_offset != coffset) {
1023 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1024 sector_offset = coffset & 511;
1025 csize = nb_csectors * 512 - sector_offset;
1026 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1027 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
1028 if (ret < 0) {
1029 return ret;
1031 if (decompress_buffer(s->cluster_cache, s->cluster_size,
1032 s->cluster_data + sector_offset, csize) < 0) {
1033 return -EIO;
1035 s->cluster_cache_offset = coffset;
1037 return 0;
1041 * This discards as many clusters of nb_clusters as possible at once (i.e.
1042 * all clusters in the same L2 table) and returns the number of discarded
1043 * clusters.
1045 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1046 unsigned int nb_clusters)
1048 BDRVQcowState *s = bs->opaque;
1049 uint64_t *l2_table;
1050 int l2_index;
1051 int ret;
1052 int i;
1054 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1055 if (ret < 0) {
1056 return ret;
1059 /* Limit nb_clusters to one L2 table */
1060 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1062 for (i = 0; i < nb_clusters; i++) {
1063 uint64_t old_offset;
1065 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1066 if ((old_offset & L2E_OFFSET_MASK) == 0) {
1067 continue;
1070 /* First remove L2 entries */
1071 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1072 l2_table[l2_index + i] = cpu_to_be64(0);
1074 /* Then decrease the refcount */
1075 qcow2_free_any_clusters(bs, old_offset, 1);
1078 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1079 if (ret < 0) {
1080 return ret;
1083 return nb_clusters;
1086 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1087 int nb_sectors)
1089 BDRVQcowState *s = bs->opaque;
1090 uint64_t end_offset;
1091 unsigned int nb_clusters;
1092 int ret;
1094 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1096 /* Round start up and end down */
1097 offset = align_offset(offset, s->cluster_size);
1098 end_offset &= ~(s->cluster_size - 1);
1100 if (offset > end_offset) {
1101 return 0;
1104 nb_clusters = size_to_clusters(s, end_offset - offset);
1106 /* Each L2 table is handled by its own loop iteration */
1107 while (nb_clusters > 0) {
1108 ret = discard_single_l2(bs, offset, nb_clusters);
1109 if (ret < 0) {
1110 return ret;
1113 nb_clusters -= ret;
1114 offset += (ret * s->cluster_size);
1117 return 0;
1121 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1122 * all clusters in the same L2 table) and returns the number of zeroed
1123 * clusters.
1125 static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1126 unsigned int nb_clusters)
1128 BDRVQcowState *s = bs->opaque;
1129 uint64_t *l2_table;
1130 int l2_index;
1131 int ret;
1132 int i;
1134 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1135 if (ret < 0) {
1136 return ret;
1139 /* Limit nb_clusters to one L2 table */
1140 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1142 for (i = 0; i < nb_clusters; i++) {
1143 uint64_t old_offset;
1145 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1147 /* Update L2 entries */
1148 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1149 if (old_offset & QCOW_OFLAG_COMPRESSED) {
1150 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1151 qcow2_free_any_clusters(bs, old_offset, 1);
1152 } else {
1153 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1157 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1158 if (ret < 0) {
1159 return ret;
1162 return nb_clusters;
1165 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors)
1167 BDRVQcowState *s = bs->opaque;
1168 unsigned int nb_clusters;
1169 int ret;
1171 /* The zero flag is only supported by version 3 and newer */
1172 if (s->qcow_version < 3) {
1173 return -ENOTSUP;
1176 /* Each L2 table is handled by its own loop iteration */
1177 nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
1179 while (nb_clusters > 0) {
1180 ret = zero_single_l2(bs, offset, nb_clusters);
1181 if (ret < 0) {
1182 return ret;
1185 nb_clusters -= ret;
1186 offset += (ret * s->cluster_size);
1189 return 0;