2 * sigaltstack coroutine initialization code
4 * Copyright (C) 2006 Anthony Liguori <anthony@codemonkey.ws>
5 * Copyright (C) 2011 Kevin Wolf <kwolf@redhat.com>
6 * Copyright (C) 2012 Alex Barcelo <abarcelo@ac.upc.edu>
7 ** This file is partly based on pth_mctx.c, from the GNU Portable Threads
8 ** Copyright (c) 1999-2006 Ralf S. Engelschall <rse@engelschall.com>
10 * This library is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2.1 of the License, or (at your option) any later version.
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 /* XXX Is there a nicer way to disable glibc's stack check for longjmp? */
25 #ifdef _FORTIFY_SOURCE
26 #undef _FORTIFY_SOURCE
28 #include "qemu/osdep.h"
30 #include "qemu/coroutine_int.h"
32 #ifdef CONFIG_SAFESTACK
33 #error "SafeStack is not compatible with code run in alternate signal stacks"
41 } CoroutineSigAltStack
;
44 * Per-thread coroutine bookkeeping
47 /** Currently executing coroutine */
50 /** The default coroutine */
51 CoroutineSigAltStack leader
;
53 /** Information for the signal handler (trampoline) */
54 sigjmp_buf tr_reenter
;
55 volatile sig_atomic_t tr_called
;
57 } CoroutineThreadState
;
59 static pthread_key_t thread_state_key
;
61 static CoroutineThreadState
*coroutine_get_thread_state(void)
63 CoroutineThreadState
*s
= pthread_getspecific(thread_state_key
);
66 s
= g_malloc0(sizeof(*s
));
67 s
->current
= &s
->leader
.base
;
68 pthread_setspecific(thread_state_key
, s
);
73 static void qemu_coroutine_thread_cleanup(void *opaque
)
75 CoroutineThreadState
*s
= opaque
;
80 static void __attribute__((constructor
)) coroutine_init(void)
84 ret
= pthread_key_create(&thread_state_key
, qemu_coroutine_thread_cleanup
);
86 fprintf(stderr
, "unable to create leader key: %s\n", strerror(errno
));
92 * This is what starts the coroutine, is called from the trampoline
93 * (from the signal handler when it is not signal handling, read ahead
94 * for more information).
96 static void coroutine_bootstrap(CoroutineSigAltStack
*self
, Coroutine
*co
)
98 /* Initialize longjmp environment and switch back the caller */
99 if (!sigsetjmp(self
->env
, 0)) {
100 siglongjmp(*(sigjmp_buf
*)co
->entry_arg
, 1);
104 co
->entry(co
->entry_arg
);
105 qemu_coroutine_switch(co
, co
->caller
, COROUTINE_TERMINATE
);
110 * This is used as the signal handler. This is called with the brand new stack
111 * (thanks to sigaltstack). We have to return, given that this is a signal
112 * handler and the sigmask and some other things are changed.
114 static void coroutine_trampoline(int signal
)
116 CoroutineSigAltStack
*self
;
118 CoroutineThreadState
*coTS
;
120 /* Get the thread specific information */
121 coTS
= coroutine_get_thread_state();
122 self
= coTS
->tr_handler
;
127 * Here we have to do a bit of a ping pong between the caller, given that
128 * this is a signal handler and we have to do a return "soon". Then the
129 * caller can reestablish everything and do a siglongjmp here again.
131 if (!sigsetjmp(coTS
->tr_reenter
, 0)) {
136 * Ok, the caller has siglongjmp'ed back to us, so now prepare
137 * us for the real machine state switching. We have to jump
138 * into another function here to get a new stack context for
139 * the auto variables (which have to be auto-variables
140 * because the start of the thread happens later). Else with
141 * PIC (i.e. Position Independent Code which is used when PTH
142 * is built as a shared library) most platforms would
143 * horrible core dump as experience showed.
145 coroutine_bootstrap(self
, co
);
148 Coroutine
*qemu_coroutine_new(void)
150 CoroutineSigAltStack
*co
;
151 CoroutineThreadState
*coTS
;
153 struct sigaction osa
;
159 static pthread_mutex_t sigusr2_mutex
= PTHREAD_MUTEX_INITIALIZER
;
161 /* The way to manipulate stack is with the sigaltstack function. We
162 * prepare a stack, with it delivering a signal to ourselves and then
163 * put sigsetjmp/siglongjmp where needed.
164 * This has been done keeping coroutine-ucontext as a model and with the
165 * pth ideas (GNU Portable Threads). See coroutine-ucontext for the basics
166 * of the coroutines and see pth_mctx.c (from the pth project) for the
167 * sigaltstack way of manipulating stacks.
170 co
= g_malloc0(sizeof(*co
));
171 co
->stack_size
= COROUTINE_STACK_SIZE
;
172 co
->stack
= qemu_alloc_stack(&co
->stack_size
);
173 co
->base
.entry_arg
= &old_env
; /* stash away our jmp_buf */
175 coTS
= coroutine_get_thread_state();
176 coTS
->tr_handler
= co
;
179 * Preserve the SIGUSR2 signal state, block SIGUSR2,
180 * and establish our signal handler. The signal will
181 * later transfer control onto the signal stack.
184 sigaddset(&sigs
, SIGUSR2
);
185 pthread_sigmask(SIG_BLOCK
, &sigs
, &osigs
);
186 sa
.sa_handler
= coroutine_trampoline
;
187 sigfillset(&sa
.sa_mask
);
188 sa
.sa_flags
= SA_ONSTACK
;
191 * sigaction() is a process-global operation. We must not run
192 * this code in multiple threads at once.
194 pthread_mutex_lock(&sigusr2_mutex
);
195 if (sigaction(SIGUSR2
, &sa
, &osa
) != 0) {
202 ss
.ss_sp
= co
->stack
;
203 ss
.ss_size
= co
->stack_size
;
205 if (sigaltstack(&ss
, &oss
) < 0) {
210 * Now transfer control onto the signal stack and set it up.
211 * It will return immediately via "return" after the sigsetjmp()
212 * was performed. Be careful here with race conditions. The
213 * signal can be delivered the first time sigsuspend() is
217 pthread_kill(pthread_self(), SIGUSR2
);
219 sigdelset(&sigs
, SIGUSR2
);
220 while (!coTS
->tr_called
) {
225 * Inform the system that we are back off the signal stack by
226 * removing the alternative signal stack. Be careful here: It
227 * first has to be disabled, before it can be removed.
229 sigaltstack(NULL
, &ss
);
230 ss
.ss_flags
= SS_DISABLE
;
231 if (sigaltstack(&ss
, NULL
) < 0) {
234 sigaltstack(NULL
, &ss
);
235 if (!(oss
.ss_flags
& SS_DISABLE
)) {
236 sigaltstack(&oss
, NULL
);
240 * Restore the old SIGUSR2 signal handler and mask
242 sigaction(SIGUSR2
, &osa
, NULL
);
243 pthread_mutex_unlock(&sigusr2_mutex
);
245 pthread_sigmask(SIG_SETMASK
, &osigs
, NULL
);
248 * Now enter the trampoline again, but this time not as a signal
249 * handler. Instead we jump into it directly. The functionally
250 * redundant ping-pong pointer arithmetic is necessary to avoid
251 * type-conversion warnings related to the `volatile' qualifier and
252 * the fact that `jmp_buf' usually is an array type.
254 if (!sigsetjmp(old_env
, 0)) {
255 siglongjmp(coTS
->tr_reenter
, 1);
259 * Ok, we returned again, so now we're finished
265 void qemu_coroutine_delete(Coroutine
*co_
)
267 CoroutineSigAltStack
*co
= DO_UPCAST(CoroutineSigAltStack
, base
, co_
);
269 qemu_free_stack(co
->stack
, co
->stack_size
);
273 CoroutineAction
qemu_coroutine_switch(Coroutine
*from_
, Coroutine
*to_
,
274 CoroutineAction action
)
276 CoroutineSigAltStack
*from
= DO_UPCAST(CoroutineSigAltStack
, base
, from_
);
277 CoroutineSigAltStack
*to
= DO_UPCAST(CoroutineSigAltStack
, base
, to_
);
278 CoroutineThreadState
*s
= coroutine_get_thread_state();
283 ret
= sigsetjmp(from
->env
, 0);
285 siglongjmp(to
->env
, action
);
290 Coroutine
*qemu_coroutine_self(void)
292 CoroutineThreadState
*s
= coroutine_get_thread_state();
297 bool qemu_in_coroutine(void)
299 CoroutineThreadState
*s
= pthread_getspecific(thread_state_key
);
301 return s
&& s
->current
->caller
;