Merge tag 'hw-misc-20240312' of https://github.com/philmd/qemu into staging
[qemu/armbru.git] / linux-user / elfload.c
blob4dbca056461b93e287931e4f6005755a22a16599
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
5 #include <sys/prctl.h>
6 #include <sys/resource.h>
7 #include <sys/shm.h>
9 #include "qemu.h"
10 #include "user-internals.h"
11 #include "signal-common.h"
12 #include "loader.h"
13 #include "user-mmap.h"
14 #include "disas/disas.h"
15 #include "qemu/bitops.h"
16 #include "qemu/path.h"
17 #include "qemu/queue.h"
18 #include "qemu/guest-random.h"
19 #include "qemu/units.h"
20 #include "qemu/selfmap.h"
21 #include "qemu/lockable.h"
22 #include "qapi/error.h"
23 #include "qemu/error-report.h"
24 #include "target_signal.h"
25 #include "tcg/debuginfo.h"
27 #ifdef TARGET_ARM
28 #include "target/arm/cpu-features.h"
29 #endif
31 #ifdef _ARCH_PPC64
32 #undef ARCH_DLINFO
33 #undef ELF_PLATFORM
34 #undef ELF_HWCAP
35 #undef ELF_HWCAP2
36 #undef ELF_CLASS
37 #undef ELF_DATA
38 #undef ELF_ARCH
39 #endif
41 #ifndef TARGET_ARCH_HAS_SIGTRAMP_PAGE
42 #define TARGET_ARCH_HAS_SIGTRAMP_PAGE 0
43 #endif
45 typedef struct {
46 const uint8_t *image;
47 const uint32_t *relocs;
48 unsigned image_size;
49 unsigned reloc_count;
50 unsigned sigreturn_ofs;
51 unsigned rt_sigreturn_ofs;
52 } VdsoImageInfo;
54 #define ELF_OSABI ELFOSABI_SYSV
56 /* from personality.h */
59 * Flags for bug emulation.
61 * These occupy the top three bytes.
63 enum {
64 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
65 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
66 descriptors (signal handling) */
67 MMAP_PAGE_ZERO = 0x0100000,
68 ADDR_COMPAT_LAYOUT = 0x0200000,
69 READ_IMPLIES_EXEC = 0x0400000,
70 ADDR_LIMIT_32BIT = 0x0800000,
71 SHORT_INODE = 0x1000000,
72 WHOLE_SECONDS = 0x2000000,
73 STICKY_TIMEOUTS = 0x4000000,
74 ADDR_LIMIT_3GB = 0x8000000,
78 * Personality types.
80 * These go in the low byte. Avoid using the top bit, it will
81 * conflict with error returns.
83 enum {
84 PER_LINUX = 0x0000,
85 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
86 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
87 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
88 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
89 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
90 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
91 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
92 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
93 PER_BSD = 0x0006,
94 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
95 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
96 PER_LINUX32 = 0x0008,
97 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
98 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
99 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
100 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
101 PER_RISCOS = 0x000c,
102 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
103 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
104 PER_OSF4 = 0x000f, /* OSF/1 v4 */
105 PER_HPUX = 0x0010,
106 PER_MASK = 0x00ff,
110 * Return the base personality without flags.
112 #define personality(pers) (pers & PER_MASK)
114 int info_is_fdpic(struct image_info *info)
116 return info->personality == PER_LINUX_FDPIC;
119 /* this flag is uneffective under linux too, should be deleted */
120 #ifndef MAP_DENYWRITE
121 #define MAP_DENYWRITE 0
122 #endif
124 /* should probably go in elf.h */
125 #ifndef ELIBBAD
126 #define ELIBBAD 80
127 #endif
129 #if TARGET_BIG_ENDIAN
130 #define ELF_DATA ELFDATA2MSB
131 #else
132 #define ELF_DATA ELFDATA2LSB
133 #endif
135 #ifdef TARGET_ABI_MIPSN32
136 typedef abi_ullong target_elf_greg_t;
137 #define tswapreg(ptr) tswap64(ptr)
138 #else
139 typedef abi_ulong target_elf_greg_t;
140 #define tswapreg(ptr) tswapal(ptr)
141 #endif
143 #ifdef USE_UID16
144 typedef abi_ushort target_uid_t;
145 typedef abi_ushort target_gid_t;
146 #else
147 typedef abi_uint target_uid_t;
148 typedef abi_uint target_gid_t;
149 #endif
150 typedef abi_int target_pid_t;
152 #ifdef TARGET_I386
154 #define ELF_HWCAP get_elf_hwcap()
156 static uint32_t get_elf_hwcap(void)
158 X86CPU *cpu = X86_CPU(thread_cpu);
160 return cpu->env.features[FEAT_1_EDX];
163 #ifdef TARGET_X86_64
164 #define ELF_CLASS ELFCLASS64
165 #define ELF_ARCH EM_X86_64
167 #define ELF_PLATFORM "x86_64"
169 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
171 regs->rax = 0;
172 regs->rsp = infop->start_stack;
173 regs->rip = infop->entry;
176 #define ELF_NREG 27
177 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
180 * Note that ELF_NREG should be 29 as there should be place for
181 * TRAPNO and ERR "registers" as well but linux doesn't dump
182 * those.
184 * See linux kernel: arch/x86/include/asm/elf.h
186 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
188 (*regs)[0] = tswapreg(env->regs[15]);
189 (*regs)[1] = tswapreg(env->regs[14]);
190 (*regs)[2] = tswapreg(env->regs[13]);
191 (*regs)[3] = tswapreg(env->regs[12]);
192 (*regs)[4] = tswapreg(env->regs[R_EBP]);
193 (*regs)[5] = tswapreg(env->regs[R_EBX]);
194 (*regs)[6] = tswapreg(env->regs[11]);
195 (*regs)[7] = tswapreg(env->regs[10]);
196 (*regs)[8] = tswapreg(env->regs[9]);
197 (*regs)[9] = tswapreg(env->regs[8]);
198 (*regs)[10] = tswapreg(env->regs[R_EAX]);
199 (*regs)[11] = tswapreg(env->regs[R_ECX]);
200 (*regs)[12] = tswapreg(env->regs[R_EDX]);
201 (*regs)[13] = tswapreg(env->regs[R_ESI]);
202 (*regs)[14] = tswapreg(env->regs[R_EDI]);
203 (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
204 (*regs)[16] = tswapreg(env->eip);
205 (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
206 (*regs)[18] = tswapreg(env->eflags);
207 (*regs)[19] = tswapreg(env->regs[R_ESP]);
208 (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
209 (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
210 (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
211 (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
212 (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
213 (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
214 (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
217 #if ULONG_MAX > UINT32_MAX
218 #define INIT_GUEST_COMMPAGE
219 static bool init_guest_commpage(void)
222 * The vsyscall page is at a high negative address aka kernel space,
223 * which means that we cannot actually allocate it with target_mmap.
224 * We still should be able to use page_set_flags, unless the user
225 * has specified -R reserved_va, which would trigger an assert().
227 if (reserved_va != 0 &&
228 TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
229 error_report("Cannot allocate vsyscall page");
230 exit(EXIT_FAILURE);
232 page_set_flags(TARGET_VSYSCALL_PAGE,
233 TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
234 PAGE_EXEC | PAGE_VALID);
235 return true;
237 #endif
238 #else
241 * This is used to ensure we don't load something for the wrong architecture.
243 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
246 * These are used to set parameters in the core dumps.
248 #define ELF_CLASS ELFCLASS32
249 #define ELF_ARCH EM_386
251 #define ELF_PLATFORM get_elf_platform()
252 #define EXSTACK_DEFAULT true
254 static const char *get_elf_platform(void)
256 static char elf_platform[] = "i386";
257 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
258 if (family > 6) {
259 family = 6;
261 if (family >= 3) {
262 elf_platform[1] = '0' + family;
264 return elf_platform;
267 static inline void init_thread(struct target_pt_regs *regs,
268 struct image_info *infop)
270 regs->esp = infop->start_stack;
271 regs->eip = infop->entry;
273 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
274 starts %edx contains a pointer to a function which might be
275 registered using `atexit'. This provides a mean for the
276 dynamic linker to call DT_FINI functions for shared libraries
277 that have been loaded before the code runs.
279 A value of 0 tells we have no such handler. */
280 regs->edx = 0;
283 #define ELF_NREG 17
284 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
287 * Note that ELF_NREG should be 19 as there should be place for
288 * TRAPNO and ERR "registers" as well but linux doesn't dump
289 * those.
291 * See linux kernel: arch/x86/include/asm/elf.h
293 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
295 (*regs)[0] = tswapreg(env->regs[R_EBX]);
296 (*regs)[1] = tswapreg(env->regs[R_ECX]);
297 (*regs)[2] = tswapreg(env->regs[R_EDX]);
298 (*regs)[3] = tswapreg(env->regs[R_ESI]);
299 (*regs)[4] = tswapreg(env->regs[R_EDI]);
300 (*regs)[5] = tswapreg(env->regs[R_EBP]);
301 (*regs)[6] = tswapreg(env->regs[R_EAX]);
302 (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
303 (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
304 (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
305 (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
306 (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
307 (*regs)[12] = tswapreg(env->eip);
308 (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
309 (*regs)[14] = tswapreg(env->eflags);
310 (*regs)[15] = tswapreg(env->regs[R_ESP]);
311 (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
315 * i386 is the only target which supplies AT_SYSINFO for the vdso.
316 * All others only supply AT_SYSINFO_EHDR.
318 #define DLINFO_ARCH_ITEMS (vdso_info != NULL)
319 #define ARCH_DLINFO \
320 do { \
321 if (vdso_info) { \
322 NEW_AUX_ENT(AT_SYSINFO, vdso_info->entry); \
324 } while (0)
326 #endif /* TARGET_X86_64 */
328 #define VDSO_HEADER "vdso.c.inc"
330 #define USE_ELF_CORE_DUMP
331 #define ELF_EXEC_PAGESIZE 4096
333 #endif /* TARGET_I386 */
335 #ifdef TARGET_ARM
337 #ifndef TARGET_AARCH64
338 /* 32 bit ARM definitions */
340 #define ELF_ARCH EM_ARM
341 #define ELF_CLASS ELFCLASS32
342 #define EXSTACK_DEFAULT true
344 static inline void init_thread(struct target_pt_regs *regs,
345 struct image_info *infop)
347 abi_long stack = infop->start_stack;
348 memset(regs, 0, sizeof(*regs));
350 regs->uregs[16] = ARM_CPU_MODE_USR;
351 if (infop->entry & 1) {
352 regs->uregs[16] |= CPSR_T;
354 regs->uregs[15] = infop->entry & 0xfffffffe;
355 regs->uregs[13] = infop->start_stack;
356 /* FIXME - what to for failure of get_user()? */
357 get_user_ual(regs->uregs[2], stack + 8); /* envp */
358 get_user_ual(regs->uregs[1], stack + 4); /* envp */
359 /* XXX: it seems that r0 is zeroed after ! */
360 regs->uregs[0] = 0;
361 /* For uClinux PIC binaries. */
362 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
363 regs->uregs[10] = infop->start_data;
365 /* Support ARM FDPIC. */
366 if (info_is_fdpic(infop)) {
367 /* As described in the ABI document, r7 points to the loadmap info
368 * prepared by the kernel. If an interpreter is needed, r8 points
369 * to the interpreter loadmap and r9 points to the interpreter
370 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
371 * r9 points to the main program PT_DYNAMIC info.
373 regs->uregs[7] = infop->loadmap_addr;
374 if (infop->interpreter_loadmap_addr) {
375 /* Executable is dynamically loaded. */
376 regs->uregs[8] = infop->interpreter_loadmap_addr;
377 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
378 } else {
379 regs->uregs[8] = 0;
380 regs->uregs[9] = infop->pt_dynamic_addr;
385 #define ELF_NREG 18
386 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
388 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
390 (*regs)[0] = tswapreg(env->regs[0]);
391 (*regs)[1] = tswapreg(env->regs[1]);
392 (*regs)[2] = tswapreg(env->regs[2]);
393 (*regs)[3] = tswapreg(env->regs[3]);
394 (*regs)[4] = tswapreg(env->regs[4]);
395 (*regs)[5] = tswapreg(env->regs[5]);
396 (*regs)[6] = tswapreg(env->regs[6]);
397 (*regs)[7] = tswapreg(env->regs[7]);
398 (*regs)[8] = tswapreg(env->regs[8]);
399 (*regs)[9] = tswapreg(env->regs[9]);
400 (*regs)[10] = tswapreg(env->regs[10]);
401 (*regs)[11] = tswapreg(env->regs[11]);
402 (*regs)[12] = tswapreg(env->regs[12]);
403 (*regs)[13] = tswapreg(env->regs[13]);
404 (*regs)[14] = tswapreg(env->regs[14]);
405 (*regs)[15] = tswapreg(env->regs[15]);
407 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
408 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
411 #define USE_ELF_CORE_DUMP
412 #define ELF_EXEC_PAGESIZE 4096
414 enum
416 ARM_HWCAP_ARM_SWP = 1 << 0,
417 ARM_HWCAP_ARM_HALF = 1 << 1,
418 ARM_HWCAP_ARM_THUMB = 1 << 2,
419 ARM_HWCAP_ARM_26BIT = 1 << 3,
420 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
421 ARM_HWCAP_ARM_FPA = 1 << 5,
422 ARM_HWCAP_ARM_VFP = 1 << 6,
423 ARM_HWCAP_ARM_EDSP = 1 << 7,
424 ARM_HWCAP_ARM_JAVA = 1 << 8,
425 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
426 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
427 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
428 ARM_HWCAP_ARM_NEON = 1 << 12,
429 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
430 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
431 ARM_HWCAP_ARM_TLS = 1 << 15,
432 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
433 ARM_HWCAP_ARM_IDIVA = 1 << 17,
434 ARM_HWCAP_ARM_IDIVT = 1 << 18,
435 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
436 ARM_HWCAP_ARM_LPAE = 1 << 20,
437 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
438 ARM_HWCAP_ARM_FPHP = 1 << 22,
439 ARM_HWCAP_ARM_ASIMDHP = 1 << 23,
440 ARM_HWCAP_ARM_ASIMDDP = 1 << 24,
441 ARM_HWCAP_ARM_ASIMDFHM = 1 << 25,
442 ARM_HWCAP_ARM_ASIMDBF16 = 1 << 26,
443 ARM_HWCAP_ARM_I8MM = 1 << 27,
446 enum {
447 ARM_HWCAP2_ARM_AES = 1 << 0,
448 ARM_HWCAP2_ARM_PMULL = 1 << 1,
449 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
450 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
451 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
452 ARM_HWCAP2_ARM_SB = 1 << 5,
453 ARM_HWCAP2_ARM_SSBS = 1 << 6,
456 /* The commpage only exists for 32 bit kernels */
458 #define HI_COMMPAGE (intptr_t)0xffff0f00u
460 static bool init_guest_commpage(void)
462 ARMCPU *cpu = ARM_CPU(thread_cpu);
463 int host_page_size = qemu_real_host_page_size();
464 abi_ptr commpage;
465 void *want;
466 void *addr;
469 * M-profile allocates maximum of 2GB address space, so can never
470 * allocate the commpage. Skip it.
472 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
473 return true;
476 commpage = HI_COMMPAGE & -host_page_size;
477 want = g2h_untagged(commpage);
478 addr = mmap(want, host_page_size, PROT_READ | PROT_WRITE,
479 MAP_ANONYMOUS | MAP_PRIVATE |
480 (commpage < reserved_va ? MAP_FIXED : MAP_FIXED_NOREPLACE),
481 -1, 0);
483 if (addr == MAP_FAILED) {
484 perror("Allocating guest commpage");
485 exit(EXIT_FAILURE);
487 if (addr != want) {
488 return false;
491 /* Set kernel helper versions; rest of page is 0. */
492 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
494 if (mprotect(addr, host_page_size, PROT_READ)) {
495 perror("Protecting guest commpage");
496 exit(EXIT_FAILURE);
499 page_set_flags(commpage, commpage | (host_page_size - 1),
500 PAGE_READ | PAGE_EXEC | PAGE_VALID);
501 return true;
504 #define ELF_HWCAP get_elf_hwcap()
505 #define ELF_HWCAP2 get_elf_hwcap2()
507 uint32_t get_elf_hwcap(void)
509 ARMCPU *cpu = ARM_CPU(thread_cpu);
510 uint32_t hwcaps = 0;
512 hwcaps |= ARM_HWCAP_ARM_SWP;
513 hwcaps |= ARM_HWCAP_ARM_HALF;
514 hwcaps |= ARM_HWCAP_ARM_THUMB;
515 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
517 /* probe for the extra features */
518 #define GET_FEATURE(feat, hwcap) \
519 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
521 #define GET_FEATURE_ID(feat, hwcap) \
522 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
524 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
525 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
526 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
527 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
528 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
529 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
530 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
531 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
532 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
533 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
535 if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
536 cpu_isar_feature(aa32_fpdp_v3, cpu)) {
537 hwcaps |= ARM_HWCAP_ARM_VFPv3;
538 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
539 hwcaps |= ARM_HWCAP_ARM_VFPD32;
540 } else {
541 hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
544 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
546 * MVFR1.FPHP and .SIMDHP must be in sync, and QEMU uses the same
547 * isar_feature function for both. The kernel reports them as two hwcaps.
549 GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_FPHP);
550 GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_ASIMDHP);
551 GET_FEATURE_ID(aa32_dp, ARM_HWCAP_ARM_ASIMDDP);
552 GET_FEATURE_ID(aa32_fhm, ARM_HWCAP_ARM_ASIMDFHM);
553 GET_FEATURE_ID(aa32_bf16, ARM_HWCAP_ARM_ASIMDBF16);
554 GET_FEATURE_ID(aa32_i8mm, ARM_HWCAP_ARM_I8MM);
556 return hwcaps;
559 uint64_t get_elf_hwcap2(void)
561 ARMCPU *cpu = ARM_CPU(thread_cpu);
562 uint64_t hwcaps = 0;
564 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
565 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
566 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
567 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
568 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
569 GET_FEATURE_ID(aa32_sb, ARM_HWCAP2_ARM_SB);
570 GET_FEATURE_ID(aa32_ssbs, ARM_HWCAP2_ARM_SSBS);
571 return hwcaps;
574 const char *elf_hwcap_str(uint32_t bit)
576 static const char *hwcap_str[] = {
577 [__builtin_ctz(ARM_HWCAP_ARM_SWP )] = "swp",
578 [__builtin_ctz(ARM_HWCAP_ARM_HALF )] = "half",
579 [__builtin_ctz(ARM_HWCAP_ARM_THUMB )] = "thumb",
580 [__builtin_ctz(ARM_HWCAP_ARM_26BIT )] = "26bit",
581 [__builtin_ctz(ARM_HWCAP_ARM_FAST_MULT)] = "fast_mult",
582 [__builtin_ctz(ARM_HWCAP_ARM_FPA )] = "fpa",
583 [__builtin_ctz(ARM_HWCAP_ARM_VFP )] = "vfp",
584 [__builtin_ctz(ARM_HWCAP_ARM_EDSP )] = "edsp",
585 [__builtin_ctz(ARM_HWCAP_ARM_JAVA )] = "java",
586 [__builtin_ctz(ARM_HWCAP_ARM_IWMMXT )] = "iwmmxt",
587 [__builtin_ctz(ARM_HWCAP_ARM_CRUNCH )] = "crunch",
588 [__builtin_ctz(ARM_HWCAP_ARM_THUMBEE )] = "thumbee",
589 [__builtin_ctz(ARM_HWCAP_ARM_NEON )] = "neon",
590 [__builtin_ctz(ARM_HWCAP_ARM_VFPv3 )] = "vfpv3",
591 [__builtin_ctz(ARM_HWCAP_ARM_VFPv3D16 )] = "vfpv3d16",
592 [__builtin_ctz(ARM_HWCAP_ARM_TLS )] = "tls",
593 [__builtin_ctz(ARM_HWCAP_ARM_VFPv4 )] = "vfpv4",
594 [__builtin_ctz(ARM_HWCAP_ARM_IDIVA )] = "idiva",
595 [__builtin_ctz(ARM_HWCAP_ARM_IDIVT )] = "idivt",
596 [__builtin_ctz(ARM_HWCAP_ARM_VFPD32 )] = "vfpd32",
597 [__builtin_ctz(ARM_HWCAP_ARM_LPAE )] = "lpae",
598 [__builtin_ctz(ARM_HWCAP_ARM_EVTSTRM )] = "evtstrm",
599 [__builtin_ctz(ARM_HWCAP_ARM_FPHP )] = "fphp",
600 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDHP )] = "asimdhp",
601 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDDP )] = "asimddp",
602 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDFHM )] = "asimdfhm",
603 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDBF16)] = "asimdbf16",
604 [__builtin_ctz(ARM_HWCAP_ARM_I8MM )] = "i8mm",
607 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
610 const char *elf_hwcap2_str(uint32_t bit)
612 static const char *hwcap_str[] = {
613 [__builtin_ctz(ARM_HWCAP2_ARM_AES )] = "aes",
614 [__builtin_ctz(ARM_HWCAP2_ARM_PMULL)] = "pmull",
615 [__builtin_ctz(ARM_HWCAP2_ARM_SHA1 )] = "sha1",
616 [__builtin_ctz(ARM_HWCAP2_ARM_SHA2 )] = "sha2",
617 [__builtin_ctz(ARM_HWCAP2_ARM_CRC32)] = "crc32",
618 [__builtin_ctz(ARM_HWCAP2_ARM_SB )] = "sb",
619 [__builtin_ctz(ARM_HWCAP2_ARM_SSBS )] = "ssbs",
622 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
625 #undef GET_FEATURE
626 #undef GET_FEATURE_ID
628 #define ELF_PLATFORM get_elf_platform()
630 static const char *get_elf_platform(void)
632 CPUARMState *env = cpu_env(thread_cpu);
634 #if TARGET_BIG_ENDIAN
635 # define END "b"
636 #else
637 # define END "l"
638 #endif
640 if (arm_feature(env, ARM_FEATURE_V8)) {
641 return "v8" END;
642 } else if (arm_feature(env, ARM_FEATURE_V7)) {
643 if (arm_feature(env, ARM_FEATURE_M)) {
644 return "v7m" END;
645 } else {
646 return "v7" END;
648 } else if (arm_feature(env, ARM_FEATURE_V6)) {
649 return "v6" END;
650 } else if (arm_feature(env, ARM_FEATURE_V5)) {
651 return "v5" END;
652 } else {
653 return "v4" END;
656 #undef END
659 #else
660 /* 64 bit ARM definitions */
662 #define ELF_ARCH EM_AARCH64
663 #define ELF_CLASS ELFCLASS64
664 #if TARGET_BIG_ENDIAN
665 # define ELF_PLATFORM "aarch64_be"
666 #else
667 # define ELF_PLATFORM "aarch64"
668 #endif
670 static inline void init_thread(struct target_pt_regs *regs,
671 struct image_info *infop)
673 abi_long stack = infop->start_stack;
674 memset(regs, 0, sizeof(*regs));
676 regs->pc = infop->entry & ~0x3ULL;
677 regs->sp = stack;
680 #define ELF_NREG 34
681 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
683 static void elf_core_copy_regs(target_elf_gregset_t *regs,
684 const CPUARMState *env)
686 int i;
688 for (i = 0; i < 32; i++) {
689 (*regs)[i] = tswapreg(env->xregs[i]);
691 (*regs)[32] = tswapreg(env->pc);
692 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
695 #define USE_ELF_CORE_DUMP
696 #define ELF_EXEC_PAGESIZE 4096
698 enum {
699 ARM_HWCAP_A64_FP = 1 << 0,
700 ARM_HWCAP_A64_ASIMD = 1 << 1,
701 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
702 ARM_HWCAP_A64_AES = 1 << 3,
703 ARM_HWCAP_A64_PMULL = 1 << 4,
704 ARM_HWCAP_A64_SHA1 = 1 << 5,
705 ARM_HWCAP_A64_SHA2 = 1 << 6,
706 ARM_HWCAP_A64_CRC32 = 1 << 7,
707 ARM_HWCAP_A64_ATOMICS = 1 << 8,
708 ARM_HWCAP_A64_FPHP = 1 << 9,
709 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
710 ARM_HWCAP_A64_CPUID = 1 << 11,
711 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
712 ARM_HWCAP_A64_JSCVT = 1 << 13,
713 ARM_HWCAP_A64_FCMA = 1 << 14,
714 ARM_HWCAP_A64_LRCPC = 1 << 15,
715 ARM_HWCAP_A64_DCPOP = 1 << 16,
716 ARM_HWCAP_A64_SHA3 = 1 << 17,
717 ARM_HWCAP_A64_SM3 = 1 << 18,
718 ARM_HWCAP_A64_SM4 = 1 << 19,
719 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
720 ARM_HWCAP_A64_SHA512 = 1 << 21,
721 ARM_HWCAP_A64_SVE = 1 << 22,
722 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
723 ARM_HWCAP_A64_DIT = 1 << 24,
724 ARM_HWCAP_A64_USCAT = 1 << 25,
725 ARM_HWCAP_A64_ILRCPC = 1 << 26,
726 ARM_HWCAP_A64_FLAGM = 1 << 27,
727 ARM_HWCAP_A64_SSBS = 1 << 28,
728 ARM_HWCAP_A64_SB = 1 << 29,
729 ARM_HWCAP_A64_PACA = 1 << 30,
730 ARM_HWCAP_A64_PACG = 1UL << 31,
732 ARM_HWCAP2_A64_DCPODP = 1 << 0,
733 ARM_HWCAP2_A64_SVE2 = 1 << 1,
734 ARM_HWCAP2_A64_SVEAES = 1 << 2,
735 ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
736 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
737 ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
738 ARM_HWCAP2_A64_SVESM4 = 1 << 6,
739 ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
740 ARM_HWCAP2_A64_FRINT = 1 << 8,
741 ARM_HWCAP2_A64_SVEI8MM = 1 << 9,
742 ARM_HWCAP2_A64_SVEF32MM = 1 << 10,
743 ARM_HWCAP2_A64_SVEF64MM = 1 << 11,
744 ARM_HWCAP2_A64_SVEBF16 = 1 << 12,
745 ARM_HWCAP2_A64_I8MM = 1 << 13,
746 ARM_HWCAP2_A64_BF16 = 1 << 14,
747 ARM_HWCAP2_A64_DGH = 1 << 15,
748 ARM_HWCAP2_A64_RNG = 1 << 16,
749 ARM_HWCAP2_A64_BTI = 1 << 17,
750 ARM_HWCAP2_A64_MTE = 1 << 18,
751 ARM_HWCAP2_A64_ECV = 1 << 19,
752 ARM_HWCAP2_A64_AFP = 1 << 20,
753 ARM_HWCAP2_A64_RPRES = 1 << 21,
754 ARM_HWCAP2_A64_MTE3 = 1 << 22,
755 ARM_HWCAP2_A64_SME = 1 << 23,
756 ARM_HWCAP2_A64_SME_I16I64 = 1 << 24,
757 ARM_HWCAP2_A64_SME_F64F64 = 1 << 25,
758 ARM_HWCAP2_A64_SME_I8I32 = 1 << 26,
759 ARM_HWCAP2_A64_SME_F16F32 = 1 << 27,
760 ARM_HWCAP2_A64_SME_B16F32 = 1 << 28,
761 ARM_HWCAP2_A64_SME_F32F32 = 1 << 29,
762 ARM_HWCAP2_A64_SME_FA64 = 1 << 30,
763 ARM_HWCAP2_A64_WFXT = 1ULL << 31,
764 ARM_HWCAP2_A64_EBF16 = 1ULL << 32,
765 ARM_HWCAP2_A64_SVE_EBF16 = 1ULL << 33,
766 ARM_HWCAP2_A64_CSSC = 1ULL << 34,
767 ARM_HWCAP2_A64_RPRFM = 1ULL << 35,
768 ARM_HWCAP2_A64_SVE2P1 = 1ULL << 36,
769 ARM_HWCAP2_A64_SME2 = 1ULL << 37,
770 ARM_HWCAP2_A64_SME2P1 = 1ULL << 38,
771 ARM_HWCAP2_A64_SME_I16I32 = 1ULL << 39,
772 ARM_HWCAP2_A64_SME_BI32I32 = 1ULL << 40,
773 ARM_HWCAP2_A64_SME_B16B16 = 1ULL << 41,
774 ARM_HWCAP2_A64_SME_F16F16 = 1ULL << 42,
775 ARM_HWCAP2_A64_MOPS = 1ULL << 43,
776 ARM_HWCAP2_A64_HBC = 1ULL << 44,
779 #define ELF_HWCAP get_elf_hwcap()
780 #define ELF_HWCAP2 get_elf_hwcap2()
782 #define GET_FEATURE_ID(feat, hwcap) \
783 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
785 uint32_t get_elf_hwcap(void)
787 ARMCPU *cpu = ARM_CPU(thread_cpu);
788 uint32_t hwcaps = 0;
790 hwcaps |= ARM_HWCAP_A64_FP;
791 hwcaps |= ARM_HWCAP_A64_ASIMD;
792 hwcaps |= ARM_HWCAP_A64_CPUID;
794 /* probe for the extra features */
796 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
797 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
798 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
799 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
800 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
801 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
802 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
803 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
804 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
805 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
806 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
807 GET_FEATURE_ID(aa64_lse2, ARM_HWCAP_A64_USCAT);
808 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
809 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
810 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
811 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
812 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
813 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
814 GET_FEATURE_ID(aa64_dit, ARM_HWCAP_A64_DIT);
815 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
816 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
817 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
818 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
819 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
820 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
822 return hwcaps;
825 uint64_t get_elf_hwcap2(void)
827 ARMCPU *cpu = ARM_CPU(thread_cpu);
828 uint64_t hwcaps = 0;
830 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
831 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
832 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
833 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
834 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
835 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
836 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
837 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
838 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
839 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
840 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
841 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
842 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
843 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
844 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
845 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
846 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
847 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
848 GET_FEATURE_ID(aa64_mte3, ARM_HWCAP2_A64_MTE3);
849 GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
850 ARM_HWCAP2_A64_SME_F32F32 |
851 ARM_HWCAP2_A64_SME_B16F32 |
852 ARM_HWCAP2_A64_SME_F16F32 |
853 ARM_HWCAP2_A64_SME_I8I32));
854 GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
855 GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
856 GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
857 GET_FEATURE_ID(aa64_hbc, ARM_HWCAP2_A64_HBC);
858 GET_FEATURE_ID(aa64_mops, ARM_HWCAP2_A64_MOPS);
860 return hwcaps;
863 const char *elf_hwcap_str(uint32_t bit)
865 static const char *hwcap_str[] = {
866 [__builtin_ctz(ARM_HWCAP_A64_FP )] = "fp",
867 [__builtin_ctz(ARM_HWCAP_A64_ASIMD )] = "asimd",
868 [__builtin_ctz(ARM_HWCAP_A64_EVTSTRM )] = "evtstrm",
869 [__builtin_ctz(ARM_HWCAP_A64_AES )] = "aes",
870 [__builtin_ctz(ARM_HWCAP_A64_PMULL )] = "pmull",
871 [__builtin_ctz(ARM_HWCAP_A64_SHA1 )] = "sha1",
872 [__builtin_ctz(ARM_HWCAP_A64_SHA2 )] = "sha2",
873 [__builtin_ctz(ARM_HWCAP_A64_CRC32 )] = "crc32",
874 [__builtin_ctz(ARM_HWCAP_A64_ATOMICS )] = "atomics",
875 [__builtin_ctz(ARM_HWCAP_A64_FPHP )] = "fphp",
876 [__builtin_ctz(ARM_HWCAP_A64_ASIMDHP )] = "asimdhp",
877 [__builtin_ctz(ARM_HWCAP_A64_CPUID )] = "cpuid",
878 [__builtin_ctz(ARM_HWCAP_A64_ASIMDRDM)] = "asimdrdm",
879 [__builtin_ctz(ARM_HWCAP_A64_JSCVT )] = "jscvt",
880 [__builtin_ctz(ARM_HWCAP_A64_FCMA )] = "fcma",
881 [__builtin_ctz(ARM_HWCAP_A64_LRCPC )] = "lrcpc",
882 [__builtin_ctz(ARM_HWCAP_A64_DCPOP )] = "dcpop",
883 [__builtin_ctz(ARM_HWCAP_A64_SHA3 )] = "sha3",
884 [__builtin_ctz(ARM_HWCAP_A64_SM3 )] = "sm3",
885 [__builtin_ctz(ARM_HWCAP_A64_SM4 )] = "sm4",
886 [__builtin_ctz(ARM_HWCAP_A64_ASIMDDP )] = "asimddp",
887 [__builtin_ctz(ARM_HWCAP_A64_SHA512 )] = "sha512",
888 [__builtin_ctz(ARM_HWCAP_A64_SVE )] = "sve",
889 [__builtin_ctz(ARM_HWCAP_A64_ASIMDFHM)] = "asimdfhm",
890 [__builtin_ctz(ARM_HWCAP_A64_DIT )] = "dit",
891 [__builtin_ctz(ARM_HWCAP_A64_USCAT )] = "uscat",
892 [__builtin_ctz(ARM_HWCAP_A64_ILRCPC )] = "ilrcpc",
893 [__builtin_ctz(ARM_HWCAP_A64_FLAGM )] = "flagm",
894 [__builtin_ctz(ARM_HWCAP_A64_SSBS )] = "ssbs",
895 [__builtin_ctz(ARM_HWCAP_A64_SB )] = "sb",
896 [__builtin_ctz(ARM_HWCAP_A64_PACA )] = "paca",
897 [__builtin_ctz(ARM_HWCAP_A64_PACG )] = "pacg",
900 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
903 const char *elf_hwcap2_str(uint32_t bit)
905 static const char *hwcap_str[] = {
906 [__builtin_ctz(ARM_HWCAP2_A64_DCPODP )] = "dcpodp",
907 [__builtin_ctz(ARM_HWCAP2_A64_SVE2 )] = "sve2",
908 [__builtin_ctz(ARM_HWCAP2_A64_SVEAES )] = "sveaes",
909 [__builtin_ctz(ARM_HWCAP2_A64_SVEPMULL )] = "svepmull",
910 [__builtin_ctz(ARM_HWCAP2_A64_SVEBITPERM )] = "svebitperm",
911 [__builtin_ctz(ARM_HWCAP2_A64_SVESHA3 )] = "svesha3",
912 [__builtin_ctz(ARM_HWCAP2_A64_SVESM4 )] = "svesm4",
913 [__builtin_ctz(ARM_HWCAP2_A64_FLAGM2 )] = "flagm2",
914 [__builtin_ctz(ARM_HWCAP2_A64_FRINT )] = "frint",
915 [__builtin_ctz(ARM_HWCAP2_A64_SVEI8MM )] = "svei8mm",
916 [__builtin_ctz(ARM_HWCAP2_A64_SVEF32MM )] = "svef32mm",
917 [__builtin_ctz(ARM_HWCAP2_A64_SVEF64MM )] = "svef64mm",
918 [__builtin_ctz(ARM_HWCAP2_A64_SVEBF16 )] = "svebf16",
919 [__builtin_ctz(ARM_HWCAP2_A64_I8MM )] = "i8mm",
920 [__builtin_ctz(ARM_HWCAP2_A64_BF16 )] = "bf16",
921 [__builtin_ctz(ARM_HWCAP2_A64_DGH )] = "dgh",
922 [__builtin_ctz(ARM_HWCAP2_A64_RNG )] = "rng",
923 [__builtin_ctz(ARM_HWCAP2_A64_BTI )] = "bti",
924 [__builtin_ctz(ARM_HWCAP2_A64_MTE )] = "mte",
925 [__builtin_ctz(ARM_HWCAP2_A64_ECV )] = "ecv",
926 [__builtin_ctz(ARM_HWCAP2_A64_AFP )] = "afp",
927 [__builtin_ctz(ARM_HWCAP2_A64_RPRES )] = "rpres",
928 [__builtin_ctz(ARM_HWCAP2_A64_MTE3 )] = "mte3",
929 [__builtin_ctz(ARM_HWCAP2_A64_SME )] = "sme",
930 [__builtin_ctz(ARM_HWCAP2_A64_SME_I16I64 )] = "smei16i64",
931 [__builtin_ctz(ARM_HWCAP2_A64_SME_F64F64 )] = "smef64f64",
932 [__builtin_ctz(ARM_HWCAP2_A64_SME_I8I32 )] = "smei8i32",
933 [__builtin_ctz(ARM_HWCAP2_A64_SME_F16F32 )] = "smef16f32",
934 [__builtin_ctz(ARM_HWCAP2_A64_SME_B16F32 )] = "smeb16f32",
935 [__builtin_ctz(ARM_HWCAP2_A64_SME_F32F32 )] = "smef32f32",
936 [__builtin_ctz(ARM_HWCAP2_A64_SME_FA64 )] = "smefa64",
937 [__builtin_ctz(ARM_HWCAP2_A64_WFXT )] = "wfxt",
938 [__builtin_ctzll(ARM_HWCAP2_A64_EBF16 )] = "ebf16",
939 [__builtin_ctzll(ARM_HWCAP2_A64_SVE_EBF16 )] = "sveebf16",
940 [__builtin_ctzll(ARM_HWCAP2_A64_CSSC )] = "cssc",
941 [__builtin_ctzll(ARM_HWCAP2_A64_RPRFM )] = "rprfm",
942 [__builtin_ctzll(ARM_HWCAP2_A64_SVE2P1 )] = "sve2p1",
943 [__builtin_ctzll(ARM_HWCAP2_A64_SME2 )] = "sme2",
944 [__builtin_ctzll(ARM_HWCAP2_A64_SME2P1 )] = "sme2p1",
945 [__builtin_ctzll(ARM_HWCAP2_A64_SME_I16I32 )] = "smei16i32",
946 [__builtin_ctzll(ARM_HWCAP2_A64_SME_BI32I32)] = "smebi32i32",
947 [__builtin_ctzll(ARM_HWCAP2_A64_SME_B16B16 )] = "smeb16b16",
948 [__builtin_ctzll(ARM_HWCAP2_A64_SME_F16F16 )] = "smef16f16",
949 [__builtin_ctzll(ARM_HWCAP2_A64_MOPS )] = "mops",
950 [__builtin_ctzll(ARM_HWCAP2_A64_HBC )] = "hbc",
953 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
956 #undef GET_FEATURE_ID
958 #endif /* not TARGET_AARCH64 */
960 #if TARGET_BIG_ENDIAN
961 # define VDSO_HEADER "vdso-be.c.inc"
962 #else
963 # define VDSO_HEADER "vdso-le.c.inc"
964 #endif
966 #endif /* TARGET_ARM */
968 #ifdef TARGET_SPARC
969 #ifdef TARGET_SPARC64
971 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
972 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
973 #ifndef TARGET_ABI32
974 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
975 #else
976 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
977 #endif
979 #define ELF_CLASS ELFCLASS64
980 #define ELF_ARCH EM_SPARCV9
981 #else
982 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
983 | HWCAP_SPARC_MULDIV)
984 #define ELF_CLASS ELFCLASS32
985 #define ELF_ARCH EM_SPARC
986 #endif /* TARGET_SPARC64 */
988 static inline void init_thread(struct target_pt_regs *regs,
989 struct image_info *infop)
991 /* Note that target_cpu_copy_regs does not read psr/tstate. */
992 regs->pc = infop->entry;
993 regs->npc = regs->pc + 4;
994 regs->y = 0;
995 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
996 - TARGET_STACK_BIAS);
998 #endif /* TARGET_SPARC */
1000 #ifdef TARGET_PPC
1002 #define ELF_MACHINE PPC_ELF_MACHINE
1004 #if defined(TARGET_PPC64)
1006 #define elf_check_arch(x) ( (x) == EM_PPC64 )
1008 #define ELF_CLASS ELFCLASS64
1010 #else
1012 #define ELF_CLASS ELFCLASS32
1013 #define EXSTACK_DEFAULT true
1015 #endif
1017 #define ELF_ARCH EM_PPC
1019 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
1020 See arch/powerpc/include/asm/cputable.h. */
1021 enum {
1022 QEMU_PPC_FEATURE_32 = 0x80000000,
1023 QEMU_PPC_FEATURE_64 = 0x40000000,
1024 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
1025 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
1026 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
1027 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
1028 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
1029 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
1030 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
1031 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
1032 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
1033 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
1034 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
1035 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
1036 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
1037 QEMU_PPC_FEATURE_CELL = 0x00010000,
1038 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
1039 QEMU_PPC_FEATURE_SMT = 0x00004000,
1040 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
1041 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
1042 QEMU_PPC_FEATURE_PA6T = 0x00000800,
1043 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
1044 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
1045 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
1046 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
1047 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
1049 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
1050 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
1052 /* Feature definitions in AT_HWCAP2. */
1053 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
1054 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
1055 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
1056 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
1057 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
1058 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
1059 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
1060 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
1061 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
1062 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
1063 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
1064 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
1065 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
1066 QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
1067 QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
1070 #define ELF_HWCAP get_elf_hwcap()
1072 static uint32_t get_elf_hwcap(void)
1074 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
1075 uint32_t features = 0;
1077 /* We don't have to be terribly complete here; the high points are
1078 Altivec/FP/SPE support. Anything else is just a bonus. */
1079 #define GET_FEATURE(flag, feature) \
1080 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1081 #define GET_FEATURE2(flags, feature) \
1082 do { \
1083 if ((cpu->env.insns_flags2 & flags) == flags) { \
1084 features |= feature; \
1086 } while (0)
1087 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
1088 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
1089 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
1090 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
1091 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
1092 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
1093 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
1094 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
1095 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
1096 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
1097 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
1098 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
1099 QEMU_PPC_FEATURE_ARCH_2_06);
1100 #undef GET_FEATURE
1101 #undef GET_FEATURE2
1103 return features;
1106 #define ELF_HWCAP2 get_elf_hwcap2()
1108 static uint32_t get_elf_hwcap2(void)
1110 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
1111 uint32_t features = 0;
1113 #define GET_FEATURE(flag, feature) \
1114 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1115 #define GET_FEATURE2(flag, feature) \
1116 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
1118 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
1119 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
1120 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
1121 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
1122 QEMU_PPC_FEATURE2_VEC_CRYPTO);
1123 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
1124 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
1125 GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
1126 QEMU_PPC_FEATURE2_MMA);
1128 #undef GET_FEATURE
1129 #undef GET_FEATURE2
1131 return features;
1135 * The requirements here are:
1136 * - keep the final alignment of sp (sp & 0xf)
1137 * - make sure the 32-bit value at the first 16 byte aligned position of
1138 * AUXV is greater than 16 for glibc compatibility.
1139 * AT_IGNOREPPC is used for that.
1140 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
1141 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
1143 #define DLINFO_ARCH_ITEMS 5
1144 #define ARCH_DLINFO \
1145 do { \
1146 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
1147 /* \
1148 * Handle glibc compatibility: these magic entries must \
1149 * be at the lowest addresses in the final auxv. \
1150 */ \
1151 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
1152 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
1153 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
1154 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
1155 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
1156 } while (0)
1158 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
1160 _regs->gpr[1] = infop->start_stack;
1161 #if defined(TARGET_PPC64)
1162 if (get_ppc64_abi(infop) < 2) {
1163 uint64_t val;
1164 get_user_u64(val, infop->entry + 8);
1165 _regs->gpr[2] = val + infop->load_bias;
1166 get_user_u64(val, infop->entry);
1167 infop->entry = val + infop->load_bias;
1168 } else {
1169 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
1171 #endif
1172 _regs->nip = infop->entry;
1175 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
1176 #define ELF_NREG 48
1177 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1179 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
1181 int i;
1182 target_ulong ccr = 0;
1184 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
1185 (*regs)[i] = tswapreg(env->gpr[i]);
1188 (*regs)[32] = tswapreg(env->nip);
1189 (*regs)[33] = tswapreg(env->msr);
1190 (*regs)[35] = tswapreg(env->ctr);
1191 (*regs)[36] = tswapreg(env->lr);
1192 (*regs)[37] = tswapreg(cpu_read_xer(env));
1194 ccr = ppc_get_cr(env);
1195 (*regs)[38] = tswapreg(ccr);
1198 #define USE_ELF_CORE_DUMP
1199 #define ELF_EXEC_PAGESIZE 4096
1201 #ifndef TARGET_PPC64
1202 # define VDSO_HEADER "vdso-32.c.inc"
1203 #elif TARGET_BIG_ENDIAN
1204 # define VDSO_HEADER "vdso-64.c.inc"
1205 #else
1206 # define VDSO_HEADER "vdso-64le.c.inc"
1207 #endif
1209 #endif
1211 #ifdef TARGET_LOONGARCH64
1213 #define ELF_CLASS ELFCLASS64
1214 #define ELF_ARCH EM_LOONGARCH
1215 #define EXSTACK_DEFAULT true
1217 #define elf_check_arch(x) ((x) == EM_LOONGARCH)
1219 #define VDSO_HEADER "vdso.c.inc"
1221 static inline void init_thread(struct target_pt_regs *regs,
1222 struct image_info *infop)
1224 /*Set crmd PG,DA = 1,0 */
1225 regs->csr.crmd = 2 << 3;
1226 regs->csr.era = infop->entry;
1227 regs->regs[3] = infop->start_stack;
1230 /* See linux kernel: arch/loongarch/include/asm/elf.h */
1231 #define ELF_NREG 45
1232 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1234 enum {
1235 TARGET_EF_R0 = 0,
1236 TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
1237 TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
1240 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1241 const CPULoongArchState *env)
1243 int i;
1245 (*regs)[TARGET_EF_R0] = 0;
1247 for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
1248 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
1251 (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
1252 (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
1255 #define USE_ELF_CORE_DUMP
1256 #define ELF_EXEC_PAGESIZE 4096
1258 #define ELF_HWCAP get_elf_hwcap()
1260 /* See arch/loongarch/include/uapi/asm/hwcap.h */
1261 enum {
1262 HWCAP_LOONGARCH_CPUCFG = (1 << 0),
1263 HWCAP_LOONGARCH_LAM = (1 << 1),
1264 HWCAP_LOONGARCH_UAL = (1 << 2),
1265 HWCAP_LOONGARCH_FPU = (1 << 3),
1266 HWCAP_LOONGARCH_LSX = (1 << 4),
1267 HWCAP_LOONGARCH_LASX = (1 << 5),
1268 HWCAP_LOONGARCH_CRC32 = (1 << 6),
1269 HWCAP_LOONGARCH_COMPLEX = (1 << 7),
1270 HWCAP_LOONGARCH_CRYPTO = (1 << 8),
1271 HWCAP_LOONGARCH_LVZ = (1 << 9),
1272 HWCAP_LOONGARCH_LBT_X86 = (1 << 10),
1273 HWCAP_LOONGARCH_LBT_ARM = (1 << 11),
1274 HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1277 static uint32_t get_elf_hwcap(void)
1279 LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1280 uint32_t hwcaps = 0;
1282 hwcaps |= HWCAP_LOONGARCH_CRC32;
1284 if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1285 hwcaps |= HWCAP_LOONGARCH_UAL;
1288 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1289 hwcaps |= HWCAP_LOONGARCH_FPU;
1292 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1293 hwcaps |= HWCAP_LOONGARCH_LAM;
1296 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LSX)) {
1297 hwcaps |= HWCAP_LOONGARCH_LSX;
1300 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LASX)) {
1301 hwcaps |= HWCAP_LOONGARCH_LASX;
1304 return hwcaps;
1307 #define ELF_PLATFORM "loongarch"
1309 #endif /* TARGET_LOONGARCH64 */
1311 #ifdef TARGET_MIPS
1313 #ifdef TARGET_MIPS64
1314 #define ELF_CLASS ELFCLASS64
1315 #else
1316 #define ELF_CLASS ELFCLASS32
1317 #endif
1318 #define ELF_ARCH EM_MIPS
1319 #define EXSTACK_DEFAULT true
1321 #ifdef TARGET_ABI_MIPSN32
1322 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1323 #else
1324 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1325 #endif
1327 #define ELF_BASE_PLATFORM get_elf_base_platform()
1329 #define MATCH_PLATFORM_INSN(_flags, _base_platform) \
1330 do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1331 { return _base_platform; } } while (0)
1333 static const char *get_elf_base_platform(void)
1335 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1337 /* 64 bit ISAs goes first */
1338 MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
1339 MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
1340 MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
1341 MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
1342 MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
1343 MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
1344 MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
1346 /* 32 bit ISAs */
1347 MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
1348 MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
1349 MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
1350 MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
1351 MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
1353 /* Fallback */
1354 return "mips";
1356 #undef MATCH_PLATFORM_INSN
1358 static inline void init_thread(struct target_pt_regs *regs,
1359 struct image_info *infop)
1361 regs->cp0_status = 2 << CP0St_KSU;
1362 regs->cp0_epc = infop->entry;
1363 regs->regs[29] = infop->start_stack;
1366 /* See linux kernel: arch/mips/include/asm/elf.h. */
1367 #define ELF_NREG 45
1368 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1370 /* See linux kernel: arch/mips/include/asm/reg.h. */
1371 enum {
1372 #ifdef TARGET_MIPS64
1373 TARGET_EF_R0 = 0,
1374 #else
1375 TARGET_EF_R0 = 6,
1376 #endif
1377 TARGET_EF_R26 = TARGET_EF_R0 + 26,
1378 TARGET_EF_R27 = TARGET_EF_R0 + 27,
1379 TARGET_EF_LO = TARGET_EF_R0 + 32,
1380 TARGET_EF_HI = TARGET_EF_R0 + 33,
1381 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1382 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1383 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1384 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1387 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1388 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
1390 int i;
1392 for (i = 0; i < TARGET_EF_R0; i++) {
1393 (*regs)[i] = 0;
1395 (*regs)[TARGET_EF_R0] = 0;
1397 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
1398 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
1401 (*regs)[TARGET_EF_R26] = 0;
1402 (*regs)[TARGET_EF_R27] = 0;
1403 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1404 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1405 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1406 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1407 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1408 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
1411 #define USE_ELF_CORE_DUMP
1412 #define ELF_EXEC_PAGESIZE 4096
1414 /* See arch/mips/include/uapi/asm/hwcap.h. */
1415 enum {
1416 HWCAP_MIPS_R6 = (1 << 0),
1417 HWCAP_MIPS_MSA = (1 << 1),
1418 HWCAP_MIPS_CRC32 = (1 << 2),
1419 HWCAP_MIPS_MIPS16 = (1 << 3),
1420 HWCAP_MIPS_MDMX = (1 << 4),
1421 HWCAP_MIPS_MIPS3D = (1 << 5),
1422 HWCAP_MIPS_SMARTMIPS = (1 << 6),
1423 HWCAP_MIPS_DSP = (1 << 7),
1424 HWCAP_MIPS_DSP2 = (1 << 8),
1425 HWCAP_MIPS_DSP3 = (1 << 9),
1426 HWCAP_MIPS_MIPS16E2 = (1 << 10),
1427 HWCAP_LOONGSON_MMI = (1 << 11),
1428 HWCAP_LOONGSON_EXT = (1 << 12),
1429 HWCAP_LOONGSON_EXT2 = (1 << 13),
1430 HWCAP_LOONGSON_CPUCFG = (1 << 14),
1433 #define ELF_HWCAP get_elf_hwcap()
1435 #define GET_FEATURE_INSN(_flag, _hwcap) \
1436 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1438 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1439 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1441 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1442 do { \
1443 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1444 hwcaps |= _hwcap; \
1446 } while (0)
1448 static uint32_t get_elf_hwcap(void)
1450 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1451 uint32_t hwcaps = 0;
1453 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1454 2, HWCAP_MIPS_R6);
1455 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1456 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1457 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1459 return hwcaps;
1462 #undef GET_FEATURE_REG_EQU
1463 #undef GET_FEATURE_REG_SET
1464 #undef GET_FEATURE_INSN
1466 #endif /* TARGET_MIPS */
1468 #ifdef TARGET_MICROBLAZE
1470 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1472 #define ELF_CLASS ELFCLASS32
1473 #define ELF_ARCH EM_MICROBLAZE
1475 static inline void init_thread(struct target_pt_regs *regs,
1476 struct image_info *infop)
1478 regs->pc = infop->entry;
1479 regs->r1 = infop->start_stack;
1483 #define ELF_EXEC_PAGESIZE 4096
1485 #define USE_ELF_CORE_DUMP
1486 #define ELF_NREG 38
1487 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1489 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1490 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1492 int i, pos = 0;
1494 for (i = 0; i < 32; i++) {
1495 (*regs)[pos++] = tswapreg(env->regs[i]);
1498 (*regs)[pos++] = tswapreg(env->pc);
1499 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1500 (*regs)[pos++] = 0;
1501 (*regs)[pos++] = tswapreg(env->ear);
1502 (*regs)[pos++] = 0;
1503 (*regs)[pos++] = tswapreg(env->esr);
1506 #endif /* TARGET_MICROBLAZE */
1508 #ifdef TARGET_NIOS2
1510 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1512 #define ELF_CLASS ELFCLASS32
1513 #define ELF_ARCH EM_ALTERA_NIOS2
1515 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1517 regs->ea = infop->entry;
1518 regs->sp = infop->start_stack;
1521 #define LO_COMMPAGE TARGET_PAGE_SIZE
1523 static bool init_guest_commpage(void)
1525 static const uint8_t kuser_page[4 + 2 * 64] = {
1526 /* __kuser_helper_version */
1527 [0x00] = 0x02, 0x00, 0x00, 0x00,
1529 /* __kuser_cmpxchg */
1530 [0x04] = 0x3a, 0x6c, 0x3b, 0x00, /* trap 16 */
1531 0x3a, 0x28, 0x00, 0xf8, /* ret */
1533 /* __kuser_sigtramp */
1534 [0x44] = 0xc4, 0x22, 0x80, 0x00, /* movi r2, __NR_rt_sigreturn */
1535 0x3a, 0x68, 0x3b, 0x00, /* trap 0 */
1538 int host_page_size = qemu_real_host_page_size();
1539 void *want, *addr;
1541 want = g2h_untagged(LO_COMMPAGE & -host_page_size);
1542 addr = mmap(want, host_page_size, PROT_READ | PROT_WRITE,
1543 MAP_ANONYMOUS | MAP_PRIVATE |
1544 (reserved_va ? MAP_FIXED : MAP_FIXED_NOREPLACE),
1545 -1, 0);
1546 if (addr == MAP_FAILED) {
1547 perror("Allocating guest commpage");
1548 exit(EXIT_FAILURE);
1550 if (addr != want) {
1551 return false;
1554 memcpy(g2h_untagged(LO_COMMPAGE), kuser_page, sizeof(kuser_page));
1556 if (mprotect(addr, host_page_size, PROT_READ)) {
1557 perror("Protecting guest commpage");
1558 exit(EXIT_FAILURE);
1561 page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1562 PAGE_READ | PAGE_EXEC | PAGE_VALID);
1563 return true;
1566 #define ELF_EXEC_PAGESIZE 4096
1568 #define USE_ELF_CORE_DUMP
1569 #define ELF_NREG 49
1570 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1572 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1573 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1574 const CPUNios2State *env)
1576 int i;
1578 (*regs)[0] = -1;
1579 for (i = 1; i < 8; i++) /* r0-r7 */
1580 (*regs)[i] = tswapreg(env->regs[i + 7]);
1582 for (i = 8; i < 16; i++) /* r8-r15 */
1583 (*regs)[i] = tswapreg(env->regs[i - 8]);
1585 for (i = 16; i < 24; i++) /* r16-r23 */
1586 (*regs)[i] = tswapreg(env->regs[i + 7]);
1587 (*regs)[24] = -1; /* R_ET */
1588 (*regs)[25] = -1; /* R_BT */
1589 (*regs)[26] = tswapreg(env->regs[R_GP]);
1590 (*regs)[27] = tswapreg(env->regs[R_SP]);
1591 (*regs)[28] = tswapreg(env->regs[R_FP]);
1592 (*regs)[29] = tswapreg(env->regs[R_EA]);
1593 (*regs)[30] = -1; /* R_SSTATUS */
1594 (*regs)[31] = tswapreg(env->regs[R_RA]);
1596 (*regs)[32] = tswapreg(env->pc);
1598 (*regs)[33] = -1; /* R_STATUS */
1599 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1601 for (i = 35; i < 49; i++) /* ... */
1602 (*regs)[i] = -1;
1605 #endif /* TARGET_NIOS2 */
1607 #ifdef TARGET_OPENRISC
1609 #define ELF_ARCH EM_OPENRISC
1610 #define ELF_CLASS ELFCLASS32
1611 #define ELF_DATA ELFDATA2MSB
1613 static inline void init_thread(struct target_pt_regs *regs,
1614 struct image_info *infop)
1616 regs->pc = infop->entry;
1617 regs->gpr[1] = infop->start_stack;
1620 #define USE_ELF_CORE_DUMP
1621 #define ELF_EXEC_PAGESIZE 8192
1623 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1624 #define ELF_NREG 34 /* gprs and pc, sr */
1625 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1627 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1628 const CPUOpenRISCState *env)
1630 int i;
1632 for (i = 0; i < 32; i++) {
1633 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1635 (*regs)[32] = tswapreg(env->pc);
1636 (*regs)[33] = tswapreg(cpu_get_sr(env));
1638 #define ELF_HWCAP 0
1639 #define ELF_PLATFORM NULL
1641 #endif /* TARGET_OPENRISC */
1643 #ifdef TARGET_SH4
1645 #define ELF_CLASS ELFCLASS32
1646 #define ELF_ARCH EM_SH
1648 static inline void init_thread(struct target_pt_regs *regs,
1649 struct image_info *infop)
1651 /* Check other registers XXXXX */
1652 regs->pc = infop->entry;
1653 regs->regs[15] = infop->start_stack;
1656 /* See linux kernel: arch/sh/include/asm/elf.h. */
1657 #define ELF_NREG 23
1658 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1660 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1661 enum {
1662 TARGET_REG_PC = 16,
1663 TARGET_REG_PR = 17,
1664 TARGET_REG_SR = 18,
1665 TARGET_REG_GBR = 19,
1666 TARGET_REG_MACH = 20,
1667 TARGET_REG_MACL = 21,
1668 TARGET_REG_SYSCALL = 22
1671 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1672 const CPUSH4State *env)
1674 int i;
1676 for (i = 0; i < 16; i++) {
1677 (*regs)[i] = tswapreg(env->gregs[i]);
1680 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1681 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1682 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1683 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1684 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1685 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1686 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1689 #define USE_ELF_CORE_DUMP
1690 #define ELF_EXEC_PAGESIZE 4096
1692 enum {
1693 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1694 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1695 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1696 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1697 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1698 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1699 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1700 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1701 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1702 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1705 #define ELF_HWCAP get_elf_hwcap()
1707 static uint32_t get_elf_hwcap(void)
1709 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1710 uint32_t hwcap = 0;
1712 hwcap |= SH_CPU_HAS_FPU;
1714 if (cpu->env.features & SH_FEATURE_SH4A) {
1715 hwcap |= SH_CPU_HAS_LLSC;
1718 return hwcap;
1721 #endif
1723 #ifdef TARGET_CRIS
1725 #define ELF_CLASS ELFCLASS32
1726 #define ELF_ARCH EM_CRIS
1728 static inline void init_thread(struct target_pt_regs *regs,
1729 struct image_info *infop)
1731 regs->erp = infop->entry;
1734 #define ELF_EXEC_PAGESIZE 8192
1736 #endif
1738 #ifdef TARGET_M68K
1740 #define ELF_CLASS ELFCLASS32
1741 #define ELF_ARCH EM_68K
1743 /* ??? Does this need to do anything?
1744 #define ELF_PLAT_INIT(_r) */
1746 static inline void init_thread(struct target_pt_regs *regs,
1747 struct image_info *infop)
1749 regs->usp = infop->start_stack;
1750 regs->sr = 0;
1751 regs->pc = infop->entry;
1754 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1755 #define ELF_NREG 20
1756 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1758 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1760 (*regs)[0] = tswapreg(env->dregs[1]);
1761 (*regs)[1] = tswapreg(env->dregs[2]);
1762 (*regs)[2] = tswapreg(env->dregs[3]);
1763 (*regs)[3] = tswapreg(env->dregs[4]);
1764 (*regs)[4] = tswapreg(env->dregs[5]);
1765 (*regs)[5] = tswapreg(env->dregs[6]);
1766 (*regs)[6] = tswapreg(env->dregs[7]);
1767 (*regs)[7] = tswapreg(env->aregs[0]);
1768 (*regs)[8] = tswapreg(env->aregs[1]);
1769 (*regs)[9] = tswapreg(env->aregs[2]);
1770 (*regs)[10] = tswapreg(env->aregs[3]);
1771 (*regs)[11] = tswapreg(env->aregs[4]);
1772 (*regs)[12] = tswapreg(env->aregs[5]);
1773 (*regs)[13] = tswapreg(env->aregs[6]);
1774 (*regs)[14] = tswapreg(env->dregs[0]);
1775 (*regs)[15] = tswapreg(env->aregs[7]);
1776 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1777 (*regs)[17] = tswapreg(env->sr);
1778 (*regs)[18] = tswapreg(env->pc);
1779 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1782 #define USE_ELF_CORE_DUMP
1783 #define ELF_EXEC_PAGESIZE 8192
1785 #endif
1787 #ifdef TARGET_ALPHA
1789 #define ELF_CLASS ELFCLASS64
1790 #define ELF_ARCH EM_ALPHA
1792 static inline void init_thread(struct target_pt_regs *regs,
1793 struct image_info *infop)
1795 regs->pc = infop->entry;
1796 regs->ps = 8;
1797 regs->usp = infop->start_stack;
1800 #define ELF_EXEC_PAGESIZE 8192
1802 #endif /* TARGET_ALPHA */
1804 #ifdef TARGET_S390X
1806 #define ELF_CLASS ELFCLASS64
1807 #define ELF_DATA ELFDATA2MSB
1808 #define ELF_ARCH EM_S390
1810 #include "elf.h"
1812 #define ELF_HWCAP get_elf_hwcap()
1814 #define GET_FEATURE(_feat, _hwcap) \
1815 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1817 uint32_t get_elf_hwcap(void)
1820 * Let's assume we always have esan3 and zarch.
1821 * 31-bit processes can use 64-bit registers (high gprs).
1823 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1825 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1826 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1827 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1828 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1829 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1830 s390_has_feat(S390_FEAT_ETF3_ENH)) {
1831 hwcap |= HWCAP_S390_ETF3EH;
1833 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1834 GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1835 GET_FEATURE(S390_FEAT_VECTOR_ENH2, HWCAP_S390_VXRS_EXT2);
1837 return hwcap;
1840 const char *elf_hwcap_str(uint32_t bit)
1842 static const char *hwcap_str[] = {
1843 [HWCAP_S390_NR_ESAN3] = "esan3",
1844 [HWCAP_S390_NR_ZARCH] = "zarch",
1845 [HWCAP_S390_NR_STFLE] = "stfle",
1846 [HWCAP_S390_NR_MSA] = "msa",
1847 [HWCAP_S390_NR_LDISP] = "ldisp",
1848 [HWCAP_S390_NR_EIMM] = "eimm",
1849 [HWCAP_S390_NR_DFP] = "dfp",
1850 [HWCAP_S390_NR_HPAGE] = "edat",
1851 [HWCAP_S390_NR_ETF3EH] = "etf3eh",
1852 [HWCAP_S390_NR_HIGH_GPRS] = "highgprs",
1853 [HWCAP_S390_NR_TE] = "te",
1854 [HWCAP_S390_NR_VXRS] = "vx",
1855 [HWCAP_S390_NR_VXRS_BCD] = "vxd",
1856 [HWCAP_S390_NR_VXRS_EXT] = "vxe",
1857 [HWCAP_S390_NR_GS] = "gs",
1858 [HWCAP_S390_NR_VXRS_EXT2] = "vxe2",
1859 [HWCAP_S390_NR_VXRS_PDE] = "vxp",
1860 [HWCAP_S390_NR_SORT] = "sort",
1861 [HWCAP_S390_NR_DFLT] = "dflt",
1862 [HWCAP_S390_NR_NNPA] = "nnpa",
1863 [HWCAP_S390_NR_PCI_MIO] = "pcimio",
1864 [HWCAP_S390_NR_SIE] = "sie",
1867 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
1870 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1872 regs->psw.addr = infop->entry;
1873 regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \
1874 PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \
1875 PSW_MASK_32;
1876 regs->gprs[15] = infop->start_stack;
1879 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */
1880 #define ELF_NREG 27
1881 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1883 enum {
1884 TARGET_REG_PSWM = 0,
1885 TARGET_REG_PSWA = 1,
1886 TARGET_REG_GPRS = 2,
1887 TARGET_REG_ARS = 18,
1888 TARGET_REG_ORIG_R2 = 26,
1891 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1892 const CPUS390XState *env)
1894 int i;
1895 uint32_t *aregs;
1897 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1898 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1899 for (i = 0; i < 16; i++) {
1900 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1902 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1903 for (i = 0; i < 16; i++) {
1904 aregs[i] = tswap32(env->aregs[i]);
1906 (*regs)[TARGET_REG_ORIG_R2] = 0;
1909 #define USE_ELF_CORE_DUMP
1910 #define ELF_EXEC_PAGESIZE 4096
1912 #define VDSO_HEADER "vdso.c.inc"
1914 #endif /* TARGET_S390X */
1916 #ifdef TARGET_RISCV
1918 #define ELF_ARCH EM_RISCV
1920 #ifdef TARGET_RISCV32
1921 #define ELF_CLASS ELFCLASS32
1922 #define VDSO_HEADER "vdso-32.c.inc"
1923 #else
1924 #define ELF_CLASS ELFCLASS64
1925 #define VDSO_HEADER "vdso-64.c.inc"
1926 #endif
1928 #define ELF_HWCAP get_elf_hwcap()
1930 static uint32_t get_elf_hwcap(void)
1932 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1933 RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1934 uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1935 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C')
1936 | MISA_BIT('V');
1938 return cpu->env.misa_ext & mask;
1939 #undef MISA_BIT
1942 static inline void init_thread(struct target_pt_regs *regs,
1943 struct image_info *infop)
1945 regs->sepc = infop->entry;
1946 regs->sp = infop->start_stack;
1949 #define ELF_EXEC_PAGESIZE 4096
1951 #endif /* TARGET_RISCV */
1953 #ifdef TARGET_HPPA
1955 #define ELF_CLASS ELFCLASS32
1956 #define ELF_ARCH EM_PARISC
1957 #define ELF_PLATFORM "PARISC"
1958 #define STACK_GROWS_DOWN 0
1959 #define STACK_ALIGNMENT 64
1961 #define VDSO_HEADER "vdso.c.inc"
1963 static inline void init_thread(struct target_pt_regs *regs,
1964 struct image_info *infop)
1966 regs->iaoq[0] = infop->entry;
1967 regs->iaoq[1] = infop->entry + 4;
1968 regs->gr[23] = 0;
1969 regs->gr[24] = infop->argv;
1970 regs->gr[25] = infop->argc;
1971 /* The top-of-stack contains a linkage buffer. */
1972 regs->gr[30] = infop->start_stack + 64;
1973 regs->gr[31] = infop->entry;
1976 #define LO_COMMPAGE 0
1978 static bool init_guest_commpage(void)
1980 /* If reserved_va, then we have already mapped 0 page on the host. */
1981 if (!reserved_va) {
1982 void *want, *addr;
1984 want = g2h_untagged(LO_COMMPAGE);
1985 addr = mmap(want, TARGET_PAGE_SIZE, PROT_NONE,
1986 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED_NOREPLACE, -1, 0);
1987 if (addr == MAP_FAILED) {
1988 perror("Allocating guest commpage");
1989 exit(EXIT_FAILURE);
1991 if (addr != want) {
1992 return false;
1997 * On Linux, page zero is normally marked execute only + gateway.
1998 * Normal read or write is supposed to fail (thus PROT_NONE above),
1999 * but specific offsets have kernel code mapped to raise permissions
2000 * and implement syscalls. Here, simply mark the page executable.
2001 * Special case the entry points during translation (see do_page_zero).
2003 page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
2004 PAGE_EXEC | PAGE_VALID);
2005 return true;
2008 #endif /* TARGET_HPPA */
2010 #ifdef TARGET_XTENSA
2012 #define ELF_CLASS ELFCLASS32
2013 #define ELF_ARCH EM_XTENSA
2015 static inline void init_thread(struct target_pt_regs *regs,
2016 struct image_info *infop)
2018 regs->windowbase = 0;
2019 regs->windowstart = 1;
2020 regs->areg[1] = infop->start_stack;
2021 regs->pc = infop->entry;
2022 if (info_is_fdpic(infop)) {
2023 regs->areg[4] = infop->loadmap_addr;
2024 regs->areg[5] = infop->interpreter_loadmap_addr;
2025 if (infop->interpreter_loadmap_addr) {
2026 regs->areg[6] = infop->interpreter_pt_dynamic_addr;
2027 } else {
2028 regs->areg[6] = infop->pt_dynamic_addr;
2033 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
2034 #define ELF_NREG 128
2035 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
2037 enum {
2038 TARGET_REG_PC,
2039 TARGET_REG_PS,
2040 TARGET_REG_LBEG,
2041 TARGET_REG_LEND,
2042 TARGET_REG_LCOUNT,
2043 TARGET_REG_SAR,
2044 TARGET_REG_WINDOWSTART,
2045 TARGET_REG_WINDOWBASE,
2046 TARGET_REG_THREADPTR,
2047 TARGET_REG_AR0 = 64,
2050 static void elf_core_copy_regs(target_elf_gregset_t *regs,
2051 const CPUXtensaState *env)
2053 unsigned i;
2055 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
2056 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
2057 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
2058 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
2059 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
2060 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
2061 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
2062 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
2063 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
2064 xtensa_sync_phys_from_window((CPUXtensaState *)env);
2065 for (i = 0; i < env->config->nareg; ++i) {
2066 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
2070 #define USE_ELF_CORE_DUMP
2071 #define ELF_EXEC_PAGESIZE 4096
2073 #endif /* TARGET_XTENSA */
2075 #ifdef TARGET_HEXAGON
2077 #define ELF_CLASS ELFCLASS32
2078 #define ELF_ARCH EM_HEXAGON
2080 static inline void init_thread(struct target_pt_regs *regs,
2081 struct image_info *infop)
2083 regs->sepc = infop->entry;
2084 regs->sp = infop->start_stack;
2087 #endif /* TARGET_HEXAGON */
2089 #ifndef ELF_BASE_PLATFORM
2090 #define ELF_BASE_PLATFORM (NULL)
2091 #endif
2093 #ifndef ELF_PLATFORM
2094 #define ELF_PLATFORM (NULL)
2095 #endif
2097 #ifndef ELF_MACHINE
2098 #define ELF_MACHINE ELF_ARCH
2099 #endif
2101 #ifndef elf_check_arch
2102 #define elf_check_arch(x) ((x) == ELF_ARCH)
2103 #endif
2105 #ifndef elf_check_abi
2106 #define elf_check_abi(x) (1)
2107 #endif
2109 #ifndef ELF_HWCAP
2110 #define ELF_HWCAP 0
2111 #endif
2113 #ifndef STACK_GROWS_DOWN
2114 #define STACK_GROWS_DOWN 1
2115 #endif
2117 #ifndef STACK_ALIGNMENT
2118 #define STACK_ALIGNMENT 16
2119 #endif
2121 #ifdef TARGET_ABI32
2122 #undef ELF_CLASS
2123 #define ELF_CLASS ELFCLASS32
2124 #undef bswaptls
2125 #define bswaptls(ptr) bswap32s(ptr)
2126 #endif
2128 #ifndef EXSTACK_DEFAULT
2129 #define EXSTACK_DEFAULT false
2130 #endif
2132 #include "elf.h"
2134 /* We must delay the following stanzas until after "elf.h". */
2135 #if defined(TARGET_AARCH64)
2137 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
2138 const uint32_t *data,
2139 struct image_info *info,
2140 Error **errp)
2142 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
2143 if (pr_datasz != sizeof(uint32_t)) {
2144 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
2145 return false;
2147 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
2148 info->note_flags = *data;
2150 return true;
2152 #define ARCH_USE_GNU_PROPERTY 1
2154 #else
2156 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
2157 const uint32_t *data,
2158 struct image_info *info,
2159 Error **errp)
2161 g_assert_not_reached();
2163 #define ARCH_USE_GNU_PROPERTY 0
2165 #endif
2167 struct exec
2169 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
2170 unsigned int a_text; /* length of text, in bytes */
2171 unsigned int a_data; /* length of data, in bytes */
2172 unsigned int a_bss; /* length of uninitialized data area, in bytes */
2173 unsigned int a_syms; /* length of symbol table data in file, in bytes */
2174 unsigned int a_entry; /* start address */
2175 unsigned int a_trsize; /* length of relocation info for text, in bytes */
2176 unsigned int a_drsize; /* length of relocation info for data, in bytes */
2180 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
2181 #define OMAGIC 0407
2182 #define NMAGIC 0410
2183 #define ZMAGIC 0413
2184 #define QMAGIC 0314
2186 #define DLINFO_ITEMS 16
2188 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
2190 memcpy(to, from, n);
2193 #ifdef BSWAP_NEEDED
2194 static void bswap_ehdr(struct elfhdr *ehdr)
2196 bswap16s(&ehdr->e_type); /* Object file type */
2197 bswap16s(&ehdr->e_machine); /* Architecture */
2198 bswap32s(&ehdr->e_version); /* Object file version */
2199 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
2200 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
2201 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
2202 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
2203 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
2204 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
2205 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
2206 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
2207 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
2208 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
2211 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
2213 int i;
2214 for (i = 0; i < phnum; ++i, ++phdr) {
2215 bswap32s(&phdr->p_type); /* Segment type */
2216 bswap32s(&phdr->p_flags); /* Segment flags */
2217 bswaptls(&phdr->p_offset); /* Segment file offset */
2218 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
2219 bswaptls(&phdr->p_paddr); /* Segment physical address */
2220 bswaptls(&phdr->p_filesz); /* Segment size in file */
2221 bswaptls(&phdr->p_memsz); /* Segment size in memory */
2222 bswaptls(&phdr->p_align); /* Segment alignment */
2226 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
2228 int i;
2229 for (i = 0; i < shnum; ++i, ++shdr) {
2230 bswap32s(&shdr->sh_name);
2231 bswap32s(&shdr->sh_type);
2232 bswaptls(&shdr->sh_flags);
2233 bswaptls(&shdr->sh_addr);
2234 bswaptls(&shdr->sh_offset);
2235 bswaptls(&shdr->sh_size);
2236 bswap32s(&shdr->sh_link);
2237 bswap32s(&shdr->sh_info);
2238 bswaptls(&shdr->sh_addralign);
2239 bswaptls(&shdr->sh_entsize);
2243 static void bswap_sym(struct elf_sym *sym)
2245 bswap32s(&sym->st_name);
2246 bswaptls(&sym->st_value);
2247 bswaptls(&sym->st_size);
2248 bswap16s(&sym->st_shndx);
2251 #ifdef TARGET_MIPS
2252 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
2254 bswap16s(&abiflags->version);
2255 bswap32s(&abiflags->ases);
2256 bswap32s(&abiflags->isa_ext);
2257 bswap32s(&abiflags->flags1);
2258 bswap32s(&abiflags->flags2);
2260 #endif
2261 #else
2262 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
2263 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
2264 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
2265 static inline void bswap_sym(struct elf_sym *sym) { }
2266 #ifdef TARGET_MIPS
2267 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
2268 #endif
2269 #endif
2271 #ifdef USE_ELF_CORE_DUMP
2272 static int elf_core_dump(int, const CPUArchState *);
2273 #endif /* USE_ELF_CORE_DUMP */
2274 static void load_symbols(struct elfhdr *hdr, const ImageSource *src,
2275 abi_ulong load_bias);
2277 /* Verify the portions of EHDR within E_IDENT for the target.
2278 This can be performed before bswapping the entire header. */
2279 static bool elf_check_ident(struct elfhdr *ehdr)
2281 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
2282 && ehdr->e_ident[EI_MAG1] == ELFMAG1
2283 && ehdr->e_ident[EI_MAG2] == ELFMAG2
2284 && ehdr->e_ident[EI_MAG3] == ELFMAG3
2285 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
2286 && ehdr->e_ident[EI_DATA] == ELF_DATA
2287 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
2290 /* Verify the portions of EHDR outside of E_IDENT for the target.
2291 This has to wait until after bswapping the header. */
2292 static bool elf_check_ehdr(struct elfhdr *ehdr)
2294 return (elf_check_arch(ehdr->e_machine)
2295 && elf_check_abi(ehdr->e_flags)
2296 && ehdr->e_ehsize == sizeof(struct elfhdr)
2297 && ehdr->e_phentsize == sizeof(struct elf_phdr)
2298 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
2302 * 'copy_elf_strings()' copies argument/envelope strings from user
2303 * memory to free pages in kernel mem. These are in a format ready
2304 * to be put directly into the top of new user memory.
2307 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
2308 abi_ulong p, abi_ulong stack_limit)
2310 char *tmp;
2311 int len, i;
2312 abi_ulong top = p;
2314 if (!p) {
2315 return 0; /* bullet-proofing */
2318 if (STACK_GROWS_DOWN) {
2319 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
2320 for (i = argc - 1; i >= 0; --i) {
2321 tmp = argv[i];
2322 if (!tmp) {
2323 fprintf(stderr, "VFS: argc is wrong");
2324 exit(-1);
2326 len = strlen(tmp) + 1;
2327 tmp += len;
2329 if (len > (p - stack_limit)) {
2330 return 0;
2332 while (len) {
2333 int bytes_to_copy = (len > offset) ? offset : len;
2334 tmp -= bytes_to_copy;
2335 p -= bytes_to_copy;
2336 offset -= bytes_to_copy;
2337 len -= bytes_to_copy;
2339 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
2341 if (offset == 0) {
2342 memcpy_to_target(p, scratch, top - p);
2343 top = p;
2344 offset = TARGET_PAGE_SIZE;
2348 if (p != top) {
2349 memcpy_to_target(p, scratch + offset, top - p);
2351 } else {
2352 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
2353 for (i = 0; i < argc; ++i) {
2354 tmp = argv[i];
2355 if (!tmp) {
2356 fprintf(stderr, "VFS: argc is wrong");
2357 exit(-1);
2359 len = strlen(tmp) + 1;
2360 if (len > (stack_limit - p)) {
2361 return 0;
2363 while (len) {
2364 int bytes_to_copy = (len > remaining) ? remaining : len;
2366 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
2368 tmp += bytes_to_copy;
2369 remaining -= bytes_to_copy;
2370 p += bytes_to_copy;
2371 len -= bytes_to_copy;
2373 if (remaining == 0) {
2374 memcpy_to_target(top, scratch, p - top);
2375 top = p;
2376 remaining = TARGET_PAGE_SIZE;
2380 if (p != top) {
2381 memcpy_to_target(top, scratch, p - top);
2385 return p;
2388 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2389 * argument/environment space. Newer kernels (>2.6.33) allow more,
2390 * dependent on stack size, but guarantee at least 32 pages for
2391 * backwards compatibility.
2393 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2395 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
2396 struct image_info *info)
2398 abi_ulong size, error, guard;
2399 int prot;
2401 size = guest_stack_size;
2402 if (size < STACK_LOWER_LIMIT) {
2403 size = STACK_LOWER_LIMIT;
2406 if (STACK_GROWS_DOWN) {
2407 guard = TARGET_PAGE_SIZE;
2408 if (guard < qemu_real_host_page_size()) {
2409 guard = qemu_real_host_page_size();
2411 } else {
2412 /* no guard page for hppa target where stack grows upwards. */
2413 guard = 0;
2416 prot = PROT_READ | PROT_WRITE;
2417 if (info->exec_stack) {
2418 prot |= PROT_EXEC;
2420 error = target_mmap(0, size + guard, prot,
2421 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2422 if (error == -1) {
2423 perror("mmap stack");
2424 exit(-1);
2427 /* We reserve one extra page at the top of the stack as guard. */
2428 if (STACK_GROWS_DOWN) {
2429 target_mprotect(error, guard, PROT_NONE);
2430 info->stack_limit = error + guard;
2431 return info->stack_limit + size - sizeof(void *);
2432 } else {
2433 info->stack_limit = error + size;
2434 return error;
2439 * zero_bss:
2441 * Map and zero the bss. We need to explicitly zero any fractional pages
2442 * after the data section (i.e. bss). Return false on mapping failure.
2444 static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss,
2445 int prot, Error **errp)
2447 abi_ulong align_bss;
2449 /* We only expect writable bss; the code segment shouldn't need this. */
2450 if (!(prot & PROT_WRITE)) {
2451 error_setg(errp, "PT_LOAD with non-writable bss");
2452 return false;
2455 align_bss = TARGET_PAGE_ALIGN(start_bss);
2456 end_bss = TARGET_PAGE_ALIGN(end_bss);
2458 if (start_bss < align_bss) {
2459 int flags = page_get_flags(start_bss);
2461 if (!(flags & PAGE_BITS)) {
2463 * The whole address space of the executable was reserved
2464 * at the start, therefore all pages will be VALID.
2465 * But assuming there are no PROT_NONE PT_LOAD segments,
2466 * a PROT_NONE page means no data all bss, and we can
2467 * simply extend the new anon mapping back to the start
2468 * of the page of bss.
2470 align_bss -= TARGET_PAGE_SIZE;
2471 } else {
2473 * The start of the bss shares a page with something.
2474 * The only thing that we expect is the data section,
2475 * which would already be marked writable.
2476 * Overlapping the RX code segment seems malformed.
2478 if (!(flags & PAGE_WRITE)) {
2479 error_setg(errp, "PT_LOAD with bss overlapping "
2480 "non-writable page");
2481 return false;
2484 /* The page is already mapped and writable. */
2485 memset(g2h_untagged(start_bss), 0, align_bss - start_bss);
2489 if (align_bss < end_bss &&
2490 target_mmap(align_bss, end_bss - align_bss, prot,
2491 MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == -1) {
2492 error_setg_errno(errp, errno, "Error mapping bss");
2493 return false;
2495 return true;
2498 #if defined(TARGET_ARM)
2499 static int elf_is_fdpic(struct elfhdr *exec)
2501 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2503 #elif defined(TARGET_XTENSA)
2504 static int elf_is_fdpic(struct elfhdr *exec)
2506 return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
2508 #else
2509 /* Default implementation, always false. */
2510 static int elf_is_fdpic(struct elfhdr *exec)
2512 return 0;
2514 #endif
2516 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2518 uint16_t n;
2519 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2521 /* elf32_fdpic_loadseg */
2522 n = info->nsegs;
2523 while (n--) {
2524 sp -= 12;
2525 put_user_u32(loadsegs[n].addr, sp+0);
2526 put_user_u32(loadsegs[n].p_vaddr, sp+4);
2527 put_user_u32(loadsegs[n].p_memsz, sp+8);
2530 /* elf32_fdpic_loadmap */
2531 sp -= 4;
2532 put_user_u16(0, sp+0); /* version */
2533 put_user_u16(info->nsegs, sp+2); /* nsegs */
2535 info->personality = PER_LINUX_FDPIC;
2536 info->loadmap_addr = sp;
2538 return sp;
2541 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2542 struct elfhdr *exec,
2543 struct image_info *info,
2544 struct image_info *interp_info,
2545 struct image_info *vdso_info)
2547 abi_ulong sp;
2548 abi_ulong u_argc, u_argv, u_envp, u_auxv;
2549 int size;
2550 int i;
2551 abi_ulong u_rand_bytes;
2552 uint8_t k_rand_bytes[16];
2553 abi_ulong u_platform, u_base_platform;
2554 const char *k_platform, *k_base_platform;
2555 const int n = sizeof(elf_addr_t);
2557 sp = p;
2559 /* Needs to be before we load the env/argc/... */
2560 if (elf_is_fdpic(exec)) {
2561 /* Need 4 byte alignment for these structs */
2562 sp &= ~3;
2563 sp = loader_build_fdpic_loadmap(info, sp);
2564 info->other_info = interp_info;
2565 if (interp_info) {
2566 interp_info->other_info = info;
2567 sp = loader_build_fdpic_loadmap(interp_info, sp);
2568 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2569 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2570 } else {
2571 info->interpreter_loadmap_addr = 0;
2572 info->interpreter_pt_dynamic_addr = 0;
2576 u_base_platform = 0;
2577 k_base_platform = ELF_BASE_PLATFORM;
2578 if (k_base_platform) {
2579 size_t len = strlen(k_base_platform) + 1;
2580 if (STACK_GROWS_DOWN) {
2581 sp -= (len + n - 1) & ~(n - 1);
2582 u_base_platform = sp;
2583 /* FIXME - check return value of memcpy_to_target() for failure */
2584 memcpy_to_target(sp, k_base_platform, len);
2585 } else {
2586 memcpy_to_target(sp, k_base_platform, len);
2587 u_base_platform = sp;
2588 sp += len + 1;
2592 u_platform = 0;
2593 k_platform = ELF_PLATFORM;
2594 if (k_platform) {
2595 size_t len = strlen(k_platform) + 1;
2596 if (STACK_GROWS_DOWN) {
2597 sp -= (len + n - 1) & ~(n - 1);
2598 u_platform = sp;
2599 /* FIXME - check return value of memcpy_to_target() for failure */
2600 memcpy_to_target(sp, k_platform, len);
2601 } else {
2602 memcpy_to_target(sp, k_platform, len);
2603 u_platform = sp;
2604 sp += len + 1;
2608 /* Provide 16 byte alignment for the PRNG, and basic alignment for
2609 * the argv and envp pointers.
2611 if (STACK_GROWS_DOWN) {
2612 sp = QEMU_ALIGN_DOWN(sp, 16);
2613 } else {
2614 sp = QEMU_ALIGN_UP(sp, 16);
2618 * Generate 16 random bytes for userspace PRNG seeding.
2620 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2621 if (STACK_GROWS_DOWN) {
2622 sp -= 16;
2623 u_rand_bytes = sp;
2624 /* FIXME - check return value of memcpy_to_target() for failure */
2625 memcpy_to_target(sp, k_rand_bytes, 16);
2626 } else {
2627 memcpy_to_target(sp, k_rand_bytes, 16);
2628 u_rand_bytes = sp;
2629 sp += 16;
2632 size = (DLINFO_ITEMS + 1) * 2;
2633 if (k_base_platform) {
2634 size += 2;
2636 if (k_platform) {
2637 size += 2;
2639 if (vdso_info) {
2640 size += 2;
2642 #ifdef DLINFO_ARCH_ITEMS
2643 size += DLINFO_ARCH_ITEMS * 2;
2644 #endif
2645 #ifdef ELF_HWCAP2
2646 size += 2;
2647 #endif
2648 info->auxv_len = size * n;
2650 size += envc + argc + 2;
2651 size += 1; /* argc itself */
2652 size *= n;
2654 /* Allocate space and finalize stack alignment for entry now. */
2655 if (STACK_GROWS_DOWN) {
2656 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2657 sp = u_argc;
2658 } else {
2659 u_argc = sp;
2660 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2663 u_argv = u_argc + n;
2664 u_envp = u_argv + (argc + 1) * n;
2665 u_auxv = u_envp + (envc + 1) * n;
2666 info->saved_auxv = u_auxv;
2667 info->argc = argc;
2668 info->envc = envc;
2669 info->argv = u_argv;
2670 info->envp = u_envp;
2672 /* This is correct because Linux defines
2673 * elf_addr_t as Elf32_Off / Elf64_Off
2675 #define NEW_AUX_ENT(id, val) do { \
2676 put_user_ual(id, u_auxv); u_auxv += n; \
2677 put_user_ual(val, u_auxv); u_auxv += n; \
2678 } while(0)
2680 #ifdef ARCH_DLINFO
2682 * ARCH_DLINFO must come first so platform specific code can enforce
2683 * special alignment requirements on the AUXV if necessary (eg. PPC).
2685 ARCH_DLINFO;
2686 #endif
2687 /* There must be exactly DLINFO_ITEMS entries here, or the assert
2688 * on info->auxv_len will trigger.
2690 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2691 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2692 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2693 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2694 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2695 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2696 NEW_AUX_ENT(AT_ENTRY, info->entry);
2697 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2698 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2699 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2700 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2701 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2702 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2703 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2704 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2705 NEW_AUX_ENT(AT_EXECFN, info->file_string);
2707 #ifdef ELF_HWCAP2
2708 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2709 #endif
2711 if (u_base_platform) {
2712 NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
2714 if (u_platform) {
2715 NEW_AUX_ENT(AT_PLATFORM, u_platform);
2717 if (vdso_info) {
2718 NEW_AUX_ENT(AT_SYSINFO_EHDR, vdso_info->load_addr);
2720 NEW_AUX_ENT (AT_NULL, 0);
2721 #undef NEW_AUX_ENT
2723 /* Check that our initial calculation of the auxv length matches how much
2724 * we actually put into it.
2726 assert(info->auxv_len == u_auxv - info->saved_auxv);
2728 put_user_ual(argc, u_argc);
2730 p = info->arg_strings;
2731 for (i = 0; i < argc; ++i) {
2732 put_user_ual(p, u_argv);
2733 u_argv += n;
2734 p += target_strlen(p) + 1;
2736 put_user_ual(0, u_argv);
2738 p = info->env_strings;
2739 for (i = 0; i < envc; ++i) {
2740 put_user_ual(p, u_envp);
2741 u_envp += n;
2742 p += target_strlen(p) + 1;
2744 put_user_ual(0, u_envp);
2746 return sp;
2749 #if defined(HI_COMMPAGE)
2750 #define LO_COMMPAGE -1
2751 #elif defined(LO_COMMPAGE)
2752 #define HI_COMMPAGE 0
2753 #else
2754 #define HI_COMMPAGE 0
2755 #define LO_COMMPAGE -1
2756 #ifndef INIT_GUEST_COMMPAGE
2757 #define init_guest_commpage() true
2758 #endif
2759 #endif
2762 * pgb_try_mmap:
2763 * @addr: host start address
2764 * @addr_last: host last address
2765 * @keep: do not unmap the probe region
2767 * Return 1 if [@addr, @addr_last] is not mapped in the host,
2768 * return 0 if it is not available to map, and -1 on mmap error.
2769 * If @keep, the region is left mapped on success, otherwise unmapped.
2771 static int pgb_try_mmap(uintptr_t addr, uintptr_t addr_last, bool keep)
2773 size_t size = addr_last - addr + 1;
2774 void *p = mmap((void *)addr, size, PROT_NONE,
2775 MAP_ANONYMOUS | MAP_PRIVATE |
2776 MAP_NORESERVE | MAP_FIXED_NOREPLACE, -1, 0);
2777 int ret;
2779 if (p == MAP_FAILED) {
2780 return errno == EEXIST ? 0 : -1;
2782 ret = p == (void *)addr;
2783 if (!keep || !ret) {
2784 munmap(p, size);
2786 return ret;
2790 * pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk)
2791 * @addr: host address
2792 * @addr_last: host last address
2793 * @brk: host brk
2795 * Like pgb_try_mmap, but additionally reserve some memory following brk.
2797 static int pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t addr_last,
2798 uintptr_t brk, bool keep)
2800 uintptr_t brk_last = brk + 16 * MiB - 1;
2802 /* Do not map anything close to the host brk. */
2803 if (addr <= brk_last && brk <= addr_last) {
2804 return 0;
2806 return pgb_try_mmap(addr, addr_last, keep);
2810 * pgb_try_mmap_set:
2811 * @ga: set of guest addrs
2812 * @base: guest_base
2813 * @brk: host brk
2815 * Return true if all @ga can be mapped by the host at @base.
2816 * On success, retain the mapping at index 0 for reserved_va.
2819 typedef struct PGBAddrs {
2820 uintptr_t bounds[3][2]; /* start/last pairs */
2821 int nbounds;
2822 } PGBAddrs;
2824 static bool pgb_try_mmap_set(const PGBAddrs *ga, uintptr_t base, uintptr_t brk)
2826 for (int i = ga->nbounds - 1; i >= 0; --i) {
2827 if (pgb_try_mmap_skip_brk(ga->bounds[i][0] + base,
2828 ga->bounds[i][1] + base,
2829 brk, i == 0 && reserved_va) <= 0) {
2830 return false;
2833 return true;
2837 * pgb_addr_set:
2838 * @ga: output set of guest addrs
2839 * @guest_loaddr: guest image low address
2840 * @guest_loaddr: guest image high address
2841 * @identity: create for identity mapping
2843 * Fill in @ga with the image, COMMPAGE and NULL page.
2845 static bool pgb_addr_set(PGBAddrs *ga, abi_ulong guest_loaddr,
2846 abi_ulong guest_hiaddr, bool try_identity)
2848 int n;
2851 * With a low commpage, or a guest mapped very low,
2852 * we may not be able to use the identity map.
2854 if (try_identity) {
2855 if (LO_COMMPAGE != -1 && LO_COMMPAGE < mmap_min_addr) {
2856 return false;
2858 if (guest_loaddr != 0 && guest_loaddr < mmap_min_addr) {
2859 return false;
2863 memset(ga, 0, sizeof(*ga));
2864 n = 0;
2866 if (reserved_va) {
2867 ga->bounds[n][0] = try_identity ? mmap_min_addr : 0;
2868 ga->bounds[n][1] = reserved_va;
2869 n++;
2870 /* LO_COMMPAGE and NULL handled by reserving from 0. */
2871 } else {
2872 /* Add any LO_COMMPAGE or NULL page. */
2873 if (LO_COMMPAGE != -1) {
2874 ga->bounds[n][0] = 0;
2875 ga->bounds[n][1] = LO_COMMPAGE + TARGET_PAGE_SIZE - 1;
2876 n++;
2877 } else if (!try_identity) {
2878 ga->bounds[n][0] = 0;
2879 ga->bounds[n][1] = TARGET_PAGE_SIZE - 1;
2880 n++;
2883 /* Add the guest image for ET_EXEC. */
2884 if (guest_loaddr) {
2885 ga->bounds[n][0] = guest_loaddr;
2886 ga->bounds[n][1] = guest_hiaddr;
2887 n++;
2892 * Temporarily disable
2893 * "comparison is always false due to limited range of data type"
2894 * due to comparison between unsigned and (possible) 0.
2896 #pragma GCC diagnostic push
2897 #pragma GCC diagnostic ignored "-Wtype-limits"
2899 /* Add any HI_COMMPAGE not covered by reserved_va. */
2900 if (reserved_va < HI_COMMPAGE) {
2901 ga->bounds[n][0] = HI_COMMPAGE & qemu_real_host_page_mask();
2902 ga->bounds[n][1] = HI_COMMPAGE + TARGET_PAGE_SIZE - 1;
2903 n++;
2906 #pragma GCC diagnostic pop
2908 ga->nbounds = n;
2909 return true;
2912 static void pgb_fail_in_use(const char *image_name)
2914 error_report("%s: requires virtual address space that is in use "
2915 "(omit the -B option or choose a different value)",
2916 image_name);
2917 exit(EXIT_FAILURE);
2920 static void pgb_fixed(const char *image_name, uintptr_t guest_loaddr,
2921 uintptr_t guest_hiaddr, uintptr_t align)
2923 PGBAddrs ga;
2924 uintptr_t brk = (uintptr_t)sbrk(0);
2926 if (!QEMU_IS_ALIGNED(guest_base, align)) {
2927 fprintf(stderr, "Requested guest base %p does not satisfy "
2928 "host minimum alignment (0x%" PRIxPTR ")\n",
2929 (void *)guest_base, align);
2930 exit(EXIT_FAILURE);
2933 if (!pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, !guest_base)
2934 || !pgb_try_mmap_set(&ga, guest_base, brk)) {
2935 pgb_fail_in_use(image_name);
2940 * pgb_find_fallback:
2942 * This is a fallback method for finding holes in the host address space
2943 * if we don't have the benefit of being able to access /proc/self/map.
2944 * It can potentially take a very long time as we can only dumbly iterate
2945 * up the host address space seeing if the allocation would work.
2947 static uintptr_t pgb_find_fallback(const PGBAddrs *ga, uintptr_t align,
2948 uintptr_t brk)
2950 /* TODO: come up with a better estimate of how much to skip. */
2951 uintptr_t skip = sizeof(uintptr_t) == 4 ? MiB : GiB;
2953 for (uintptr_t base = skip; ; base += skip) {
2954 base = ROUND_UP(base, align);
2955 if (pgb_try_mmap_set(ga, base, brk)) {
2956 return base;
2958 if (base >= -skip) {
2959 return -1;
2964 static uintptr_t pgb_try_itree(const PGBAddrs *ga, uintptr_t base,
2965 IntervalTreeRoot *root)
2967 for (int i = ga->nbounds - 1; i >= 0; --i) {
2968 uintptr_t s = base + ga->bounds[i][0];
2969 uintptr_t l = base + ga->bounds[i][1];
2970 IntervalTreeNode *n;
2972 if (l < s) {
2973 /* Wraparound. Skip to advance S to mmap_min_addr. */
2974 return mmap_min_addr - s;
2977 n = interval_tree_iter_first(root, s, l);
2978 if (n != NULL) {
2979 /* Conflict. Skip to advance S to LAST + 1. */
2980 return n->last - s + 1;
2983 return 0; /* success */
2986 static uintptr_t pgb_find_itree(const PGBAddrs *ga, IntervalTreeRoot *root,
2987 uintptr_t align, uintptr_t brk)
2989 uintptr_t last = mmap_min_addr;
2990 uintptr_t base, skip;
2992 while (true) {
2993 base = ROUND_UP(last, align);
2994 if (base < last) {
2995 return -1;
2998 skip = pgb_try_itree(ga, base, root);
2999 if (skip == 0) {
3000 break;
3003 last = base + skip;
3004 if (last < base) {
3005 return -1;
3010 * We've chosen 'base' based on holes in the interval tree,
3011 * but we don't yet know if it is a valid host address.
3012 * Because it is the first matching hole, if the host addresses
3013 * are invalid we know there are no further matches.
3015 return pgb_try_mmap_set(ga, base, brk) ? base : -1;
3018 static void pgb_dynamic(const char *image_name, uintptr_t guest_loaddr,
3019 uintptr_t guest_hiaddr, uintptr_t align)
3021 IntervalTreeRoot *root;
3022 uintptr_t brk, ret;
3023 PGBAddrs ga;
3025 /* Try the identity map first. */
3026 if (pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, true)) {
3027 brk = (uintptr_t)sbrk(0);
3028 if (pgb_try_mmap_set(&ga, 0, brk)) {
3029 guest_base = 0;
3030 return;
3035 * Rebuild the address set for non-identity map.
3036 * This differs in the mapping of the guest NULL page.
3038 pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, false);
3040 root = read_self_maps();
3042 /* Read brk after we've read the maps, which will malloc. */
3043 brk = (uintptr_t)sbrk(0);
3045 if (!root) {
3046 ret = pgb_find_fallback(&ga, align, brk);
3047 } else {
3049 * Reserve the area close to the host brk.
3050 * This will be freed with the rest of the tree.
3052 IntervalTreeNode *b = g_new0(IntervalTreeNode, 1);
3053 b->start = brk;
3054 b->last = brk + 16 * MiB - 1;
3055 interval_tree_insert(b, root);
3057 ret = pgb_find_itree(&ga, root, align, brk);
3058 free_self_maps(root);
3061 if (ret == -1) {
3062 int w = TARGET_LONG_BITS / 4;
3064 error_report("%s: Unable to find a guest_base to satisfy all "
3065 "guest address mapping requirements", image_name);
3067 for (int i = 0; i < ga.nbounds; ++i) {
3068 error_printf(" %0*" PRIx64 "-%0*" PRIx64 "\n",
3069 w, (uint64_t)ga.bounds[i][0],
3070 w, (uint64_t)ga.bounds[i][1]);
3072 exit(EXIT_FAILURE);
3074 guest_base = ret;
3077 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
3078 abi_ulong guest_hiaddr)
3080 /* In order to use host shmat, we must be able to honor SHMLBA. */
3081 uintptr_t align = MAX(SHMLBA, TARGET_PAGE_SIZE);
3083 /* Sanity check the guest binary. */
3084 if (reserved_va) {
3085 if (guest_hiaddr > reserved_va) {
3086 error_report("%s: requires more than reserved virtual "
3087 "address space (0x%" PRIx64 " > 0x%lx)",
3088 image_name, (uint64_t)guest_hiaddr, reserved_va);
3089 exit(EXIT_FAILURE);
3091 } else {
3092 if (guest_hiaddr != (uintptr_t)guest_hiaddr) {
3093 error_report("%s: requires more virtual address space "
3094 "than the host can provide (0x%" PRIx64 ")",
3095 image_name, (uint64_t)guest_hiaddr + 1);
3096 exit(EXIT_FAILURE);
3100 if (have_guest_base) {
3101 pgb_fixed(image_name, guest_loaddr, guest_hiaddr, align);
3102 } else {
3103 pgb_dynamic(image_name, guest_loaddr, guest_hiaddr, align);
3106 /* Reserve and initialize the commpage. */
3107 if (!init_guest_commpage()) {
3108 /* We have already probed for the commpage being free. */
3109 g_assert_not_reached();
3112 assert(QEMU_IS_ALIGNED(guest_base, align));
3113 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
3114 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
3117 enum {
3118 /* The string "GNU\0" as a magic number. */
3119 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
3120 NOTE_DATA_SZ = 1 * KiB,
3121 NOTE_NAME_SZ = 4,
3122 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
3126 * Process a single gnu_property entry.
3127 * Return false for error.
3129 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
3130 struct image_info *info, bool have_prev_type,
3131 uint32_t *prev_type, Error **errp)
3133 uint32_t pr_type, pr_datasz, step;
3135 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
3136 goto error_data;
3138 datasz -= *off;
3139 data += *off / sizeof(uint32_t);
3141 if (datasz < 2 * sizeof(uint32_t)) {
3142 goto error_data;
3144 pr_type = data[0];
3145 pr_datasz = data[1];
3146 data += 2;
3147 datasz -= 2 * sizeof(uint32_t);
3148 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
3149 if (step > datasz) {
3150 goto error_data;
3153 /* Properties are supposed to be unique and sorted on pr_type. */
3154 if (have_prev_type && pr_type <= *prev_type) {
3155 if (pr_type == *prev_type) {
3156 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
3157 } else {
3158 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
3160 return false;
3162 *prev_type = pr_type;
3164 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
3165 return false;
3168 *off += 2 * sizeof(uint32_t) + step;
3169 return true;
3171 error_data:
3172 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
3173 return false;
3176 /* Process NT_GNU_PROPERTY_TYPE_0. */
3177 static bool parse_elf_properties(const ImageSource *src,
3178 struct image_info *info,
3179 const struct elf_phdr *phdr,
3180 Error **errp)
3182 union {
3183 struct elf_note nhdr;
3184 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
3185 } note;
3187 int n, off, datasz;
3188 bool have_prev_type;
3189 uint32_t prev_type;
3191 /* Unless the arch requires properties, ignore them. */
3192 if (!ARCH_USE_GNU_PROPERTY) {
3193 return true;
3196 /* If the properties are crazy large, that's too bad. */
3197 n = phdr->p_filesz;
3198 if (n > sizeof(note)) {
3199 error_setg(errp, "PT_GNU_PROPERTY too large");
3200 return false;
3202 if (n < sizeof(note.nhdr)) {
3203 error_setg(errp, "PT_GNU_PROPERTY too small");
3204 return false;
3207 if (!imgsrc_read(&note, phdr->p_offset, n, src, errp)) {
3208 return false;
3212 * The contents of a valid PT_GNU_PROPERTY is a sequence
3213 * of uint32_t -- swap them all now.
3215 #ifdef BSWAP_NEEDED
3216 for (int i = 0; i < n / 4; i++) {
3217 bswap32s(note.data + i);
3219 #endif
3222 * Note that nhdr is 3 words, and that the "name" described by namesz
3223 * immediately follows nhdr and is thus at the 4th word. Further, all
3224 * of the inputs to the kernel's round_up are multiples of 4.
3226 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
3227 note.nhdr.n_namesz != NOTE_NAME_SZ ||
3228 note.data[3] != GNU0_MAGIC) {
3229 error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
3230 return false;
3232 off = sizeof(note.nhdr) + NOTE_NAME_SZ;
3234 datasz = note.nhdr.n_descsz + off;
3235 if (datasz > n) {
3236 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
3237 return false;
3240 have_prev_type = false;
3241 prev_type = 0;
3242 while (1) {
3243 if (off == datasz) {
3244 return true; /* end, exit ok */
3246 if (!parse_elf_property(note.data, &off, datasz, info,
3247 have_prev_type, &prev_type, errp)) {
3248 return false;
3250 have_prev_type = true;
3255 * load_elf_image: Load an ELF image into the address space.
3256 * @image_name: the filename of the image, to use in error messages.
3257 * @src: the ImageSource from which to read.
3258 * @info: info collected from the loaded image.
3259 * @ehdr: the ELF header, not yet bswapped.
3260 * @pinterp_name: record any PT_INTERP string found.
3262 * On return: @info values will be filled in, as necessary or available.
3265 static void load_elf_image(const char *image_name, const ImageSource *src,
3266 struct image_info *info, struct elfhdr *ehdr,
3267 char **pinterp_name)
3269 g_autofree struct elf_phdr *phdr = NULL;
3270 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
3271 int i, prot_exec;
3272 Error *err = NULL;
3275 * First of all, some simple consistency checks.
3276 * Note that we rely on the bswapped ehdr staying in bprm_buf,
3277 * for later use by load_elf_binary and create_elf_tables.
3279 if (!imgsrc_read(ehdr, 0, sizeof(*ehdr), src, &err)) {
3280 goto exit_errmsg;
3282 if (!elf_check_ident(ehdr)) {
3283 error_setg(&err, "Invalid ELF image for this architecture");
3284 goto exit_errmsg;
3286 bswap_ehdr(ehdr);
3287 if (!elf_check_ehdr(ehdr)) {
3288 error_setg(&err, "Invalid ELF image for this architecture");
3289 goto exit_errmsg;
3292 phdr = imgsrc_read_alloc(ehdr->e_phoff,
3293 ehdr->e_phnum * sizeof(struct elf_phdr),
3294 src, &err);
3295 if (phdr == NULL) {
3296 goto exit_errmsg;
3298 bswap_phdr(phdr, ehdr->e_phnum);
3300 info->nsegs = 0;
3301 info->pt_dynamic_addr = 0;
3303 mmap_lock();
3306 * Find the maximum size of the image and allocate an appropriate
3307 * amount of memory to handle that. Locate the interpreter, if any.
3309 loaddr = -1, hiaddr = 0;
3310 info->alignment = 0;
3311 info->exec_stack = EXSTACK_DEFAULT;
3312 for (i = 0; i < ehdr->e_phnum; ++i) {
3313 struct elf_phdr *eppnt = phdr + i;
3314 if (eppnt->p_type == PT_LOAD) {
3315 abi_ulong a = eppnt->p_vaddr & TARGET_PAGE_MASK;
3316 if (a < loaddr) {
3317 loaddr = a;
3319 a = eppnt->p_vaddr + eppnt->p_memsz - 1;
3320 if (a > hiaddr) {
3321 hiaddr = a;
3323 ++info->nsegs;
3324 info->alignment |= eppnt->p_align;
3325 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
3326 g_autofree char *interp_name = NULL;
3328 if (*pinterp_name) {
3329 error_setg(&err, "Multiple PT_INTERP entries");
3330 goto exit_errmsg;
3333 interp_name = imgsrc_read_alloc(eppnt->p_offset, eppnt->p_filesz,
3334 src, &err);
3335 if (interp_name == NULL) {
3336 goto exit_errmsg;
3338 if (interp_name[eppnt->p_filesz - 1] != 0) {
3339 error_setg(&err, "Invalid PT_INTERP entry");
3340 goto exit_errmsg;
3342 *pinterp_name = g_steal_pointer(&interp_name);
3343 } else if (eppnt->p_type == PT_GNU_PROPERTY) {
3344 if (!parse_elf_properties(src, info, eppnt, &err)) {
3345 goto exit_errmsg;
3347 } else if (eppnt->p_type == PT_GNU_STACK) {
3348 info->exec_stack = eppnt->p_flags & PF_X;
3352 load_addr = loaddr;
3354 if (pinterp_name != NULL) {
3355 if (ehdr->e_type == ET_EXEC) {
3357 * Make sure that the low address does not conflict with
3358 * MMAP_MIN_ADDR or the QEMU application itself.
3360 probe_guest_base(image_name, loaddr, hiaddr);
3361 } else {
3362 abi_ulong align;
3365 * The binary is dynamic, but we still need to
3366 * select guest_base. In this case we pass a size.
3368 probe_guest_base(image_name, 0, hiaddr - loaddr);
3371 * Avoid collision with the loader by providing a different
3372 * default load address.
3374 load_addr += elf_et_dyn_base;
3377 * TODO: Better support for mmap alignment is desirable.
3378 * Since we do not have complete control over the guest
3379 * address space, we prefer the kernel to choose some address
3380 * rather than force the use of LOAD_ADDR via MAP_FIXED.
3381 * But without MAP_FIXED we cannot guarantee alignment,
3382 * only suggest it.
3384 align = pow2ceil(info->alignment);
3385 if (align) {
3386 load_addr &= -align;
3392 * Reserve address space for all of this.
3394 * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get
3395 * exactly the address range that is required. Without reserved_va,
3396 * the guest address space is not isolated. We have attempted to avoid
3397 * conflict with the host program itself via probe_guest_base, but using
3398 * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check.
3400 * Otherwise this is ET_DYN, and we are searching for a location
3401 * that can hold the memory space required. If the image is
3402 * pre-linked, LOAD_ADDR will be non-zero, and the kernel should
3403 * honor that address if it happens to be free.
3405 * In both cases, we will overwrite pages in this range with mappings
3406 * from the executable.
3408 load_addr = target_mmap(load_addr, (size_t)hiaddr - loaddr + 1, PROT_NONE,
3409 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
3410 (ehdr->e_type == ET_EXEC ? MAP_FIXED_NOREPLACE : 0),
3411 -1, 0);
3412 if (load_addr == -1) {
3413 goto exit_mmap;
3415 load_bias = load_addr - loaddr;
3417 if (elf_is_fdpic(ehdr)) {
3418 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
3419 g_malloc(sizeof(*loadsegs) * info->nsegs);
3421 for (i = 0; i < ehdr->e_phnum; ++i) {
3422 switch (phdr[i].p_type) {
3423 case PT_DYNAMIC:
3424 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
3425 break;
3426 case PT_LOAD:
3427 loadsegs->addr = phdr[i].p_vaddr + load_bias;
3428 loadsegs->p_vaddr = phdr[i].p_vaddr;
3429 loadsegs->p_memsz = phdr[i].p_memsz;
3430 ++loadsegs;
3431 break;
3436 info->load_bias = load_bias;
3437 info->code_offset = load_bias;
3438 info->data_offset = load_bias;
3439 info->load_addr = load_addr;
3440 info->entry = ehdr->e_entry + load_bias;
3441 info->start_code = -1;
3442 info->end_code = 0;
3443 info->start_data = -1;
3444 info->end_data = 0;
3445 /* Usual start for brk is after all sections of the main executable. */
3446 info->brk = TARGET_PAGE_ALIGN(hiaddr + load_bias);
3447 info->elf_flags = ehdr->e_flags;
3449 prot_exec = PROT_EXEC;
3450 #ifdef TARGET_AARCH64
3452 * If the BTI feature is present, this indicates that the executable
3453 * pages of the startup binary should be mapped with PROT_BTI, so that
3454 * branch targets are enforced.
3456 * The startup binary is either the interpreter or the static executable.
3457 * The interpreter is responsible for all pages of a dynamic executable.
3459 * Elf notes are backward compatible to older cpus.
3460 * Do not enable BTI unless it is supported.
3462 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3463 && (pinterp_name == NULL || *pinterp_name == 0)
3464 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3465 prot_exec |= TARGET_PROT_BTI;
3467 #endif
3469 for (i = 0; i < ehdr->e_phnum; i++) {
3470 struct elf_phdr *eppnt = phdr + i;
3471 if (eppnt->p_type == PT_LOAD) {
3472 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
3473 int elf_prot = 0;
3475 if (eppnt->p_flags & PF_R) {
3476 elf_prot |= PROT_READ;
3478 if (eppnt->p_flags & PF_W) {
3479 elf_prot |= PROT_WRITE;
3481 if (eppnt->p_flags & PF_X) {
3482 elf_prot |= prot_exec;
3485 vaddr = load_bias + eppnt->p_vaddr;
3486 vaddr_po = vaddr & ~TARGET_PAGE_MASK;
3487 vaddr_ps = vaddr & TARGET_PAGE_MASK;
3489 vaddr_ef = vaddr + eppnt->p_filesz;
3490 vaddr_em = vaddr + eppnt->p_memsz;
3493 * Some segments may be completely empty, with a non-zero p_memsz
3494 * but no backing file segment.
3496 if (eppnt->p_filesz != 0) {
3497 error = imgsrc_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
3498 elf_prot, MAP_PRIVATE | MAP_FIXED,
3499 src, eppnt->p_offset - vaddr_po);
3500 if (error == -1) {
3501 goto exit_mmap;
3505 /* If the load segment requests extra zeros (e.g. bss), map it. */
3506 if (vaddr_ef < vaddr_em &&
3507 !zero_bss(vaddr_ef, vaddr_em, elf_prot, &err)) {
3508 goto exit_errmsg;
3511 /* Find the full program boundaries. */
3512 if (elf_prot & PROT_EXEC) {
3513 if (vaddr < info->start_code) {
3514 info->start_code = vaddr;
3516 if (vaddr_ef > info->end_code) {
3517 info->end_code = vaddr_ef;
3520 if (elf_prot & PROT_WRITE) {
3521 if (vaddr < info->start_data) {
3522 info->start_data = vaddr;
3524 if (vaddr_ef > info->end_data) {
3525 info->end_data = vaddr_ef;
3528 #ifdef TARGET_MIPS
3529 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3530 Mips_elf_abiflags_v0 abiflags;
3532 if (!imgsrc_read(&abiflags, eppnt->p_offset, sizeof(abiflags),
3533 src, &err)) {
3534 goto exit_errmsg;
3536 bswap_mips_abiflags(&abiflags);
3537 info->fp_abi = abiflags.fp_abi;
3538 #endif
3542 if (info->end_data == 0) {
3543 info->start_data = info->end_code;
3544 info->end_data = info->end_code;
3547 if (qemu_log_enabled()) {
3548 load_symbols(ehdr, src, load_bias);
3551 debuginfo_report_elf(image_name, src->fd, load_bias);
3553 mmap_unlock();
3555 close(src->fd);
3556 return;
3558 exit_mmap:
3559 error_setg_errno(&err, errno, "Error mapping file");
3560 goto exit_errmsg;
3561 exit_errmsg:
3562 error_reportf_err(err, "%s: ", image_name);
3563 exit(-1);
3566 static void load_elf_interp(const char *filename, struct image_info *info,
3567 char bprm_buf[BPRM_BUF_SIZE])
3569 struct elfhdr ehdr;
3570 ImageSource src;
3571 int fd, retval;
3572 Error *err = NULL;
3574 fd = open(path(filename), O_RDONLY);
3575 if (fd < 0) {
3576 error_setg_file_open(&err, errno, filename);
3577 error_report_err(err);
3578 exit(-1);
3581 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3582 if (retval < 0) {
3583 error_setg_errno(&err, errno, "Error reading file header");
3584 error_reportf_err(err, "%s: ", filename);
3585 exit(-1);
3588 src.fd = fd;
3589 src.cache = bprm_buf;
3590 src.cache_size = retval;
3592 load_elf_image(filename, &src, info, &ehdr, NULL);
3595 #ifdef VDSO_HEADER
3596 #include VDSO_HEADER
3597 #define vdso_image_info() &vdso_image_info
3598 #else
3599 #define vdso_image_info() NULL
3600 #endif
3602 static void load_elf_vdso(struct image_info *info, const VdsoImageInfo *vdso)
3604 ImageSource src;
3605 struct elfhdr ehdr;
3606 abi_ulong load_bias, load_addr;
3608 src.fd = -1;
3609 src.cache = vdso->image;
3610 src.cache_size = vdso->image_size;
3612 load_elf_image("<internal-vdso>", &src, info, &ehdr, NULL);
3613 load_addr = info->load_addr;
3614 load_bias = info->load_bias;
3617 * We need to relocate the VDSO image. The one built into the kernel
3618 * is built for a fixed address. The one built for QEMU is not, since
3619 * that requires close control of the guest address space.
3620 * We pre-processed the image to locate all of the addresses that need
3621 * to be updated.
3623 for (unsigned i = 0, n = vdso->reloc_count; i < n; i++) {
3624 abi_ulong *addr = g2h_untagged(load_addr + vdso->relocs[i]);
3625 *addr = tswapal(tswapal(*addr) + load_bias);
3628 /* Install signal trampolines, if present. */
3629 if (vdso->sigreturn_ofs) {
3630 default_sigreturn = load_addr + vdso->sigreturn_ofs;
3632 if (vdso->rt_sigreturn_ofs) {
3633 default_rt_sigreturn = load_addr + vdso->rt_sigreturn_ofs;
3636 /* Remove write from VDSO segment. */
3637 target_mprotect(info->start_data, info->end_data - info->start_data,
3638 PROT_READ | PROT_EXEC);
3641 static int symfind(const void *s0, const void *s1)
3643 struct elf_sym *sym = (struct elf_sym *)s1;
3644 __typeof(sym->st_value) addr = *(uint64_t *)s0;
3645 int result = 0;
3647 if (addr < sym->st_value) {
3648 result = -1;
3649 } else if (addr >= sym->st_value + sym->st_size) {
3650 result = 1;
3652 return result;
3655 static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr)
3657 #if ELF_CLASS == ELFCLASS32
3658 struct elf_sym *syms = s->disas_symtab.elf32;
3659 #else
3660 struct elf_sym *syms = s->disas_symtab.elf64;
3661 #endif
3663 // binary search
3664 struct elf_sym *sym;
3666 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3667 if (sym != NULL) {
3668 return s->disas_strtab + sym->st_name;
3671 return "";
3674 /* FIXME: This should use elf_ops.h */
3675 static int symcmp(const void *s0, const void *s1)
3677 struct elf_sym *sym0 = (struct elf_sym *)s0;
3678 struct elf_sym *sym1 = (struct elf_sym *)s1;
3679 return (sym0->st_value < sym1->st_value)
3680 ? -1
3681 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3684 /* Best attempt to load symbols from this ELF object. */
3685 static void load_symbols(struct elfhdr *hdr, const ImageSource *src,
3686 abi_ulong load_bias)
3688 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3689 g_autofree struct elf_shdr *shdr = NULL;
3690 char *strings = NULL;
3691 struct elf_sym *syms = NULL;
3692 struct elf_sym *new_syms;
3693 uint64_t segsz;
3695 shnum = hdr->e_shnum;
3696 shdr = imgsrc_read_alloc(hdr->e_shoff, shnum * sizeof(struct elf_shdr),
3697 src, NULL);
3698 if (shdr == NULL) {
3699 return;
3702 bswap_shdr(shdr, shnum);
3703 for (i = 0; i < shnum; ++i) {
3704 if (shdr[i].sh_type == SHT_SYMTAB) {
3705 sym_idx = i;
3706 str_idx = shdr[i].sh_link;
3707 goto found;
3711 /* There will be no symbol table if the file was stripped. */
3712 return;
3714 found:
3715 /* Now know where the strtab and symtab are. Snarf them. */
3717 segsz = shdr[str_idx].sh_size;
3718 strings = g_try_malloc(segsz);
3719 if (!strings) {
3720 goto give_up;
3722 if (!imgsrc_read(strings, shdr[str_idx].sh_offset, segsz, src, NULL)) {
3723 goto give_up;
3726 segsz = shdr[sym_idx].sh_size;
3727 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3729 * Implausibly large symbol table: give up rather than ploughing
3730 * on with the number of symbols calculation overflowing.
3732 goto give_up;
3734 nsyms = segsz / sizeof(struct elf_sym);
3735 syms = g_try_malloc(segsz);
3736 if (!syms) {
3737 goto give_up;
3739 if (!imgsrc_read(syms, shdr[sym_idx].sh_offset, segsz, src, NULL)) {
3740 goto give_up;
3743 for (i = 0; i < nsyms; ) {
3744 bswap_sym(syms + i);
3745 /* Throw away entries which we do not need. */
3746 if (syms[i].st_shndx == SHN_UNDEF
3747 || syms[i].st_shndx >= SHN_LORESERVE
3748 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3749 if (i < --nsyms) {
3750 syms[i] = syms[nsyms];
3752 } else {
3753 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3754 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
3755 syms[i].st_value &= ~(target_ulong)1;
3756 #endif
3757 syms[i].st_value += load_bias;
3758 i++;
3762 /* No "useful" symbol. */
3763 if (nsyms == 0) {
3764 goto give_up;
3768 * Attempt to free the storage associated with the local symbols
3769 * that we threw away. Whether or not this has any effect on the
3770 * memory allocation depends on the malloc implementation and how
3771 * many symbols we managed to discard.
3773 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3774 if (new_syms == NULL) {
3775 goto give_up;
3777 syms = new_syms;
3779 qsort(syms, nsyms, sizeof(*syms), symcmp);
3782 struct syminfo *s = g_new(struct syminfo, 1);
3784 s->disas_strtab = strings;
3785 s->disas_num_syms = nsyms;
3786 #if ELF_CLASS == ELFCLASS32
3787 s->disas_symtab.elf32 = syms;
3788 #else
3789 s->disas_symtab.elf64 = syms;
3790 #endif
3791 s->lookup_symbol = lookup_symbolxx;
3792 s->next = syminfos;
3793 syminfos = s;
3795 return;
3797 give_up:
3798 g_free(strings);
3799 g_free(syms);
3802 uint32_t get_elf_eflags(int fd)
3804 struct elfhdr ehdr;
3805 off_t offset;
3806 int ret;
3808 /* Read ELF header */
3809 offset = lseek(fd, 0, SEEK_SET);
3810 if (offset == (off_t) -1) {
3811 return 0;
3813 ret = read(fd, &ehdr, sizeof(ehdr));
3814 if (ret < sizeof(ehdr)) {
3815 return 0;
3817 offset = lseek(fd, offset, SEEK_SET);
3818 if (offset == (off_t) -1) {
3819 return 0;
3822 /* Check ELF signature */
3823 if (!elf_check_ident(&ehdr)) {
3824 return 0;
3827 /* check header */
3828 bswap_ehdr(&ehdr);
3829 if (!elf_check_ehdr(&ehdr)) {
3830 return 0;
3833 /* return architecture id */
3834 return ehdr.e_flags;
3837 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3840 * We need a copy of the elf header for passing to create_elf_tables.
3841 * We will have overwritten the original when we re-use bprm->buf
3842 * while loading the interpreter. Allocate the storage for this now
3843 * and let elf_load_image do any swapping that may be required.
3845 struct elfhdr ehdr;
3846 struct image_info interp_info, vdso_info;
3847 char *elf_interpreter = NULL;
3848 char *scratch;
3850 memset(&interp_info, 0, sizeof(interp_info));
3851 #ifdef TARGET_MIPS
3852 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3853 #endif
3855 load_elf_image(bprm->filename, &bprm->src, info, &ehdr, &elf_interpreter);
3857 /* Do this so that we can load the interpreter, if need be. We will
3858 change some of these later */
3859 bprm->p = setup_arg_pages(bprm, info);
3861 scratch = g_new0(char, TARGET_PAGE_SIZE);
3862 if (STACK_GROWS_DOWN) {
3863 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3864 bprm->p, info->stack_limit);
3865 info->file_string = bprm->p;
3866 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3867 bprm->p, info->stack_limit);
3868 info->env_strings = bprm->p;
3869 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3870 bprm->p, info->stack_limit);
3871 info->arg_strings = bprm->p;
3872 } else {
3873 info->arg_strings = bprm->p;
3874 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3875 bprm->p, info->stack_limit);
3876 info->env_strings = bprm->p;
3877 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3878 bprm->p, info->stack_limit);
3879 info->file_string = bprm->p;
3880 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3881 bprm->p, info->stack_limit);
3884 g_free(scratch);
3886 if (!bprm->p) {
3887 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3888 exit(-1);
3891 if (elf_interpreter) {
3892 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3895 * While unusual because of ELF_ET_DYN_BASE, if we are unlucky
3896 * with the mappings the interpreter can be loaded above but
3897 * near the main executable, which can leave very little room
3898 * for the heap.
3899 * If the current brk has less than 16MB, use the end of the
3900 * interpreter.
3902 if (interp_info.brk > info->brk &&
3903 interp_info.load_bias - info->brk < 16 * MiB) {
3904 info->brk = interp_info.brk;
3907 /* If the program interpreter is one of these two, then assume
3908 an iBCS2 image. Otherwise assume a native linux image. */
3910 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3911 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3912 info->personality = PER_SVR4;
3914 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
3915 and some applications "depend" upon this behavior. Since
3916 we do not have the power to recompile these, we emulate
3917 the SVr4 behavior. Sigh. */
3918 target_mmap(0, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC,
3919 MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_ANONYMOUS,
3920 -1, 0);
3922 #ifdef TARGET_MIPS
3923 info->interp_fp_abi = interp_info.fp_abi;
3924 #endif
3928 * Load a vdso if available, which will amongst other things contain the
3929 * signal trampolines. Otherwise, allocate a separate page for them.
3931 const VdsoImageInfo *vdso = vdso_image_info();
3932 if (vdso) {
3933 load_elf_vdso(&vdso_info, vdso);
3934 info->vdso = vdso_info.load_bias;
3935 } else if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3936 abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3937 PROT_READ | PROT_WRITE,
3938 MAP_PRIVATE | MAP_ANON, -1, 0);
3939 if (tramp_page == -1) {
3940 return -errno;
3943 setup_sigtramp(tramp_page);
3944 target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3947 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &ehdr, info,
3948 elf_interpreter ? &interp_info : NULL,
3949 vdso ? &vdso_info : NULL);
3950 info->start_stack = bprm->p;
3952 /* If we have an interpreter, set that as the program's entry point.
3953 Copy the load_bias as well, to help PPC64 interpret the entry
3954 point as a function descriptor. Do this after creating elf tables
3955 so that we copy the original program entry point into the AUXV. */
3956 if (elf_interpreter) {
3957 info->load_bias = interp_info.load_bias;
3958 info->entry = interp_info.entry;
3959 g_free(elf_interpreter);
3962 #ifdef USE_ELF_CORE_DUMP
3963 bprm->core_dump = &elf_core_dump;
3964 #endif
3966 return 0;
3969 #ifdef USE_ELF_CORE_DUMP
3970 #include "exec/translate-all.h"
3973 * Definitions to generate Intel SVR4-like core files.
3974 * These mostly have the same names as the SVR4 types with "target_elf_"
3975 * tacked on the front to prevent clashes with linux definitions,
3976 * and the typedef forms have been avoided. This is mostly like
3977 * the SVR4 structure, but more Linuxy, with things that Linux does
3978 * not support and which gdb doesn't really use excluded.
3980 * Fields we don't dump (their contents is zero) in linux-user qemu
3981 * are marked with XXX.
3983 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3985 * Porting ELF coredump for target is (quite) simple process. First you
3986 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3987 * the target resides):
3989 * #define USE_ELF_CORE_DUMP
3991 * Next you define type of register set used for dumping. ELF specification
3992 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3994 * typedef <target_regtype> target_elf_greg_t;
3995 * #define ELF_NREG <number of registers>
3996 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3998 * Last step is to implement target specific function that copies registers
3999 * from given cpu into just specified register set. Prototype is:
4001 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
4002 * const CPUArchState *env);
4004 * Parameters:
4005 * regs - copy register values into here (allocated and zeroed by caller)
4006 * env - copy registers from here
4008 * Example for ARM target is provided in this file.
4011 struct target_elf_siginfo {
4012 abi_int si_signo; /* signal number */
4013 abi_int si_code; /* extra code */
4014 abi_int si_errno; /* errno */
4017 struct target_elf_prstatus {
4018 struct target_elf_siginfo pr_info; /* Info associated with signal */
4019 abi_short pr_cursig; /* Current signal */
4020 abi_ulong pr_sigpend; /* XXX */
4021 abi_ulong pr_sighold; /* XXX */
4022 target_pid_t pr_pid;
4023 target_pid_t pr_ppid;
4024 target_pid_t pr_pgrp;
4025 target_pid_t pr_sid;
4026 struct target_timeval pr_utime; /* XXX User time */
4027 struct target_timeval pr_stime; /* XXX System time */
4028 struct target_timeval pr_cutime; /* XXX Cumulative user time */
4029 struct target_timeval pr_cstime; /* XXX Cumulative system time */
4030 target_elf_gregset_t pr_reg; /* GP registers */
4031 abi_int pr_fpvalid; /* XXX */
4034 #define ELF_PRARGSZ (80) /* Number of chars for args */
4036 struct target_elf_prpsinfo {
4037 char pr_state; /* numeric process state */
4038 char pr_sname; /* char for pr_state */
4039 char pr_zomb; /* zombie */
4040 char pr_nice; /* nice val */
4041 abi_ulong pr_flag; /* flags */
4042 target_uid_t pr_uid;
4043 target_gid_t pr_gid;
4044 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
4045 /* Lots missing */
4046 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
4047 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
4050 #ifdef BSWAP_NEEDED
4051 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
4053 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
4054 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
4055 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
4056 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
4057 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
4058 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
4059 prstatus->pr_pid = tswap32(prstatus->pr_pid);
4060 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
4061 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
4062 prstatus->pr_sid = tswap32(prstatus->pr_sid);
4063 /* cpu times are not filled, so we skip them */
4064 /* regs should be in correct format already */
4065 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
4068 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
4070 psinfo->pr_flag = tswapal(psinfo->pr_flag);
4071 psinfo->pr_uid = tswap16(psinfo->pr_uid);
4072 psinfo->pr_gid = tswap16(psinfo->pr_gid);
4073 psinfo->pr_pid = tswap32(psinfo->pr_pid);
4074 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
4075 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
4076 psinfo->pr_sid = tswap32(psinfo->pr_sid);
4079 static void bswap_note(struct elf_note *en)
4081 bswap32s(&en->n_namesz);
4082 bswap32s(&en->n_descsz);
4083 bswap32s(&en->n_type);
4085 #else
4086 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
4087 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
4088 static inline void bswap_note(struct elf_note *en) { }
4089 #endif /* BSWAP_NEEDED */
4092 * Calculate file (dump) size of given memory region.
4094 static size_t vma_dump_size(target_ulong start, target_ulong end,
4095 unsigned long flags)
4097 /* The area must be readable. */
4098 if (!(flags & PAGE_READ)) {
4099 return 0;
4103 * Usually we don't dump executable pages as they contain
4104 * non-writable code that debugger can read directly from
4105 * target library etc. If there is no elf header, we dump it.
4107 if (!(flags & PAGE_WRITE_ORG) &&
4108 (flags & PAGE_EXEC) &&
4109 memcmp(g2h_untagged(start), ELFMAG, SELFMAG) == 0) {
4110 return 0;
4113 return end - start;
4116 static size_t size_note(const char *name, size_t datasz)
4118 size_t namesz = strlen(name) + 1;
4120 namesz = ROUND_UP(namesz, 4);
4121 datasz = ROUND_UP(datasz, 4);
4123 return sizeof(struct elf_note) + namesz + datasz;
4126 static void *fill_note(void **pptr, int type, const char *name, size_t datasz)
4128 void *ptr = *pptr;
4129 struct elf_note *n = ptr;
4130 size_t namesz = strlen(name) + 1;
4132 n->n_namesz = namesz;
4133 n->n_descsz = datasz;
4134 n->n_type = type;
4135 bswap_note(n);
4137 ptr += sizeof(*n);
4138 memcpy(ptr, name, namesz);
4140 namesz = ROUND_UP(namesz, 4);
4141 datasz = ROUND_UP(datasz, 4);
4143 *pptr = ptr + namesz + datasz;
4144 return ptr + namesz;
4147 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
4148 uint32_t flags)
4150 memcpy(elf->e_ident, ELFMAG, SELFMAG);
4152 elf->e_ident[EI_CLASS] = ELF_CLASS;
4153 elf->e_ident[EI_DATA] = ELF_DATA;
4154 elf->e_ident[EI_VERSION] = EV_CURRENT;
4155 elf->e_ident[EI_OSABI] = ELF_OSABI;
4157 elf->e_type = ET_CORE;
4158 elf->e_machine = machine;
4159 elf->e_version = EV_CURRENT;
4160 elf->e_phoff = sizeof(struct elfhdr);
4161 elf->e_flags = flags;
4162 elf->e_ehsize = sizeof(struct elfhdr);
4163 elf->e_phentsize = sizeof(struct elf_phdr);
4164 elf->e_phnum = segs;
4166 bswap_ehdr(elf);
4169 static void fill_elf_note_phdr(struct elf_phdr *phdr, size_t sz, off_t offset)
4171 phdr->p_type = PT_NOTE;
4172 phdr->p_offset = offset;
4173 phdr->p_filesz = sz;
4175 bswap_phdr(phdr, 1);
4178 static void fill_prstatus_note(void *data, const TaskState *ts,
4179 CPUState *cpu, int signr)
4182 * Because note memory is only aligned to 4, and target_elf_prstatus
4183 * may well have higher alignment requirements, fill locally and
4184 * memcpy to the destination afterward.
4186 struct target_elf_prstatus prstatus = {
4187 .pr_info.si_signo = signr,
4188 .pr_cursig = signr,
4189 .pr_pid = ts->ts_tid,
4190 .pr_ppid = getppid(),
4191 .pr_pgrp = getpgrp(),
4192 .pr_sid = getsid(0),
4195 elf_core_copy_regs(&prstatus.pr_reg, cpu_env(cpu));
4196 bswap_prstatus(&prstatus);
4197 memcpy(data, &prstatus, sizeof(prstatus));
4200 static void fill_prpsinfo_note(void *data, const TaskState *ts)
4203 * Because note memory is only aligned to 4, and target_elf_prpsinfo
4204 * may well have higher alignment requirements, fill locally and
4205 * memcpy to the destination afterward.
4207 struct target_elf_prpsinfo psinfo;
4208 char *base_filename;
4209 size_t len;
4211 len = ts->info->env_strings - ts->info->arg_strings;
4212 len = MIN(len, ELF_PRARGSZ);
4213 memcpy(&psinfo.pr_psargs, g2h_untagged(ts->info->arg_strings), len);
4214 for (size_t i = 0; i < len; i++) {
4215 if (psinfo.pr_psargs[i] == 0) {
4216 psinfo.pr_psargs[i] = ' ';
4220 psinfo.pr_pid = getpid();
4221 psinfo.pr_ppid = getppid();
4222 psinfo.pr_pgrp = getpgrp();
4223 psinfo.pr_sid = getsid(0);
4224 psinfo.pr_uid = getuid();
4225 psinfo.pr_gid = getgid();
4227 base_filename = g_path_get_basename(ts->bprm->filename);
4229 * Using strncpy here is fine: at max-length,
4230 * this field is not NUL-terminated.
4232 strncpy(psinfo.pr_fname, base_filename, sizeof(psinfo.pr_fname));
4233 g_free(base_filename);
4235 bswap_psinfo(&psinfo);
4236 memcpy(data, &psinfo, sizeof(psinfo));
4239 static void fill_auxv_note(void *data, const TaskState *ts)
4241 memcpy(data, g2h_untagged(ts->info->saved_auxv), ts->info->auxv_len);
4245 * Constructs name of coredump file. We have following convention
4246 * for the name:
4247 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4249 * Returns the filename
4251 static char *core_dump_filename(const TaskState *ts)
4253 g_autoptr(GDateTime) now = g_date_time_new_now_local();
4254 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
4255 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
4257 return g_strdup_printf("qemu_%s_%s_%d.core",
4258 base_filename, nowstr, (int)getpid());
4261 static int dump_write(int fd, const void *ptr, size_t size)
4263 const char *bufp = (const char *)ptr;
4264 ssize_t bytes_written, bytes_left;
4266 bytes_written = 0;
4267 bytes_left = size;
4270 * In normal conditions, single write(2) should do but
4271 * in case of socket etc. this mechanism is more portable.
4273 do {
4274 bytes_written = write(fd, bufp, bytes_left);
4275 if (bytes_written < 0) {
4276 if (errno == EINTR)
4277 continue;
4278 return (-1);
4279 } else if (bytes_written == 0) { /* eof */
4280 return (-1);
4282 bufp += bytes_written;
4283 bytes_left -= bytes_written;
4284 } while (bytes_left > 0);
4286 return (0);
4289 static int wmr_page_unprotect_regions(void *opaque, target_ulong start,
4290 target_ulong end, unsigned long flags)
4292 if ((flags & (PAGE_WRITE | PAGE_WRITE_ORG)) == PAGE_WRITE_ORG) {
4293 size_t step = MAX(TARGET_PAGE_SIZE, qemu_real_host_page_size());
4295 while (1) {
4296 page_unprotect(start, 0);
4297 if (end - start <= step) {
4298 break;
4300 start += step;
4303 return 0;
4306 typedef struct {
4307 unsigned count;
4308 size_t size;
4309 } CountAndSizeRegions;
4311 static int wmr_count_and_size_regions(void *opaque, target_ulong start,
4312 target_ulong end, unsigned long flags)
4314 CountAndSizeRegions *css = opaque;
4316 css->count++;
4317 css->size += vma_dump_size(start, end, flags);
4318 return 0;
4321 typedef struct {
4322 struct elf_phdr *phdr;
4323 off_t offset;
4324 } FillRegionPhdr;
4326 static int wmr_fill_region_phdr(void *opaque, target_ulong start,
4327 target_ulong end, unsigned long flags)
4329 FillRegionPhdr *d = opaque;
4330 struct elf_phdr *phdr = d->phdr;
4332 phdr->p_type = PT_LOAD;
4333 phdr->p_vaddr = start;
4334 phdr->p_paddr = 0;
4335 phdr->p_filesz = vma_dump_size(start, end, flags);
4336 phdr->p_offset = d->offset;
4337 d->offset += phdr->p_filesz;
4338 phdr->p_memsz = end - start;
4339 phdr->p_flags = (flags & PAGE_READ ? PF_R : 0)
4340 | (flags & PAGE_WRITE_ORG ? PF_W : 0)
4341 | (flags & PAGE_EXEC ? PF_X : 0);
4342 phdr->p_align = ELF_EXEC_PAGESIZE;
4344 bswap_phdr(phdr, 1);
4345 d->phdr = phdr + 1;
4346 return 0;
4349 static int wmr_write_region(void *opaque, target_ulong start,
4350 target_ulong end, unsigned long flags)
4352 int fd = *(int *)opaque;
4353 size_t size = vma_dump_size(start, end, flags);
4355 if (!size) {
4356 return 0;
4358 return dump_write(fd, g2h_untagged(start), size);
4362 * Write out ELF coredump.
4364 * See documentation of ELF object file format in:
4365 * http://www.caldera.com/developers/devspecs/gabi41.pdf
4367 * Coredump format in linux is following:
4369 * 0 +----------------------+ \
4370 * | ELF header | ET_CORE |
4371 * +----------------------+ |
4372 * | ELF program headers | |--- headers
4373 * | - NOTE section | |
4374 * | - PT_LOAD sections | |
4375 * +----------------------+ /
4376 * | NOTEs: |
4377 * | - NT_PRSTATUS |
4378 * | - NT_PRSINFO |
4379 * | - NT_AUXV |
4380 * +----------------------+ <-- aligned to target page
4381 * | Process memory dump |
4382 * : :
4383 * . .
4384 * : :
4385 * | |
4386 * +----------------------+
4388 * NT_PRSTATUS -> struct elf_prstatus (per thread)
4389 * NT_PRSINFO -> struct elf_prpsinfo
4390 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4392 * Format follows System V format as close as possible. Current
4393 * version limitations are as follows:
4394 * - no floating point registers are dumped
4396 * Function returns 0 in case of success, negative errno otherwise.
4398 * TODO: make this work also during runtime: it should be
4399 * possible to force coredump from running process and then
4400 * continue processing. For example qemu could set up SIGUSR2
4401 * handler (provided that target process haven't registered
4402 * handler for that) that does the dump when signal is received.
4404 static int elf_core_dump(int signr, const CPUArchState *env)
4406 const CPUState *cpu = env_cpu((CPUArchState *)env);
4407 const TaskState *ts = (const TaskState *)get_task_state((CPUState *)cpu);
4408 struct rlimit dumpsize;
4409 CountAndSizeRegions css;
4410 off_t offset, note_offset, data_offset;
4411 size_t note_size;
4412 int cpus, ret;
4413 int fd = -1;
4414 CPUState *cpu_iter;
4416 if (prctl(PR_GET_DUMPABLE) == 0) {
4417 return 0;
4420 if (getrlimit(RLIMIT_CORE, &dumpsize) < 0 || dumpsize.rlim_cur == 0) {
4421 return 0;
4424 cpu_list_lock();
4425 mmap_lock();
4427 /* By unprotecting, we merge vmas that might be split. */
4428 walk_memory_regions(NULL, wmr_page_unprotect_regions);
4431 * Walk through target process memory mappings and
4432 * set up structure containing this information.
4434 memset(&css, 0, sizeof(css));
4435 walk_memory_regions(&css, wmr_count_and_size_regions);
4437 cpus = 0;
4438 CPU_FOREACH(cpu_iter) {
4439 cpus++;
4442 offset = sizeof(struct elfhdr);
4443 offset += (css.count + 1) * sizeof(struct elf_phdr);
4444 note_offset = offset;
4446 offset += size_note("CORE", ts->info->auxv_len);
4447 offset += size_note("CORE", sizeof(struct target_elf_prpsinfo));
4448 offset += size_note("CORE", sizeof(struct target_elf_prstatus)) * cpus;
4449 note_size = offset - note_offset;
4450 data_offset = ROUND_UP(offset, ELF_EXEC_PAGESIZE);
4452 /* Do not dump if the corefile size exceeds the limit. */
4453 if (dumpsize.rlim_cur != RLIM_INFINITY
4454 && dumpsize.rlim_cur < data_offset + css.size) {
4455 errno = 0;
4456 goto out;
4460 g_autofree char *corefile = core_dump_filename(ts);
4461 fd = open(corefile, O_WRONLY | O_CREAT | O_TRUNC,
4462 S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);
4464 if (fd < 0) {
4465 goto out;
4469 * There is a fair amount of alignment padding within the notes
4470 * as well as preceeding the process memory. Allocate a zeroed
4471 * block to hold it all. Write all of the headers directly into
4472 * this buffer and then write it out as a block.
4475 g_autofree void *header = g_malloc0(data_offset);
4476 FillRegionPhdr frp;
4477 void *hptr, *dptr;
4479 /* Create elf file header. */
4480 hptr = header;
4481 fill_elf_header(hptr, css.count + 1, ELF_MACHINE, 0);
4482 hptr += sizeof(struct elfhdr);
4484 /* Create elf program headers. */
4485 fill_elf_note_phdr(hptr, note_size, note_offset);
4486 hptr += sizeof(struct elf_phdr);
4488 frp.phdr = hptr;
4489 frp.offset = data_offset;
4490 walk_memory_regions(&frp, wmr_fill_region_phdr);
4491 hptr = frp.phdr;
4493 /* Create the notes. */
4494 dptr = fill_note(&hptr, NT_AUXV, "CORE", ts->info->auxv_len);
4495 fill_auxv_note(dptr, ts);
4497 dptr = fill_note(&hptr, NT_PRPSINFO, "CORE",
4498 sizeof(struct target_elf_prpsinfo));
4499 fill_prpsinfo_note(dptr, ts);
4501 CPU_FOREACH(cpu_iter) {
4502 dptr = fill_note(&hptr, NT_PRSTATUS, "CORE",
4503 sizeof(struct target_elf_prstatus));
4504 fill_prstatus_note(dptr, ts, cpu_iter,
4505 cpu_iter == cpu ? signr : 0);
4508 if (dump_write(fd, header, data_offset) < 0) {
4509 goto out;
4514 * Finally write process memory into the corefile as well.
4516 if (walk_memory_regions(&fd, wmr_write_region) < 0) {
4517 goto out;
4519 errno = 0;
4521 out:
4522 ret = -errno;
4523 mmap_unlock();
4524 cpu_list_unlock();
4525 close(fd);
4526 return ret;
4528 #endif /* USE_ELF_CORE_DUMP */
4530 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4532 init_thread(regs, infop);