os-posix: Add os_set_daemonize()
[qemu/armbru.git] / hw / sd / sdhci.c
blobe0bbc903446175970df6ade614b840d1139cab49
1 /*
2 * SD Association Host Standard Specification v2.0 controller emulation
4 * Datasheet: PartA2_SD_Host_Controller_Simplified_Specification_Ver2.00.pdf
6 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
7 * Mitsyanko Igor <i.mitsyanko@samsung.com>
8 * Peter A.G. Crosthwaite <peter.crosthwaite@petalogix.com>
10 * Based on MMC controller for Samsung S5PC1xx-based board emulation
11 * by Alexey Merkulov and Vladimir Monakhov.
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
21 * See the GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License along
24 * with this program; if not, see <http://www.gnu.org/licenses/>.
27 #include "qemu/osdep.h"
28 #include "qemu/units.h"
29 #include "qemu/error-report.h"
30 #include "qapi/error.h"
31 #include "hw/irq.h"
32 #include "hw/qdev-properties.h"
33 #include "sysemu/dma.h"
34 #include "qemu/timer.h"
35 #include "qemu/bitops.h"
36 #include "hw/sd/sdhci.h"
37 #include "migration/vmstate.h"
38 #include "sdhci-internal.h"
39 #include "qemu/log.h"
40 #include "qemu/module.h"
41 #include "trace.h"
42 #include "qom/object.h"
44 #define TYPE_SDHCI_BUS "sdhci-bus"
45 /* This is reusing the SDBus typedef from SD_BUS */
46 DECLARE_INSTANCE_CHECKER(SDBus, SDHCI_BUS,
47 TYPE_SDHCI_BUS)
49 #define MASKED_WRITE(reg, mask, val) (reg = (reg & (mask)) | (val))
51 static inline unsigned int sdhci_get_fifolen(SDHCIState *s)
53 return 1 << (9 + FIELD_EX32(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH));
56 /* return true on error */
57 static bool sdhci_check_capab_freq_range(SDHCIState *s, const char *desc,
58 uint8_t freq, Error **errp)
60 if (s->sd_spec_version >= 3) {
61 return false;
63 switch (freq) {
64 case 0:
65 case 10 ... 63:
66 break;
67 default:
68 error_setg(errp, "SD %s clock frequency can have value"
69 "in range 0-63 only", desc);
70 return true;
72 return false;
75 static void sdhci_check_capareg(SDHCIState *s, Error **errp)
77 uint64_t msk = s->capareg;
78 uint32_t val;
79 bool y;
81 switch (s->sd_spec_version) {
82 case 4:
83 val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS64BIT_V4);
84 trace_sdhci_capareg("64-bit system bus (v4)", val);
85 msk = FIELD_DP64(msk, SDHC_CAPAB, BUS64BIT_V4, 0);
87 val = FIELD_EX64(s->capareg, SDHC_CAPAB, UHS_II);
88 trace_sdhci_capareg("UHS-II", val);
89 msk = FIELD_DP64(msk, SDHC_CAPAB, UHS_II, 0);
91 val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA3);
92 trace_sdhci_capareg("ADMA3", val);
93 msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA3, 0);
95 /* fallthrough */
96 case 3:
97 val = FIELD_EX64(s->capareg, SDHC_CAPAB, ASYNC_INT);
98 trace_sdhci_capareg("async interrupt", val);
99 msk = FIELD_DP64(msk, SDHC_CAPAB, ASYNC_INT, 0);
101 val = FIELD_EX64(s->capareg, SDHC_CAPAB, SLOT_TYPE);
102 if (val) {
103 error_setg(errp, "slot-type not supported");
104 return;
106 trace_sdhci_capareg("slot type", val);
107 msk = FIELD_DP64(msk, SDHC_CAPAB, SLOT_TYPE, 0);
109 if (val != 2) {
110 val = FIELD_EX64(s->capareg, SDHC_CAPAB, EMBEDDED_8BIT);
111 trace_sdhci_capareg("8-bit bus", val);
113 msk = FIELD_DP64(msk, SDHC_CAPAB, EMBEDDED_8BIT, 0);
115 val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS_SPEED);
116 trace_sdhci_capareg("bus speed mask", val);
117 msk = FIELD_DP64(msk, SDHC_CAPAB, BUS_SPEED, 0);
119 val = FIELD_EX64(s->capareg, SDHC_CAPAB, DRIVER_STRENGTH);
120 trace_sdhci_capareg("driver strength mask", val);
121 msk = FIELD_DP64(msk, SDHC_CAPAB, DRIVER_STRENGTH, 0);
123 val = FIELD_EX64(s->capareg, SDHC_CAPAB, TIMER_RETUNING);
124 trace_sdhci_capareg("timer re-tuning", val);
125 msk = FIELD_DP64(msk, SDHC_CAPAB, TIMER_RETUNING, 0);
127 val = FIELD_EX64(s->capareg, SDHC_CAPAB, SDR50_TUNING);
128 trace_sdhci_capareg("use SDR50 tuning", val);
129 msk = FIELD_DP64(msk, SDHC_CAPAB, SDR50_TUNING, 0);
131 val = FIELD_EX64(s->capareg, SDHC_CAPAB, RETUNING_MODE);
132 trace_sdhci_capareg("re-tuning mode", val);
133 msk = FIELD_DP64(msk, SDHC_CAPAB, RETUNING_MODE, 0);
135 val = FIELD_EX64(s->capareg, SDHC_CAPAB, CLOCK_MULT);
136 trace_sdhci_capareg("clock multiplier", val);
137 msk = FIELD_DP64(msk, SDHC_CAPAB, CLOCK_MULT, 0);
139 /* fallthrough */
140 case 2: /* default version */
141 val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA2);
142 trace_sdhci_capareg("ADMA2", val);
143 msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA2, 0);
145 val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA1);
146 trace_sdhci_capareg("ADMA1", val);
147 msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA1, 0);
149 val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS64BIT);
150 trace_sdhci_capareg("64-bit system bus (v3)", val);
151 msk = FIELD_DP64(msk, SDHC_CAPAB, BUS64BIT, 0);
153 /* fallthrough */
154 case 1:
155 y = FIELD_EX64(s->capareg, SDHC_CAPAB, TOUNIT);
156 msk = FIELD_DP64(msk, SDHC_CAPAB, TOUNIT, 0);
158 val = FIELD_EX64(s->capareg, SDHC_CAPAB, TOCLKFREQ);
159 trace_sdhci_capareg(y ? "timeout (MHz)" : "Timeout (KHz)", val);
160 if (sdhci_check_capab_freq_range(s, "timeout", val, errp)) {
161 return;
163 msk = FIELD_DP64(msk, SDHC_CAPAB, TOCLKFREQ, 0);
165 val = FIELD_EX64(s->capareg, SDHC_CAPAB, BASECLKFREQ);
166 trace_sdhci_capareg(y ? "base (MHz)" : "Base (KHz)", val);
167 if (sdhci_check_capab_freq_range(s, "base", val, errp)) {
168 return;
170 msk = FIELD_DP64(msk, SDHC_CAPAB, BASECLKFREQ, 0);
172 val = FIELD_EX64(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH);
173 if (val >= 3) {
174 error_setg(errp, "block size can be 512, 1024 or 2048 only");
175 return;
177 trace_sdhci_capareg("max block length", sdhci_get_fifolen(s));
178 msk = FIELD_DP64(msk, SDHC_CAPAB, MAXBLOCKLENGTH, 0);
180 val = FIELD_EX64(s->capareg, SDHC_CAPAB, HIGHSPEED);
181 trace_sdhci_capareg("high speed", val);
182 msk = FIELD_DP64(msk, SDHC_CAPAB, HIGHSPEED, 0);
184 val = FIELD_EX64(s->capareg, SDHC_CAPAB, SDMA);
185 trace_sdhci_capareg("SDMA", val);
186 msk = FIELD_DP64(msk, SDHC_CAPAB, SDMA, 0);
188 val = FIELD_EX64(s->capareg, SDHC_CAPAB, SUSPRESUME);
189 trace_sdhci_capareg("suspend/resume", val);
190 msk = FIELD_DP64(msk, SDHC_CAPAB, SUSPRESUME, 0);
192 val = FIELD_EX64(s->capareg, SDHC_CAPAB, V33);
193 trace_sdhci_capareg("3.3v", val);
194 msk = FIELD_DP64(msk, SDHC_CAPAB, V33, 0);
196 val = FIELD_EX64(s->capareg, SDHC_CAPAB, V30);
197 trace_sdhci_capareg("3.0v", val);
198 msk = FIELD_DP64(msk, SDHC_CAPAB, V30, 0);
200 val = FIELD_EX64(s->capareg, SDHC_CAPAB, V18);
201 trace_sdhci_capareg("1.8v", val);
202 msk = FIELD_DP64(msk, SDHC_CAPAB, V18, 0);
203 break;
205 default:
206 error_setg(errp, "Unsupported spec version: %u", s->sd_spec_version);
208 if (msk) {
209 qemu_log_mask(LOG_UNIMP,
210 "SDHCI: unknown CAPAB mask: 0x%016" PRIx64 "\n", msk);
214 static uint8_t sdhci_slotint(SDHCIState *s)
216 return (s->norintsts & s->norintsigen) || (s->errintsts & s->errintsigen) ||
217 ((s->norintsts & SDHC_NIS_INSERT) && (s->wakcon & SDHC_WKUP_ON_INS)) ||
218 ((s->norintsts & SDHC_NIS_REMOVE) && (s->wakcon & SDHC_WKUP_ON_RMV));
221 /* Return true if IRQ was pending and delivered */
222 static bool sdhci_update_irq(SDHCIState *s)
224 bool pending = sdhci_slotint(s);
226 qemu_set_irq(s->irq, pending);
228 return pending;
231 static void sdhci_raise_insertion_irq(void *opaque)
233 SDHCIState *s = (SDHCIState *)opaque;
235 if (s->norintsts & SDHC_NIS_REMOVE) {
236 timer_mod(s->insert_timer,
237 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
238 } else {
239 s->prnsts = 0x1ff0000;
240 if (s->norintstsen & SDHC_NISEN_INSERT) {
241 s->norintsts |= SDHC_NIS_INSERT;
243 sdhci_update_irq(s);
247 static void sdhci_set_inserted(DeviceState *dev, bool level)
249 SDHCIState *s = (SDHCIState *)dev;
251 trace_sdhci_set_inserted(level ? "insert" : "eject");
252 if ((s->norintsts & SDHC_NIS_REMOVE) && level) {
253 /* Give target some time to notice card ejection */
254 timer_mod(s->insert_timer,
255 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
256 } else {
257 if (level) {
258 s->prnsts = 0x1ff0000;
259 if (s->norintstsen & SDHC_NISEN_INSERT) {
260 s->norintsts |= SDHC_NIS_INSERT;
262 } else {
263 s->prnsts = 0x1fa0000;
264 s->pwrcon &= ~SDHC_POWER_ON;
265 s->clkcon &= ~SDHC_CLOCK_SDCLK_EN;
266 if (s->norintstsen & SDHC_NISEN_REMOVE) {
267 s->norintsts |= SDHC_NIS_REMOVE;
270 sdhci_update_irq(s);
274 static void sdhci_set_readonly(DeviceState *dev, bool level)
276 SDHCIState *s = (SDHCIState *)dev;
278 if (level) {
279 s->prnsts &= ~SDHC_WRITE_PROTECT;
280 } else {
281 /* Write enabled */
282 s->prnsts |= SDHC_WRITE_PROTECT;
286 static void sdhci_reset(SDHCIState *s)
288 DeviceState *dev = DEVICE(s);
290 timer_del(s->insert_timer);
291 timer_del(s->transfer_timer);
293 /* Set all registers to 0. Capabilities/Version registers are not cleared
294 * and assumed to always preserve their value, given to them during
295 * initialization */
296 memset(&s->sdmasysad, 0, (uintptr_t)&s->capareg - (uintptr_t)&s->sdmasysad);
298 /* Reset other state based on current card insertion/readonly status */
299 sdhci_set_inserted(dev, sdbus_get_inserted(&s->sdbus));
300 sdhci_set_readonly(dev, sdbus_get_readonly(&s->sdbus));
302 s->data_count = 0;
303 s->stopped_state = sdhc_not_stopped;
304 s->pending_insert_state = false;
307 static void sdhci_poweron_reset(DeviceState *dev)
309 /* QOM (ie power-on) reset. This is identical to reset
310 * commanded via device register apart from handling of the
311 * 'pending insert on powerup' quirk.
313 SDHCIState *s = (SDHCIState *)dev;
315 sdhci_reset(s);
317 if (s->pending_insert_quirk) {
318 s->pending_insert_state = true;
322 static void sdhci_data_transfer(void *opaque);
324 static void sdhci_send_command(SDHCIState *s)
326 SDRequest request;
327 uint8_t response[16];
328 int rlen;
329 bool timeout = false;
331 s->errintsts = 0;
332 s->acmd12errsts = 0;
333 request.cmd = s->cmdreg >> 8;
334 request.arg = s->argument;
336 trace_sdhci_send_command(request.cmd, request.arg);
337 rlen = sdbus_do_command(&s->sdbus, &request, response);
339 if (s->cmdreg & SDHC_CMD_RESPONSE) {
340 if (rlen == 4) {
341 s->rspreg[0] = ldl_be_p(response);
342 s->rspreg[1] = s->rspreg[2] = s->rspreg[3] = 0;
343 trace_sdhci_response4(s->rspreg[0]);
344 } else if (rlen == 16) {
345 s->rspreg[0] = ldl_be_p(&response[11]);
346 s->rspreg[1] = ldl_be_p(&response[7]);
347 s->rspreg[2] = ldl_be_p(&response[3]);
348 s->rspreg[3] = (response[0] << 16) | (response[1] << 8) |
349 response[2];
350 trace_sdhci_response16(s->rspreg[3], s->rspreg[2],
351 s->rspreg[1], s->rspreg[0]);
352 } else {
353 timeout = true;
354 trace_sdhci_error("timeout waiting for command response");
355 if (s->errintstsen & SDHC_EISEN_CMDTIMEOUT) {
356 s->errintsts |= SDHC_EIS_CMDTIMEOUT;
357 s->norintsts |= SDHC_NIS_ERR;
361 if (!(s->quirks & SDHCI_QUIRK_NO_BUSY_IRQ) &&
362 (s->norintstsen & SDHC_NISEN_TRSCMP) &&
363 (s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY) {
364 s->norintsts |= SDHC_NIS_TRSCMP;
368 if (s->norintstsen & SDHC_NISEN_CMDCMP) {
369 s->norintsts |= SDHC_NIS_CMDCMP;
372 sdhci_update_irq(s);
374 if (!timeout && s->blksize && (s->cmdreg & SDHC_CMD_DATA_PRESENT)) {
375 s->data_count = 0;
376 sdhci_data_transfer(s);
380 static void sdhci_end_transfer(SDHCIState *s)
382 /* Automatically send CMD12 to stop transfer if AutoCMD12 enabled */
383 if ((s->trnmod & SDHC_TRNS_ACMD12) != 0) {
384 SDRequest request;
385 uint8_t response[16];
387 request.cmd = 0x0C;
388 request.arg = 0;
389 trace_sdhci_end_transfer(request.cmd, request.arg);
390 sdbus_do_command(&s->sdbus, &request, response);
391 /* Auto CMD12 response goes to the upper Response register */
392 s->rspreg[3] = ldl_be_p(response);
395 s->prnsts &= ~(SDHC_DOING_READ | SDHC_DOING_WRITE |
396 SDHC_DAT_LINE_ACTIVE | SDHC_DATA_INHIBIT |
397 SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE);
399 if (s->norintstsen & SDHC_NISEN_TRSCMP) {
400 s->norintsts |= SDHC_NIS_TRSCMP;
403 sdhci_update_irq(s);
407 * Programmed i/o data transfer
409 #define BLOCK_SIZE_MASK (4 * KiB - 1)
411 /* Fill host controller's read buffer with BLKSIZE bytes of data from card */
412 static void sdhci_read_block_from_card(SDHCIState *s)
414 const uint16_t blk_size = s->blksize & BLOCK_SIZE_MASK;
416 if ((s->trnmod & SDHC_TRNS_MULTI) &&
417 (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) {
418 return;
421 if (!FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, EXECUTE_TUNING)) {
422 /* Device is not in tuning */
423 sdbus_read_data(&s->sdbus, s->fifo_buffer, blk_size);
426 if (FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, EXECUTE_TUNING)) {
427 /* Device is in tuning */
428 s->hostctl2 &= ~R_SDHC_HOSTCTL2_EXECUTE_TUNING_MASK;
429 s->hostctl2 |= R_SDHC_HOSTCTL2_SAMPLING_CLKSEL_MASK;
430 s->prnsts &= ~(SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ |
431 SDHC_DATA_INHIBIT);
432 goto read_done;
435 /* New data now available for READ through Buffer Port Register */
436 s->prnsts |= SDHC_DATA_AVAILABLE;
437 if (s->norintstsen & SDHC_NISEN_RBUFRDY) {
438 s->norintsts |= SDHC_NIS_RBUFRDY;
441 /* Clear DAT line active status if that was the last block */
442 if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
443 ((s->trnmod & SDHC_TRNS_MULTI) && s->blkcnt == 1)) {
444 s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
447 /* If stop at block gap request was set and it's not the last block of
448 * data - generate Block Event interrupt */
449 if (s->stopped_state == sdhc_gap_read && (s->trnmod & SDHC_TRNS_MULTI) &&
450 s->blkcnt != 1) {
451 s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
452 if (s->norintstsen & SDHC_EISEN_BLKGAP) {
453 s->norintsts |= SDHC_EIS_BLKGAP;
457 read_done:
458 sdhci_update_irq(s);
461 /* Read @size byte of data from host controller @s BUFFER DATA PORT register */
462 static uint32_t sdhci_read_dataport(SDHCIState *s, unsigned size)
464 uint32_t value = 0;
465 int i;
467 /* first check that a valid data exists in host controller input buffer */
468 if ((s->prnsts & SDHC_DATA_AVAILABLE) == 0) {
469 trace_sdhci_error("read from empty buffer");
470 return 0;
473 for (i = 0; i < size; i++) {
474 value |= s->fifo_buffer[s->data_count] << i * 8;
475 s->data_count++;
476 /* check if we've read all valid data (blksize bytes) from buffer */
477 if ((s->data_count) >= (s->blksize & BLOCK_SIZE_MASK)) {
478 trace_sdhci_read_dataport(s->data_count);
479 s->prnsts &= ~SDHC_DATA_AVAILABLE; /* no more data in a buffer */
480 s->data_count = 0; /* next buff read must start at position [0] */
482 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
483 s->blkcnt--;
486 /* if that was the last block of data */
487 if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
488 ((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) ||
489 /* stop at gap request */
490 (s->stopped_state == sdhc_gap_read &&
491 !(s->prnsts & SDHC_DAT_LINE_ACTIVE))) {
492 sdhci_end_transfer(s);
493 } else { /* if there are more data, read next block from card */
494 sdhci_read_block_from_card(s);
496 break;
500 return value;
503 /* Write data from host controller FIFO to card */
504 static void sdhci_write_block_to_card(SDHCIState *s)
506 if (s->prnsts & SDHC_SPACE_AVAILABLE) {
507 if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
508 s->norintsts |= SDHC_NIS_WBUFRDY;
510 sdhci_update_irq(s);
511 return;
514 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
515 if (s->blkcnt == 0) {
516 return;
517 } else {
518 s->blkcnt--;
522 sdbus_write_data(&s->sdbus, s->fifo_buffer, s->blksize & BLOCK_SIZE_MASK);
524 /* Next data can be written through BUFFER DATORT register */
525 s->prnsts |= SDHC_SPACE_AVAILABLE;
527 /* Finish transfer if that was the last block of data */
528 if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
529 ((s->trnmod & SDHC_TRNS_MULTI) &&
530 (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0))) {
531 sdhci_end_transfer(s);
532 } else if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
533 s->norintsts |= SDHC_NIS_WBUFRDY;
536 /* Generate Block Gap Event if requested and if not the last block */
537 if (s->stopped_state == sdhc_gap_write && (s->trnmod & SDHC_TRNS_MULTI) &&
538 s->blkcnt > 0) {
539 s->prnsts &= ~SDHC_DOING_WRITE;
540 if (s->norintstsen & SDHC_EISEN_BLKGAP) {
541 s->norintsts |= SDHC_EIS_BLKGAP;
543 sdhci_end_transfer(s);
546 sdhci_update_irq(s);
549 /* Write @size bytes of @value data to host controller @s Buffer Data Port
550 * register */
551 static void sdhci_write_dataport(SDHCIState *s, uint32_t value, unsigned size)
553 unsigned i;
555 /* Check that there is free space left in a buffer */
556 if (!(s->prnsts & SDHC_SPACE_AVAILABLE)) {
557 trace_sdhci_error("Can't write to data buffer: buffer full");
558 return;
561 for (i = 0; i < size; i++) {
562 s->fifo_buffer[s->data_count] = value & 0xFF;
563 s->data_count++;
564 value >>= 8;
565 if (s->data_count >= (s->blksize & BLOCK_SIZE_MASK)) {
566 trace_sdhci_write_dataport(s->data_count);
567 s->data_count = 0;
568 s->prnsts &= ~SDHC_SPACE_AVAILABLE;
569 if (s->prnsts & SDHC_DOING_WRITE) {
570 sdhci_write_block_to_card(s);
577 * Single DMA data transfer
580 /* Multi block SDMA transfer */
581 static void sdhci_sdma_transfer_multi_blocks(SDHCIState *s)
583 bool page_aligned = false;
584 unsigned int begin;
585 const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK;
586 uint32_t boundary_chk = 1 << (((s->blksize & ~BLOCK_SIZE_MASK) >> 12) + 12);
587 uint32_t boundary_count = boundary_chk - (s->sdmasysad % boundary_chk);
589 if (!(s->trnmod & SDHC_TRNS_BLK_CNT_EN) || !s->blkcnt) {
590 qemu_log_mask(LOG_UNIMP, "infinite transfer is not supported\n");
591 return;
594 /* XXX: Some sd/mmc drivers (for example, u-boot-slp) do not account for
595 * possible stop at page boundary if initial address is not page aligned,
596 * allow them to work properly */
597 if ((s->sdmasysad % boundary_chk) == 0) {
598 page_aligned = true;
601 s->prnsts |= SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE;
602 if (s->trnmod & SDHC_TRNS_READ) {
603 s->prnsts |= SDHC_DOING_READ;
604 while (s->blkcnt) {
605 if (s->data_count == 0) {
606 sdbus_read_data(&s->sdbus, s->fifo_buffer, block_size);
608 begin = s->data_count;
609 if (((boundary_count + begin) < block_size) && page_aligned) {
610 s->data_count = boundary_count + begin;
611 boundary_count = 0;
612 } else {
613 s->data_count = block_size;
614 boundary_count -= block_size - begin;
615 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
616 s->blkcnt--;
619 dma_memory_write(s->dma_as, s->sdmasysad, &s->fifo_buffer[begin],
620 s->data_count - begin, MEMTXATTRS_UNSPECIFIED);
621 s->sdmasysad += s->data_count - begin;
622 if (s->data_count == block_size) {
623 s->data_count = 0;
625 if (page_aligned && boundary_count == 0) {
626 break;
629 } else {
630 s->prnsts |= SDHC_DOING_WRITE;
631 while (s->blkcnt) {
632 begin = s->data_count;
633 if (((boundary_count + begin) < block_size) && page_aligned) {
634 s->data_count = boundary_count + begin;
635 boundary_count = 0;
636 } else {
637 s->data_count = block_size;
638 boundary_count -= block_size - begin;
640 dma_memory_read(s->dma_as, s->sdmasysad, &s->fifo_buffer[begin],
641 s->data_count - begin, MEMTXATTRS_UNSPECIFIED);
642 s->sdmasysad += s->data_count - begin;
643 if (s->data_count == block_size) {
644 sdbus_write_data(&s->sdbus, s->fifo_buffer, block_size);
645 s->data_count = 0;
646 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
647 s->blkcnt--;
650 if (page_aligned && boundary_count == 0) {
651 break;
656 if (s->blkcnt == 0) {
657 sdhci_end_transfer(s);
658 } else {
659 if (s->norintstsen & SDHC_NISEN_DMA) {
660 s->norintsts |= SDHC_NIS_DMA;
662 sdhci_update_irq(s);
666 /* single block SDMA transfer */
667 static void sdhci_sdma_transfer_single_block(SDHCIState *s)
669 uint32_t datacnt = s->blksize & BLOCK_SIZE_MASK;
671 if (s->trnmod & SDHC_TRNS_READ) {
672 sdbus_read_data(&s->sdbus, s->fifo_buffer, datacnt);
673 dma_memory_write(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt,
674 MEMTXATTRS_UNSPECIFIED);
675 } else {
676 dma_memory_read(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt,
677 MEMTXATTRS_UNSPECIFIED);
678 sdbus_write_data(&s->sdbus, s->fifo_buffer, datacnt);
680 s->blkcnt--;
682 sdhci_end_transfer(s);
685 typedef struct ADMADescr {
686 hwaddr addr;
687 uint16_t length;
688 uint8_t attr;
689 uint8_t incr;
690 } ADMADescr;
692 static void get_adma_description(SDHCIState *s, ADMADescr *dscr)
694 uint32_t adma1 = 0;
695 uint64_t adma2 = 0;
696 hwaddr entry_addr = (hwaddr)s->admasysaddr;
697 switch (SDHC_DMA_TYPE(s->hostctl1)) {
698 case SDHC_CTRL_ADMA2_32:
699 dma_memory_read(s->dma_as, entry_addr, &adma2, sizeof(adma2),
700 MEMTXATTRS_UNSPECIFIED);
701 adma2 = le64_to_cpu(adma2);
702 /* The spec does not specify endianness of descriptor table.
703 * We currently assume that it is LE.
705 dscr->addr = (hwaddr)extract64(adma2, 32, 32) & ~0x3ull;
706 dscr->length = (uint16_t)extract64(adma2, 16, 16);
707 dscr->attr = (uint8_t)extract64(adma2, 0, 7);
708 dscr->incr = 8;
709 break;
710 case SDHC_CTRL_ADMA1_32:
711 dma_memory_read(s->dma_as, entry_addr, &adma1, sizeof(adma1),
712 MEMTXATTRS_UNSPECIFIED);
713 adma1 = le32_to_cpu(adma1);
714 dscr->addr = (hwaddr)(adma1 & 0xFFFFF000);
715 dscr->attr = (uint8_t)extract32(adma1, 0, 7);
716 dscr->incr = 4;
717 if ((dscr->attr & SDHC_ADMA_ATTR_ACT_MASK) == SDHC_ADMA_ATTR_SET_LEN) {
718 dscr->length = (uint16_t)extract32(adma1, 12, 16);
719 } else {
720 dscr->length = 4 * KiB;
722 break;
723 case SDHC_CTRL_ADMA2_64:
724 dma_memory_read(s->dma_as, entry_addr, &dscr->attr, 1,
725 MEMTXATTRS_UNSPECIFIED);
726 dma_memory_read(s->dma_as, entry_addr + 2, &dscr->length, 2,
727 MEMTXATTRS_UNSPECIFIED);
728 dscr->length = le16_to_cpu(dscr->length);
729 dma_memory_read(s->dma_as, entry_addr + 4, &dscr->addr, 8,
730 MEMTXATTRS_UNSPECIFIED);
731 dscr->addr = le64_to_cpu(dscr->addr);
732 dscr->attr &= (uint8_t) ~0xC0;
733 dscr->incr = 12;
734 break;
738 /* Advanced DMA data transfer */
740 static void sdhci_do_adma(SDHCIState *s)
742 unsigned int begin, length;
743 const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK;
744 ADMADescr dscr = {};
745 int i;
747 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN && !s->blkcnt) {
748 /* Stop Multiple Transfer */
749 sdhci_end_transfer(s);
750 return;
753 for (i = 0; i < SDHC_ADMA_DESCS_PER_DELAY; ++i) {
754 s->admaerr &= ~SDHC_ADMAERR_LENGTH_MISMATCH;
756 get_adma_description(s, &dscr);
757 trace_sdhci_adma_loop(dscr.addr, dscr.length, dscr.attr);
759 if ((dscr.attr & SDHC_ADMA_ATTR_VALID) == 0) {
760 /* Indicate that error occurred in ST_FDS state */
761 s->admaerr &= ~SDHC_ADMAERR_STATE_MASK;
762 s->admaerr |= SDHC_ADMAERR_STATE_ST_FDS;
764 /* Generate ADMA error interrupt */
765 if (s->errintstsen & SDHC_EISEN_ADMAERR) {
766 s->errintsts |= SDHC_EIS_ADMAERR;
767 s->norintsts |= SDHC_NIS_ERR;
770 sdhci_update_irq(s);
771 return;
774 length = dscr.length ? dscr.length : 64 * KiB;
776 switch (dscr.attr & SDHC_ADMA_ATTR_ACT_MASK) {
777 case SDHC_ADMA_ATTR_ACT_TRAN: /* data transfer */
778 s->prnsts |= SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE;
779 if (s->trnmod & SDHC_TRNS_READ) {
780 s->prnsts |= SDHC_DOING_READ;
781 while (length) {
782 if (s->data_count == 0) {
783 sdbus_read_data(&s->sdbus, s->fifo_buffer, block_size);
785 begin = s->data_count;
786 if ((length + begin) < block_size) {
787 s->data_count = length + begin;
788 length = 0;
789 } else {
790 s->data_count = block_size;
791 length -= block_size - begin;
793 dma_memory_write(s->dma_as, dscr.addr,
794 &s->fifo_buffer[begin],
795 s->data_count - begin,
796 MEMTXATTRS_UNSPECIFIED);
797 dscr.addr += s->data_count - begin;
798 if (s->data_count == block_size) {
799 s->data_count = 0;
800 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
801 s->blkcnt--;
802 if (s->blkcnt == 0) {
803 break;
808 } else {
809 s->prnsts |= SDHC_DOING_WRITE;
810 while (length) {
811 begin = s->data_count;
812 if ((length + begin) < block_size) {
813 s->data_count = length + begin;
814 length = 0;
815 } else {
816 s->data_count = block_size;
817 length -= block_size - begin;
819 dma_memory_read(s->dma_as, dscr.addr,
820 &s->fifo_buffer[begin],
821 s->data_count - begin,
822 MEMTXATTRS_UNSPECIFIED);
823 dscr.addr += s->data_count - begin;
824 if (s->data_count == block_size) {
825 sdbus_write_data(&s->sdbus, s->fifo_buffer, block_size);
826 s->data_count = 0;
827 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
828 s->blkcnt--;
829 if (s->blkcnt == 0) {
830 break;
836 s->admasysaddr += dscr.incr;
837 break;
838 case SDHC_ADMA_ATTR_ACT_LINK: /* link to next descriptor table */
839 s->admasysaddr = dscr.addr;
840 trace_sdhci_adma("link", s->admasysaddr);
841 break;
842 default:
843 s->admasysaddr += dscr.incr;
844 break;
847 if (dscr.attr & SDHC_ADMA_ATTR_INT) {
848 trace_sdhci_adma("interrupt", s->admasysaddr);
849 if (s->norintstsen & SDHC_NISEN_DMA) {
850 s->norintsts |= SDHC_NIS_DMA;
853 if (sdhci_update_irq(s) && !(dscr.attr & SDHC_ADMA_ATTR_END)) {
854 /* IRQ delivered, reschedule current transfer */
855 break;
859 /* ADMA transfer terminates if blkcnt == 0 or by END attribute */
860 if (((s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
861 (s->blkcnt == 0)) || (dscr.attr & SDHC_ADMA_ATTR_END)) {
862 trace_sdhci_adma_transfer_completed();
863 if (length || ((dscr.attr & SDHC_ADMA_ATTR_END) &&
864 (s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
865 s->blkcnt != 0)) {
866 trace_sdhci_error("SD/MMC host ADMA length mismatch");
867 s->admaerr |= SDHC_ADMAERR_LENGTH_MISMATCH |
868 SDHC_ADMAERR_STATE_ST_TFR;
869 if (s->errintstsen & SDHC_EISEN_ADMAERR) {
870 trace_sdhci_error("Set ADMA error flag");
871 s->errintsts |= SDHC_EIS_ADMAERR;
872 s->norintsts |= SDHC_NIS_ERR;
875 sdhci_update_irq(s);
877 sdhci_end_transfer(s);
878 return;
883 /* we have unfinished business - reschedule to continue ADMA */
884 timer_mod(s->transfer_timer,
885 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_TRANSFER_DELAY);
888 /* Perform data transfer according to controller configuration */
890 static void sdhci_data_transfer(void *opaque)
892 SDHCIState *s = (SDHCIState *)opaque;
894 if (s->trnmod & SDHC_TRNS_DMA) {
895 switch (SDHC_DMA_TYPE(s->hostctl1)) {
896 case SDHC_CTRL_SDMA:
897 if ((s->blkcnt == 1) || !(s->trnmod & SDHC_TRNS_MULTI)) {
898 sdhci_sdma_transfer_single_block(s);
899 } else {
900 sdhci_sdma_transfer_multi_blocks(s);
903 break;
904 case SDHC_CTRL_ADMA1_32:
905 if (!(s->capareg & R_SDHC_CAPAB_ADMA1_MASK)) {
906 trace_sdhci_error("ADMA1 not supported");
907 break;
910 sdhci_do_adma(s);
911 break;
912 case SDHC_CTRL_ADMA2_32:
913 if (!(s->capareg & R_SDHC_CAPAB_ADMA2_MASK)) {
914 trace_sdhci_error("ADMA2 not supported");
915 break;
918 sdhci_do_adma(s);
919 break;
920 case SDHC_CTRL_ADMA2_64:
921 if (!(s->capareg & R_SDHC_CAPAB_ADMA2_MASK) ||
922 !(s->capareg & R_SDHC_CAPAB_BUS64BIT_MASK)) {
923 trace_sdhci_error("64 bit ADMA not supported");
924 break;
927 sdhci_do_adma(s);
928 break;
929 default:
930 trace_sdhci_error("Unsupported DMA type");
931 break;
933 } else {
934 if ((s->trnmod & SDHC_TRNS_READ) && sdbus_data_ready(&s->sdbus)) {
935 s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
936 SDHC_DAT_LINE_ACTIVE;
937 sdhci_read_block_from_card(s);
938 } else {
939 s->prnsts |= SDHC_DOING_WRITE | SDHC_DAT_LINE_ACTIVE |
940 SDHC_SPACE_AVAILABLE | SDHC_DATA_INHIBIT;
941 sdhci_write_block_to_card(s);
946 static bool sdhci_can_issue_command(SDHCIState *s)
948 if (!SDHC_CLOCK_IS_ON(s->clkcon) ||
949 (((s->prnsts & SDHC_DATA_INHIBIT) || s->stopped_state) &&
950 ((s->cmdreg & SDHC_CMD_DATA_PRESENT) ||
951 ((s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY &&
952 !(SDHC_COMMAND_TYPE(s->cmdreg) == SDHC_CMD_ABORT))))) {
953 return false;
956 return true;
959 /* The Buffer Data Port register must be accessed in sequential and
960 * continuous manner */
961 static inline bool
962 sdhci_buff_access_is_sequential(SDHCIState *s, unsigned byte_num)
964 if ((s->data_count & 0x3) != byte_num) {
965 trace_sdhci_error("Non-sequential access to Buffer Data Port register"
966 "is prohibited\n");
967 return false;
969 return true;
972 static void sdhci_resume_pending_transfer(SDHCIState *s)
974 timer_del(s->transfer_timer);
975 sdhci_data_transfer(s);
978 static uint64_t sdhci_read(void *opaque, hwaddr offset, unsigned size)
980 SDHCIState *s = (SDHCIState *)opaque;
981 uint32_t ret = 0;
983 if (timer_pending(s->transfer_timer)) {
984 sdhci_resume_pending_transfer(s);
987 switch (offset & ~0x3) {
988 case SDHC_SYSAD:
989 ret = s->sdmasysad;
990 break;
991 case SDHC_BLKSIZE:
992 ret = s->blksize | (s->blkcnt << 16);
993 break;
994 case SDHC_ARGUMENT:
995 ret = s->argument;
996 break;
997 case SDHC_TRNMOD:
998 ret = s->trnmod | (s->cmdreg << 16);
999 break;
1000 case SDHC_RSPREG0 ... SDHC_RSPREG3:
1001 ret = s->rspreg[((offset & ~0x3) - SDHC_RSPREG0) >> 2];
1002 break;
1003 case SDHC_BDATA:
1004 if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
1005 ret = sdhci_read_dataport(s, size);
1006 trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
1007 return ret;
1009 break;
1010 case SDHC_PRNSTS:
1011 ret = s->prnsts;
1012 ret = FIELD_DP32(ret, SDHC_PRNSTS, DAT_LVL,
1013 sdbus_get_dat_lines(&s->sdbus));
1014 ret = FIELD_DP32(ret, SDHC_PRNSTS, CMD_LVL,
1015 sdbus_get_cmd_line(&s->sdbus));
1016 break;
1017 case SDHC_HOSTCTL:
1018 ret = s->hostctl1 | (s->pwrcon << 8) | (s->blkgap << 16) |
1019 (s->wakcon << 24);
1020 break;
1021 case SDHC_CLKCON:
1022 ret = s->clkcon | (s->timeoutcon << 16);
1023 break;
1024 case SDHC_NORINTSTS:
1025 ret = s->norintsts | (s->errintsts << 16);
1026 break;
1027 case SDHC_NORINTSTSEN:
1028 ret = s->norintstsen | (s->errintstsen << 16);
1029 break;
1030 case SDHC_NORINTSIGEN:
1031 ret = s->norintsigen | (s->errintsigen << 16);
1032 break;
1033 case SDHC_ACMD12ERRSTS:
1034 ret = s->acmd12errsts | (s->hostctl2 << 16);
1035 break;
1036 case SDHC_CAPAB:
1037 ret = (uint32_t)s->capareg;
1038 break;
1039 case SDHC_CAPAB + 4:
1040 ret = (uint32_t)(s->capareg >> 32);
1041 break;
1042 case SDHC_MAXCURR:
1043 ret = (uint32_t)s->maxcurr;
1044 break;
1045 case SDHC_MAXCURR + 4:
1046 ret = (uint32_t)(s->maxcurr >> 32);
1047 break;
1048 case SDHC_ADMAERR:
1049 ret = s->admaerr;
1050 break;
1051 case SDHC_ADMASYSADDR:
1052 ret = (uint32_t)s->admasysaddr;
1053 break;
1054 case SDHC_ADMASYSADDR + 4:
1055 ret = (uint32_t)(s->admasysaddr >> 32);
1056 break;
1057 case SDHC_SLOT_INT_STATUS:
1058 ret = (s->version << 16) | sdhci_slotint(s);
1059 break;
1060 default:
1061 qemu_log_mask(LOG_UNIMP, "SDHC rd_%ub @0x%02" HWADDR_PRIx " "
1062 "not implemented\n", size, offset);
1063 break;
1066 ret >>= (offset & 0x3) * 8;
1067 ret &= (1ULL << (size * 8)) - 1;
1068 trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
1069 return ret;
1072 static inline void sdhci_blkgap_write(SDHCIState *s, uint8_t value)
1074 if ((value & SDHC_STOP_AT_GAP_REQ) && (s->blkgap & SDHC_STOP_AT_GAP_REQ)) {
1075 return;
1077 s->blkgap = value & SDHC_STOP_AT_GAP_REQ;
1079 if ((value & SDHC_CONTINUE_REQ) && s->stopped_state &&
1080 (s->blkgap & SDHC_STOP_AT_GAP_REQ) == 0) {
1081 if (s->stopped_state == sdhc_gap_read) {
1082 s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ;
1083 sdhci_read_block_from_card(s);
1084 } else {
1085 s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_WRITE;
1086 sdhci_write_block_to_card(s);
1088 s->stopped_state = sdhc_not_stopped;
1089 } else if (!s->stopped_state && (value & SDHC_STOP_AT_GAP_REQ)) {
1090 if (s->prnsts & SDHC_DOING_READ) {
1091 s->stopped_state = sdhc_gap_read;
1092 } else if (s->prnsts & SDHC_DOING_WRITE) {
1093 s->stopped_state = sdhc_gap_write;
1098 static inline void sdhci_reset_write(SDHCIState *s, uint8_t value)
1100 switch (value) {
1101 case SDHC_RESET_ALL:
1102 sdhci_reset(s);
1103 break;
1104 case SDHC_RESET_CMD:
1105 s->prnsts &= ~SDHC_CMD_INHIBIT;
1106 s->norintsts &= ~SDHC_NIS_CMDCMP;
1107 break;
1108 case SDHC_RESET_DATA:
1109 s->data_count = 0;
1110 s->prnsts &= ~(SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE |
1111 SDHC_DOING_READ | SDHC_DOING_WRITE |
1112 SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE);
1113 s->blkgap &= ~(SDHC_STOP_AT_GAP_REQ | SDHC_CONTINUE_REQ);
1114 s->stopped_state = sdhc_not_stopped;
1115 s->norintsts &= ~(SDHC_NIS_WBUFRDY | SDHC_NIS_RBUFRDY |
1116 SDHC_NIS_DMA | SDHC_NIS_TRSCMP | SDHC_NIS_BLKGAP);
1117 break;
1121 static void
1122 sdhci_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
1124 SDHCIState *s = (SDHCIState *)opaque;
1125 unsigned shift = 8 * (offset & 0x3);
1126 uint32_t mask = ~(((1ULL << (size * 8)) - 1) << shift);
1127 uint32_t value = val;
1128 value <<= shift;
1130 if (timer_pending(s->transfer_timer)) {
1131 sdhci_resume_pending_transfer(s);
1134 switch (offset & ~0x3) {
1135 case SDHC_SYSAD:
1136 if (!TRANSFERRING_DATA(s->prnsts)) {
1137 s->sdmasysad = (s->sdmasysad & mask) | value;
1138 MASKED_WRITE(s->sdmasysad, mask, value);
1139 /* Writing to last byte of sdmasysad might trigger transfer */
1140 if (!(mask & 0xFF000000) && s->blkcnt && s->blksize &&
1141 SDHC_DMA_TYPE(s->hostctl1) == SDHC_CTRL_SDMA) {
1142 if (s->trnmod & SDHC_TRNS_MULTI) {
1143 sdhci_sdma_transfer_multi_blocks(s);
1144 } else {
1145 sdhci_sdma_transfer_single_block(s);
1149 break;
1150 case SDHC_BLKSIZE:
1151 if (!TRANSFERRING_DATA(s->prnsts)) {
1152 uint16_t blksize = s->blksize;
1154 MASKED_WRITE(s->blksize, mask, extract32(value, 0, 12));
1155 MASKED_WRITE(s->blkcnt, mask >> 16, value >> 16);
1157 /* Limit block size to the maximum buffer size */
1158 if (extract32(s->blksize, 0, 12) > s->buf_maxsz) {
1159 qemu_log_mask(LOG_GUEST_ERROR, "%s: Size 0x%x is larger than "
1160 "the maximum buffer 0x%x\n", __func__, s->blksize,
1161 s->buf_maxsz);
1163 s->blksize = deposit32(s->blksize, 0, 12, s->buf_maxsz);
1167 * If the block size is programmed to a different value from
1168 * the previous one, reset the data pointer of s->fifo_buffer[]
1169 * so that s->fifo_buffer[] can be filled in using the new block
1170 * size in the next transfer.
1172 if (blksize != s->blksize) {
1173 s->data_count = 0;
1177 break;
1178 case SDHC_ARGUMENT:
1179 MASKED_WRITE(s->argument, mask, value);
1180 break;
1181 case SDHC_TRNMOD:
1182 /* DMA can be enabled only if it is supported as indicated by
1183 * capabilities register */
1184 if (!(s->capareg & R_SDHC_CAPAB_SDMA_MASK)) {
1185 value &= ~SDHC_TRNS_DMA;
1187 MASKED_WRITE(s->trnmod, mask, value & SDHC_TRNMOD_MASK);
1188 MASKED_WRITE(s->cmdreg, mask >> 16, value >> 16);
1190 /* Writing to the upper byte of CMDREG triggers SD command generation */
1191 if ((mask & 0xFF000000) || !sdhci_can_issue_command(s)) {
1192 break;
1195 sdhci_send_command(s);
1196 break;
1197 case SDHC_BDATA:
1198 if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
1199 sdhci_write_dataport(s, value >> shift, size);
1201 break;
1202 case SDHC_HOSTCTL:
1203 if (!(mask & 0xFF0000)) {
1204 sdhci_blkgap_write(s, value >> 16);
1206 MASKED_WRITE(s->hostctl1, mask, value);
1207 MASKED_WRITE(s->pwrcon, mask >> 8, value >> 8);
1208 MASKED_WRITE(s->wakcon, mask >> 24, value >> 24);
1209 if (!(s->prnsts & SDHC_CARD_PRESENT) || ((s->pwrcon >> 1) & 0x7) < 5 ||
1210 !(s->capareg & (1 << (31 - ((s->pwrcon >> 1) & 0x7))))) {
1211 s->pwrcon &= ~SDHC_POWER_ON;
1213 break;
1214 case SDHC_CLKCON:
1215 if (!(mask & 0xFF000000)) {
1216 sdhci_reset_write(s, value >> 24);
1218 MASKED_WRITE(s->clkcon, mask, value);
1219 MASKED_WRITE(s->timeoutcon, mask >> 16, value >> 16);
1220 if (s->clkcon & SDHC_CLOCK_INT_EN) {
1221 s->clkcon |= SDHC_CLOCK_INT_STABLE;
1222 } else {
1223 s->clkcon &= ~SDHC_CLOCK_INT_STABLE;
1225 break;
1226 case SDHC_NORINTSTS:
1227 if (s->norintstsen & SDHC_NISEN_CARDINT) {
1228 value &= ~SDHC_NIS_CARDINT;
1230 s->norintsts &= mask | ~value;
1231 s->errintsts &= (mask >> 16) | ~(value >> 16);
1232 if (s->errintsts) {
1233 s->norintsts |= SDHC_NIS_ERR;
1234 } else {
1235 s->norintsts &= ~SDHC_NIS_ERR;
1237 sdhci_update_irq(s);
1238 break;
1239 case SDHC_NORINTSTSEN:
1240 MASKED_WRITE(s->norintstsen, mask, value);
1241 MASKED_WRITE(s->errintstsen, mask >> 16, value >> 16);
1242 s->norintsts &= s->norintstsen;
1243 s->errintsts &= s->errintstsen;
1244 if (s->errintsts) {
1245 s->norintsts |= SDHC_NIS_ERR;
1246 } else {
1247 s->norintsts &= ~SDHC_NIS_ERR;
1249 /* Quirk for Raspberry Pi: pending card insert interrupt
1250 * appears when first enabled after power on */
1251 if ((s->norintstsen & SDHC_NISEN_INSERT) && s->pending_insert_state) {
1252 assert(s->pending_insert_quirk);
1253 s->norintsts |= SDHC_NIS_INSERT;
1254 s->pending_insert_state = false;
1256 sdhci_update_irq(s);
1257 break;
1258 case SDHC_NORINTSIGEN:
1259 MASKED_WRITE(s->norintsigen, mask, value);
1260 MASKED_WRITE(s->errintsigen, mask >> 16, value >> 16);
1261 sdhci_update_irq(s);
1262 break;
1263 case SDHC_ADMAERR:
1264 MASKED_WRITE(s->admaerr, mask, value);
1265 break;
1266 case SDHC_ADMASYSADDR:
1267 s->admasysaddr = (s->admasysaddr & (0xFFFFFFFF00000000ULL |
1268 (uint64_t)mask)) | (uint64_t)value;
1269 break;
1270 case SDHC_ADMASYSADDR + 4:
1271 s->admasysaddr = (s->admasysaddr & (0x00000000FFFFFFFFULL |
1272 ((uint64_t)mask << 32))) | ((uint64_t)value << 32);
1273 break;
1274 case SDHC_FEAER:
1275 s->acmd12errsts |= value;
1276 s->errintsts |= (value >> 16) & s->errintstsen;
1277 if (s->acmd12errsts) {
1278 s->errintsts |= SDHC_EIS_CMD12ERR;
1280 if (s->errintsts) {
1281 s->norintsts |= SDHC_NIS_ERR;
1283 sdhci_update_irq(s);
1284 break;
1285 case SDHC_ACMD12ERRSTS:
1286 MASKED_WRITE(s->acmd12errsts, mask, value & UINT16_MAX);
1287 if (s->uhs_mode >= UHS_I) {
1288 MASKED_WRITE(s->hostctl2, mask >> 16, value >> 16);
1290 if (FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, V18_ENA)) {
1291 sdbus_set_voltage(&s->sdbus, SD_VOLTAGE_1_8V);
1292 } else {
1293 sdbus_set_voltage(&s->sdbus, SD_VOLTAGE_3_3V);
1296 break;
1298 case SDHC_CAPAB:
1299 case SDHC_CAPAB + 4:
1300 case SDHC_MAXCURR:
1301 case SDHC_MAXCURR + 4:
1302 qemu_log_mask(LOG_GUEST_ERROR, "SDHC wr_%ub @0x%02" HWADDR_PRIx
1303 " <- 0x%08x read-only\n", size, offset, value >> shift);
1304 break;
1306 default:
1307 qemu_log_mask(LOG_UNIMP, "SDHC wr_%ub @0x%02" HWADDR_PRIx " <- 0x%08x "
1308 "not implemented\n", size, offset, value >> shift);
1309 break;
1311 trace_sdhci_access("wr", size << 3, offset, "<-",
1312 value >> shift, value >> shift);
1315 static const MemoryRegionOps sdhci_mmio_ops = {
1316 .read = sdhci_read,
1317 .write = sdhci_write,
1318 .valid = {
1319 .min_access_size = 1,
1320 .max_access_size = 4,
1321 .unaligned = false
1323 .endianness = DEVICE_LITTLE_ENDIAN,
1326 static void sdhci_init_readonly_registers(SDHCIState *s, Error **errp)
1328 ERRP_GUARD();
1330 switch (s->sd_spec_version) {
1331 case 2 ... 3:
1332 break;
1333 default:
1334 error_setg(errp, "Only Spec v2/v3 are supported");
1335 return;
1337 s->version = (SDHC_HCVER_VENDOR << 8) | (s->sd_spec_version - 1);
1339 sdhci_check_capareg(s, errp);
1340 if (*errp) {
1341 return;
1345 /* --- qdev common --- */
1347 void sdhci_initfn(SDHCIState *s)
1349 qbus_init(&s->sdbus, sizeof(s->sdbus), TYPE_SDHCI_BUS, DEVICE(s), "sd-bus");
1351 s->insert_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_raise_insertion_irq, s);
1352 s->transfer_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_data_transfer, s);
1354 s->io_ops = &sdhci_mmio_ops;
1357 void sdhci_uninitfn(SDHCIState *s)
1359 timer_free(s->insert_timer);
1360 timer_free(s->transfer_timer);
1362 g_free(s->fifo_buffer);
1363 s->fifo_buffer = NULL;
1366 void sdhci_common_realize(SDHCIState *s, Error **errp)
1368 ERRP_GUARD();
1370 sdhci_init_readonly_registers(s, errp);
1371 if (*errp) {
1372 return;
1374 s->buf_maxsz = sdhci_get_fifolen(s);
1375 s->fifo_buffer = g_malloc0(s->buf_maxsz);
1377 memory_region_init_io(&s->iomem, OBJECT(s), s->io_ops, s, "sdhci",
1378 SDHC_REGISTERS_MAP_SIZE);
1381 void sdhci_common_unrealize(SDHCIState *s)
1383 /* This function is expected to be called only once for each class:
1384 * - SysBus: via DeviceClass->unrealize(),
1385 * - PCI: via PCIDeviceClass->exit().
1386 * However to avoid double-free and/or use-after-free we still nullify
1387 * this variable (better safe than sorry!). */
1388 g_free(s->fifo_buffer);
1389 s->fifo_buffer = NULL;
1392 static bool sdhci_pending_insert_vmstate_needed(void *opaque)
1394 SDHCIState *s = opaque;
1396 return s->pending_insert_state;
1399 static const VMStateDescription sdhci_pending_insert_vmstate = {
1400 .name = "sdhci/pending-insert",
1401 .version_id = 1,
1402 .minimum_version_id = 1,
1403 .needed = sdhci_pending_insert_vmstate_needed,
1404 .fields = (VMStateField[]) {
1405 VMSTATE_BOOL(pending_insert_state, SDHCIState),
1406 VMSTATE_END_OF_LIST()
1410 const VMStateDescription sdhci_vmstate = {
1411 .name = "sdhci",
1412 .version_id = 1,
1413 .minimum_version_id = 1,
1414 .fields = (VMStateField[]) {
1415 VMSTATE_UINT32(sdmasysad, SDHCIState),
1416 VMSTATE_UINT16(blksize, SDHCIState),
1417 VMSTATE_UINT16(blkcnt, SDHCIState),
1418 VMSTATE_UINT32(argument, SDHCIState),
1419 VMSTATE_UINT16(trnmod, SDHCIState),
1420 VMSTATE_UINT16(cmdreg, SDHCIState),
1421 VMSTATE_UINT32_ARRAY(rspreg, SDHCIState, 4),
1422 VMSTATE_UINT32(prnsts, SDHCIState),
1423 VMSTATE_UINT8(hostctl1, SDHCIState),
1424 VMSTATE_UINT8(pwrcon, SDHCIState),
1425 VMSTATE_UINT8(blkgap, SDHCIState),
1426 VMSTATE_UINT8(wakcon, SDHCIState),
1427 VMSTATE_UINT16(clkcon, SDHCIState),
1428 VMSTATE_UINT8(timeoutcon, SDHCIState),
1429 VMSTATE_UINT8(admaerr, SDHCIState),
1430 VMSTATE_UINT16(norintsts, SDHCIState),
1431 VMSTATE_UINT16(errintsts, SDHCIState),
1432 VMSTATE_UINT16(norintstsen, SDHCIState),
1433 VMSTATE_UINT16(errintstsen, SDHCIState),
1434 VMSTATE_UINT16(norintsigen, SDHCIState),
1435 VMSTATE_UINT16(errintsigen, SDHCIState),
1436 VMSTATE_UINT16(acmd12errsts, SDHCIState),
1437 VMSTATE_UINT16(data_count, SDHCIState),
1438 VMSTATE_UINT64(admasysaddr, SDHCIState),
1439 VMSTATE_UINT8(stopped_state, SDHCIState),
1440 VMSTATE_VBUFFER_UINT32(fifo_buffer, SDHCIState, 1, NULL, buf_maxsz),
1441 VMSTATE_TIMER_PTR(insert_timer, SDHCIState),
1442 VMSTATE_TIMER_PTR(transfer_timer, SDHCIState),
1443 VMSTATE_END_OF_LIST()
1445 .subsections = (const VMStateDescription*[]) {
1446 &sdhci_pending_insert_vmstate,
1447 NULL
1451 void sdhci_common_class_init(ObjectClass *klass, void *data)
1453 DeviceClass *dc = DEVICE_CLASS(klass);
1455 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
1456 dc->vmsd = &sdhci_vmstate;
1457 dc->reset = sdhci_poweron_reset;
1460 /* --- qdev SysBus --- */
1462 static Property sdhci_sysbus_properties[] = {
1463 DEFINE_SDHCI_COMMON_PROPERTIES(SDHCIState),
1464 DEFINE_PROP_BOOL("pending-insert-quirk", SDHCIState, pending_insert_quirk,
1465 false),
1466 DEFINE_PROP_LINK("dma", SDHCIState,
1467 dma_mr, TYPE_MEMORY_REGION, MemoryRegion *),
1468 DEFINE_PROP_END_OF_LIST(),
1471 static void sdhci_sysbus_init(Object *obj)
1473 SDHCIState *s = SYSBUS_SDHCI(obj);
1475 sdhci_initfn(s);
1478 static void sdhci_sysbus_finalize(Object *obj)
1480 SDHCIState *s = SYSBUS_SDHCI(obj);
1482 if (s->dma_mr) {
1483 object_unparent(OBJECT(s->dma_mr));
1486 sdhci_uninitfn(s);
1489 static void sdhci_sysbus_realize(DeviceState *dev, Error **errp)
1491 ERRP_GUARD();
1492 SDHCIState *s = SYSBUS_SDHCI(dev);
1493 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1495 sdhci_common_realize(s, errp);
1496 if (*errp) {
1497 return;
1500 if (s->dma_mr) {
1501 s->dma_as = &s->sysbus_dma_as;
1502 address_space_init(s->dma_as, s->dma_mr, "sdhci-dma");
1503 } else {
1504 /* use system_memory() if property "dma" not set */
1505 s->dma_as = &address_space_memory;
1508 sysbus_init_irq(sbd, &s->irq);
1510 sysbus_init_mmio(sbd, &s->iomem);
1513 static void sdhci_sysbus_unrealize(DeviceState *dev)
1515 SDHCIState *s = SYSBUS_SDHCI(dev);
1517 sdhci_common_unrealize(s);
1519 if (s->dma_mr) {
1520 address_space_destroy(s->dma_as);
1524 static void sdhci_sysbus_class_init(ObjectClass *klass, void *data)
1526 DeviceClass *dc = DEVICE_CLASS(klass);
1528 device_class_set_props(dc, sdhci_sysbus_properties);
1529 dc->realize = sdhci_sysbus_realize;
1530 dc->unrealize = sdhci_sysbus_unrealize;
1532 sdhci_common_class_init(klass, data);
1535 static const TypeInfo sdhci_sysbus_info = {
1536 .name = TYPE_SYSBUS_SDHCI,
1537 .parent = TYPE_SYS_BUS_DEVICE,
1538 .instance_size = sizeof(SDHCIState),
1539 .instance_init = sdhci_sysbus_init,
1540 .instance_finalize = sdhci_sysbus_finalize,
1541 .class_init = sdhci_sysbus_class_init,
1544 /* --- qdev bus master --- */
1546 static void sdhci_bus_class_init(ObjectClass *klass, void *data)
1548 SDBusClass *sbc = SD_BUS_CLASS(klass);
1550 sbc->set_inserted = sdhci_set_inserted;
1551 sbc->set_readonly = sdhci_set_readonly;
1554 static const TypeInfo sdhci_bus_info = {
1555 .name = TYPE_SDHCI_BUS,
1556 .parent = TYPE_SD_BUS,
1557 .instance_size = sizeof(SDBus),
1558 .class_init = sdhci_bus_class_init,
1561 /* --- qdev i.MX eSDHC --- */
1563 static uint64_t usdhc_read(void *opaque, hwaddr offset, unsigned size)
1565 SDHCIState *s = SYSBUS_SDHCI(opaque);
1566 uint32_t ret;
1567 uint16_t hostctl1;
1569 switch (offset) {
1570 default:
1571 return sdhci_read(opaque, offset, size);
1573 case SDHC_HOSTCTL:
1575 * For a detailed explanation on the following bit
1576 * manipulation code see comments in a similar part of
1577 * usdhc_write()
1579 hostctl1 = SDHC_DMA_TYPE(s->hostctl1) << (8 - 3);
1581 if (s->hostctl1 & SDHC_CTRL_8BITBUS) {
1582 hostctl1 |= ESDHC_CTRL_8BITBUS;
1585 if (s->hostctl1 & SDHC_CTRL_4BITBUS) {
1586 hostctl1 |= ESDHC_CTRL_4BITBUS;
1589 ret = hostctl1;
1590 ret |= (uint32_t)s->blkgap << 16;
1591 ret |= (uint32_t)s->wakcon << 24;
1593 break;
1595 case SDHC_PRNSTS:
1596 /* Add SDSTB (SD Clock Stable) bit to PRNSTS */
1597 ret = sdhci_read(opaque, offset, size) & ~ESDHC_PRNSTS_SDSTB;
1598 if (s->clkcon & SDHC_CLOCK_INT_STABLE) {
1599 ret |= ESDHC_PRNSTS_SDSTB;
1601 break;
1603 case ESDHC_VENDOR_SPEC:
1604 ret = s->vendor_spec;
1605 break;
1606 case ESDHC_DLL_CTRL:
1607 case ESDHC_TUNE_CTRL_STATUS:
1608 case ESDHC_UNDOCUMENTED_REG27:
1609 case ESDHC_TUNING_CTRL:
1610 case ESDHC_MIX_CTRL:
1611 case ESDHC_WTMK_LVL:
1612 ret = 0;
1613 break;
1616 return ret;
1619 static void
1620 usdhc_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
1622 SDHCIState *s = SYSBUS_SDHCI(opaque);
1623 uint8_t hostctl1;
1624 uint32_t value = (uint32_t)val;
1626 switch (offset) {
1627 case ESDHC_DLL_CTRL:
1628 case ESDHC_TUNE_CTRL_STATUS:
1629 case ESDHC_UNDOCUMENTED_REG27:
1630 case ESDHC_TUNING_CTRL:
1631 case ESDHC_WTMK_LVL:
1632 break;
1634 case ESDHC_VENDOR_SPEC:
1635 s->vendor_spec = value;
1636 switch (s->vendor) {
1637 case SDHCI_VENDOR_IMX:
1638 if (value & ESDHC_IMX_FRC_SDCLK_ON) {
1639 s->prnsts &= ~SDHC_IMX_CLOCK_GATE_OFF;
1640 } else {
1641 s->prnsts |= SDHC_IMX_CLOCK_GATE_OFF;
1643 break;
1644 default:
1645 break;
1647 break;
1649 case SDHC_HOSTCTL:
1651 * Here's What ESDHCI has at offset 0x28 (SDHC_HOSTCTL)
1653 * 7 6 5 4 3 2 1 0
1654 * |-----------+--------+--------+-----------+----------+---------|
1655 * | Card | Card | Endian | DATA3 | Data | Led |
1656 * | Detect | Detect | Mode | as Card | Transfer | Control |
1657 * | Signal | Test | | Detection | Width | |
1658 * | Selection | Level | | Pin | | |
1659 * |-----------+--------+--------+-----------+----------+---------|
1661 * and 0x29
1663 * 15 10 9 8
1664 * |----------+------|
1665 * | Reserved | DMA |
1666 * | | Sel. |
1667 * | | |
1668 * |----------+------|
1670 * and here's what SDCHI spec expects those offsets to be:
1672 * 0x28 (Host Control Register)
1674 * 7 6 5 4 3 2 1 0
1675 * |--------+--------+----------+------+--------+----------+---------|
1676 * | Card | Card | Extended | DMA | High | Data | LED |
1677 * | Detect | Detect | Data | Sel. | Speed | Transfer | Control |
1678 * | Signal | Test | Transfer | | Enable | Width | |
1679 * | Sel. | Level | Width | | | | |
1680 * |--------+--------+----------+------+--------+----------+---------|
1682 * and 0x29 (Power Control Register)
1684 * |----------------------------------|
1685 * | Power Control Register |
1686 * | |
1687 * | Description omitted, |
1688 * | since it has no analog in ESDHCI |
1689 * | |
1690 * |----------------------------------|
1692 * Since offsets 0x2A and 0x2B should be compatible between
1693 * both IP specs we only need to reconcile least 16-bit of the
1694 * word we've been given.
1698 * First, save bits 7 6 and 0 since they are identical
1700 hostctl1 = value & (SDHC_CTRL_LED |
1701 SDHC_CTRL_CDTEST_INS |
1702 SDHC_CTRL_CDTEST_EN);
1704 * Second, split "Data Transfer Width" from bits 2 and 1 in to
1705 * bits 5 and 1
1707 if (value & ESDHC_CTRL_8BITBUS) {
1708 hostctl1 |= SDHC_CTRL_8BITBUS;
1711 if (value & ESDHC_CTRL_4BITBUS) {
1712 hostctl1 |= ESDHC_CTRL_4BITBUS;
1716 * Third, move DMA select from bits 9 and 8 to bits 4 and 3
1718 hostctl1 |= SDHC_DMA_TYPE(value >> (8 - 3));
1721 * Now place the corrected value into low 16-bit of the value
1722 * we are going to give standard SDHCI write function
1724 * NOTE: This transformation should be the inverse of what can
1725 * be found in drivers/mmc/host/sdhci-esdhc-imx.c in Linux
1726 * kernel
1728 value &= ~UINT16_MAX;
1729 value |= hostctl1;
1730 value |= (uint16_t)s->pwrcon << 8;
1732 sdhci_write(opaque, offset, value, size);
1733 break;
1735 case ESDHC_MIX_CTRL:
1737 * So, when SD/MMC stack in Linux tries to write to "Transfer
1738 * Mode Register", ESDHC i.MX quirk code will translate it
1739 * into a write to ESDHC_MIX_CTRL, so we do the opposite in
1740 * order to get where we started
1742 * Note that Auto CMD23 Enable bit is located in a wrong place
1743 * on i.MX, but since it is not used by QEMU we do not care.
1745 * We don't want to call sdhci_write(.., SDHC_TRNMOD, ...)
1746 * here becuase it will result in a call to
1747 * sdhci_send_command(s) which we don't want.
1750 s->trnmod = value & UINT16_MAX;
1751 break;
1752 case SDHC_TRNMOD:
1754 * Similar to above, but this time a write to "Command
1755 * Register" will be translated into a 4-byte write to
1756 * "Transfer Mode register" where lower 16-bit of value would
1757 * be set to zero. So what we do is fill those bits with
1758 * cached value from s->trnmod and let the SDHCI
1759 * infrastructure handle the rest
1761 sdhci_write(opaque, offset, val | s->trnmod, size);
1762 break;
1763 case SDHC_BLKSIZE:
1765 * ESDHCI does not implement "Host SDMA Buffer Boundary", and
1766 * Linux driver will try to zero this field out which will
1767 * break the rest of SDHCI emulation.
1769 * Linux defaults to maximum possible setting (512K boundary)
1770 * and it seems to be the only option that i.MX IP implements,
1771 * so we artificially set it to that value.
1773 val |= 0x7 << 12;
1774 /* FALLTHROUGH */
1775 default:
1776 sdhci_write(opaque, offset, val, size);
1777 break;
1781 static const MemoryRegionOps usdhc_mmio_ops = {
1782 .read = usdhc_read,
1783 .write = usdhc_write,
1784 .valid = {
1785 .min_access_size = 1,
1786 .max_access_size = 4,
1787 .unaligned = false
1789 .endianness = DEVICE_LITTLE_ENDIAN,
1792 static void imx_usdhc_init(Object *obj)
1794 SDHCIState *s = SYSBUS_SDHCI(obj);
1796 s->io_ops = &usdhc_mmio_ops;
1797 s->quirks = SDHCI_QUIRK_NO_BUSY_IRQ;
1800 static const TypeInfo imx_usdhc_info = {
1801 .name = TYPE_IMX_USDHC,
1802 .parent = TYPE_SYSBUS_SDHCI,
1803 .instance_init = imx_usdhc_init,
1806 /* --- qdev Samsung s3c --- */
1808 #define S3C_SDHCI_CONTROL2 0x80
1809 #define S3C_SDHCI_CONTROL3 0x84
1810 #define S3C_SDHCI_CONTROL4 0x8c
1812 static uint64_t sdhci_s3c_read(void *opaque, hwaddr offset, unsigned size)
1814 uint64_t ret;
1816 switch (offset) {
1817 case S3C_SDHCI_CONTROL2:
1818 case S3C_SDHCI_CONTROL3:
1819 case S3C_SDHCI_CONTROL4:
1820 /* ignore */
1821 ret = 0;
1822 break;
1823 default:
1824 ret = sdhci_read(opaque, offset, size);
1825 break;
1828 return ret;
1831 static void sdhci_s3c_write(void *opaque, hwaddr offset, uint64_t val,
1832 unsigned size)
1834 switch (offset) {
1835 case S3C_SDHCI_CONTROL2:
1836 case S3C_SDHCI_CONTROL3:
1837 case S3C_SDHCI_CONTROL4:
1838 /* ignore */
1839 break;
1840 default:
1841 sdhci_write(opaque, offset, val, size);
1842 break;
1846 static const MemoryRegionOps sdhci_s3c_mmio_ops = {
1847 .read = sdhci_s3c_read,
1848 .write = sdhci_s3c_write,
1849 .valid = {
1850 .min_access_size = 1,
1851 .max_access_size = 4,
1852 .unaligned = false
1854 .endianness = DEVICE_LITTLE_ENDIAN,
1857 static void sdhci_s3c_init(Object *obj)
1859 SDHCIState *s = SYSBUS_SDHCI(obj);
1861 s->io_ops = &sdhci_s3c_mmio_ops;
1864 static const TypeInfo sdhci_s3c_info = {
1865 .name = TYPE_S3C_SDHCI ,
1866 .parent = TYPE_SYSBUS_SDHCI,
1867 .instance_init = sdhci_s3c_init,
1870 static void sdhci_register_types(void)
1872 type_register_static(&sdhci_sysbus_info);
1873 type_register_static(&sdhci_bus_info);
1874 type_register_static(&imx_usdhc_info);
1875 type_register_static(&sdhci_s3c_info);
1878 type_init(sdhci_register_types)