linux-user/loongarch64: Add LASX sigcontext save/restore
[qemu/armbru.git] / scripts / decodetree.py
blobe8b72da3a97a236cfe88ecac660eae82939345d6
1 #!/usr/bin/env python3
2 # Copyright (c) 2018 Linaro Limited
4 # This library is free software; you can redistribute it and/or
5 # modify it under the terms of the GNU Lesser General Public
6 # License as published by the Free Software Foundation; either
7 # version 2.1 of the License, or (at your option) any later version.
9 # This library is distributed in the hope that it will be useful,
10 # but WITHOUT ANY WARRANTY; without even the implied warranty of
11 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 # Lesser General Public License for more details.
14 # You should have received a copy of the GNU Lesser General Public
15 # License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 # Generate a decoding tree from a specification file.
20 # See the syntax and semantics in docs/devel/decodetree.rst.
23 import io
24 import os
25 import re
26 import sys
27 import getopt
29 insnwidth = 32
30 bitop_width = 32
31 insnmask = 0xffffffff
32 variablewidth = False
33 fields = {}
34 arguments = {}
35 formats = {}
36 allpatterns = []
37 anyextern = False
38 testforerror = False
40 translate_prefix = 'trans'
41 translate_scope = 'static '
42 input_file = ''
43 output_file = None
44 output_fd = None
45 output_null = False
46 insntype = 'uint32_t'
47 decode_function = 'decode'
49 # An identifier for C.
50 re_C_ident = '[a-zA-Z][a-zA-Z0-9_]*'
52 # Identifiers for Arguments, Fields, Formats and Patterns.
53 re_arg_ident = '&[a-zA-Z0-9_]*'
54 re_fld_ident = '%[a-zA-Z0-9_]*'
55 re_fmt_ident = '@[a-zA-Z0-9_]*'
56 re_pat_ident = '[a-zA-Z0-9_]*'
58 # Local implementation of a topological sort. We use the same API that
59 # the Python graphlib does, so that when QEMU moves forward to a
60 # baseline of Python 3.9 or newer this code can all be dropped and
61 # replaced with:
62 # from graphlib import TopologicalSorter, CycleError
64 # https://docs.python.org/3.9/library/graphlib.html#graphlib.TopologicalSorter
66 # We only implement the parts of TopologicalSorter we care about:
67 # ts = TopologicalSorter(graph=None)
68 # create the sorter. graph is a dictionary whose keys are
69 # nodes and whose values are lists of the predecessors of that node.
70 # (That is, if graph contains "A" -> ["B", "C"] then we must output
71 # B and C before A.)
72 # ts.static_order()
73 # returns a list of all the nodes in sorted order, or raises CycleError
74 # CycleError
75 # exception raised if there are cycles in the graph. The second
76 # element in the args attribute is a list of nodes which form a
77 # cycle; the first and last element are the same, eg [a, b, c, a]
78 # (Our implementation doesn't give the order correctly.)
80 # For our purposes we can assume that the data set is always small
81 # (typically 10 nodes or less, actual links in the graph very rare),
82 # so we don't need to worry about efficiency of implementation.
84 # The core of this implementation is from
85 # https://code.activestate.com/recipes/578272-topological-sort/
86 # (but updated to Python 3), and is under the MIT license.
88 class CycleError(ValueError):
89 """Subclass of ValueError raised if cycles exist in the graph"""
90 pass
92 class TopologicalSorter:
93 """Topologically sort a graph"""
94 def __init__(self, graph=None):
95 self.graph = graph
97 def static_order(self):
98 # We do the sort right here, unlike the stdlib version
99 from functools import reduce
100 data = {}
101 r = []
103 if not self.graph:
104 return []
106 # This code wants the values in the dict to be specifically sets
107 for k, v in self.graph.items():
108 data[k] = set(v)
110 # Find all items that don't depend on anything.
111 extra_items_in_deps = (reduce(set.union, data.values())
112 - set(data.keys()))
113 # Add empty dependencies where needed
114 data.update({item:{} for item in extra_items_in_deps})
115 while True:
116 ordered = set(item for item, dep in data.items() if not dep)
117 if not ordered:
118 break
119 r.extend(ordered)
120 data = {item: (dep - ordered)
121 for item, dep in data.items()
122 if item not in ordered}
123 if data:
124 # This doesn't give as nice results as the stdlib, which
125 # gives you the cycle by listing the nodes in order. Here
126 # we only know the nodes in the cycle but not their order.
127 raise CycleError(f'nodes are in a cycle', list(data.keys()))
129 return r
130 # end TopologicalSorter
132 def error_with_file(file, lineno, *args):
133 """Print an error message from file:line and args and exit."""
134 global output_file
135 global output_fd
137 # For the test suite expected-errors case, don't print the
138 # string "error: ", so they don't turn up as false positives
139 # if you grep the meson logs for strings like that.
140 end = 'error: ' if not testforerror else 'detected: '
141 prefix = ''
142 if file:
143 prefix += f'{file}:'
144 if lineno:
145 prefix += f'{lineno}:'
146 if prefix:
147 prefix += ' '
148 print(prefix, end=end, file=sys.stderr)
149 print(*args, file=sys.stderr)
151 if output_file and output_fd:
152 output_fd.close()
153 os.remove(output_file)
154 exit(0 if testforerror else 1)
155 # end error_with_file
158 def error(lineno, *args):
159 error_with_file(input_file, lineno, *args)
160 # end error
163 def output(*args):
164 global output_fd
165 for a in args:
166 output_fd.write(a)
169 def output_autogen():
170 output('/* This file is autogenerated by scripts/decodetree.py. */\n\n')
173 def str_indent(c):
174 """Return a string with C spaces"""
175 return ' ' * c
178 def str_fields(fields):
179 """Return a string uniquely identifying FIELDS"""
180 r = ''
181 for n in sorted(fields.keys()):
182 r += '_' + n
183 return r[1:]
186 def whex(val):
187 """Return a hex string for val padded for insnwidth"""
188 global insnwidth
189 return f'0x{val:0{insnwidth // 4}x}'
192 def whexC(val):
193 """Return a hex string for val padded for insnwidth,
194 and with the proper suffix for a C constant."""
195 suffix = ''
196 if val >= 0x100000000:
197 suffix = 'ull'
198 elif val >= 0x80000000:
199 suffix = 'u'
200 return whex(val) + suffix
203 def str_match_bits(bits, mask):
204 """Return a string pretty-printing BITS/MASK"""
205 global insnwidth
207 i = 1 << (insnwidth - 1)
208 space = 0x01010100
209 r = ''
210 while i != 0:
211 if i & mask:
212 if i & bits:
213 r += '1'
214 else:
215 r += '0'
216 else:
217 r += '.'
218 if i & space:
219 r += ' '
220 i >>= 1
221 return r
224 def is_pow2(x):
225 """Return true iff X is equal to a power of 2."""
226 return (x & (x - 1)) == 0
229 def ctz(x):
230 """Return the number of times 2 factors into X."""
231 assert x != 0
232 r = 0
233 while ((x >> r) & 1) == 0:
234 r += 1
235 return r
238 def is_contiguous(bits):
239 if bits == 0:
240 return -1
241 shift = ctz(bits)
242 if is_pow2((bits >> shift) + 1):
243 return shift
244 else:
245 return -1
248 def eq_fields_for_args(flds_a, arg):
249 if len(flds_a) != len(arg.fields):
250 return False
251 # Only allow inference on default types
252 for t in arg.types:
253 if t != 'int':
254 return False
255 for k, a in flds_a.items():
256 if k not in arg.fields:
257 return False
258 return True
261 def eq_fields_for_fmts(flds_a, flds_b):
262 if len(flds_a) != len(flds_b):
263 return False
264 for k, a in flds_a.items():
265 if k not in flds_b:
266 return False
267 b = flds_b[k]
268 if a.__class__ != b.__class__ or a != b:
269 return False
270 return True
273 class Field:
274 """Class representing a simple instruction field"""
275 def __init__(self, sign, pos, len):
276 self.sign = sign
277 self.pos = pos
278 self.len = len
279 self.mask = ((1 << len) - 1) << pos
281 def __str__(self):
282 if self.sign:
283 s = 's'
284 else:
285 s = ''
286 return str(self.pos) + ':' + s + str(self.len)
288 def str_extract(self, lvalue_formatter):
289 global bitop_width
290 s = 's' if self.sign else ''
291 return f'{s}extract{bitop_width}(insn, {self.pos}, {self.len})'
293 def referenced_fields(self):
294 return []
296 def __eq__(self, other):
297 return self.sign == other.sign and self.mask == other.mask
299 def __ne__(self, other):
300 return not self.__eq__(other)
301 # end Field
304 class MultiField:
305 """Class representing a compound instruction field"""
306 def __init__(self, subs, mask):
307 self.subs = subs
308 self.sign = subs[0].sign
309 self.mask = mask
311 def __str__(self):
312 return str(self.subs)
314 def str_extract(self, lvalue_formatter):
315 global bitop_width
316 ret = '0'
317 pos = 0
318 for f in reversed(self.subs):
319 ext = f.str_extract(lvalue_formatter)
320 if pos == 0:
321 ret = ext
322 else:
323 ret = f'deposit{bitop_width}({ret}, {pos}, {bitop_width - pos}, {ext})'
324 pos += f.len
325 return ret
327 def referenced_fields(self):
328 l = []
329 for f in self.subs:
330 l.extend(f.referenced_fields())
331 return l
333 def __ne__(self, other):
334 if len(self.subs) != len(other.subs):
335 return True
336 for a, b in zip(self.subs, other.subs):
337 if a.__class__ != b.__class__ or a != b:
338 return True
339 return False
341 def __eq__(self, other):
342 return not self.__ne__(other)
343 # end MultiField
346 class ConstField:
347 """Class representing an argument field with constant value"""
348 def __init__(self, value):
349 self.value = value
350 self.mask = 0
351 self.sign = value < 0
353 def __str__(self):
354 return str(self.value)
356 def str_extract(self, lvalue_formatter):
357 return str(self.value)
359 def referenced_fields(self):
360 return []
362 def __cmp__(self, other):
363 return self.value - other.value
364 # end ConstField
367 class FunctionField:
368 """Class representing a field passed through a function"""
369 def __init__(self, func, base):
370 self.mask = base.mask
371 self.sign = base.sign
372 self.base = base
373 self.func = func
375 def __str__(self):
376 return self.func + '(' + str(self.base) + ')'
378 def str_extract(self, lvalue_formatter):
379 return (self.func + '(ctx, '
380 + self.base.str_extract(lvalue_formatter) + ')')
382 def referenced_fields(self):
383 return self.base.referenced_fields()
385 def __eq__(self, other):
386 return self.func == other.func and self.base == other.base
388 def __ne__(self, other):
389 return not self.__eq__(other)
390 # end FunctionField
393 class ParameterField:
394 """Class representing a pseudo-field read from a function"""
395 def __init__(self, func):
396 self.mask = 0
397 self.sign = 0
398 self.func = func
400 def __str__(self):
401 return self.func
403 def str_extract(self, lvalue_formatter):
404 return self.func + '(ctx)'
406 def referenced_fields(self):
407 return []
409 def __eq__(self, other):
410 return self.func == other.func
412 def __ne__(self, other):
413 return not self.__eq__(other)
414 # end ParameterField
416 class NamedField:
417 """Class representing a field already named in the pattern"""
418 def __init__(self, name, sign, len):
419 self.mask = 0
420 self.sign = sign
421 self.len = len
422 self.name = name
424 def __str__(self):
425 return self.name
427 def str_extract(self, lvalue_formatter):
428 global bitop_width
429 s = 's' if self.sign else ''
430 lvalue = lvalue_formatter(self.name)
431 return f'{s}extract{bitop_width}({lvalue}, 0, {self.len})'
433 def referenced_fields(self):
434 return [self.name]
436 def __eq__(self, other):
437 return self.name == other.name
439 def __ne__(self, other):
440 return not self.__eq__(other)
441 # end NamedField
443 class Arguments:
444 """Class representing the extracted fields of a format"""
445 def __init__(self, nm, flds, types, extern):
446 self.name = nm
447 self.extern = extern
448 self.fields = flds
449 self.types = types
451 def __str__(self):
452 return self.name + ' ' + str(self.fields)
454 def struct_name(self):
455 return 'arg_' + self.name
457 def output_def(self):
458 if not self.extern:
459 output('typedef struct {\n')
460 for (n, t) in zip(self.fields, self.types):
461 output(f' {t} {n};\n')
462 output('} ', self.struct_name(), ';\n\n')
463 # end Arguments
465 class General:
466 """Common code between instruction formats and instruction patterns"""
467 def __init__(self, name, lineno, base, fixb, fixm, udfm, fldm, flds, w):
468 self.name = name
469 self.file = input_file
470 self.lineno = lineno
471 self.base = base
472 self.fixedbits = fixb
473 self.fixedmask = fixm
474 self.undefmask = udfm
475 self.fieldmask = fldm
476 self.fields = flds
477 self.width = w
478 self.dangling = None
480 def __str__(self):
481 return self.name + ' ' + str_match_bits(self.fixedbits, self.fixedmask)
483 def str1(self, i):
484 return str_indent(i) + self.__str__()
486 def dangling_references(self):
487 # Return a list of all named references which aren't satisfied
488 # directly by this format/pattern. This will be either:
489 # * a format referring to a field which is specified by the
490 # pattern(s) using it
491 # * a pattern referring to a field which is specified by the
492 # format it uses
493 # * a user error (referring to a field that doesn't exist at all)
494 if self.dangling is None:
495 # Compute this once and cache the answer
496 dangling = []
497 for n, f in self.fields.items():
498 for r in f.referenced_fields():
499 if r not in self.fields:
500 dangling.append(r)
501 self.dangling = dangling
502 return self.dangling
504 def output_fields(self, indent, lvalue_formatter):
505 # We use a topological sort to ensure that any use of NamedField
506 # comes after the initialization of the field it is referencing.
507 graph = {}
508 for n, f in self.fields.items():
509 refs = f.referenced_fields()
510 graph[n] = refs
512 try:
513 ts = TopologicalSorter(graph)
514 for n in ts.static_order():
515 # We only want to emit assignments for the keys
516 # in our fields list, not for anything that ends up
517 # in the tsort graph only because it was referenced as
518 # a NamedField.
519 try:
520 f = self.fields[n]
521 output(indent, lvalue_formatter(n), ' = ',
522 f.str_extract(lvalue_formatter), ';\n')
523 except KeyError:
524 pass
525 except CycleError as e:
526 # The second element of args is a list of nodes which form
527 # a cycle (there might be others too, but only one is reported).
528 # Pretty-print it to tell the user.
529 cycle = ' => '.join(e.args[1])
530 error(self.lineno, 'field definitions form a cycle: ' + cycle)
531 # end General
534 class Format(General):
535 """Class representing an instruction format"""
537 def extract_name(self):
538 global decode_function
539 return decode_function + '_extract_' + self.name
541 def output_extract(self):
542 output('static void ', self.extract_name(), '(DisasContext *ctx, ',
543 self.base.struct_name(), ' *a, ', insntype, ' insn)\n{\n')
544 self.output_fields(str_indent(4), lambda n: 'a->' + n)
545 output('}\n\n')
546 # end Format
549 class Pattern(General):
550 """Class representing an instruction pattern"""
552 def output_decl(self):
553 global translate_scope
554 global translate_prefix
555 output('typedef ', self.base.base.struct_name(),
556 ' arg_', self.name, ';\n')
557 output(translate_scope, 'bool ', translate_prefix, '_', self.name,
558 '(DisasContext *ctx, arg_', self.name, ' *a);\n')
560 def output_code(self, i, extracted, outerbits, outermask):
561 global translate_prefix
562 ind = str_indent(i)
563 arg = self.base.base.name
564 output(ind, '/* ', self.file, ':', str(self.lineno), ' */\n')
565 # We might have named references in the format that refer to fields
566 # in the pattern, or named references in the pattern that refer
567 # to fields in the format. This affects whether we extract the fields
568 # for the format before or after the ones for the pattern.
569 # For simplicity we don't allow cross references in both directions.
570 # This is also where we catch the syntax error of referring to
571 # a nonexistent field.
572 fmt_refs = self.base.dangling_references()
573 for r in fmt_refs:
574 if r not in self.fields:
575 error(self.lineno, f'format refers to undefined field {r}')
576 pat_refs = self.dangling_references()
577 for r in pat_refs:
578 if r not in self.base.fields:
579 error(self.lineno, f'pattern refers to undefined field {r}')
580 if pat_refs and fmt_refs:
581 error(self.lineno, ('pattern that uses fields defined in format '
582 'cannot use format that uses fields defined '
583 'in pattern'))
584 if fmt_refs:
585 # pattern fields first
586 self.output_fields(ind, lambda n: 'u.f_' + arg + '.' + n)
587 assert not extracted, "dangling fmt refs but it was already extracted"
588 if not extracted:
589 output(ind, self.base.extract_name(),
590 '(ctx, &u.f_', arg, ', insn);\n')
591 if not fmt_refs:
592 # pattern fields last
593 self.output_fields(ind, lambda n: 'u.f_' + arg + '.' + n)
595 output(ind, 'if (', translate_prefix, '_', self.name,
596 '(ctx, &u.f_', arg, ')) return true;\n')
598 # Normal patterns do not have children.
599 def build_tree(self):
600 return
601 def prop_masks(self):
602 return
603 def prop_format(self):
604 return
605 def prop_width(self):
606 return
608 # end Pattern
611 class MultiPattern(General):
612 """Class representing a set of instruction patterns"""
614 def __init__(self, lineno):
615 self.file = input_file
616 self.lineno = lineno
617 self.pats = []
618 self.base = None
619 self.fixedbits = 0
620 self.fixedmask = 0
621 self.undefmask = 0
622 self.width = None
624 def __str__(self):
625 r = 'group'
626 if self.fixedbits is not None:
627 r += ' ' + str_match_bits(self.fixedbits, self.fixedmask)
628 return r
630 def output_decl(self):
631 for p in self.pats:
632 p.output_decl()
634 def prop_masks(self):
635 global insnmask
637 fixedmask = insnmask
638 undefmask = insnmask
640 # Collect fixedmask/undefmask for all of the children.
641 for p in self.pats:
642 p.prop_masks()
643 fixedmask &= p.fixedmask
644 undefmask &= p.undefmask
646 # Widen fixedmask until all fixedbits match
647 repeat = True
648 fixedbits = 0
649 while repeat and fixedmask != 0:
650 fixedbits = None
651 for p in self.pats:
652 thisbits = p.fixedbits & fixedmask
653 if fixedbits is None:
654 fixedbits = thisbits
655 elif fixedbits != thisbits:
656 fixedmask &= ~(fixedbits ^ thisbits)
657 break
658 else:
659 repeat = False
661 self.fixedbits = fixedbits
662 self.fixedmask = fixedmask
663 self.undefmask = undefmask
665 def build_tree(self):
666 for p in self.pats:
667 p.build_tree()
669 def prop_format(self):
670 for p in self.pats:
671 p.prop_format()
673 def prop_width(self):
674 width = None
675 for p in self.pats:
676 p.prop_width()
677 if width is None:
678 width = p.width
679 elif width != p.width:
680 error_with_file(self.file, self.lineno,
681 'width mismatch in patterns within braces')
682 self.width = width
684 # end MultiPattern
687 class IncMultiPattern(MultiPattern):
688 """Class representing an overlapping set of instruction patterns"""
690 def output_code(self, i, extracted, outerbits, outermask):
691 global translate_prefix
692 ind = str_indent(i)
693 for p in self.pats:
694 if outermask != p.fixedmask:
695 innermask = p.fixedmask & ~outermask
696 innerbits = p.fixedbits & ~outermask
697 output(ind, f'if ((insn & {whexC(innermask)}) == {whexC(innerbits)}) {{\n')
698 output(ind, f' /* {str_match_bits(p.fixedbits, p.fixedmask)} */\n')
699 p.output_code(i + 4, extracted, p.fixedbits, p.fixedmask)
700 output(ind, '}\n')
701 else:
702 p.output_code(i, extracted, p.fixedbits, p.fixedmask)
704 def build_tree(self):
705 if not self.pats:
706 error_with_file(self.file, self.lineno, 'empty pattern group')
707 super().build_tree()
709 #end IncMultiPattern
712 class Tree:
713 """Class representing a node in a decode tree"""
715 def __init__(self, fm, tm):
716 self.fixedmask = fm
717 self.thismask = tm
718 self.subs = []
719 self.base = None
721 def str1(self, i):
722 ind = str_indent(i)
723 r = ind + whex(self.fixedmask)
724 if self.format:
725 r += ' ' + self.format.name
726 r += ' [\n'
727 for (b, s) in self.subs:
728 r += ind + f' {whex(b)}:\n'
729 r += s.str1(i + 4) + '\n'
730 r += ind + ']'
731 return r
733 def __str__(self):
734 return self.str1(0)
736 def output_code(self, i, extracted, outerbits, outermask):
737 ind = str_indent(i)
739 # If we identified all nodes below have the same format,
740 # extract the fields now. But don't do it if the format relies
741 # on named fields from the insn pattern, as those won't have
742 # been initialised at this point.
743 if not extracted and self.base and not self.base.dangling_references():
744 output(ind, self.base.extract_name(),
745 '(ctx, &u.f_', self.base.base.name, ', insn);\n')
746 extracted = True
748 # Attempt to aid the compiler in producing compact switch statements.
749 # If the bits in the mask are contiguous, extract them.
750 sh = is_contiguous(self.thismask)
751 if sh > 0:
752 # Propagate SH down into the local functions.
753 def str_switch(b, sh=sh):
754 return f'(insn >> {sh}) & {b >> sh:#x}'
756 def str_case(b, sh=sh):
757 return hex(b >> sh)
758 else:
759 def str_switch(b):
760 return f'insn & {whexC(b)}'
762 def str_case(b):
763 return whexC(b)
765 output(ind, 'switch (', str_switch(self.thismask), ') {\n')
766 for b, s in sorted(self.subs):
767 assert (self.thismask & ~s.fixedmask) == 0
768 innermask = outermask | self.thismask
769 innerbits = outerbits | b
770 output(ind, 'case ', str_case(b), ':\n')
771 output(ind, ' /* ',
772 str_match_bits(innerbits, innermask), ' */\n')
773 s.output_code(i + 4, extracted, innerbits, innermask)
774 output(ind, ' break;\n')
775 output(ind, '}\n')
776 # end Tree
779 class ExcMultiPattern(MultiPattern):
780 """Class representing a non-overlapping set of instruction patterns"""
782 def output_code(self, i, extracted, outerbits, outermask):
783 # Defer everything to our decomposed Tree node
784 self.tree.output_code(i, extracted, outerbits, outermask)
786 @staticmethod
787 def __build_tree(pats, outerbits, outermask):
788 # Find the intersection of all remaining fixedmask.
789 innermask = ~outermask & insnmask
790 for i in pats:
791 innermask &= i.fixedmask
793 if innermask == 0:
794 # Edge condition: One pattern covers the entire insnmask
795 if len(pats) == 1:
796 t = Tree(outermask, innermask)
797 t.subs.append((0, pats[0]))
798 return t
800 text = 'overlapping patterns:'
801 for p in pats:
802 text += '\n' + p.file + ':' + str(p.lineno) + ': ' + str(p)
803 error_with_file(pats[0].file, pats[0].lineno, text)
805 fullmask = outermask | innermask
807 # Sort each element of pats into the bin selected by the mask.
808 bins = {}
809 for i in pats:
810 fb = i.fixedbits & innermask
811 if fb in bins:
812 bins[fb].append(i)
813 else:
814 bins[fb] = [i]
816 # We must recurse if any bin has more than one element or if
817 # the single element in the bin has not been fully matched.
818 t = Tree(fullmask, innermask)
820 for b, l in bins.items():
821 s = l[0]
822 if len(l) > 1 or s.fixedmask & ~fullmask != 0:
823 s = ExcMultiPattern.__build_tree(l, b | outerbits, fullmask)
824 t.subs.append((b, s))
826 return t
828 def build_tree(self):
829 super().build_tree()
830 self.tree = self.__build_tree(self.pats, self.fixedbits,
831 self.fixedmask)
833 @staticmethod
834 def __prop_format(tree):
835 """Propagate Format objects into the decode tree"""
837 # Depth first search.
838 for (b, s) in tree.subs:
839 if isinstance(s, Tree):
840 ExcMultiPattern.__prop_format(s)
842 # If all entries in SUBS have the same format, then
843 # propagate that into the tree.
844 f = None
845 for (b, s) in tree.subs:
846 if f is None:
847 f = s.base
848 if f is None:
849 return
850 if f is not s.base:
851 return
852 tree.base = f
854 def prop_format(self):
855 super().prop_format()
856 self.__prop_format(self.tree)
858 # end ExcMultiPattern
861 def parse_field(lineno, name, toks):
862 """Parse one instruction field from TOKS at LINENO"""
863 global fields
864 global insnwidth
865 global re_C_ident
867 # A "simple" field will have only one entry;
868 # a "multifield" will have several.
869 subs = []
870 width = 0
871 func = None
872 for t in toks:
873 if re.match('^!function=', t):
874 if func:
875 error(lineno, 'duplicate function')
876 func = t.split('=')
877 func = func[1]
878 continue
880 if re.fullmatch(re_C_ident + ':s[0-9]+', t):
881 # Signed named field
882 subtoks = t.split(':')
883 n = subtoks[0]
884 le = int(subtoks[1])
885 f = NamedField(n, True, le)
886 subs.append(f)
887 width += le
888 continue
889 if re.fullmatch(re_C_ident + ':[0-9]+', t):
890 # Unsigned named field
891 subtoks = t.split(':')
892 n = subtoks[0]
893 le = int(subtoks[1])
894 f = NamedField(n, False, le)
895 subs.append(f)
896 width += le
897 continue
899 if re.fullmatch('[0-9]+:s[0-9]+', t):
900 # Signed field extract
901 subtoks = t.split(':s')
902 sign = True
903 elif re.fullmatch('[0-9]+:[0-9]+', t):
904 # Unsigned field extract
905 subtoks = t.split(':')
906 sign = False
907 else:
908 error(lineno, f'invalid field token "{t}"')
909 po = int(subtoks[0])
910 le = int(subtoks[1])
911 if po + le > insnwidth:
912 error(lineno, f'field {t} too large')
913 f = Field(sign, po, le)
914 subs.append(f)
915 width += le
917 if width > insnwidth:
918 error(lineno, 'field too large')
919 if len(subs) == 0:
920 if func:
921 f = ParameterField(func)
922 else:
923 error(lineno, 'field with no value')
924 else:
925 if len(subs) == 1:
926 f = subs[0]
927 else:
928 mask = 0
929 for s in subs:
930 if mask & s.mask:
931 error(lineno, 'field components overlap')
932 mask |= s.mask
933 f = MultiField(subs, mask)
934 if func:
935 f = FunctionField(func, f)
937 if name in fields:
938 error(lineno, 'duplicate field', name)
939 fields[name] = f
940 # end parse_field
943 def parse_arguments(lineno, name, toks):
944 """Parse one argument set from TOKS at LINENO"""
945 global arguments
946 global re_C_ident
947 global anyextern
949 flds = []
950 types = []
951 extern = False
952 for n in toks:
953 if re.fullmatch('!extern', n):
954 extern = True
955 anyextern = True
956 continue
957 if re.fullmatch(re_C_ident + ':' + re_C_ident, n):
958 (n, t) = n.split(':')
959 elif re.fullmatch(re_C_ident, n):
960 t = 'int'
961 else:
962 error(lineno, f'invalid argument set token "{n}"')
963 if n in flds:
964 error(lineno, f'duplicate argument "{n}"')
965 flds.append(n)
966 types.append(t)
968 if name in arguments:
969 error(lineno, 'duplicate argument set', name)
970 arguments[name] = Arguments(name, flds, types, extern)
971 # end parse_arguments
974 def lookup_field(lineno, name):
975 global fields
976 if name in fields:
977 return fields[name]
978 error(lineno, 'undefined field', name)
981 def add_field(lineno, flds, new_name, f):
982 if new_name in flds:
983 error(lineno, 'duplicate field', new_name)
984 flds[new_name] = f
985 return flds
988 def add_field_byname(lineno, flds, new_name, old_name):
989 return add_field(lineno, flds, new_name, lookup_field(lineno, old_name))
992 def infer_argument_set(flds):
993 global arguments
994 global decode_function
996 for arg in arguments.values():
997 if eq_fields_for_args(flds, arg):
998 return arg
1000 name = decode_function + str(len(arguments))
1001 arg = Arguments(name, flds.keys(), ['int'] * len(flds), False)
1002 arguments[name] = arg
1003 return arg
1006 def infer_format(arg, fieldmask, flds, width):
1007 global arguments
1008 global formats
1009 global decode_function
1011 const_flds = {}
1012 var_flds = {}
1013 for n, c in flds.items():
1014 if c is ConstField:
1015 const_flds[n] = c
1016 else:
1017 var_flds[n] = c
1019 # Look for an existing format with the same argument set and fields
1020 for fmt in formats.values():
1021 if arg and fmt.base != arg:
1022 continue
1023 if fieldmask != fmt.fieldmask:
1024 continue
1025 if width != fmt.width:
1026 continue
1027 if not eq_fields_for_fmts(flds, fmt.fields):
1028 continue
1029 return (fmt, const_flds)
1031 name = decode_function + '_Fmt_' + str(len(formats))
1032 if not arg:
1033 arg = infer_argument_set(flds)
1035 fmt = Format(name, 0, arg, 0, 0, 0, fieldmask, var_flds, width)
1036 formats[name] = fmt
1038 return (fmt, const_flds)
1039 # end infer_format
1042 def parse_generic(lineno, parent_pat, name, toks):
1043 """Parse one instruction format from TOKS at LINENO"""
1044 global fields
1045 global arguments
1046 global formats
1047 global allpatterns
1048 global re_arg_ident
1049 global re_fld_ident
1050 global re_fmt_ident
1051 global re_C_ident
1052 global insnwidth
1053 global insnmask
1054 global variablewidth
1056 is_format = parent_pat is None
1058 fixedmask = 0
1059 fixedbits = 0
1060 undefmask = 0
1061 width = 0
1062 flds = {}
1063 arg = None
1064 fmt = None
1065 for t in toks:
1066 # '&Foo' gives a format an explicit argument set.
1067 if re.fullmatch(re_arg_ident, t):
1068 tt = t[1:]
1069 if arg:
1070 error(lineno, 'multiple argument sets')
1071 if tt in arguments:
1072 arg = arguments[tt]
1073 else:
1074 error(lineno, 'undefined argument set', t)
1075 continue
1077 # '@Foo' gives a pattern an explicit format.
1078 if re.fullmatch(re_fmt_ident, t):
1079 tt = t[1:]
1080 if fmt:
1081 error(lineno, 'multiple formats')
1082 if tt in formats:
1083 fmt = formats[tt]
1084 else:
1085 error(lineno, 'undefined format', t)
1086 continue
1088 # '%Foo' imports a field.
1089 if re.fullmatch(re_fld_ident, t):
1090 tt = t[1:]
1091 flds = add_field_byname(lineno, flds, tt, tt)
1092 continue
1094 # 'Foo=%Bar' imports a field with a different name.
1095 if re.fullmatch(re_C_ident + '=' + re_fld_ident, t):
1096 (fname, iname) = t.split('=%')
1097 flds = add_field_byname(lineno, flds, fname, iname)
1098 continue
1100 # 'Foo=number' sets an argument field to a constant value
1101 if re.fullmatch(re_C_ident + '=[+-]?[0-9]+', t):
1102 (fname, value) = t.split('=')
1103 value = int(value)
1104 flds = add_field(lineno, flds, fname, ConstField(value))
1105 continue
1107 # Pattern of 0s, 1s, dots and dashes indicate required zeros,
1108 # required ones, or dont-cares.
1109 if re.fullmatch('[01.-]+', t):
1110 shift = len(t)
1111 fms = t.replace('0', '1')
1112 fms = fms.replace('.', '0')
1113 fms = fms.replace('-', '0')
1114 fbs = t.replace('.', '0')
1115 fbs = fbs.replace('-', '0')
1116 ubm = t.replace('1', '0')
1117 ubm = ubm.replace('.', '0')
1118 ubm = ubm.replace('-', '1')
1119 fms = int(fms, 2)
1120 fbs = int(fbs, 2)
1121 ubm = int(ubm, 2)
1122 fixedbits = (fixedbits << shift) | fbs
1123 fixedmask = (fixedmask << shift) | fms
1124 undefmask = (undefmask << shift) | ubm
1125 # Otherwise, fieldname:fieldwidth
1126 elif re.fullmatch(re_C_ident + ':s?[0-9]+', t):
1127 (fname, flen) = t.split(':')
1128 sign = False
1129 if flen[0] == 's':
1130 sign = True
1131 flen = flen[1:]
1132 shift = int(flen, 10)
1133 if shift + width > insnwidth:
1134 error(lineno, f'field {fname} exceeds insnwidth')
1135 f = Field(sign, insnwidth - width - shift, shift)
1136 flds = add_field(lineno, flds, fname, f)
1137 fixedbits <<= shift
1138 fixedmask <<= shift
1139 undefmask <<= shift
1140 else:
1141 error(lineno, f'invalid token "{t}"')
1142 width += shift
1144 if variablewidth and width < insnwidth and width % 8 == 0:
1145 shift = insnwidth - width
1146 fixedbits <<= shift
1147 fixedmask <<= shift
1148 undefmask <<= shift
1149 undefmask |= (1 << shift) - 1
1151 # We should have filled in all of the bits of the instruction.
1152 elif not (is_format and width == 0) and width != insnwidth:
1153 error(lineno, f'definition has {width} bits')
1155 # Do not check for fields overlapping fields; one valid usage
1156 # is to be able to duplicate fields via import.
1157 fieldmask = 0
1158 for f in flds.values():
1159 fieldmask |= f.mask
1161 # Fix up what we've parsed to match either a format or a pattern.
1162 if is_format:
1163 # Formats cannot reference formats.
1164 if fmt:
1165 error(lineno, 'format referencing format')
1166 # If an argument set is given, then there should be no fields
1167 # without a place to store it.
1168 if arg:
1169 for f in flds.keys():
1170 if f not in arg.fields:
1171 error(lineno, f'field {f} not in argument set {arg.name}')
1172 else:
1173 arg = infer_argument_set(flds)
1174 if name in formats:
1175 error(lineno, 'duplicate format name', name)
1176 fmt = Format(name, lineno, arg, fixedbits, fixedmask,
1177 undefmask, fieldmask, flds, width)
1178 formats[name] = fmt
1179 else:
1180 # Patterns can reference a format ...
1181 if fmt:
1182 # ... but not an argument simultaneously
1183 if arg:
1184 error(lineno, 'pattern specifies both format and argument set')
1185 if fixedmask & fmt.fixedmask:
1186 error(lineno, 'pattern fixed bits overlap format fixed bits')
1187 if width != fmt.width:
1188 error(lineno, 'pattern uses format of different width')
1189 fieldmask |= fmt.fieldmask
1190 fixedbits |= fmt.fixedbits
1191 fixedmask |= fmt.fixedmask
1192 undefmask |= fmt.undefmask
1193 else:
1194 (fmt, flds) = infer_format(arg, fieldmask, flds, width)
1195 arg = fmt.base
1196 for f in flds.keys():
1197 if f not in arg.fields:
1198 error(lineno, f'field {f} not in argument set {arg.name}')
1199 if f in fmt.fields.keys():
1200 error(lineno, f'field {f} set by format and pattern')
1201 for f in arg.fields:
1202 if f not in flds.keys() and f not in fmt.fields.keys():
1203 error(lineno, f'field {f} not initialized')
1204 pat = Pattern(name, lineno, fmt, fixedbits, fixedmask,
1205 undefmask, fieldmask, flds, width)
1206 parent_pat.pats.append(pat)
1207 allpatterns.append(pat)
1209 # Validate the masks that we have assembled.
1210 if fieldmask & fixedmask:
1211 error(lineno, 'fieldmask overlaps fixedmask ',
1212 f'({whex(fieldmask)} & {whex(fixedmask)})')
1213 if fieldmask & undefmask:
1214 error(lineno, 'fieldmask overlaps undefmask ',
1215 f'({whex(fieldmask)} & {whex(undefmask)})')
1216 if fixedmask & undefmask:
1217 error(lineno, 'fixedmask overlaps undefmask ',
1218 f'({whex(fixedmask)} & {whex(undefmask)})')
1219 if not is_format:
1220 allbits = fieldmask | fixedmask | undefmask
1221 if allbits != insnmask:
1222 error(lineno, 'bits left unspecified ',
1223 f'({whex(allbits ^ insnmask)})')
1224 # end parse_general
1227 def parse_file(f, parent_pat):
1228 """Parse all of the patterns within a file"""
1229 global re_arg_ident
1230 global re_fld_ident
1231 global re_fmt_ident
1232 global re_pat_ident
1234 # Read all of the lines of the file. Concatenate lines
1235 # ending in backslash; discard empty lines and comments.
1236 toks = []
1237 lineno = 0
1238 nesting = 0
1239 nesting_pats = []
1241 for line in f:
1242 lineno += 1
1244 # Expand and strip spaces, to find indent.
1245 line = line.rstrip()
1246 line = line.expandtabs()
1247 len1 = len(line)
1248 line = line.lstrip()
1249 len2 = len(line)
1251 # Discard comments
1252 end = line.find('#')
1253 if end >= 0:
1254 line = line[:end]
1256 t = line.split()
1257 if len(toks) != 0:
1258 # Next line after continuation
1259 toks.extend(t)
1260 else:
1261 # Allow completely blank lines.
1262 if len1 == 0:
1263 continue
1264 indent = len1 - len2
1265 # Empty line due to comment.
1266 if len(t) == 0:
1267 # Indentation must be correct, even for comment lines.
1268 if indent != nesting:
1269 error(lineno, 'indentation ', indent, ' != ', nesting)
1270 continue
1271 start_lineno = lineno
1272 toks = t
1274 # Continuation?
1275 if toks[-1] == '\\':
1276 toks.pop()
1277 continue
1279 name = toks[0]
1280 del toks[0]
1282 # End nesting?
1283 if name == '}' or name == ']':
1284 if len(toks) != 0:
1285 error(start_lineno, 'extra tokens after close brace')
1287 # Make sure { } and [ ] nest properly.
1288 if (name == '}') != isinstance(parent_pat, IncMultiPattern):
1289 error(lineno, 'mismatched close brace')
1291 try:
1292 parent_pat = nesting_pats.pop()
1293 except:
1294 error(lineno, 'extra close brace')
1296 nesting -= 2
1297 if indent != nesting:
1298 error(lineno, 'indentation ', indent, ' != ', nesting)
1300 toks = []
1301 continue
1303 # Everything else should have current indentation.
1304 if indent != nesting:
1305 error(start_lineno, 'indentation ', indent, ' != ', nesting)
1307 # Start nesting?
1308 if name == '{' or name == '[':
1309 if len(toks) != 0:
1310 error(start_lineno, 'extra tokens after open brace')
1312 if name == '{':
1313 nested_pat = IncMultiPattern(start_lineno)
1314 else:
1315 nested_pat = ExcMultiPattern(start_lineno)
1316 parent_pat.pats.append(nested_pat)
1317 nesting_pats.append(parent_pat)
1318 parent_pat = nested_pat
1320 nesting += 2
1321 toks = []
1322 continue
1324 # Determine the type of object needing to be parsed.
1325 if re.fullmatch(re_fld_ident, name):
1326 parse_field(start_lineno, name[1:], toks)
1327 elif re.fullmatch(re_arg_ident, name):
1328 parse_arguments(start_lineno, name[1:], toks)
1329 elif re.fullmatch(re_fmt_ident, name):
1330 parse_generic(start_lineno, None, name[1:], toks)
1331 elif re.fullmatch(re_pat_ident, name):
1332 parse_generic(start_lineno, parent_pat, name, toks)
1333 else:
1334 error(lineno, f'invalid token "{name}"')
1335 toks = []
1337 if nesting != 0:
1338 error(lineno, 'missing close brace')
1339 # end parse_file
1342 class SizeTree:
1343 """Class representing a node in a size decode tree"""
1345 def __init__(self, m, w):
1346 self.mask = m
1347 self.subs = []
1348 self.base = None
1349 self.width = w
1351 def str1(self, i):
1352 ind = str_indent(i)
1353 r = ind + whex(self.mask) + ' [\n'
1354 for (b, s) in self.subs:
1355 r += ind + f' {whex(b)}:\n'
1356 r += s.str1(i + 4) + '\n'
1357 r += ind + ']'
1358 return r
1360 def __str__(self):
1361 return self.str1(0)
1363 def output_code(self, i, extracted, outerbits, outermask):
1364 ind = str_indent(i)
1366 # If we need to load more bytes to test, do so now.
1367 if extracted < self.width:
1368 output(ind, f'insn = {decode_function}_load_bytes',
1369 f'(ctx, insn, {extracted // 8}, {self.width // 8});\n')
1370 extracted = self.width
1372 # Attempt to aid the compiler in producing compact switch statements.
1373 # If the bits in the mask are contiguous, extract them.
1374 sh = is_contiguous(self.mask)
1375 if sh > 0:
1376 # Propagate SH down into the local functions.
1377 def str_switch(b, sh=sh):
1378 return f'(insn >> {sh}) & {b >> sh:#x}'
1380 def str_case(b, sh=sh):
1381 return hex(b >> sh)
1382 else:
1383 def str_switch(b):
1384 return f'insn & {whexC(b)}'
1386 def str_case(b):
1387 return whexC(b)
1389 output(ind, 'switch (', str_switch(self.mask), ') {\n')
1390 for b, s in sorted(self.subs):
1391 innermask = outermask | self.mask
1392 innerbits = outerbits | b
1393 output(ind, 'case ', str_case(b), ':\n')
1394 output(ind, ' /* ',
1395 str_match_bits(innerbits, innermask), ' */\n')
1396 s.output_code(i + 4, extracted, innerbits, innermask)
1397 output(ind, '}\n')
1398 output(ind, 'return insn;\n')
1399 # end SizeTree
1401 class SizeLeaf:
1402 """Class representing a leaf node in a size decode tree"""
1404 def __init__(self, m, w):
1405 self.mask = m
1406 self.width = w
1408 def str1(self, i):
1409 return str_indent(i) + whex(self.mask)
1411 def __str__(self):
1412 return self.str1(0)
1414 def output_code(self, i, extracted, outerbits, outermask):
1415 global decode_function
1416 ind = str_indent(i)
1418 # If we need to load more bytes, do so now.
1419 if extracted < self.width:
1420 output(ind, f'insn = {decode_function}_load_bytes',
1421 f'(ctx, insn, {extracted // 8}, {self.width // 8});\n')
1422 extracted = self.width
1423 output(ind, 'return insn;\n')
1424 # end SizeLeaf
1427 def build_size_tree(pats, width, outerbits, outermask):
1428 global insnwidth
1430 # Collect the mask of bits that are fixed in this width
1431 innermask = 0xff << (insnwidth - width)
1432 innermask &= ~outermask
1433 minwidth = None
1434 onewidth = True
1435 for i in pats:
1436 innermask &= i.fixedmask
1437 if minwidth is None:
1438 minwidth = i.width
1439 elif minwidth != i.width:
1440 onewidth = False;
1441 if minwidth < i.width:
1442 minwidth = i.width
1444 if onewidth:
1445 return SizeLeaf(innermask, minwidth)
1447 if innermask == 0:
1448 if width < minwidth:
1449 return build_size_tree(pats, width + 8, outerbits, outermask)
1451 pnames = []
1452 for p in pats:
1453 pnames.append(p.name + ':' + p.file + ':' + str(p.lineno))
1454 error_with_file(pats[0].file, pats[0].lineno,
1455 f'overlapping patterns size {width}:', pnames)
1457 bins = {}
1458 for i in pats:
1459 fb = i.fixedbits & innermask
1460 if fb in bins:
1461 bins[fb].append(i)
1462 else:
1463 bins[fb] = [i]
1465 fullmask = outermask | innermask
1466 lens = sorted(bins.keys())
1467 if len(lens) == 1:
1468 b = lens[0]
1469 return build_size_tree(bins[b], width + 8, b | outerbits, fullmask)
1471 r = SizeTree(innermask, width)
1472 for b, l in bins.items():
1473 s = build_size_tree(l, width, b | outerbits, fullmask)
1474 r.subs.append((b, s))
1475 return r
1476 # end build_size_tree
1479 def prop_size(tree):
1480 """Propagate minimum widths up the decode size tree"""
1482 if isinstance(tree, SizeTree):
1483 min = None
1484 for (b, s) in tree.subs:
1485 width = prop_size(s)
1486 if min is None or min > width:
1487 min = width
1488 assert min >= tree.width
1489 tree.width = min
1490 else:
1491 min = tree.width
1492 return min
1493 # end prop_size
1496 def main():
1497 global arguments
1498 global formats
1499 global allpatterns
1500 global translate_scope
1501 global translate_prefix
1502 global output_fd
1503 global output_file
1504 global output_null
1505 global input_file
1506 global insnwidth
1507 global insntype
1508 global insnmask
1509 global decode_function
1510 global bitop_width
1511 global variablewidth
1512 global anyextern
1513 global testforerror
1515 decode_scope = 'static '
1517 long_opts = ['decode=', 'translate=', 'output=', 'insnwidth=',
1518 'static-decode=', 'varinsnwidth=', 'test-for-error',
1519 'output-null']
1520 try:
1521 (opts, args) = getopt.gnu_getopt(sys.argv[1:], 'o:vw:', long_opts)
1522 except getopt.GetoptError as err:
1523 error(0, err)
1524 for o, a in opts:
1525 if o in ('-o', '--output'):
1526 output_file = a
1527 elif o == '--decode':
1528 decode_function = a
1529 decode_scope = ''
1530 elif o == '--static-decode':
1531 decode_function = a
1532 elif o == '--translate':
1533 translate_prefix = a
1534 translate_scope = ''
1535 elif o in ('-w', '--insnwidth', '--varinsnwidth'):
1536 if o == '--varinsnwidth':
1537 variablewidth = True
1538 insnwidth = int(a)
1539 if insnwidth == 16:
1540 insntype = 'uint16_t'
1541 insnmask = 0xffff
1542 elif insnwidth == 64:
1543 insntype = 'uint64_t'
1544 insnmask = 0xffffffffffffffff
1545 bitop_width = 64
1546 elif insnwidth != 32:
1547 error(0, 'cannot handle insns of width', insnwidth)
1548 elif o == '--test-for-error':
1549 testforerror = True
1550 elif o == '--output-null':
1551 output_null = True
1552 else:
1553 assert False, 'unhandled option'
1555 if len(args) < 1:
1556 error(0, 'missing input file')
1558 toppat = ExcMultiPattern(0)
1560 for filename in args:
1561 input_file = filename
1562 f = open(filename, 'rt', encoding='utf-8')
1563 parse_file(f, toppat)
1564 f.close()
1566 # We do not want to compute masks for toppat, because those masks
1567 # are used as a starting point for build_tree. For toppat, we must
1568 # insist that decode begins from naught.
1569 for i in toppat.pats:
1570 i.prop_masks()
1572 toppat.build_tree()
1573 toppat.prop_format()
1575 if variablewidth:
1576 for i in toppat.pats:
1577 i.prop_width()
1578 stree = build_size_tree(toppat.pats, 8, 0, 0)
1579 prop_size(stree)
1581 if output_null:
1582 output_fd = open(os.devnull, 'wt', encoding='utf-8', errors="ignore")
1583 elif output_file:
1584 output_fd = open(output_file, 'wt', encoding='utf-8')
1585 else:
1586 output_fd = io.TextIOWrapper(sys.stdout.buffer,
1587 encoding=sys.stdout.encoding,
1588 errors="ignore")
1590 output_autogen()
1591 for n in sorted(arguments.keys()):
1592 f = arguments[n]
1593 f.output_def()
1595 # A single translate function can be invoked for different patterns.
1596 # Make sure that the argument sets are the same, and declare the
1597 # function only once.
1599 # If we're sharing formats, we're likely also sharing trans_* functions,
1600 # but we can't tell which ones. Prevent issues from the compiler by
1601 # suppressing redundant declaration warnings.
1602 if anyextern:
1603 output("#pragma GCC diagnostic push\n",
1604 "#pragma GCC diagnostic ignored \"-Wredundant-decls\"\n",
1605 "#ifdef __clang__\n"
1606 "# pragma GCC diagnostic ignored \"-Wtypedef-redefinition\"\n",
1607 "#endif\n\n")
1609 out_pats = {}
1610 for i in allpatterns:
1611 if i.name in out_pats:
1612 p = out_pats[i.name]
1613 if i.base.base != p.base.base:
1614 error(0, i.name, ' has conflicting argument sets')
1615 else:
1616 i.output_decl()
1617 out_pats[i.name] = i
1618 output('\n')
1620 if anyextern:
1621 output("#pragma GCC diagnostic pop\n\n")
1623 for n in sorted(formats.keys()):
1624 f = formats[n]
1625 f.output_extract()
1627 output(decode_scope, 'bool ', decode_function,
1628 '(DisasContext *ctx, ', insntype, ' insn)\n{\n')
1630 i4 = str_indent(4)
1632 if len(allpatterns) != 0:
1633 output(i4, 'union {\n')
1634 for n in sorted(arguments.keys()):
1635 f = arguments[n]
1636 output(i4, i4, f.struct_name(), ' f_', f.name, ';\n')
1637 output(i4, '} u;\n\n')
1638 toppat.output_code(4, False, 0, 0)
1640 output(i4, 'return false;\n')
1641 output('}\n')
1643 if variablewidth:
1644 output('\n', decode_scope, insntype, ' ', decode_function,
1645 '_load(DisasContext *ctx)\n{\n',
1646 ' ', insntype, ' insn = 0;\n\n')
1647 stree.output_code(4, 0, 0, 0)
1648 output('}\n')
1650 if output_file:
1651 output_fd.close()
1652 exit(1 if testforerror else 0)
1653 # end main
1656 if __name__ == '__main__':
1657 main()