2 * QEMU Enhanced Disk Format
4 * Copyright IBM, Corp. 2010
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "block/qdict.h"
17 #include "qapi/error.h"
18 #include "qemu/timer.h"
19 #include "qemu/bswap.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/option.h"
23 #include "qemu/memalign.h"
26 #include "sysemu/block-backend.h"
27 #include "qapi/qmp/qdict.h"
28 #include "qapi/qobject-input-visitor.h"
29 #include "qapi/qapi-visit-block-core.h"
31 static QemuOptsList qed_create_opts
;
33 static int bdrv_qed_probe(const uint8_t *buf
, int buf_size
,
36 const QEDHeader
*header
= (const QEDHeader
*)buf
;
38 if (buf_size
< sizeof(*header
)) {
41 if (le32_to_cpu(header
->magic
) != QED_MAGIC
) {
48 * Check whether an image format is raw
50 * @fmt: Backing file format, may be NULL
52 static bool qed_fmt_is_raw(const char *fmt
)
54 return fmt
&& strcmp(fmt
, "raw") == 0;
57 static void qed_header_le_to_cpu(const QEDHeader
*le
, QEDHeader
*cpu
)
59 cpu
->magic
= le32_to_cpu(le
->magic
);
60 cpu
->cluster_size
= le32_to_cpu(le
->cluster_size
);
61 cpu
->table_size
= le32_to_cpu(le
->table_size
);
62 cpu
->header_size
= le32_to_cpu(le
->header_size
);
63 cpu
->features
= le64_to_cpu(le
->features
);
64 cpu
->compat_features
= le64_to_cpu(le
->compat_features
);
65 cpu
->autoclear_features
= le64_to_cpu(le
->autoclear_features
);
66 cpu
->l1_table_offset
= le64_to_cpu(le
->l1_table_offset
);
67 cpu
->image_size
= le64_to_cpu(le
->image_size
);
68 cpu
->backing_filename_offset
= le32_to_cpu(le
->backing_filename_offset
);
69 cpu
->backing_filename_size
= le32_to_cpu(le
->backing_filename_size
);
72 static void qed_header_cpu_to_le(const QEDHeader
*cpu
, QEDHeader
*le
)
74 le
->magic
= cpu_to_le32(cpu
->magic
);
75 le
->cluster_size
= cpu_to_le32(cpu
->cluster_size
);
76 le
->table_size
= cpu_to_le32(cpu
->table_size
);
77 le
->header_size
= cpu_to_le32(cpu
->header_size
);
78 le
->features
= cpu_to_le64(cpu
->features
);
79 le
->compat_features
= cpu_to_le64(cpu
->compat_features
);
80 le
->autoclear_features
= cpu_to_le64(cpu
->autoclear_features
);
81 le
->l1_table_offset
= cpu_to_le64(cpu
->l1_table_offset
);
82 le
->image_size
= cpu_to_le64(cpu
->image_size
);
83 le
->backing_filename_offset
= cpu_to_le32(cpu
->backing_filename_offset
);
84 le
->backing_filename_size
= cpu_to_le32(cpu
->backing_filename_size
);
87 int qed_write_header_sync(BDRVQEDState
*s
)
91 qed_header_cpu_to_le(&s
->header
, &le
);
92 return bdrv_pwrite(s
->bs
->file
, 0, sizeof(le
), &le
, 0);
96 * Update header in-place (does not rewrite backing filename or other strings)
98 * This function only updates known header fields in-place and does not affect
99 * extra data after the QED header.
101 * No new allocating reqs can start while this function runs.
103 static int coroutine_fn
qed_write_header(BDRVQEDState
*s
)
105 /* We must write full sectors for O_DIRECT but cannot necessarily generate
106 * the data following the header if an unrecognized compat feature is
107 * active. Therefore, first read the sectors containing the header, update
108 * them, and write back.
111 int nsectors
= DIV_ROUND_UP(sizeof(QEDHeader
), BDRV_SECTOR_SIZE
);
112 size_t len
= nsectors
* BDRV_SECTOR_SIZE
;
116 assert(s
->allocating_acb
|| s
->allocating_write_reqs_plugged
);
118 buf
= qemu_blockalign(s
->bs
, len
);
120 ret
= bdrv_co_pread(s
->bs
->file
, 0, len
, buf
, 0);
126 qed_header_cpu_to_le(&s
->header
, (QEDHeader
*) buf
);
128 ret
= bdrv_co_pwrite(s
->bs
->file
, 0, len
, buf
, 0);
139 static uint64_t qed_max_image_size(uint32_t cluster_size
, uint32_t table_size
)
141 uint64_t table_entries
;
144 table_entries
= (table_size
* cluster_size
) / sizeof(uint64_t);
145 l2_size
= table_entries
* cluster_size
;
147 return l2_size
* table_entries
;
150 static bool qed_is_cluster_size_valid(uint32_t cluster_size
)
152 if (cluster_size
< QED_MIN_CLUSTER_SIZE
||
153 cluster_size
> QED_MAX_CLUSTER_SIZE
) {
156 if (cluster_size
& (cluster_size
- 1)) {
157 return false; /* not power of 2 */
162 static bool qed_is_table_size_valid(uint32_t table_size
)
164 if (table_size
< QED_MIN_TABLE_SIZE
||
165 table_size
> QED_MAX_TABLE_SIZE
) {
168 if (table_size
& (table_size
- 1)) {
169 return false; /* not power of 2 */
174 static bool qed_is_image_size_valid(uint64_t image_size
, uint32_t cluster_size
,
177 if (image_size
% BDRV_SECTOR_SIZE
!= 0) {
178 return false; /* not multiple of sector size */
180 if (image_size
> qed_max_image_size(cluster_size
, table_size
)) {
181 return false; /* image is too large */
187 * Read a string of known length from the image file
190 * @offset: File offset to start of string, in bytes
191 * @n: String length in bytes
192 * @buf: Destination buffer
193 * @buflen: Destination buffer length in bytes
194 * @ret: 0 on success, -errno on failure
196 * The string is NUL-terminated.
198 static int qed_read_string(BdrvChild
*file
, uint64_t offset
, size_t n
,
199 char *buf
, size_t buflen
)
205 ret
= bdrv_pread(file
, offset
, n
, buf
, 0);
214 * Allocate new clusters
217 * @n: Number of contiguous clusters to allocate
218 * @ret: Offset of first allocated cluster
220 * This function only produces the offset where the new clusters should be
221 * written. It updates BDRVQEDState but does not make any changes to the image
224 * Called with table_lock held.
226 static uint64_t qed_alloc_clusters(BDRVQEDState
*s
, unsigned int n
)
228 uint64_t offset
= s
->file_size
;
229 s
->file_size
+= n
* s
->header
.cluster_size
;
233 QEDTable
*qed_alloc_table(BDRVQEDState
*s
)
235 /* Honor O_DIRECT memory alignment requirements */
236 return qemu_blockalign(s
->bs
,
237 s
->header
.cluster_size
* s
->header
.table_size
);
241 * Allocate a new zeroed L2 table
243 * Called with table_lock held.
245 static CachedL2Table
*qed_new_l2_table(BDRVQEDState
*s
)
247 CachedL2Table
*l2_table
= qed_alloc_l2_cache_entry(&s
->l2_cache
);
249 l2_table
->table
= qed_alloc_table(s
);
250 l2_table
->offset
= qed_alloc_clusters(s
, s
->header
.table_size
);
252 memset(l2_table
->table
->offsets
, 0,
253 s
->header
.cluster_size
* s
->header
.table_size
);
257 static bool coroutine_fn
qed_plug_allocating_write_reqs(BDRVQEDState
*s
)
259 qemu_co_mutex_lock(&s
->table_lock
);
261 /* No reentrancy is allowed. */
262 assert(!s
->allocating_write_reqs_plugged
);
263 if (s
->allocating_acb
!= NULL
) {
264 /* Another allocating write came concurrently. This cannot happen
265 * from bdrv_qed_drain_begin, but it can happen when the timer runs.
267 qemu_co_mutex_unlock(&s
->table_lock
);
271 s
->allocating_write_reqs_plugged
= true;
272 qemu_co_mutex_unlock(&s
->table_lock
);
276 static void coroutine_fn
qed_unplug_allocating_write_reqs(BDRVQEDState
*s
)
278 qemu_co_mutex_lock(&s
->table_lock
);
279 assert(s
->allocating_write_reqs_plugged
);
280 s
->allocating_write_reqs_plugged
= false;
281 qemu_co_queue_next(&s
->allocating_write_reqs
);
282 qemu_co_mutex_unlock(&s
->table_lock
);
285 static void coroutine_fn
qed_need_check_timer(BDRVQEDState
*s
)
289 trace_qed_need_check_timer_cb(s
);
291 if (!qed_plug_allocating_write_reqs(s
)) {
295 /* Ensure writes are on disk before clearing flag */
296 ret
= bdrv_co_flush(s
->bs
->file
->bs
);
298 qed_unplug_allocating_write_reqs(s
);
302 s
->header
.features
&= ~QED_F_NEED_CHECK
;
303 ret
= qed_write_header(s
);
306 qed_unplug_allocating_write_reqs(s
);
308 ret
= bdrv_co_flush(s
->bs
);
312 static void coroutine_fn
qed_need_check_timer_entry(void *opaque
)
314 BDRVQEDState
*s
= opaque
;
316 qed_need_check_timer(opaque
);
317 bdrv_dec_in_flight(s
->bs
);
320 static void qed_need_check_timer_cb(void *opaque
)
322 BDRVQEDState
*s
= opaque
;
323 Coroutine
*co
= qemu_coroutine_create(qed_need_check_timer_entry
, opaque
);
325 bdrv_inc_in_flight(s
->bs
);
326 qemu_coroutine_enter(co
);
329 static void qed_start_need_check_timer(BDRVQEDState
*s
)
331 trace_qed_start_need_check_timer(s
);
333 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
336 timer_mod(s
->need_check_timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) +
337 NANOSECONDS_PER_SECOND
* QED_NEED_CHECK_TIMEOUT
);
340 /* It's okay to call this multiple times or when no timer is started */
341 static void qed_cancel_need_check_timer(BDRVQEDState
*s
)
343 trace_qed_cancel_need_check_timer(s
);
344 timer_del(s
->need_check_timer
);
347 static void bdrv_qed_detach_aio_context(BlockDriverState
*bs
)
349 BDRVQEDState
*s
= bs
->opaque
;
351 qed_cancel_need_check_timer(s
);
352 timer_free(s
->need_check_timer
);
355 static void bdrv_qed_attach_aio_context(BlockDriverState
*bs
,
356 AioContext
*new_context
)
358 BDRVQEDState
*s
= bs
->opaque
;
360 s
->need_check_timer
= aio_timer_new(new_context
,
361 QEMU_CLOCK_VIRTUAL
, SCALE_NS
,
362 qed_need_check_timer_cb
, s
);
363 if (s
->header
.features
& QED_F_NEED_CHECK
) {
364 qed_start_need_check_timer(s
);
368 static void bdrv_qed_drain_begin(BlockDriverState
*bs
)
370 BDRVQEDState
*s
= bs
->opaque
;
372 /* Fire the timer immediately in order to start doing I/O as soon as the
375 if (s
->need_check_timer
&& timer_pending(s
->need_check_timer
)) {
378 qed_cancel_need_check_timer(s
);
379 co
= qemu_coroutine_create(qed_need_check_timer_entry
, s
);
380 bdrv_inc_in_flight(bs
);
381 aio_co_enter(bdrv_get_aio_context(bs
), co
);
385 static void bdrv_qed_init_state(BlockDriverState
*bs
)
387 BDRVQEDState
*s
= bs
->opaque
;
389 memset(s
, 0, sizeof(BDRVQEDState
));
391 qemu_co_mutex_init(&s
->table_lock
);
392 qemu_co_queue_init(&s
->allocating_write_reqs
);
395 /* Called with table_lock held. */
396 static int coroutine_fn
bdrv_qed_do_open(BlockDriverState
*bs
, QDict
*options
,
397 int flags
, Error
**errp
)
399 BDRVQEDState
*s
= bs
->opaque
;
404 ret
= bdrv_co_pread(bs
->file
, 0, sizeof(le_header
), &le_header
, 0);
406 error_setg(errp
, "Failed to read QED header");
409 qed_header_le_to_cpu(&le_header
, &s
->header
);
411 if (s
->header
.magic
!= QED_MAGIC
) {
412 error_setg(errp
, "Image not in QED format");
415 if (s
->header
.features
& ~QED_FEATURE_MASK
) {
416 /* image uses unsupported feature bits */
417 error_setg(errp
, "Unsupported QED features: %" PRIx64
,
418 s
->header
.features
& ~QED_FEATURE_MASK
);
421 if (!qed_is_cluster_size_valid(s
->header
.cluster_size
)) {
422 error_setg(errp
, "QED cluster size is invalid");
426 /* Round down file size to the last cluster */
427 file_size
= bdrv_getlength(bs
->file
->bs
);
429 error_setg(errp
, "Failed to get file length");
432 s
->file_size
= qed_start_of_cluster(s
, file_size
);
434 if (!qed_is_table_size_valid(s
->header
.table_size
)) {
435 error_setg(errp
, "QED table size is invalid");
438 if (!qed_is_image_size_valid(s
->header
.image_size
,
439 s
->header
.cluster_size
,
440 s
->header
.table_size
)) {
441 error_setg(errp
, "QED image size is invalid");
444 if (!qed_check_table_offset(s
, s
->header
.l1_table_offset
)) {
445 error_setg(errp
, "QED table offset is invalid");
449 s
->table_nelems
= (s
->header
.cluster_size
* s
->header
.table_size
) /
451 s
->l2_shift
= ctz32(s
->header
.cluster_size
);
452 s
->l2_mask
= s
->table_nelems
- 1;
453 s
->l1_shift
= s
->l2_shift
+ ctz32(s
->table_nelems
);
455 /* Header size calculation must not overflow uint32_t */
456 if (s
->header
.header_size
> UINT32_MAX
/ s
->header
.cluster_size
) {
457 error_setg(errp
, "QED header size is too large");
461 if ((s
->header
.features
& QED_F_BACKING_FILE
)) {
462 g_autofree
char *backing_file_str
= NULL
;
464 if ((uint64_t)s
->header
.backing_filename_offset
+
465 s
->header
.backing_filename_size
>
466 s
->header
.cluster_size
* s
->header
.header_size
) {
467 error_setg(errp
, "QED backing filename offset is invalid");
471 backing_file_str
= g_malloc(sizeof(bs
->backing_file
));
472 ret
= qed_read_string(bs
->file
, s
->header
.backing_filename_offset
,
473 s
->header
.backing_filename_size
,
474 backing_file_str
, sizeof(bs
->backing_file
));
476 error_setg(errp
, "Failed to read backing filename");
480 if (!g_str_equal(backing_file_str
, bs
->backing_file
)) {
481 pstrcpy(bs
->backing_file
, sizeof(bs
->backing_file
),
483 pstrcpy(bs
->auto_backing_file
, sizeof(bs
->auto_backing_file
),
487 if (s
->header
.features
& QED_F_BACKING_FORMAT_NO_PROBE
) {
488 pstrcpy(bs
->backing_format
, sizeof(bs
->backing_format
), "raw");
492 /* Reset unknown autoclear feature bits. This is a backwards
493 * compatibility mechanism that allows images to be opened by older
494 * programs, which "knock out" unknown feature bits. When an image is
495 * opened by a newer program again it can detect that the autoclear
496 * feature is no longer valid.
498 if ((s
->header
.autoclear_features
& ~QED_AUTOCLEAR_FEATURE_MASK
) != 0 &&
499 !bdrv_is_read_only(bs
->file
->bs
) && !(flags
& BDRV_O_INACTIVE
)) {
500 s
->header
.autoclear_features
&= QED_AUTOCLEAR_FEATURE_MASK
;
502 ret
= qed_write_header_sync(s
);
504 error_setg(errp
, "Failed to update header");
508 /* From here on only known autoclear feature bits are valid */
509 bdrv_co_flush(bs
->file
->bs
);
512 s
->l1_table
= qed_alloc_table(s
);
513 qed_init_l2_cache(&s
->l2_cache
);
515 ret
= qed_read_l1_table_sync(s
);
517 error_setg(errp
, "Failed to read L1 table");
521 /* If image was not closed cleanly, check consistency */
522 if (!(flags
& BDRV_O_CHECK
) && (s
->header
.features
& QED_F_NEED_CHECK
)) {
523 /* Read-only images cannot be fixed. There is no risk of corruption
524 * since write operations are not possible. Therefore, allow
525 * potentially inconsistent images to be opened read-only. This can
526 * aid data recovery from an otherwise inconsistent image.
528 if (!bdrv_is_read_only(bs
->file
->bs
) &&
529 !(flags
& BDRV_O_INACTIVE
)) {
530 BdrvCheckResult result
= {0};
532 ret
= qed_check(s
, &result
, true);
534 error_setg(errp
, "Image corrupted");
540 bdrv_qed_attach_aio_context(bs
, bdrv_get_aio_context(bs
));
544 qed_free_l2_cache(&s
->l2_cache
);
545 qemu_vfree(s
->l1_table
);
550 typedef struct QEDOpenCo
{
551 BlockDriverState
*bs
;
558 static void coroutine_fn
bdrv_qed_open_entry(void *opaque
)
560 QEDOpenCo
*qoc
= opaque
;
561 BDRVQEDState
*s
= qoc
->bs
->opaque
;
563 qemu_co_mutex_lock(&s
->table_lock
);
564 qoc
->ret
= bdrv_qed_do_open(qoc
->bs
, qoc
->options
, qoc
->flags
, qoc
->errp
);
565 qemu_co_mutex_unlock(&s
->table_lock
);
568 static int bdrv_qed_open(BlockDriverState
*bs
, QDict
*options
, int flags
,
580 ret
= bdrv_open_file_child(NULL
, options
, "file", bs
, errp
);
585 bdrv_qed_init_state(bs
);
586 if (qemu_in_coroutine()) {
587 bdrv_qed_open_entry(&qoc
);
589 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
590 qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry
, &qoc
));
591 BDRV_POLL_WHILE(bs
, qoc
.ret
== -EINPROGRESS
);
593 BDRV_POLL_WHILE(bs
, qoc
.ret
== -EINPROGRESS
);
597 static void bdrv_qed_refresh_limits(BlockDriverState
*bs
, Error
**errp
)
599 BDRVQEDState
*s
= bs
->opaque
;
601 bs
->bl
.pwrite_zeroes_alignment
= s
->header
.cluster_size
;
602 bs
->bl
.max_pwrite_zeroes
= QEMU_ALIGN_DOWN(INT_MAX
, s
->header
.cluster_size
);
605 /* We have nothing to do for QED reopen, stubs just return
607 static int bdrv_qed_reopen_prepare(BDRVReopenState
*state
,
608 BlockReopenQueue
*queue
, Error
**errp
)
613 static void bdrv_qed_close(BlockDriverState
*bs
)
615 BDRVQEDState
*s
= bs
->opaque
;
617 bdrv_qed_detach_aio_context(bs
);
619 /* Ensure writes reach stable storage */
620 bdrv_flush(bs
->file
->bs
);
622 /* Clean shutdown, no check required on next open */
623 if (s
->header
.features
& QED_F_NEED_CHECK
) {
624 s
->header
.features
&= ~QED_F_NEED_CHECK
;
625 qed_write_header_sync(s
);
628 qed_free_l2_cache(&s
->l2_cache
);
629 qemu_vfree(s
->l1_table
);
632 static int coroutine_fn
bdrv_qed_co_create(BlockdevCreateOptions
*opts
,
635 BlockdevCreateOptionsQed
*qed_opts
;
636 BlockBackend
*blk
= NULL
;
637 BlockDriverState
*bs
= NULL
;
641 uint8_t *l1_table
= NULL
;
645 assert(opts
->driver
== BLOCKDEV_DRIVER_QED
);
646 qed_opts
= &opts
->u
.qed
;
648 /* Validate options and set default values */
649 if (!qed_opts
->has_cluster_size
) {
650 qed_opts
->cluster_size
= QED_DEFAULT_CLUSTER_SIZE
;
652 if (!qed_opts
->has_table_size
) {
653 qed_opts
->table_size
= QED_DEFAULT_TABLE_SIZE
;
656 if (!qed_is_cluster_size_valid(qed_opts
->cluster_size
)) {
657 error_setg(errp
, "QED cluster size must be within range [%u, %u] "
659 QED_MIN_CLUSTER_SIZE
, QED_MAX_CLUSTER_SIZE
);
662 if (!qed_is_table_size_valid(qed_opts
->table_size
)) {
663 error_setg(errp
, "QED table size must be within range [%u, %u] "
665 QED_MIN_TABLE_SIZE
, QED_MAX_TABLE_SIZE
);
668 if (!qed_is_image_size_valid(qed_opts
->size
, qed_opts
->cluster_size
,
669 qed_opts
->table_size
))
671 error_setg(errp
, "QED image size must be a non-zero multiple of "
672 "cluster size and less than %" PRIu64
" bytes",
673 qed_max_image_size(qed_opts
->cluster_size
,
674 qed_opts
->table_size
));
678 /* Create BlockBackend to write to the image */
679 bs
= bdrv_open_blockdev_ref(qed_opts
->file
, errp
);
684 blk
= blk_new_with_bs(bs
, BLK_PERM_WRITE
| BLK_PERM_RESIZE
, BLK_PERM_ALL
,
690 blk_set_allow_write_beyond_eof(blk
, true);
692 /* Prepare image format */
693 header
= (QEDHeader
) {
695 .cluster_size
= qed_opts
->cluster_size
,
696 .table_size
= qed_opts
->table_size
,
699 .compat_features
= 0,
700 .l1_table_offset
= qed_opts
->cluster_size
,
701 .image_size
= qed_opts
->size
,
704 l1_size
= header
.cluster_size
* header
.table_size
;
707 * The QED format associates file length with allocation status,
708 * so a new file (which is empty) must have a length of 0.
710 ret
= blk_co_truncate(blk
, 0, true, PREALLOC_MODE_OFF
, 0, errp
);
715 if (qed_opts
->backing_file
) {
716 header
.features
|= QED_F_BACKING_FILE
;
717 header
.backing_filename_offset
= sizeof(le_header
);
718 header
.backing_filename_size
= strlen(qed_opts
->backing_file
);
720 if (qed_opts
->has_backing_fmt
) {
721 const char *backing_fmt
= BlockdevDriver_str(qed_opts
->backing_fmt
);
722 if (qed_fmt_is_raw(backing_fmt
)) {
723 header
.features
|= QED_F_BACKING_FORMAT_NO_PROBE
;
728 qed_header_cpu_to_le(&header
, &le_header
);
729 ret
= blk_co_pwrite(blk
, 0, sizeof(le_header
), &le_header
, 0);
733 ret
= blk_co_pwrite(blk
, sizeof(le_header
), header
.backing_filename_size
,
734 qed_opts
->backing_file
, 0);
739 l1_table
= g_malloc0(l1_size
);
740 ret
= blk_co_pwrite(blk
, header
.l1_table_offset
, l1_size
, l1_table
, 0);
745 ret
= 0; /* success */
753 static int coroutine_fn
bdrv_qed_co_create_opts(BlockDriver
*drv
,
754 const char *filename
,
758 BlockdevCreateOptions
*create_options
= NULL
;
761 BlockDriverState
*bs
= NULL
;
764 static const QDictRenames opt_renames
[] = {
765 { BLOCK_OPT_BACKING_FILE
, "backing-file" },
766 { BLOCK_OPT_BACKING_FMT
, "backing-fmt" },
767 { BLOCK_OPT_CLUSTER_SIZE
, "cluster-size" },
768 { BLOCK_OPT_TABLE_SIZE
, "table-size" },
772 /* Parse options and convert legacy syntax */
773 qdict
= qemu_opts_to_qdict_filtered(opts
, NULL
, &qed_create_opts
, true);
775 if (!qdict_rename_keys(qdict
, opt_renames
, errp
)) {
780 /* Create and open the file (protocol layer) */
781 ret
= bdrv_co_create_file(filename
, opts
, errp
);
786 bs
= bdrv_open(filename
, NULL
, NULL
,
787 BDRV_O_RDWR
| BDRV_O_RESIZE
| BDRV_O_PROTOCOL
, errp
);
793 /* Now get the QAPI type BlockdevCreateOptions */
794 qdict_put_str(qdict
, "driver", "qed");
795 qdict_put_str(qdict
, "file", bs
->node_name
);
797 v
= qobject_input_visitor_new_flat_confused(qdict
, errp
);
803 visit_type_BlockdevCreateOptions(v
, NULL
, &create_options
, errp
);
805 if (!create_options
) {
810 /* Silently round up size */
811 assert(create_options
->driver
== BLOCKDEV_DRIVER_QED
);
812 create_options
->u
.qed
.size
=
813 ROUND_UP(create_options
->u
.qed
.size
, BDRV_SECTOR_SIZE
);
815 /* Create the qed image (format layer) */
816 ret
= bdrv_qed_co_create(create_options
, errp
);
819 qobject_unref(qdict
);
821 qapi_free_BlockdevCreateOptions(create_options
);
825 static int coroutine_fn
bdrv_qed_co_block_status(BlockDriverState
*bs
,
827 int64_t pos
, int64_t bytes
,
828 int64_t *pnum
, int64_t *map
,
829 BlockDriverState
**file
)
831 BDRVQEDState
*s
= bs
->opaque
;
832 size_t len
= MIN(bytes
, SIZE_MAX
);
834 QEDRequest request
= { .l2_table
= NULL
};
838 qemu_co_mutex_lock(&s
->table_lock
);
839 ret
= qed_find_cluster(s
, &request
, pos
, &len
, &offset
);
843 case QED_CLUSTER_FOUND
:
844 *map
= offset
| qed_offset_into_cluster(s
, pos
);
845 status
= BDRV_BLOCK_DATA
| BDRV_BLOCK_OFFSET_VALID
;
846 *file
= bs
->file
->bs
;
848 case QED_CLUSTER_ZERO
:
849 status
= BDRV_BLOCK_ZERO
;
861 qed_unref_l2_cache_entry(request
.l2_table
);
862 qemu_co_mutex_unlock(&s
->table_lock
);
867 static BDRVQEDState
*acb_to_s(QEDAIOCB
*acb
)
869 return acb
->bs
->opaque
;
873 * Read from the backing file or zero-fill if no backing file
876 * @pos: Byte position in device
877 * @qiov: Destination I/O vector
879 * This function reads qiov->size bytes starting at pos from the backing file.
880 * If there is no backing file then zeroes are read.
882 static int coroutine_fn
qed_read_backing_file(BDRVQEDState
*s
, uint64_t pos
,
885 if (s
->bs
->backing
) {
886 BLKDBG_EVENT(s
->bs
->file
, BLKDBG_READ_BACKING_AIO
);
887 return bdrv_co_preadv(s
->bs
->backing
, pos
, qiov
->size
, qiov
, 0);
889 qemu_iovec_memset(qiov
, 0, 0, qiov
->size
);
894 * Copy data from backing file into the image
897 * @pos: Byte position in device
898 * @len: Number of bytes
899 * @offset: Byte offset in image file
901 static int coroutine_fn
qed_copy_from_backing_file(BDRVQEDState
*s
,
902 uint64_t pos
, uint64_t len
,
908 /* Skip copy entirely if there is no work to do */
913 qemu_iovec_init_buf(&qiov
, qemu_blockalign(s
->bs
, len
), len
);
915 ret
= qed_read_backing_file(s
, pos
, &qiov
);
921 BLKDBG_EVENT(s
->bs
->file
, BLKDBG_COW_WRITE
);
922 ret
= bdrv_co_pwritev(s
->bs
->file
, offset
, qiov
.size
, &qiov
, 0);
928 qemu_vfree(qemu_iovec_buf(&qiov
));
933 * Link one or more contiguous clusters into a table
937 * @index: First cluster index
938 * @n: Number of contiguous clusters
939 * @cluster: First cluster offset
941 * The cluster offset may be an allocated byte offset in the image file, the
942 * zero cluster marker, or the unallocated cluster marker.
944 * Called with table_lock held.
946 static void coroutine_fn
qed_update_l2_table(BDRVQEDState
*s
, QEDTable
*table
,
947 int index
, unsigned int n
,
951 for (i
= index
; i
< index
+ n
; i
++) {
952 table
->offsets
[i
] = cluster
;
953 if (!qed_offset_is_unalloc_cluster(cluster
) &&
954 !qed_offset_is_zero_cluster(cluster
)) {
955 cluster
+= s
->header
.cluster_size
;
960 /* Called with table_lock held. */
961 static void coroutine_fn
qed_aio_complete(QEDAIOCB
*acb
)
963 BDRVQEDState
*s
= acb_to_s(acb
);
966 qemu_iovec_destroy(&acb
->cur_qiov
);
967 qed_unref_l2_cache_entry(acb
->request
.l2_table
);
969 /* Free the buffer we may have allocated for zero writes */
970 if (acb
->flags
& QED_AIOCB_ZERO
) {
971 qemu_vfree(acb
->qiov
->iov
[0].iov_base
);
972 acb
->qiov
->iov
[0].iov_base
= NULL
;
975 /* Start next allocating write request waiting behind this one. Note that
976 * requests enqueue themselves when they first hit an unallocated cluster
977 * but they wait until the entire request is finished before waking up the
978 * next request in the queue. This ensures that we don't cycle through
979 * requests multiple times but rather finish one at a time completely.
981 if (acb
== s
->allocating_acb
) {
982 s
->allocating_acb
= NULL
;
983 if (!qemu_co_queue_empty(&s
->allocating_write_reqs
)) {
984 qemu_co_queue_next(&s
->allocating_write_reqs
);
985 } else if (s
->header
.features
& QED_F_NEED_CHECK
) {
986 qed_start_need_check_timer(s
);
992 * Update L1 table with new L2 table offset and write it out
994 * Called with table_lock held.
996 static int coroutine_fn
qed_aio_write_l1_update(QEDAIOCB
*acb
)
998 BDRVQEDState
*s
= acb_to_s(acb
);
999 CachedL2Table
*l2_table
= acb
->request
.l2_table
;
1000 uint64_t l2_offset
= l2_table
->offset
;
1003 index
= qed_l1_index(s
, acb
->cur_pos
);
1004 s
->l1_table
->offsets
[index
] = l2_table
->offset
;
1006 ret
= qed_write_l1_table(s
, index
, 1);
1008 /* Commit the current L2 table to the cache */
1009 qed_commit_l2_cache_entry(&s
->l2_cache
, l2_table
);
1011 /* This is guaranteed to succeed because we just committed the entry to the
1014 acb
->request
.l2_table
= qed_find_l2_cache_entry(&s
->l2_cache
, l2_offset
);
1015 assert(acb
->request
.l2_table
!= NULL
);
1022 * Update L2 table with new cluster offsets and write them out
1024 * Called with table_lock held.
1026 static int coroutine_fn
qed_aio_write_l2_update(QEDAIOCB
*acb
, uint64_t offset
)
1028 BDRVQEDState
*s
= acb_to_s(acb
);
1029 bool need_alloc
= acb
->find_cluster_ret
== QED_CLUSTER_L1
;
1033 qed_unref_l2_cache_entry(acb
->request
.l2_table
);
1034 acb
->request
.l2_table
= qed_new_l2_table(s
);
1037 index
= qed_l2_index(s
, acb
->cur_pos
);
1038 qed_update_l2_table(s
, acb
->request
.l2_table
->table
, index
, acb
->cur_nclusters
,
1042 /* Write out the whole new L2 table */
1043 ret
= qed_write_l2_table(s
, &acb
->request
, 0, s
->table_nelems
, true);
1047 return qed_aio_write_l1_update(acb
);
1049 /* Write out only the updated part of the L2 table */
1050 ret
= qed_write_l2_table(s
, &acb
->request
, index
, acb
->cur_nclusters
,
1060 * Write data to the image file
1062 * Called with table_lock *not* held.
1064 static int coroutine_fn
qed_aio_write_main(QEDAIOCB
*acb
)
1066 BDRVQEDState
*s
= acb_to_s(acb
);
1067 uint64_t offset
= acb
->cur_cluster
+
1068 qed_offset_into_cluster(s
, acb
->cur_pos
);
1070 trace_qed_aio_write_main(s
, acb
, 0, offset
, acb
->cur_qiov
.size
);
1072 BLKDBG_EVENT(s
->bs
->file
, BLKDBG_WRITE_AIO
);
1073 return bdrv_co_pwritev(s
->bs
->file
, offset
, acb
->cur_qiov
.size
,
1078 * Populate untouched regions of new data cluster
1080 * Called with table_lock held.
1082 static int coroutine_fn
qed_aio_write_cow(QEDAIOCB
*acb
)
1084 BDRVQEDState
*s
= acb_to_s(acb
);
1085 uint64_t start
, len
, offset
;
1088 qemu_co_mutex_unlock(&s
->table_lock
);
1090 /* Populate front untouched region of new data cluster */
1091 start
= qed_start_of_cluster(s
, acb
->cur_pos
);
1092 len
= qed_offset_into_cluster(s
, acb
->cur_pos
);
1094 trace_qed_aio_write_prefill(s
, acb
, start
, len
, acb
->cur_cluster
);
1095 ret
= qed_copy_from_backing_file(s
, start
, len
, acb
->cur_cluster
);
1100 /* Populate back untouched region of new data cluster */
1101 start
= acb
->cur_pos
+ acb
->cur_qiov
.size
;
1102 len
= qed_start_of_cluster(s
, start
+ s
->header
.cluster_size
- 1) - start
;
1103 offset
= acb
->cur_cluster
+
1104 qed_offset_into_cluster(s
, acb
->cur_pos
) +
1107 trace_qed_aio_write_postfill(s
, acb
, start
, len
, offset
);
1108 ret
= qed_copy_from_backing_file(s
, start
, len
, offset
);
1113 ret
= qed_aio_write_main(acb
);
1118 if (s
->bs
->backing
) {
1120 * Flush new data clusters before updating the L2 table
1122 * This flush is necessary when a backing file is in use. A crash
1123 * during an allocating write could result in empty clusters in the
1124 * image. If the write only touched a subregion of the cluster,
1125 * then backing image sectors have been lost in the untouched
1126 * region. The solution is to flush after writing a new data
1127 * cluster and before updating the L2 table.
1129 ret
= bdrv_co_flush(s
->bs
->file
->bs
);
1133 qemu_co_mutex_lock(&s
->table_lock
);
1138 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1140 static bool qed_should_set_need_check(BDRVQEDState
*s
)
1142 /* The flush before L2 update path ensures consistency */
1143 if (s
->bs
->backing
) {
1147 return !(s
->header
.features
& QED_F_NEED_CHECK
);
1151 * Write new data cluster
1153 * @acb: Write request
1154 * @len: Length in bytes
1156 * This path is taken when writing to previously unallocated clusters.
1158 * Called with table_lock held.
1160 static int coroutine_fn
qed_aio_write_alloc(QEDAIOCB
*acb
, size_t len
)
1162 BDRVQEDState
*s
= acb_to_s(acb
);
1165 /* Cancel timer when the first allocating request comes in */
1166 if (s
->allocating_acb
== NULL
) {
1167 qed_cancel_need_check_timer(s
);
1170 /* Freeze this request if another allocating write is in progress */
1171 if (s
->allocating_acb
!= acb
|| s
->allocating_write_reqs_plugged
) {
1172 if (s
->allocating_acb
!= NULL
) {
1173 qemu_co_queue_wait(&s
->allocating_write_reqs
, &s
->table_lock
);
1174 assert(s
->allocating_acb
== NULL
);
1176 s
->allocating_acb
= acb
;
1177 return -EAGAIN
; /* start over with looking up table entries */
1180 acb
->cur_nclusters
= qed_bytes_to_clusters(s
,
1181 qed_offset_into_cluster(s
, acb
->cur_pos
) + len
);
1182 qemu_iovec_concat(&acb
->cur_qiov
, acb
->qiov
, acb
->qiov_offset
, len
);
1184 if (acb
->flags
& QED_AIOCB_ZERO
) {
1185 /* Skip ahead if the clusters are already zero */
1186 if (acb
->find_cluster_ret
== QED_CLUSTER_ZERO
) {
1189 acb
->cur_cluster
= 1;
1191 acb
->cur_cluster
= qed_alloc_clusters(s
, acb
->cur_nclusters
);
1194 if (qed_should_set_need_check(s
)) {
1195 s
->header
.features
|= QED_F_NEED_CHECK
;
1196 ret
= qed_write_header(s
);
1202 if (!(acb
->flags
& QED_AIOCB_ZERO
)) {
1203 ret
= qed_aio_write_cow(acb
);
1209 return qed_aio_write_l2_update(acb
, acb
->cur_cluster
);
1213 * Write data cluster in place
1215 * @acb: Write request
1216 * @offset: Cluster offset in bytes
1217 * @len: Length in bytes
1219 * This path is taken when writing to already allocated clusters.
1221 * Called with table_lock held.
1223 static int coroutine_fn
qed_aio_write_inplace(QEDAIOCB
*acb
, uint64_t offset
,
1226 BDRVQEDState
*s
= acb_to_s(acb
);
1229 qemu_co_mutex_unlock(&s
->table_lock
);
1231 /* Allocate buffer for zero writes */
1232 if (acb
->flags
& QED_AIOCB_ZERO
) {
1233 struct iovec
*iov
= acb
->qiov
->iov
;
1235 if (!iov
->iov_base
) {
1236 iov
->iov_base
= qemu_try_blockalign(acb
->bs
, iov
->iov_len
);
1237 if (iov
->iov_base
== NULL
) {
1241 memset(iov
->iov_base
, 0, iov
->iov_len
);
1245 /* Calculate the I/O vector */
1246 acb
->cur_cluster
= offset
;
1247 qemu_iovec_concat(&acb
->cur_qiov
, acb
->qiov
, acb
->qiov_offset
, len
);
1249 /* Do the actual write. */
1250 r
= qed_aio_write_main(acb
);
1252 qemu_co_mutex_lock(&s
->table_lock
);
1257 * Write data cluster
1259 * @opaque: Write request
1260 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1261 * @offset: Cluster offset in bytes
1262 * @len: Length in bytes
1264 * Called with table_lock held.
1266 static int coroutine_fn
qed_aio_write_data(void *opaque
, int ret
,
1267 uint64_t offset
, size_t len
)
1269 QEDAIOCB
*acb
= opaque
;
1271 trace_qed_aio_write_data(acb_to_s(acb
), acb
, ret
, offset
, len
);
1273 acb
->find_cluster_ret
= ret
;
1276 case QED_CLUSTER_FOUND
:
1277 return qed_aio_write_inplace(acb
, offset
, len
);
1279 case QED_CLUSTER_L2
:
1280 case QED_CLUSTER_L1
:
1281 case QED_CLUSTER_ZERO
:
1282 return qed_aio_write_alloc(acb
, len
);
1285 g_assert_not_reached();
1292 * @opaque: Read request
1293 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1294 * @offset: Cluster offset in bytes
1295 * @len: Length in bytes
1297 * Called with table_lock held.
1299 static int coroutine_fn
qed_aio_read_data(void *opaque
, int ret
,
1300 uint64_t offset
, size_t len
)
1302 QEDAIOCB
*acb
= opaque
;
1303 BDRVQEDState
*s
= acb_to_s(acb
);
1304 BlockDriverState
*bs
= acb
->bs
;
1307 qemu_co_mutex_unlock(&s
->table_lock
);
1309 /* Adjust offset into cluster */
1310 offset
+= qed_offset_into_cluster(s
, acb
->cur_pos
);
1312 trace_qed_aio_read_data(s
, acb
, ret
, offset
, len
);
1314 qemu_iovec_concat(&acb
->cur_qiov
, acb
->qiov
, acb
->qiov_offset
, len
);
1316 /* Handle zero cluster and backing file reads, otherwise read
1317 * data cluster directly.
1319 if (ret
== QED_CLUSTER_ZERO
) {
1320 qemu_iovec_memset(&acb
->cur_qiov
, 0, 0, acb
->cur_qiov
.size
);
1322 } else if (ret
!= QED_CLUSTER_FOUND
) {
1323 r
= qed_read_backing_file(s
, acb
->cur_pos
, &acb
->cur_qiov
);
1325 BLKDBG_EVENT(bs
->file
, BLKDBG_READ_AIO
);
1326 r
= bdrv_co_preadv(bs
->file
, offset
, acb
->cur_qiov
.size
,
1330 qemu_co_mutex_lock(&s
->table_lock
);
1335 * Begin next I/O or complete the request
1337 static int coroutine_fn
qed_aio_next_io(QEDAIOCB
*acb
)
1339 BDRVQEDState
*s
= acb_to_s(acb
);
1344 qemu_co_mutex_lock(&s
->table_lock
);
1346 trace_qed_aio_next_io(s
, acb
, 0, acb
->cur_pos
+ acb
->cur_qiov
.size
);
1348 acb
->qiov_offset
+= acb
->cur_qiov
.size
;
1349 acb
->cur_pos
+= acb
->cur_qiov
.size
;
1350 qemu_iovec_reset(&acb
->cur_qiov
);
1352 /* Complete request */
1353 if (acb
->cur_pos
>= acb
->end_pos
) {
1358 /* Find next cluster and start I/O */
1359 len
= acb
->end_pos
- acb
->cur_pos
;
1360 ret
= qed_find_cluster(s
, &acb
->request
, acb
->cur_pos
, &len
, &offset
);
1365 if (acb
->flags
& QED_AIOCB_WRITE
) {
1366 ret
= qed_aio_write_data(acb
, ret
, offset
, len
);
1368 ret
= qed_aio_read_data(acb
, ret
, offset
, len
);
1371 if (ret
< 0 && ret
!= -EAGAIN
) {
1376 trace_qed_aio_complete(s
, acb
, ret
);
1377 qed_aio_complete(acb
);
1378 qemu_co_mutex_unlock(&s
->table_lock
);
1382 static int coroutine_fn
qed_co_request(BlockDriverState
*bs
, int64_t sector_num
,
1383 QEMUIOVector
*qiov
, int nb_sectors
,
1388 .cur_pos
= (uint64_t) sector_num
* BDRV_SECTOR_SIZE
,
1389 .end_pos
= (sector_num
+ nb_sectors
) * BDRV_SECTOR_SIZE
,
1393 qemu_iovec_init(&acb
.cur_qiov
, qiov
->niov
);
1395 trace_qed_aio_setup(bs
->opaque
, &acb
, sector_num
, nb_sectors
, NULL
, flags
);
1398 return qed_aio_next_io(&acb
);
1401 static int coroutine_fn
bdrv_qed_co_readv(BlockDriverState
*bs
,
1402 int64_t sector_num
, int nb_sectors
,
1405 return qed_co_request(bs
, sector_num
, qiov
, nb_sectors
, 0);
1408 static int coroutine_fn
bdrv_qed_co_writev(BlockDriverState
*bs
,
1409 int64_t sector_num
, int nb_sectors
,
1410 QEMUIOVector
*qiov
, int flags
)
1412 return qed_co_request(bs
, sector_num
, qiov
, nb_sectors
, QED_AIOCB_WRITE
);
1415 static int coroutine_fn
bdrv_qed_co_pwrite_zeroes(BlockDriverState
*bs
,
1418 BdrvRequestFlags flags
)
1420 BDRVQEDState
*s
= bs
->opaque
;
1423 * Zero writes start without an I/O buffer. If a buffer becomes necessary
1424 * then it will be allocated during request processing.
1426 QEMUIOVector qiov
= QEMU_IOVEC_INIT_BUF(qiov
, NULL
, bytes
);
1429 * QED is not prepared for 63bit write-zero requests, so rely on
1430 * max_pwrite_zeroes.
1432 assert(bytes
<= INT_MAX
);
1434 /* Fall back if the request is not aligned */
1435 if (qed_offset_into_cluster(s
, offset
) ||
1436 qed_offset_into_cluster(s
, bytes
)) {
1440 return qed_co_request(bs
, offset
>> BDRV_SECTOR_BITS
, &qiov
,
1441 bytes
>> BDRV_SECTOR_BITS
,
1442 QED_AIOCB_WRITE
| QED_AIOCB_ZERO
);
1445 static int coroutine_fn
bdrv_qed_co_truncate(BlockDriverState
*bs
,
1448 PreallocMode prealloc
,
1449 BdrvRequestFlags flags
,
1452 BDRVQEDState
*s
= bs
->opaque
;
1453 uint64_t old_image_size
;
1456 if (prealloc
!= PREALLOC_MODE_OFF
) {
1457 error_setg(errp
, "Unsupported preallocation mode '%s'",
1458 PreallocMode_str(prealloc
));
1462 if (!qed_is_image_size_valid(offset
, s
->header
.cluster_size
,
1463 s
->header
.table_size
)) {
1464 error_setg(errp
, "Invalid image size specified");
1468 if ((uint64_t)offset
< s
->header
.image_size
) {
1469 error_setg(errp
, "Shrinking images is currently not supported");
1473 old_image_size
= s
->header
.image_size
;
1474 s
->header
.image_size
= offset
;
1475 ret
= qed_write_header_sync(s
);
1477 s
->header
.image_size
= old_image_size
;
1478 error_setg_errno(errp
, -ret
, "Failed to update the image size");
1483 static int64_t bdrv_qed_getlength(BlockDriverState
*bs
)
1485 BDRVQEDState
*s
= bs
->opaque
;
1486 return s
->header
.image_size
;
1489 static int bdrv_qed_get_info(BlockDriverState
*bs
, BlockDriverInfo
*bdi
)
1491 BDRVQEDState
*s
= bs
->opaque
;
1493 memset(bdi
, 0, sizeof(*bdi
));
1494 bdi
->cluster_size
= s
->header
.cluster_size
;
1495 bdi
->is_dirty
= s
->header
.features
& QED_F_NEED_CHECK
;
1499 static int bdrv_qed_change_backing_file(BlockDriverState
*bs
,
1500 const char *backing_file
,
1501 const char *backing_fmt
)
1503 BDRVQEDState
*s
= bs
->opaque
;
1504 QEDHeader new_header
, le_header
;
1506 size_t buffer_len
, backing_file_len
;
1509 /* Refuse to set backing filename if unknown compat feature bits are
1510 * active. If the image uses an unknown compat feature then we may not
1511 * know the layout of data following the header structure and cannot safely
1514 if (backing_file
&& (s
->header
.compat_features
&
1515 ~QED_COMPAT_FEATURE_MASK
)) {
1519 memcpy(&new_header
, &s
->header
, sizeof(new_header
));
1521 new_header
.features
&= ~(QED_F_BACKING_FILE
|
1522 QED_F_BACKING_FORMAT_NO_PROBE
);
1524 /* Adjust feature flags */
1526 new_header
.features
|= QED_F_BACKING_FILE
;
1528 if (qed_fmt_is_raw(backing_fmt
)) {
1529 new_header
.features
|= QED_F_BACKING_FORMAT_NO_PROBE
;
1533 /* Calculate new header size */
1534 backing_file_len
= 0;
1537 backing_file_len
= strlen(backing_file
);
1540 buffer_len
= sizeof(new_header
);
1541 new_header
.backing_filename_offset
= buffer_len
;
1542 new_header
.backing_filename_size
= backing_file_len
;
1543 buffer_len
+= backing_file_len
;
1545 /* Make sure we can rewrite header without failing */
1546 if (buffer_len
> new_header
.header_size
* new_header
.cluster_size
) {
1550 /* Prepare new header */
1551 buffer
= g_malloc(buffer_len
);
1553 qed_header_cpu_to_le(&new_header
, &le_header
);
1554 memcpy(buffer
, &le_header
, sizeof(le_header
));
1555 buffer_len
= sizeof(le_header
);
1558 memcpy(buffer
+ buffer_len
, backing_file
, backing_file_len
);
1559 buffer_len
+= backing_file_len
;
1562 /* Write new header */
1563 ret
= bdrv_pwrite_sync(bs
->file
, 0, buffer_len
, buffer
, 0);
1566 memcpy(&s
->header
, &new_header
, sizeof(new_header
));
1571 static void coroutine_fn
bdrv_qed_co_invalidate_cache(BlockDriverState
*bs
,
1574 BDRVQEDState
*s
= bs
->opaque
;
1579 bdrv_qed_init_state(bs
);
1580 qemu_co_mutex_lock(&s
->table_lock
);
1581 ret
= bdrv_qed_do_open(bs
, NULL
, bs
->open_flags
, errp
);
1582 qemu_co_mutex_unlock(&s
->table_lock
);
1584 error_prepend(errp
, "Could not reopen qed layer: ");
1588 static int coroutine_fn
bdrv_qed_co_check(BlockDriverState
*bs
,
1589 BdrvCheckResult
*result
,
1592 BDRVQEDState
*s
= bs
->opaque
;
1595 qemu_co_mutex_lock(&s
->table_lock
);
1596 ret
= qed_check(s
, result
, !!fix
);
1597 qemu_co_mutex_unlock(&s
->table_lock
);
1602 static QemuOptsList qed_create_opts
= {
1603 .name
= "qed-create-opts",
1604 .head
= QTAILQ_HEAD_INITIALIZER(qed_create_opts
.head
),
1607 .name
= BLOCK_OPT_SIZE
,
1608 .type
= QEMU_OPT_SIZE
,
1609 .help
= "Virtual disk size"
1612 .name
= BLOCK_OPT_BACKING_FILE
,
1613 .type
= QEMU_OPT_STRING
,
1614 .help
= "File name of a base image"
1617 .name
= BLOCK_OPT_BACKING_FMT
,
1618 .type
= QEMU_OPT_STRING
,
1619 .help
= "Image format of the base image"
1622 .name
= BLOCK_OPT_CLUSTER_SIZE
,
1623 .type
= QEMU_OPT_SIZE
,
1624 .help
= "Cluster size (in bytes)",
1625 .def_value_str
= stringify(QED_DEFAULT_CLUSTER_SIZE
)
1628 .name
= BLOCK_OPT_TABLE_SIZE
,
1629 .type
= QEMU_OPT_SIZE
,
1630 .help
= "L1/L2 table size (in clusters)"
1632 { /* end of list */ }
1636 static BlockDriver bdrv_qed
= {
1637 .format_name
= "qed",
1638 .instance_size
= sizeof(BDRVQEDState
),
1639 .create_opts
= &qed_create_opts
,
1641 .supports_backing
= true,
1643 .bdrv_probe
= bdrv_qed_probe
,
1644 .bdrv_open
= bdrv_qed_open
,
1645 .bdrv_close
= bdrv_qed_close
,
1646 .bdrv_reopen_prepare
= bdrv_qed_reopen_prepare
,
1647 .bdrv_child_perm
= bdrv_default_perms
,
1648 .bdrv_co_create
= bdrv_qed_co_create
,
1649 .bdrv_co_create_opts
= bdrv_qed_co_create_opts
,
1650 .bdrv_has_zero_init
= bdrv_has_zero_init_1
,
1651 .bdrv_co_block_status
= bdrv_qed_co_block_status
,
1652 .bdrv_co_readv
= bdrv_qed_co_readv
,
1653 .bdrv_co_writev
= bdrv_qed_co_writev
,
1654 .bdrv_co_pwrite_zeroes
= bdrv_qed_co_pwrite_zeroes
,
1655 .bdrv_co_truncate
= bdrv_qed_co_truncate
,
1656 .bdrv_getlength
= bdrv_qed_getlength
,
1657 .bdrv_get_info
= bdrv_qed_get_info
,
1658 .bdrv_refresh_limits
= bdrv_qed_refresh_limits
,
1659 .bdrv_change_backing_file
= bdrv_qed_change_backing_file
,
1660 .bdrv_co_invalidate_cache
= bdrv_qed_co_invalidate_cache
,
1661 .bdrv_co_check
= bdrv_qed_co_check
,
1662 .bdrv_detach_aio_context
= bdrv_qed_detach_aio_context
,
1663 .bdrv_attach_aio_context
= bdrv_qed_attach_aio_context
,
1664 .bdrv_drain_begin
= bdrv_qed_drain_begin
,
1667 static void bdrv_qed_init(void)
1669 bdrv_register(&bdrv_qed
);
1672 block_init(bdrv_qed_init
);