dump: Recognize "fd:" protocols on Windows hosts
[qemu/armbru.git] / hw / mips / malta.c
blob049de46a9e1039fdc33550142e5e8fdf19224aef
1 /*
2 * QEMU Malta board support
4 * Copyright (c) 2006 Aurelien Jarno
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qemu/bitops.h"
28 #include "qemu/datadir.h"
29 #include "qemu/guest-random.h"
30 #include "hw/clock.h"
31 #include "hw/southbridge/piix.h"
32 #include "hw/isa/superio.h"
33 #include "hw/char/serial.h"
34 #include "net/net.h"
35 #include "hw/boards.h"
36 #include "hw/i2c/smbus_eeprom.h"
37 #include "hw/block/flash.h"
38 #include "hw/mips/mips.h"
39 #include "hw/mips/bootloader.h"
40 #include "hw/pci/pci.h"
41 #include "hw/pci/pci_bus.h"
42 #include "qemu/log.h"
43 #include "hw/mips/bios.h"
44 #include "hw/ide/pci.h"
45 #include "hw/irq.h"
46 #include "hw/loader.h"
47 #include "elf.h"
48 #include "qom/object.h"
49 #include "hw/sysbus.h" /* SysBusDevice */
50 #include "qemu/host-utils.h"
51 #include "sysemu/qtest.h"
52 #include "sysemu/reset.h"
53 #include "sysemu/runstate.h"
54 #include "qapi/error.h"
55 #include "qemu/error-report.h"
56 #include "sysemu/kvm.h"
57 #include "semihosting/semihost.h"
58 #include "hw/mips/cps.h"
59 #include "hw/qdev-clock.h"
60 #include "target/mips/internal.h"
61 #include "trace.h"
63 #define ENVP_PADDR 0x2000
64 #define ENVP_VADDR cpu_mips_phys_to_kseg0(NULL, ENVP_PADDR)
65 #define ENVP_NB_ENTRIES 16
66 #define ENVP_ENTRY_SIZE 256
68 /* Hardware addresses */
69 #define FLASH_ADDRESS 0x1e000000ULL
70 #define FPGA_ADDRESS 0x1f000000ULL
71 #define RESET_ADDRESS 0x1fc00000ULL
73 #define FLASH_SIZE 0x400000
75 #define PIIX4_PCI_DEVFN PCI_DEVFN(10, 0)
77 typedef struct {
78 MemoryRegion iomem;
79 MemoryRegion iomem_lo; /* 0 - 0x900 */
80 MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
81 uint32_t leds;
82 uint32_t brk;
83 uint32_t gpout;
84 uint32_t i2cin;
85 uint32_t i2coe;
86 uint32_t i2cout;
87 uint32_t i2csel;
88 CharBackend display;
89 char display_text[9];
90 SerialMM *uart;
91 bool display_inited;
92 } MaltaFPGAState;
94 #define TYPE_MIPS_MALTA "mips-malta"
95 OBJECT_DECLARE_SIMPLE_TYPE(MaltaState, MIPS_MALTA)
97 struct MaltaState {
98 SysBusDevice parent_obj;
100 Clock *cpuclk;
101 MIPSCPSState cps;
104 static struct _loaderparams {
105 int ram_size, ram_low_size;
106 const char *kernel_filename;
107 const char *kernel_cmdline;
108 const char *initrd_filename;
109 } loaderparams;
111 /* Malta FPGA */
112 static void malta_fpga_update_display_leds(MaltaFPGAState *s)
114 char leds_text[9];
115 int i;
117 for (i = 7 ; i >= 0 ; i--) {
118 if (s->leds & (1 << i)) {
119 leds_text[i] = '#';
120 } else {
121 leds_text[i] = ' ';
124 leds_text[8] = '\0';
126 trace_malta_fpga_leds(leds_text);
127 qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
128 leds_text);
131 static void malta_fpga_update_display_ascii(MaltaFPGAState *s)
133 trace_malta_fpga_display(s->display_text);
134 qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
135 s->display_text);
139 * EEPROM 24C01 / 24C02 emulation.
141 * Emulation for serial EEPROMs:
142 * 24C01 - 1024 bit (128 x 8)
143 * 24C02 - 2048 bit (256 x 8)
145 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
148 #if defined(DEBUG)
149 # define logout(fmt, ...) \
150 fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
151 #else
152 # define logout(fmt, ...) ((void)0)
153 #endif
155 struct _eeprom24c0x_t {
156 uint8_t tick;
157 uint8_t address;
158 uint8_t command;
159 uint8_t ack;
160 uint8_t scl;
161 uint8_t sda;
162 uint8_t data;
163 /* uint16_t size; */
164 uint8_t contents[256];
167 typedef struct _eeprom24c0x_t eeprom24c0x_t;
169 static eeprom24c0x_t spd_eeprom = {
170 .contents = {
171 /* 00000000: */
172 0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
173 /* 00000008: */
174 0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
175 /* 00000010: */
176 0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
177 /* 00000018: */
178 0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
179 /* 00000020: */
180 0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
181 /* 00000028: */
182 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
183 /* 00000030: */
184 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
185 /* 00000038: */
186 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
187 /* 00000040: */
188 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
189 /* 00000048: */
190 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
191 /* 00000050: */
192 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
193 /* 00000058: */
194 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
195 /* 00000060: */
196 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
197 /* 00000068: */
198 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
199 /* 00000070: */
200 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
201 /* 00000078: */
202 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
206 static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
208 enum sdram_type type;
209 uint8_t *spd = spd_eeprom.contents;
210 uint8_t nbanks = 0;
211 uint16_t density = 0;
212 int i;
214 /* work in terms of MB */
215 ram_size /= MiB;
217 while ((ram_size >= 4) && (nbanks <= 2)) {
218 int sz_log2 = MIN(31 - clz32(ram_size), 14);
219 nbanks++;
220 density |= 1 << (sz_log2 - 2);
221 ram_size -= 1 << sz_log2;
224 /* split to 2 banks if possible */
225 if ((nbanks == 1) && (density > 1)) {
226 nbanks++;
227 density >>= 1;
230 if (density & 0xff00) {
231 density = (density & 0xe0) | ((density >> 8) & 0x1f);
232 type = DDR2;
233 } else if (!(density & 0x1f)) {
234 type = DDR2;
235 } else {
236 type = SDR;
239 if (ram_size) {
240 warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
241 " of SDRAM", ram_size);
244 /* fill in SPD memory information */
245 spd[2] = type;
246 spd[5] = nbanks;
247 spd[31] = density;
249 /* checksum */
250 spd[63] = 0;
251 for (i = 0; i < 63; i++) {
252 spd[63] += spd[i];
255 /* copy for SMBUS */
256 memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
259 static void generate_eeprom_serial(uint8_t *eeprom)
261 int i, pos = 0;
262 uint8_t mac[6] = { 0x00 };
263 uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
265 /* version */
266 eeprom[pos++] = 0x01;
268 /* count */
269 eeprom[pos++] = 0x02;
271 /* MAC address */
272 eeprom[pos++] = 0x01; /* MAC */
273 eeprom[pos++] = 0x06; /* length */
274 memcpy(&eeprom[pos], mac, sizeof(mac));
275 pos += sizeof(mac);
277 /* serial number */
278 eeprom[pos++] = 0x02; /* serial */
279 eeprom[pos++] = 0x05; /* length */
280 memcpy(&eeprom[pos], sn, sizeof(sn));
281 pos += sizeof(sn);
283 /* checksum */
284 eeprom[pos] = 0;
285 for (i = 0; i < pos; i++) {
286 eeprom[pos] += eeprom[i];
290 static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
292 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
293 eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
294 return eeprom->sda;
297 static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
299 if (eeprom->scl && scl && (eeprom->sda != sda)) {
300 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
301 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
302 sda ? "stop" : "start");
303 if (!sda) {
304 eeprom->tick = 1;
305 eeprom->command = 0;
307 } else if (eeprom->tick == 0 && !eeprom->ack) {
308 /* Waiting for start. */
309 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
310 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
311 } else if (!eeprom->scl && scl) {
312 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
313 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
314 if (eeprom->ack) {
315 logout("\ti2c ack bit = 0\n");
316 sda = 0;
317 eeprom->ack = 0;
318 } else if (eeprom->sda == sda) {
319 uint8_t bit = (sda != 0);
320 logout("\ti2c bit = %d\n", bit);
321 if (eeprom->tick < 9) {
322 eeprom->command <<= 1;
323 eeprom->command += bit;
324 eeprom->tick++;
325 if (eeprom->tick == 9) {
326 logout("\tcommand 0x%04x, %s\n", eeprom->command,
327 bit ? "read" : "write");
328 eeprom->ack = 1;
330 } else if (eeprom->tick < 17) {
331 if (eeprom->command & 1) {
332 sda = ((eeprom->data & 0x80) != 0);
334 eeprom->address <<= 1;
335 eeprom->address += bit;
336 eeprom->tick++;
337 eeprom->data <<= 1;
338 if (eeprom->tick == 17) {
339 eeprom->data = eeprom->contents[eeprom->address];
340 logout("\taddress 0x%04x, data 0x%02x\n",
341 eeprom->address, eeprom->data);
342 eeprom->ack = 1;
343 eeprom->tick = 0;
345 } else if (eeprom->tick >= 17) {
346 sda = 0;
348 } else {
349 logout("\tsda changed with raising scl\n");
351 } else {
352 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
353 scl, eeprom->sda, sda);
355 eeprom->scl = scl;
356 eeprom->sda = sda;
359 static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
360 unsigned size)
362 MaltaFPGAState *s = opaque;
363 uint32_t val = 0;
364 uint32_t saddr;
366 saddr = (addr & 0xfffff);
368 switch (saddr) {
370 /* SWITCH Register */
371 case 0x00200:
372 val = 0x00000000;
373 break;
375 /* STATUS Register */
376 case 0x00208:
377 #if TARGET_BIG_ENDIAN
378 val = 0x00000012;
379 #else
380 val = 0x00000010;
381 #endif
382 break;
384 /* JMPRS Register */
385 case 0x00210:
386 val = 0x00;
387 break;
389 /* LEDBAR Register */
390 case 0x00408:
391 val = s->leds;
392 break;
394 /* BRKRES Register */
395 case 0x00508:
396 val = s->brk;
397 break;
399 /* UART Registers are handled directly by the serial device */
401 /* GPOUT Register */
402 case 0x00a00:
403 val = s->gpout;
404 break;
406 /* XXX: implement a real I2C controller */
408 /* GPINP Register */
409 case 0x00a08:
410 /* IN = OUT until a real I2C control is implemented */
411 if (s->i2csel) {
412 val = s->i2cout;
413 } else {
414 val = 0x00;
416 break;
418 /* I2CINP Register */
419 case 0x00b00:
420 val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
421 break;
423 /* I2COE Register */
424 case 0x00b08:
425 val = s->i2coe;
426 break;
428 /* I2COUT Register */
429 case 0x00b10:
430 val = s->i2cout;
431 break;
433 /* I2CSEL Register */
434 case 0x00b18:
435 val = s->i2csel;
436 break;
438 default:
439 qemu_log_mask(LOG_GUEST_ERROR,
440 "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n",
441 addr);
442 break;
444 return val;
447 static void malta_fpga_write(void *opaque, hwaddr addr,
448 uint64_t val, unsigned size)
450 MaltaFPGAState *s = opaque;
451 uint32_t saddr;
453 saddr = (addr & 0xfffff);
455 switch (saddr) {
457 /* SWITCH Register */
458 case 0x00200:
459 break;
461 /* JMPRS Register */
462 case 0x00210:
463 break;
465 /* LEDBAR Register */
466 case 0x00408:
467 s->leds = val & 0xff;
468 malta_fpga_update_display_leds(s);
469 break;
471 /* ASCIIWORD Register */
472 case 0x00410:
473 snprintf(s->display_text, 9, "%08X", (uint32_t)val);
474 malta_fpga_update_display_ascii(s);
475 break;
477 /* ASCIIPOS0 to ASCIIPOS7 Registers */
478 case 0x00418:
479 case 0x00420:
480 case 0x00428:
481 case 0x00430:
482 case 0x00438:
483 case 0x00440:
484 case 0x00448:
485 case 0x00450:
486 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
487 malta_fpga_update_display_ascii(s);
488 break;
490 /* SOFTRES Register */
491 case 0x00500:
492 if (val == 0x42) {
493 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
495 break;
497 /* BRKRES Register */
498 case 0x00508:
499 s->brk = val & 0xff;
500 break;
502 /* UART Registers are handled directly by the serial device */
504 /* GPOUT Register */
505 case 0x00a00:
506 s->gpout = val & 0xff;
507 break;
509 /* I2COE Register */
510 case 0x00b08:
511 s->i2coe = val & 0x03;
512 break;
514 /* I2COUT Register */
515 case 0x00b10:
516 eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
517 s->i2cout = val;
518 break;
520 /* I2CSEL Register */
521 case 0x00b18:
522 s->i2csel = val & 0x01;
523 break;
525 default:
526 qemu_log_mask(LOG_GUEST_ERROR,
527 "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n",
528 addr);
529 break;
533 static const MemoryRegionOps malta_fpga_ops = {
534 .read = malta_fpga_read,
535 .write = malta_fpga_write,
536 .endianness = DEVICE_NATIVE_ENDIAN,
539 static void malta_fpga_reset(void *opaque)
541 MaltaFPGAState *s = opaque;
543 s->leds = 0x00;
544 s->brk = 0x0a;
545 s->gpout = 0x00;
546 s->i2cin = 0x3;
547 s->i2coe = 0x0;
548 s->i2cout = 0x3;
549 s->i2csel = 0x1;
551 s->display_text[8] = '\0';
552 snprintf(s->display_text, 9, " ");
555 static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event)
557 MaltaFPGAState *s = opaque;
559 if (event == CHR_EVENT_OPENED && !s->display_inited) {
560 qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
561 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
562 qemu_chr_fe_printf(&s->display, "+ +\r\n");
563 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
564 qemu_chr_fe_printf(&s->display, "\n");
565 qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
566 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
567 qemu_chr_fe_printf(&s->display, "+ +\r\n");
568 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
569 s->display_inited = true;
573 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
574 hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
576 MaltaFPGAState *s;
577 Chardev *chr;
579 s = g_new0(MaltaFPGAState, 1);
581 memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
582 "malta-fpga", 0x100000);
583 memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
584 &s->iomem, 0, 0x900);
585 memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
586 &s->iomem, 0xa00, 0x100000 - 0xa00);
588 memory_region_add_subregion(address_space, base, &s->iomem_lo);
589 memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
591 chr = qemu_chr_new("fpga", "vc:320x200", NULL);
592 qemu_chr_fe_init(&s->display, chr, NULL);
593 qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
594 malta_fgpa_display_event, NULL, s, NULL, true);
596 s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
597 230400, uart_chr, DEVICE_NATIVE_ENDIAN);
599 malta_fpga_reset(s);
600 qemu_register_reset(malta_fpga_reset, s);
602 return s;
605 /* Network support */
606 static void network_init(PCIBus *pci_bus)
608 int i;
610 for (i = 0; i < nb_nics; i++) {
611 NICInfo *nd = &nd_table[i];
612 const char *default_devaddr = NULL;
614 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
615 /* The malta board has a PCNet card using PCI SLOT 11 */
616 default_devaddr = "0b";
618 pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
622 static void bl_setup_gt64120_jump_kernel(void **p, uint64_t run_addr,
623 uint64_t kernel_entry)
625 static const char pci_pins_cfg[PCI_NUM_PINS] = {
626 10, 10, 11, 11 /* PIIX IRQRC[A:D] */
629 /* Bus endianness is always reversed */
630 #if TARGET_BIG_ENDIAN
631 #define cpu_to_gt32(x) (x)
632 #else
633 #define cpu_to_gt32(x) bswap32(x)
634 #endif
636 /* setup MEM-to-PCI0 mapping as done by YAMON */
638 /* move GT64120 registers from 0x14000000 to 0x1be00000 */
639 bl_gen_write_u32(p, /* GT_ISD */
640 cpu_mips_phys_to_kseg1(NULL, 0x14000000 + 0x68),
641 cpu_to_gt32(0x1be00000 << 3));
643 /* setup PCI0 io window to 0x18000000-0x181fffff */
644 bl_gen_write_u32(p, /* GT_PCI0IOLD */
645 cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x48),
646 cpu_to_gt32(0x18000000 << 3));
647 bl_gen_write_u32(p, /* GT_PCI0IOHD */
648 cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x50),
649 cpu_to_gt32(0x08000000 << 3));
651 /* setup PCI0 mem windows */
652 bl_gen_write_u32(p, /* GT_PCI0M0LD */
653 cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x58),
654 cpu_to_gt32(0x10000000 << 3));
655 bl_gen_write_u32(p, /* GT_PCI0M0HD */
656 cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x60),
657 cpu_to_gt32(0x07e00000 << 3));
658 bl_gen_write_u32(p, /* GT_PCI0M1LD */
659 cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x80),
660 cpu_to_gt32(0x18200000 << 3));
661 bl_gen_write_u32(p, /* GT_PCI0M1HD */
662 cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x88),
663 cpu_to_gt32(0x0bc00000 << 3));
665 #undef cpu_to_gt32
668 * The PIIX ISA bridge is on PCI bus 0 dev 10 func 0.
669 * Load the PIIX IRQC[A:D] routing config address, then
670 * write routing configuration to the config data register.
672 bl_gen_write_u32(p, /* GT_PCI0_CFGADDR */
673 cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0xcf8),
674 tswap32((1 << 31) /* ConfigEn */
675 | PCI_BUILD_BDF(0, PIIX4_PCI_DEVFN) << 8
676 | PIIX_PIRQCA));
677 bl_gen_write_u32(p, /* GT_PCI0_CFGDATA */
678 cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0xcfc),
679 tswap32(ldl_be_p(pci_pins_cfg)));
681 bl_gen_jump_kernel(p,
682 true, ENVP_VADDR - 64,
684 * If semihosting is used, arguments have already
685 * been passed, so we preserve $a0.
687 !semihosting_get_argc(), 2,
688 true, ENVP_VADDR,
689 true, ENVP_VADDR + 8,
690 true, loaderparams.ram_low_size,
691 kernel_entry);
694 static void write_bootloader_nanomips(uint8_t *base, uint64_t run_addr,
695 uint64_t kernel_entry)
697 uint16_t *p;
699 /* Small bootloader */
700 p = (uint16_t *)base;
702 stw_p(p++, 0x2800); stw_p(p++, 0x001c);
703 /* bc to_here */
704 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
705 /* nop */
706 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
707 /* nop */
708 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
709 /* nop */
710 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
711 /* nop */
712 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
713 /* nop */
714 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
715 /* nop */
716 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
717 /* nop */
719 /* to_here: */
721 bl_setup_gt64120_jump_kernel((void **)&p, run_addr, kernel_entry);
725 * ROM and pseudo bootloader
727 * The following code implements a very very simple bootloader. It first
728 * loads the registers a0 to a3 to the values expected by the OS, and
729 * then jump at the kernel address.
731 * The bootloader should pass the locations of the kernel arguments and
732 * environment variables tables. Those tables contain the 32-bit address
733 * of NULL terminated strings. The environment variables table should be
734 * terminated by a NULL address.
736 * For a simpler implementation, the number of kernel arguments is fixed
737 * to two (the name of the kernel and the command line), and the two
738 * tables are actually the same one.
740 * The registers a0 to a3 should contain the following values:
741 * a0 - number of kernel arguments
742 * a1 - 32-bit address of the kernel arguments table
743 * a2 - 32-bit address of the environment variables table
744 * a3 - RAM size in bytes
746 static void write_bootloader(uint8_t *base, uint64_t run_addr,
747 uint64_t kernel_entry)
749 uint32_t *p;
751 /* Small bootloader */
752 p = (uint32_t *)base;
754 stl_p(p++, 0x08000000 | /* j 0x1fc00580 */
755 ((run_addr + 0x580) & 0x0fffffff) >> 2);
756 stl_p(p++, 0x00000000); /* nop */
758 /* YAMON service vector */
759 stl_p(base + 0x500, run_addr + 0x0580); /* start: */
760 stl_p(base + 0x504, run_addr + 0x083c); /* print_count: */
761 stl_p(base + 0x520, run_addr + 0x0580); /* start: */
762 stl_p(base + 0x52c, run_addr + 0x0800); /* flush_cache: */
763 stl_p(base + 0x534, run_addr + 0x0808); /* print: */
764 stl_p(base + 0x538, run_addr + 0x0800); /* reg_cpu_isr: */
765 stl_p(base + 0x53c, run_addr + 0x0800); /* unred_cpu_isr: */
766 stl_p(base + 0x540, run_addr + 0x0800); /* reg_ic_isr: */
767 stl_p(base + 0x544, run_addr + 0x0800); /* unred_ic_isr: */
768 stl_p(base + 0x548, run_addr + 0x0800); /* reg_esr: */
769 stl_p(base + 0x54c, run_addr + 0x0800); /* unreg_esr: */
770 stl_p(base + 0x550, run_addr + 0x0800); /* getchar: */
771 stl_p(base + 0x554, run_addr + 0x0800); /* syscon_read: */
774 /* Second part of the bootloader */
775 p = (uint32_t *) (base + 0x580);
778 * Load BAR registers as done by YAMON:
780 * - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
781 * - set up PCI0 MEM0 at 0x10000000, size 0x7e00000
782 * - set up PCI0 MEM1 at 0x18200000, size 0xbc00000
786 bl_setup_gt64120_jump_kernel((void **)&p, run_addr, kernel_entry);
788 /* YAMON subroutines */
789 p = (uint32_t *) (base + 0x800);
790 stl_p(p++, 0x03e00009); /* jalr ra */
791 stl_p(p++, 0x24020000); /* li v0,0 */
792 /* 808 YAMON print */
793 stl_p(p++, 0x03e06821); /* move t5,ra */
794 stl_p(p++, 0x00805821); /* move t3,a0 */
795 stl_p(p++, 0x00a05021); /* move t2,a1 */
796 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
797 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
798 stl_p(p++, 0x10800005); /* beqz a0,834 */
799 stl_p(p++, 0x00000000); /* nop */
800 stl_p(p++, 0x0ff0021c); /* jal 870 */
801 stl_p(p++, 0x00000000); /* nop */
802 stl_p(p++, 0x1000fff9); /* b 814 */
803 stl_p(p++, 0x00000000); /* nop */
804 stl_p(p++, 0x01a00009); /* jalr t5 */
805 stl_p(p++, 0x01602021); /* move a0,t3 */
806 /* 0x83c YAMON print_count */
807 stl_p(p++, 0x03e06821); /* move t5,ra */
808 stl_p(p++, 0x00805821); /* move t3,a0 */
809 stl_p(p++, 0x00a05021); /* move t2,a1 */
810 stl_p(p++, 0x00c06021); /* move t4,a2 */
811 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
812 stl_p(p++, 0x0ff0021c); /* jal 870 */
813 stl_p(p++, 0x00000000); /* nop */
814 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
815 stl_p(p++, 0x258cffff); /* addiu t4,t4,-1 */
816 stl_p(p++, 0x1580fffa); /* bnez t4,84c */
817 stl_p(p++, 0x00000000); /* nop */
818 stl_p(p++, 0x01a00009); /* jalr t5 */
819 stl_p(p++, 0x01602021); /* move a0,t3 */
820 /* 0x870 */
821 stl_p(p++, 0x3c08b800); /* lui t0,0xb400 */
822 stl_p(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
823 stl_p(p++, 0x91090005); /* lbu t1,5(t0) */
824 stl_p(p++, 0x00000000); /* nop */
825 stl_p(p++, 0x31290040); /* andi t1,t1,0x40 */
826 stl_p(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
827 stl_p(p++, 0x00000000); /* nop */
828 stl_p(p++, 0x03e00009); /* jalr ra */
829 stl_p(p++, 0xa1040000); /* sb a0,0(t0) */
832 static void G_GNUC_PRINTF(3, 4) prom_set(uint32_t *prom_buf, int index,
833 const char *string, ...)
835 va_list ap;
836 uint32_t table_addr;
838 if (index >= ENVP_NB_ENTRIES) {
839 return;
842 if (string == NULL) {
843 prom_buf[index] = 0;
844 return;
847 table_addr = sizeof(uint32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
848 prom_buf[index] = tswap32(ENVP_VADDR + table_addr);
850 va_start(ap, string);
851 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
852 va_end(ap);
855 static void reinitialize_rng_seed(void *opaque)
857 char *rng_seed_hex = opaque;
858 uint8_t rng_seed[32];
860 qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
861 for (size_t i = 0; i < sizeof(rng_seed); ++i) {
862 sprintf(rng_seed_hex + i * 2, "%02x", rng_seed[i]);
866 /* Kernel */
867 static uint64_t load_kernel(void)
869 uint64_t kernel_entry, kernel_high, initrd_size;
870 long kernel_size;
871 ram_addr_t initrd_offset;
872 uint32_t *prom_buf;
873 long prom_size;
874 int prom_index = 0;
875 uint8_t rng_seed[32];
876 char rng_seed_hex[sizeof(rng_seed) * 2 + 1];
877 size_t rng_seed_prom_offset;
879 kernel_size = load_elf(loaderparams.kernel_filename, NULL,
880 cpu_mips_kseg0_to_phys, NULL,
881 &kernel_entry, NULL,
882 &kernel_high, NULL, TARGET_BIG_ENDIAN, EM_MIPS,
883 1, 0);
884 if (kernel_size < 0) {
885 error_report("could not load kernel '%s': %s",
886 loaderparams.kernel_filename,
887 load_elf_strerror(kernel_size));
888 exit(1);
891 /* Check where the kernel has been linked */
892 if (kernel_entry <= USEG_LIMIT) {
893 error_report("Trap-and-Emul kernels (Linux CONFIG_KVM_GUEST)"
894 " are not supported");
895 exit(1);
898 /* load initrd */
899 initrd_size = 0;
900 initrd_offset = 0;
901 if (loaderparams.initrd_filename) {
902 initrd_size = get_image_size(loaderparams.initrd_filename);
903 if (initrd_size > 0) {
905 * The kernel allocates the bootmap memory in the low memory after
906 * the initrd. It takes at most 128kiB for 2GB RAM and 4kiB
907 * pages.
909 initrd_offset = ROUND_UP(loaderparams.ram_low_size
910 - (initrd_size + 128 * KiB),
911 INITRD_PAGE_SIZE);
912 if (kernel_high >= initrd_offset) {
913 error_report("memory too small for initial ram disk '%s'",
914 loaderparams.initrd_filename);
915 exit(1);
917 initrd_size = load_image_targphys(loaderparams.initrd_filename,
918 initrd_offset,
919 loaderparams.ram_size - initrd_offset);
921 if (initrd_size == (target_ulong) -1) {
922 error_report("could not load initial ram disk '%s'",
923 loaderparams.initrd_filename);
924 exit(1);
928 /* Setup prom parameters. */
929 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
930 prom_buf = g_malloc(prom_size);
932 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
933 if (initrd_size > 0) {
934 prom_set(prom_buf, prom_index++,
935 "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s",
936 cpu_mips_phys_to_kseg0(NULL, initrd_offset),
937 initrd_size, loaderparams.kernel_cmdline);
938 } else {
939 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
942 prom_set(prom_buf, prom_index++, "memsize");
943 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
945 prom_set(prom_buf, prom_index++, "ememsize");
946 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
948 prom_set(prom_buf, prom_index++, "modetty0");
949 prom_set(prom_buf, prom_index++, "38400n8r");
951 qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
952 for (size_t i = 0; i < sizeof(rng_seed); ++i) {
953 sprintf(rng_seed_hex + i * 2, "%02x", rng_seed[i]);
955 prom_set(prom_buf, prom_index++, "rngseed");
956 rng_seed_prom_offset = prom_index * ENVP_ENTRY_SIZE +
957 sizeof(uint32_t) * ENVP_NB_ENTRIES;
958 prom_set(prom_buf, prom_index++, "%s", rng_seed_hex);
960 prom_set(prom_buf, prom_index++, NULL);
962 rom_add_blob_fixed("prom", prom_buf, prom_size, ENVP_PADDR);
963 qemu_register_reset_nosnapshotload(reinitialize_rng_seed,
964 rom_ptr(ENVP_PADDR, prom_size) + rng_seed_prom_offset);
966 g_free(prom_buf);
967 return kernel_entry;
970 static void malta_mips_config(MIPSCPU *cpu)
972 MachineState *ms = MACHINE(qdev_get_machine());
973 unsigned int smp_cpus = ms->smp.cpus;
974 CPUMIPSState *env = &cpu->env;
975 CPUState *cs = CPU(cpu);
977 if (ase_mt_available(env)) {
978 env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
979 CP0MVPC0_PTC, 8,
980 smp_cpus * cs->nr_threads - 1);
981 env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
982 CP0MVPC0_PVPE, 4, smp_cpus - 1);
986 static int malta_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
988 int slot;
990 slot = PCI_SLOT(pci_dev->devfn);
992 switch (slot) {
993 /* PIIX4 USB */
994 case 10:
995 return 3;
996 /* AMD 79C973 Ethernet */
997 case 11:
998 return 1;
999 /* Crystal 4281 Sound */
1000 case 12:
1001 return 2;
1002 /* PCI slot 1 to 4 */
1003 case 18 ... 21:
1004 return ((slot - 18) + irq_num) & 0x03;
1005 /* Unknown device, don't do any translation */
1006 default:
1007 return irq_num;
1011 static void main_cpu_reset(void *opaque)
1013 MIPSCPU *cpu = opaque;
1014 CPUMIPSState *env = &cpu->env;
1016 cpu_reset(CPU(cpu));
1019 * The bootloader does not need to be rewritten as it is located in a
1020 * read only location. The kernel location and the arguments table
1021 * location does not change.
1023 if (loaderparams.kernel_filename) {
1024 env->CP0_Status &= ~(1 << CP0St_ERL);
1027 malta_mips_config(cpu);
1030 static void create_cpu_without_cps(MachineState *ms, MaltaState *s,
1031 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1033 CPUMIPSState *env;
1034 MIPSCPU *cpu;
1035 int i;
1037 for (i = 0; i < ms->smp.cpus; i++) {
1038 cpu = mips_cpu_create_with_clock(ms->cpu_type, s->cpuclk);
1040 /* Init internal devices */
1041 cpu_mips_irq_init_cpu(cpu);
1042 cpu_mips_clock_init(cpu);
1043 qemu_register_reset(main_cpu_reset, cpu);
1046 cpu = MIPS_CPU(first_cpu);
1047 env = &cpu->env;
1048 *i8259_irq = env->irq[2];
1049 *cbus_irq = env->irq[4];
1052 static void create_cps(MachineState *ms, MaltaState *s,
1053 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1055 object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS);
1056 object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type,
1057 &error_fatal);
1058 object_property_set_uint(OBJECT(&s->cps), "num-vp", ms->smp.cpus,
1059 &error_fatal);
1060 qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", s->cpuclk);
1061 sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
1063 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
1065 *i8259_irq = get_cps_irq(&s->cps, 3);
1066 *cbus_irq = NULL;
1069 static void mips_create_cpu(MachineState *ms, MaltaState *s,
1070 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1072 if ((ms->smp.cpus > 1) && cpu_type_supports_cps_smp(ms->cpu_type)) {
1073 create_cps(ms, s, cbus_irq, i8259_irq);
1074 } else {
1075 create_cpu_without_cps(ms, s, cbus_irq, i8259_irq);
1079 static
1080 void mips_malta_init(MachineState *machine)
1082 ram_addr_t ram_size = machine->ram_size;
1083 ram_addr_t ram_low_size;
1084 const char *kernel_filename = machine->kernel_filename;
1085 const char *kernel_cmdline = machine->kernel_cmdline;
1086 const char *initrd_filename = machine->initrd_filename;
1087 char *filename;
1088 PFlashCFI01 *fl;
1089 MemoryRegion *system_memory = get_system_memory();
1090 MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
1091 MemoryRegion *ram_low_postio;
1092 MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
1093 const size_t smbus_eeprom_size = 8 * 256;
1094 uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
1095 uint64_t kernel_entry, bootloader_run_addr;
1096 PCIBus *pci_bus;
1097 ISABus *isa_bus;
1098 qemu_irq cbus_irq, i8259_irq;
1099 I2CBus *smbus;
1100 DriveInfo *dinfo;
1101 int fl_idx = 0;
1102 MaltaState *s;
1103 PCIDevice *piix4;
1104 DeviceState *dev;
1106 s = MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA));
1107 sysbus_realize_and_unref(SYS_BUS_DEVICE(s), &error_fatal);
1109 /* create CPU */
1110 mips_create_cpu(machine, s, &cbus_irq, &i8259_irq);
1112 /* allocate RAM */
1113 if (ram_size > 2 * GiB) {
1114 error_report("Too much memory for this machine: %" PRId64 "MB,"
1115 " maximum 2048MB", ram_size / MiB);
1116 exit(1);
1119 /* register RAM at high address where it is undisturbed by IO */
1120 memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
1122 /* alias for pre IO hole access */
1123 memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
1124 machine->ram, 0, MIN(ram_size, 256 * MiB));
1125 memory_region_add_subregion(system_memory, 0, ram_low_preio);
1127 /* alias for post IO hole access, if there is enough RAM */
1128 if (ram_size > 512 * MiB) {
1129 ram_low_postio = g_new(MemoryRegion, 1);
1130 memory_region_init_alias(ram_low_postio, NULL,
1131 "mips_malta_low_postio.ram",
1132 machine->ram, 512 * MiB,
1133 ram_size - 512 * MiB);
1134 memory_region_add_subregion(system_memory, 512 * MiB,
1135 ram_low_postio);
1138 /* FPGA */
1140 /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1141 malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));
1143 /* Load firmware in flash / BIOS. */
1144 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
1145 fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios",
1146 FLASH_SIZE,
1147 dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
1148 65536,
1149 4, 0x0000, 0x0000, 0x0000, 0x0000,
1150 TARGET_BIG_ENDIAN);
1151 bios = pflash_cfi01_get_memory(fl);
1152 fl_idx++;
1153 if (kernel_filename) {
1154 ram_low_size = MIN(ram_size, 256 * MiB);
1155 bootloader_run_addr = cpu_mips_phys_to_kseg0(NULL, RESET_ADDRESS);
1157 /* Write a small bootloader to the flash location. */
1158 loaderparams.ram_size = ram_size;
1159 loaderparams.ram_low_size = ram_low_size;
1160 loaderparams.kernel_filename = kernel_filename;
1161 loaderparams.kernel_cmdline = kernel_cmdline;
1162 loaderparams.initrd_filename = initrd_filename;
1163 kernel_entry = load_kernel();
1165 if (!cpu_type_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) {
1166 write_bootloader(memory_region_get_ram_ptr(bios),
1167 bootloader_run_addr, kernel_entry);
1168 } else {
1169 write_bootloader_nanomips(memory_region_get_ram_ptr(bios),
1170 bootloader_run_addr, kernel_entry);
1172 } else {
1173 target_long bios_size = FLASH_SIZE;
1174 /* Load firmware from flash. */
1175 if (!dinfo) {
1176 /* Load a BIOS image. */
1177 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
1178 machine->firmware ?: BIOS_FILENAME);
1179 if (filename) {
1180 bios_size = load_image_targphys(filename, FLASH_ADDRESS,
1181 BIOS_SIZE);
1182 g_free(filename);
1183 } else {
1184 bios_size = -1;
1186 if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
1187 machine->firmware && !qtest_enabled()) {
1188 error_report("Could not load MIPS bios '%s'", machine->firmware);
1189 exit(1);
1193 * In little endian mode the 32bit words in the bios are swapped,
1194 * a neat trick which allows bi-endian firmware.
1196 #if !TARGET_BIG_ENDIAN
1198 uint32_t *end, *addr;
1199 const size_t swapsize = MIN(bios_size, 0x3e0000);
1200 addr = rom_ptr(FLASH_ADDRESS, swapsize);
1201 if (!addr) {
1202 addr = memory_region_get_ram_ptr(bios);
1204 end = (void *)addr + swapsize;
1205 while (addr < end) {
1206 bswap32s(addr);
1207 addr++;
1210 #endif
1214 * Map the BIOS at a 2nd physical location, as on the real board.
1215 * Copy it so that we can patch in the MIPS revision, which cannot be
1216 * handled by an overlapping region as the resulting ROM code subpage
1217 * regions are not executable.
1219 memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
1220 &error_fatal);
1221 if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
1222 FLASH_ADDRESS, BIOS_SIZE)) {
1223 memcpy(memory_region_get_ram_ptr(bios_copy),
1224 memory_region_get_ram_ptr(bios), BIOS_SIZE);
1226 memory_region_set_readonly(bios_copy, true);
1227 memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
1229 /* Board ID = 0x420 (Malta Board with CoreLV) */
1230 stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
1232 /* Northbridge */
1233 dev = qdev_new("gt64120");
1234 qdev_prop_set_bit(dev, "cpu-little-endian", !TARGET_BIG_ENDIAN);
1235 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1236 pci_bus = PCI_BUS(qdev_get_child_bus(dev, "pci"));
1237 pci_bus_map_irqs(pci_bus, malta_pci_slot_get_pirq);
1239 /* Southbridge */
1240 piix4 = pci_new_multifunction(PIIX4_PCI_DEVFN, TYPE_PIIX4_PCI_DEVICE);
1241 qdev_prop_set_uint32(DEVICE(piix4), "smb_io_base", 0x1100);
1242 pci_realize_and_unref(piix4, pci_bus, &error_fatal);
1243 isa_bus = ISA_BUS(qdev_get_child_bus(DEVICE(piix4), "isa.0"));
1245 dev = DEVICE(object_resolve_path_component(OBJECT(piix4), "ide"));
1246 pci_ide_create_devs(PCI_DEVICE(dev));
1248 /* Interrupt controller */
1249 qdev_connect_gpio_out_named(DEVICE(piix4), "intr", 0, i8259_irq);
1251 /* generate SPD EEPROM data */
1252 dev = DEVICE(object_resolve_path_component(OBJECT(piix4), "pm"));
1253 smbus = I2C_BUS(qdev_get_child_bus(dev, "i2c"));
1254 generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
1255 generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
1256 smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
1257 g_free(smbus_eeprom_buf);
1259 /* Super I/O: SMS FDC37M817 */
1260 isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);
1262 /* Network card */
1263 network_init(pci_bus);
1265 /* Optional PCI video card */
1266 pci_vga_init(pci_bus);
1269 static void mips_malta_instance_init(Object *obj)
1271 MaltaState *s = MIPS_MALTA(obj);
1273 s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
1274 clock_set_hz(s->cpuclk, 320000000); /* 320 MHz */
1277 static const TypeInfo mips_malta_device = {
1278 .name = TYPE_MIPS_MALTA,
1279 .parent = TYPE_SYS_BUS_DEVICE,
1280 .instance_size = sizeof(MaltaState),
1281 .instance_init = mips_malta_instance_init,
1284 GlobalProperty malta_compat[] = {
1285 { "PIIX4_PM", "memory-hotplug-support", "off" },
1286 { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
1287 { "PIIX4_PM", "acpi-root-pci-hotplug", "off" },
1288 { "PIIX4_PM", "x-not-migrate-acpi-index", "true" },
1290 const size_t malta_compat_len = G_N_ELEMENTS(malta_compat);
1292 static void mips_malta_machine_init(MachineClass *mc)
1294 mc->desc = "MIPS Malta Core LV";
1295 mc->init = mips_malta_init;
1296 mc->block_default_type = IF_IDE;
1297 mc->max_cpus = 16;
1298 mc->is_default = true;
1299 #ifdef TARGET_MIPS64
1300 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc");
1301 #else
1302 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf");
1303 #endif
1304 mc->default_ram_id = "mips_malta.ram";
1305 compat_props_add(mc->compat_props, malta_compat, malta_compat_len);
1308 DEFINE_MACHINE("malta", mips_malta_machine_init)
1310 static void mips_malta_register_types(void)
1312 type_register_static(&mips_malta_device);
1315 type_init(mips_malta_register_types)