2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
26 #include "qemu/cutils.h"
27 #include "qemu/module.h"
29 #include "hw/acpi/acpi_aml_interface.h"
30 #include "hw/intc/kvm_irqcount.h"
32 #include "hw/qdev-properties.h"
33 #include "hw/qdev-properties-system.h"
34 #include "qemu/timer.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/replay.h"
37 #include "sysemu/reset.h"
38 #include "sysemu/runstate.h"
39 #include "sysemu/rtc.h"
40 #include "hw/rtc/mc146818rtc.h"
41 #include "hw/rtc/mc146818rtc_regs.h"
42 #include "migration/vmstate.h"
43 #include "qapi/error.h"
44 #include "qapi/qapi-events-misc.h"
45 #include "qapi/visitor.h"
46 #include "hw/rtc/mc146818rtc_regs.h"
49 //#define DEBUG_COALESCED
52 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
54 # define CMOS_DPRINTF(format, ...) do { } while (0)
57 #ifdef DEBUG_COALESCED
58 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
60 # define DPRINTF_C(format, ...) do { } while (0)
63 #define SEC_PER_MIN 60
64 #define MIN_PER_HOUR 60
65 #define SEC_PER_HOUR 3600
66 #define HOUR_PER_DAY 24
67 #define SEC_PER_DAY 86400
69 #define RTC_REINJECT_ON_ACK_COUNT 20
70 #define RTC_CLOCK_RATE 32768
71 #define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768)
73 #define RTC_ISA_BASE 0x70
75 static void rtc_set_time(RTCState
*s
);
76 static void rtc_update_time(RTCState
*s
);
77 static void rtc_set_cmos(RTCState
*s
, const struct tm
*tm
);
78 static inline int rtc_from_bcd(RTCState
*s
, int a
);
79 static uint64_t get_next_alarm(RTCState
*s
);
81 static inline bool rtc_running(RTCState
*s
)
83 return (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) &&
84 (s
->cmos_data
[RTC_REG_A
] & 0x70) <= 0x20);
87 static uint64_t get_guest_rtc_ns(RTCState
*s
)
89 uint64_t guest_clock
= qemu_clock_get_ns(rtc_clock
);
91 return s
->base_rtc
* NANOSECONDS_PER_SECOND
+
92 guest_clock
- s
->last_update
+ s
->offset
;
95 static void rtc_coalesced_timer_update(RTCState
*s
)
97 if (s
->irq_coalesced
== 0) {
98 timer_del(s
->coalesced_timer
);
100 /* divide each RTC interval to 2 - 8 smaller intervals */
101 int c
= MIN(s
->irq_coalesced
, 7) + 1;
102 int64_t next_clock
= qemu_clock_get_ns(rtc_clock
) +
103 periodic_clock_to_ns(s
->period
/ c
);
104 timer_mod(s
->coalesced_timer
, next_clock
);
108 static QLIST_HEAD(, RTCState
) rtc_devices
=
109 QLIST_HEAD_INITIALIZER(rtc_devices
);
111 void qmp_rtc_reset_reinjection(Error
**errp
)
115 QLIST_FOREACH(s
, &rtc_devices
, link
) {
116 s
->irq_coalesced
= 0;
120 static bool rtc_policy_slew_deliver_irq(RTCState
*s
)
122 kvm_reset_irq_delivered();
123 qemu_irq_raise(s
->irq
);
124 return kvm_get_irq_delivered();
127 static void rtc_coalesced_timer(void *opaque
)
129 RTCState
*s
= opaque
;
131 if (s
->irq_coalesced
!= 0) {
132 s
->cmos_data
[RTC_REG_C
] |= 0xc0;
133 DPRINTF_C("cmos: injecting from timer\n");
134 if (rtc_policy_slew_deliver_irq(s
)) {
136 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
141 rtc_coalesced_timer_update(s
);
144 static uint32_t rtc_periodic_clock_ticks(RTCState
*s
)
148 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
)) {
152 period_code
= s
->cmos_data
[RTC_REG_A
] & 0x0f;
154 return periodic_period_to_clock(period_code
);
158 * handle periodic timer. @old_period indicates the periodic timer update
159 * is just due to period adjustment.
162 periodic_timer_update(RTCState
*s
, int64_t current_time
, uint32_t old_period
, bool period_change
)
165 int64_t cur_clock
, next_irq_clock
, lost_clock
= 0;
167 period
= rtc_periodic_clock_ticks(s
);
171 s
->irq_coalesced
= 0;
172 timer_del(s
->periodic_timer
);
176 /* compute 32 khz clock */
178 muldiv64(current_time
, RTC_CLOCK_RATE
, NANOSECONDS_PER_SECOND
);
181 * if the periodic timer's update is due to period re-configuration,
182 * we should count the clock since last interrupt.
184 if (old_period
&& period_change
) {
185 int64_t last_periodic_clock
, next_periodic_clock
;
187 next_periodic_clock
= muldiv64(s
->next_periodic_time
,
188 RTC_CLOCK_RATE
, NANOSECONDS_PER_SECOND
);
189 last_periodic_clock
= next_periodic_clock
- old_period
;
190 lost_clock
= cur_clock
- last_periodic_clock
;
191 assert(lost_clock
>= 0);
195 * s->irq_coalesced can change for two reasons:
197 * a) if one or more periodic timer interrupts have been lost,
198 * lost_clock will be more that a period.
200 * b) when the period may be reconfigured, we expect the OS to
201 * treat delayed tick as the new period. So, when switching
202 * from a shorter to a longer period, scale down the missing,
203 * because the OS will treat past delayed ticks as longer
204 * (leftovers are put back into lost_clock). When switching
205 * to a shorter period, scale up the missing ticks since the
206 * OS handler will treat past delayed ticks as shorter.
208 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
209 uint32_t old_irq_coalesced
= s
->irq_coalesced
;
211 lost_clock
+= old_irq_coalesced
* old_period
;
212 s
->irq_coalesced
= lost_clock
/ s
->period
;
213 lost_clock
%= s
->period
;
214 if (old_irq_coalesced
!= s
->irq_coalesced
||
215 old_period
!= s
->period
) {
216 DPRINTF_C("cmos: coalesced irqs scaled from %d to %d, "
217 "period scaled from %d to %d\n", old_irq_coalesced
,
218 s
->irq_coalesced
, old_period
, s
->period
);
219 rtc_coalesced_timer_update(s
);
223 * no way to compensate the interrupt if LOST_TICK_POLICY_SLEW
224 * is not used, we should make the time progress anyway.
226 lost_clock
= MIN(lost_clock
, period
);
229 assert(lost_clock
>= 0 && lost_clock
<= period
);
231 next_irq_clock
= cur_clock
+ period
- lost_clock
;
232 s
->next_periodic_time
= periodic_clock_to_ns(next_irq_clock
) + 1;
233 timer_mod(s
->periodic_timer
, s
->next_periodic_time
);
236 static void rtc_periodic_timer(void *opaque
)
238 RTCState
*s
= opaque
;
240 periodic_timer_update(s
, s
->next_periodic_time
, s
->period
, false);
241 s
->cmos_data
[RTC_REG_C
] |= REG_C_PF
;
242 if (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) {
243 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
244 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
245 if (s
->irq_reinject_on_ack_count
>= RTC_REINJECT_ON_ACK_COUNT
)
246 s
->irq_reinject_on_ack_count
= 0;
247 if (!rtc_policy_slew_deliver_irq(s
)) {
249 rtc_coalesced_timer_update(s
);
250 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
254 qemu_irq_raise(s
->irq
);
258 /* handle update-ended timer */
259 static void check_update_timer(RTCState
*s
)
261 uint64_t next_update_time
;
265 /* From the data sheet: "Holding the dividers in reset prevents
266 * interrupts from operating, while setting the SET bit allows"
269 if ((s
->cmos_data
[RTC_REG_A
] & 0x60) == 0x60) {
270 assert((s
->cmos_data
[RTC_REG_A
] & REG_A_UIP
) == 0);
271 timer_del(s
->update_timer
);
275 guest_nsec
= get_guest_rtc_ns(s
) % NANOSECONDS_PER_SECOND
;
276 next_update_time
= qemu_clock_get_ns(rtc_clock
)
277 + NANOSECONDS_PER_SECOND
- guest_nsec
;
279 /* Compute time of next alarm. One second is already accounted
280 * for in next_update_time.
282 next_alarm_sec
= get_next_alarm(s
);
283 s
->next_alarm_time
= next_update_time
+
284 (next_alarm_sec
- 1) * NANOSECONDS_PER_SECOND
;
286 /* If update_in_progress latched the UIP bit, we must keep the timer
287 * programmed to the next second, so that UIP is cleared. Otherwise,
288 * if UF is already set, we might be able to optimize.
290 if (!(s
->cmos_data
[RTC_REG_A
] & REG_A_UIP
) &&
291 (s
->cmos_data
[RTC_REG_C
] & REG_C_UF
)) {
292 /* If AF cannot change (i.e. either it is set already, or
293 * SET=1 and then the time is not updated), nothing to do.
295 if ((s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) ||
296 (s
->cmos_data
[RTC_REG_C
] & REG_C_AF
)) {
297 timer_del(s
->update_timer
);
301 /* UF is set, but AF is clear. Program the timer to target
303 next_update_time
= s
->next_alarm_time
;
305 if (next_update_time
!= timer_expire_time_ns(s
->update_timer
)) {
306 timer_mod(s
->update_timer
, next_update_time
);
310 static inline uint8_t convert_hour(RTCState
*s
, uint8_t hour
)
312 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_24H
)) {
314 if (s
->cmos_data
[RTC_HOURS
] & 0x80) {
321 static uint64_t get_next_alarm(RTCState
*s
)
323 int32_t alarm_sec
, alarm_min
, alarm_hour
, cur_hour
, cur_min
, cur_sec
;
324 int32_t hour
, min
, sec
;
328 alarm_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS_ALARM
]);
329 alarm_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES_ALARM
]);
330 alarm_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS_ALARM
]);
331 alarm_hour
= alarm_hour
== -1 ? -1 : convert_hour(s
, alarm_hour
);
333 cur_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
334 cur_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
335 cur_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS
]);
336 cur_hour
= convert_hour(s
, cur_hour
);
338 if (alarm_hour
== -1) {
339 alarm_hour
= cur_hour
;
340 if (alarm_min
== -1) {
342 if (alarm_sec
== -1) {
343 alarm_sec
= cur_sec
+ 1;
344 } else if (cur_sec
> alarm_sec
) {
347 } else if (cur_min
== alarm_min
) {
348 if (alarm_sec
== -1) {
349 alarm_sec
= cur_sec
+ 1;
351 if (cur_sec
> alarm_sec
) {
355 if (alarm_sec
== SEC_PER_MIN
) {
356 /* wrap to next hour, minutes is not in don't care mode */
360 } else if (cur_min
> alarm_min
) {
363 } else if (cur_hour
== alarm_hour
) {
364 if (alarm_min
== -1) {
366 if (alarm_sec
== -1) {
367 alarm_sec
= cur_sec
+ 1;
368 } else if (cur_sec
> alarm_sec
) {
372 if (alarm_sec
== SEC_PER_MIN
) {
376 /* wrap to next day, hour is not in don't care mode */
377 alarm_min
%= MIN_PER_HOUR
;
378 } else if (cur_min
== alarm_min
) {
379 if (alarm_sec
== -1) {
380 alarm_sec
= cur_sec
+ 1;
382 /* wrap to next day, hours+minutes not in don't care mode */
383 alarm_sec
%= SEC_PER_MIN
;
387 /* values that are still don't care fire at the next min/sec */
388 if (alarm_min
== -1) {
391 if (alarm_sec
== -1) {
395 /* keep values in range */
396 if (alarm_sec
== SEC_PER_MIN
) {
400 if (alarm_min
== MIN_PER_HOUR
) {
404 alarm_hour
%= HOUR_PER_DAY
;
406 hour
= alarm_hour
- cur_hour
;
407 min
= hour
* MIN_PER_HOUR
+ alarm_min
- cur_min
;
408 sec
= min
* SEC_PER_MIN
+ alarm_sec
- cur_sec
;
409 return sec
<= 0 ? sec
+ SEC_PER_DAY
: sec
;
412 static void rtc_update_timer(void *opaque
)
414 RTCState
*s
= opaque
;
415 int32_t irqs
= REG_C_UF
;
418 assert((s
->cmos_data
[RTC_REG_A
] & 0x60) != 0x60);
420 /* UIP might have been latched, update time and clear it. */
422 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
424 if (qemu_clock_get_ns(rtc_clock
) >= s
->next_alarm_time
) {
426 if (s
->cmos_data
[RTC_REG_B
] & REG_B_AIE
) {
427 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC
, NULL
);
431 new_irqs
= irqs
& ~s
->cmos_data
[RTC_REG_C
];
432 s
->cmos_data
[RTC_REG_C
] |= irqs
;
433 if ((new_irqs
& s
->cmos_data
[RTC_REG_B
]) != 0) {
434 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
435 qemu_irq_raise(s
->irq
);
437 check_update_timer(s
);
440 static void cmos_ioport_write(void *opaque
, hwaddr addr
,
441 uint64_t data
, unsigned size
)
443 RTCState
*s
= opaque
;
445 bool update_periodic_timer
;
447 if ((addr
& 1) == 0) {
448 s
->cmos_index
= data
& 0x7f;
450 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64
"\n",
451 s
->cmos_index
, data
);
452 switch(s
->cmos_index
) {
453 case RTC_SECONDS_ALARM
:
454 case RTC_MINUTES_ALARM
:
455 case RTC_HOURS_ALARM
:
456 s
->cmos_data
[s
->cmos_index
] = data
;
457 check_update_timer(s
);
459 case RTC_IBM_PS2_CENTURY_BYTE
:
460 s
->cmos_index
= RTC_CENTURY
;
466 case RTC_DAY_OF_WEEK
:
467 case RTC_DAY_OF_MONTH
:
470 s
->cmos_data
[s
->cmos_index
] = data
;
471 /* if in set mode, do not update the time */
472 if (rtc_running(s
)) {
474 check_update_timer(s
);
478 update_periodic_timer
= (s
->cmos_data
[RTC_REG_A
] ^ data
) & 0x0f;
479 old_period
= rtc_periodic_clock_ticks(s
);
481 if ((data
& 0x60) == 0x60) {
482 if (rtc_running(s
)) {
485 /* What happens to UIP when divider reset is enabled is
486 * unclear from the datasheet. Shouldn't matter much
489 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
490 } else if (((s
->cmos_data
[RTC_REG_A
] & 0x60) == 0x60) &&
491 (data
& 0x70) <= 0x20) {
492 /* when the divider reset is removed, the first update cycle
493 * begins one-half second later*/
494 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
495 s
->offset
= 500000000;
498 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
500 /* UIP bit is read only */
501 s
->cmos_data
[RTC_REG_A
] = (data
& ~REG_A_UIP
) |
502 (s
->cmos_data
[RTC_REG_A
] & REG_A_UIP
);
504 if (update_periodic_timer
) {
505 periodic_timer_update(s
, qemu_clock_get_ns(rtc_clock
),
509 check_update_timer(s
);
512 update_periodic_timer
= (s
->cmos_data
[RTC_REG_B
] ^ data
)
514 old_period
= rtc_periodic_clock_ticks(s
);
516 if (data
& REG_B_SET
) {
517 /* update cmos to when the rtc was stopping */
518 if (rtc_running(s
)) {
521 /* set mode: reset UIP mode */
522 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
525 /* if disabling set mode, update the time */
526 if ((s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) &&
527 (s
->cmos_data
[RTC_REG_A
] & 0x70) <= 0x20) {
528 s
->offset
= get_guest_rtc_ns(s
) % NANOSECONDS_PER_SECOND
;
532 /* if an interrupt flag is already set when the interrupt
533 * becomes enabled, raise an interrupt immediately. */
534 if (data
& s
->cmos_data
[RTC_REG_C
] & REG_C_MASK
) {
535 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
536 qemu_irq_raise(s
->irq
);
538 s
->cmos_data
[RTC_REG_C
] &= ~REG_C_IRQF
;
539 qemu_irq_lower(s
->irq
);
541 s
->cmos_data
[RTC_REG_B
] = data
;
543 if (update_periodic_timer
) {
544 periodic_timer_update(s
, qemu_clock_get_ns(rtc_clock
),
548 check_update_timer(s
);
552 /* cannot write to them */
555 s
->cmos_data
[s
->cmos_index
] = data
;
561 static inline int rtc_to_bcd(RTCState
*s
, int a
)
563 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
566 return ((a
/ 10) << 4) | (a
% 10);
570 static inline int rtc_from_bcd(RTCState
*s
, int a
)
572 if ((a
& 0xc0) == 0xc0) {
575 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
578 return ((a
>> 4) * 10) + (a
& 0x0f);
582 static void rtc_get_time(RTCState
*s
, struct tm
*tm
)
584 tm
->tm_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
585 tm
->tm_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
586 tm
->tm_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS
] & 0x7f);
587 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_24H
)) {
589 if (s
->cmos_data
[RTC_HOURS
] & 0x80) {
593 tm
->tm_wday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_WEEK
]) - 1;
594 tm
->tm_mday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_MONTH
]);
595 tm
->tm_mon
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MONTH
]) - 1;
597 rtc_from_bcd(s
, s
->cmos_data
[RTC_YEAR
]) + s
->base_year
+
598 rtc_from_bcd(s
, s
->cmos_data
[RTC_CENTURY
]) * 100 - 1900;
601 static void rtc_set_time(RTCState
*s
)
604 g_autofree
const char *qom_path
= object_get_canonical_path(OBJECT(s
));
606 rtc_get_time(s
, &tm
);
607 s
->base_rtc
= mktimegm(&tm
);
608 s
->last_update
= qemu_clock_get_ns(rtc_clock
);
610 qapi_event_send_rtc_change(qemu_timedate_diff(&tm
), qom_path
);
613 static void rtc_set_cmos(RTCState
*s
, const struct tm
*tm
)
617 s
->cmos_data
[RTC_SECONDS
] = rtc_to_bcd(s
, tm
->tm_sec
);
618 s
->cmos_data
[RTC_MINUTES
] = rtc_to_bcd(s
, tm
->tm_min
);
619 if (s
->cmos_data
[RTC_REG_B
] & REG_B_24H
) {
621 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, tm
->tm_hour
);
624 int h
= (tm
->tm_hour
% 12) ? tm
->tm_hour
% 12 : 12;
625 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, h
);
626 if (tm
->tm_hour
>= 12)
627 s
->cmos_data
[RTC_HOURS
] |= 0x80;
629 s
->cmos_data
[RTC_DAY_OF_WEEK
] = rtc_to_bcd(s
, tm
->tm_wday
+ 1);
630 s
->cmos_data
[RTC_DAY_OF_MONTH
] = rtc_to_bcd(s
, tm
->tm_mday
);
631 s
->cmos_data
[RTC_MONTH
] = rtc_to_bcd(s
, tm
->tm_mon
+ 1);
632 year
= tm
->tm_year
+ 1900 - s
->base_year
;
633 s
->cmos_data
[RTC_YEAR
] = rtc_to_bcd(s
, year
% 100);
634 s
->cmos_data
[RTC_CENTURY
] = rtc_to_bcd(s
, year
/ 100);
637 static void rtc_update_time(RTCState
*s
)
643 guest_nsec
= get_guest_rtc_ns(s
);
644 guest_sec
= guest_nsec
/ NANOSECONDS_PER_SECOND
;
645 gmtime_r(&guest_sec
, &ret
);
647 /* Is SET flag of Register B disabled? */
648 if ((s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) == 0) {
649 rtc_set_cmos(s
, &ret
);
653 static int update_in_progress(RTCState
*s
)
657 if (!rtc_running(s
)) {
660 if (timer_pending(s
->update_timer
)) {
661 int64_t next_update_time
= timer_expire_time_ns(s
->update_timer
);
662 /* Latch UIP until the timer expires. */
663 if (qemu_clock_get_ns(rtc_clock
) >=
664 (next_update_time
- UIP_HOLD_LENGTH
)) {
665 s
->cmos_data
[RTC_REG_A
] |= REG_A_UIP
;
670 guest_nsec
= get_guest_rtc_ns(s
);
671 /* UIP bit will be set at last 244us of every second. */
672 if ((guest_nsec
% NANOSECONDS_PER_SECOND
) >=
673 (NANOSECONDS_PER_SECOND
- UIP_HOLD_LENGTH
)) {
679 static uint64_t cmos_ioport_read(void *opaque
, hwaddr addr
,
682 RTCState
*s
= opaque
;
684 if ((addr
& 1) == 0) {
687 switch(s
->cmos_index
) {
688 case RTC_IBM_PS2_CENTURY_BYTE
:
689 s
->cmos_index
= RTC_CENTURY
;
695 case RTC_DAY_OF_WEEK
:
696 case RTC_DAY_OF_MONTH
:
699 /* if not in set mode, calibrate cmos before
701 if (rtc_running(s
)) {
704 ret
= s
->cmos_data
[s
->cmos_index
];
707 ret
= s
->cmos_data
[s
->cmos_index
];
708 if (update_in_progress(s
)) {
713 ret
= s
->cmos_data
[s
->cmos_index
];
714 qemu_irq_lower(s
->irq
);
715 s
->cmos_data
[RTC_REG_C
] = 0x00;
716 if (ret
& (REG_C_UF
| REG_C_AF
)) {
717 check_update_timer(s
);
720 if(s
->irq_coalesced
&&
721 (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) &&
722 s
->irq_reinject_on_ack_count
< RTC_REINJECT_ON_ACK_COUNT
) {
723 s
->irq_reinject_on_ack_count
++;
724 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
| REG_C_PF
;
725 DPRINTF_C("cmos: injecting on ack\n");
726 if (rtc_policy_slew_deliver_irq(s
)) {
728 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
734 ret
= s
->cmos_data
[s
->cmos_index
];
737 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
743 void rtc_set_memory(ISADevice
*dev
, int addr
, int val
)
745 RTCState
*s
= MC146818_RTC(dev
);
746 if (addr
>= 0 && addr
<= 127)
747 s
->cmos_data
[addr
] = val
;
750 int rtc_get_memory(ISADevice
*dev
, int addr
)
752 RTCState
*s
= MC146818_RTC(dev
);
753 assert(addr
>= 0 && addr
<= 127);
754 return s
->cmos_data
[addr
];
757 static void rtc_set_date_from_host(ISADevice
*dev
)
759 RTCState
*s
= MC146818_RTC(dev
);
762 qemu_get_timedate(&tm
, 0);
764 s
->base_rtc
= mktimegm(&tm
);
765 s
->last_update
= qemu_clock_get_ns(rtc_clock
);
768 /* set the CMOS date */
769 rtc_set_cmos(s
, &tm
);
772 static int rtc_pre_save(void *opaque
)
774 RTCState
*s
= opaque
;
781 static int rtc_post_load(void *opaque
, int version_id
)
783 RTCState
*s
= opaque
;
785 if (version_id
<= 2 || rtc_clock
== QEMU_CLOCK_REALTIME
) {
788 check_update_timer(s
);
790 s
->period
= rtc_periodic_clock_ticks(s
);
792 /* The periodic timer is deterministic in record/replay mode,
793 * so there is no need to update it after loading the vmstate.
794 * Reading RTC here would misalign record and replay.
796 if (replay_mode
== REPLAY_MODE_NONE
) {
797 uint64_t now
= qemu_clock_get_ns(rtc_clock
);
798 if (now
< s
->next_periodic_time
||
799 now
> (s
->next_periodic_time
+ get_max_clock_jump())) {
800 periodic_timer_update(s
, qemu_clock_get_ns(rtc_clock
), s
->period
, false);
804 if (version_id
>= 2) {
805 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
806 rtc_coalesced_timer_update(s
);
812 static bool rtc_irq_reinject_on_ack_count_needed(void *opaque
)
814 RTCState
*s
= (RTCState
*)opaque
;
815 return s
->irq_reinject_on_ack_count
!= 0;
818 static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count
= {
819 .name
= "mc146818rtc/irq_reinject_on_ack_count",
821 .minimum_version_id
= 1,
822 .needed
= rtc_irq_reinject_on_ack_count_needed
,
823 .fields
= (VMStateField
[]) {
824 VMSTATE_UINT16(irq_reinject_on_ack_count
, RTCState
),
825 VMSTATE_END_OF_LIST()
829 static const VMStateDescription vmstate_rtc
= {
830 .name
= "mc146818rtc",
832 .minimum_version_id
= 1,
833 .pre_save
= rtc_pre_save
,
834 .post_load
= rtc_post_load
,
835 .fields
= (VMStateField
[]) {
836 VMSTATE_BUFFER(cmos_data
, RTCState
),
837 VMSTATE_UINT8(cmos_index
, RTCState
),
839 VMSTATE_TIMER_PTR(periodic_timer
, RTCState
),
840 VMSTATE_INT64(next_periodic_time
, RTCState
),
842 VMSTATE_UINT32_V(irq_coalesced
, RTCState
, 2),
843 VMSTATE_UINT32_V(period
, RTCState
, 2),
844 VMSTATE_UINT64_V(base_rtc
, RTCState
, 3),
845 VMSTATE_UINT64_V(last_update
, RTCState
, 3),
846 VMSTATE_INT64_V(offset
, RTCState
, 3),
847 VMSTATE_TIMER_PTR_V(update_timer
, RTCState
, 3),
848 VMSTATE_UINT64_V(next_alarm_time
, RTCState
, 3),
849 VMSTATE_END_OF_LIST()
851 .subsections
= (const VMStateDescription
*[]) {
852 &vmstate_rtc_irq_reinject_on_ack_count
,
857 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
858 BIOS will read it and start S3 resume at POST Entry */
859 static void rtc_notify_suspend(Notifier
*notifier
, void *data
)
861 RTCState
*s
= container_of(notifier
, RTCState
, suspend_notifier
);
862 rtc_set_memory(ISA_DEVICE(s
), 0xF, 0xFE);
865 static const MemoryRegionOps cmos_ops
= {
866 .read
= cmos_ioport_read
,
867 .write
= cmos_ioport_write
,
869 .min_access_size
= 1,
870 .max_access_size
= 1,
872 .endianness
= DEVICE_LITTLE_ENDIAN
,
875 static void rtc_get_date(Object
*obj
, struct tm
*current_tm
, Error
**errp
)
877 RTCState
*s
= MC146818_RTC(obj
);
880 rtc_get_time(s
, current_tm
);
883 static void rtc_realizefn(DeviceState
*dev
, Error
**errp
)
885 ISADevice
*isadev
= ISA_DEVICE(dev
);
886 RTCState
*s
= MC146818_RTC(dev
);
888 s
->cmos_data
[RTC_REG_A
] = 0x26;
889 s
->cmos_data
[RTC_REG_B
] = 0x02;
890 s
->cmos_data
[RTC_REG_C
] = 0x00;
891 s
->cmos_data
[RTC_REG_D
] = 0x80;
893 /* This is for historical reasons. The default base year qdev property
894 * was set to 2000 for most machine types before the century byte was
897 * This if statement means that the century byte will be always 0
898 * (at least until 2079...) for base_year = 1980, but will be set
899 * correctly for base_year = 2000.
901 if (s
->base_year
== 2000) {
905 if (s
->isairq
>= ISA_NUM_IRQS
) {
906 error_setg(errp
, "Maximum value for \"irq\" is: %u", ISA_NUM_IRQS
- 1);
910 rtc_set_date_from_host(isadev
);
912 switch (s
->lost_tick_policy
) {
913 case LOST_TICK_POLICY_SLEW
:
915 timer_new_ns(rtc_clock
, rtc_coalesced_timer
, s
);
917 case LOST_TICK_POLICY_DISCARD
:
920 error_setg(errp
, "Invalid lost tick policy.");
924 s
->periodic_timer
= timer_new_ns(rtc_clock
, rtc_periodic_timer
, s
);
925 s
->update_timer
= timer_new_ns(rtc_clock
, rtc_update_timer
, s
);
926 check_update_timer(s
);
928 s
->suspend_notifier
.notify
= rtc_notify_suspend
;
929 qemu_register_suspend_notifier(&s
->suspend_notifier
);
931 memory_region_init_io(&s
->io
, OBJECT(s
), &cmos_ops
, s
, "rtc", 2);
932 isa_register_ioport(isadev
, &s
->io
, s
->io_base
);
934 /* register rtc 0x70 port for coalesced_pio */
935 memory_region_set_flush_coalesced(&s
->io
);
936 memory_region_init_io(&s
->coalesced_io
, OBJECT(s
), &cmos_ops
,
938 memory_region_add_subregion(&s
->io
, 0, &s
->coalesced_io
);
939 memory_region_add_coalescing(&s
->coalesced_io
, 0, 1);
941 qdev_set_legacy_instance_id(dev
, s
->io_base
, 3);
943 object_property_add_tm(OBJECT(s
), "date", rtc_get_date
);
945 qdev_init_gpio_out(dev
, &s
->irq
, 1);
946 QLIST_INSERT_HEAD(&rtc_devices
, s
, link
);
949 ISADevice
*mc146818_rtc_init(ISABus
*bus
, int base_year
, qemu_irq intercept_irq
)
955 isadev
= isa_new(TYPE_MC146818_RTC
);
956 dev
= DEVICE(isadev
);
957 s
= MC146818_RTC(isadev
);
958 qdev_prop_set_int32(dev
, "base_year", base_year
);
959 isa_realize_and_unref(isadev
, bus
, &error_fatal
);
961 qdev_connect_gpio_out(dev
, 0, intercept_irq
);
963 isa_connect_gpio_out(isadev
, 0, s
->isairq
);
966 object_property_add_alias(qdev_get_machine(), "rtc-time", OBJECT(isadev
),
972 static Property mc146818rtc_properties
[] = {
973 DEFINE_PROP_INT32("base_year", RTCState
, base_year
, 1980),
974 DEFINE_PROP_UINT16("iobase", RTCState
, io_base
, RTC_ISA_BASE
),
975 DEFINE_PROP_UINT8("irq", RTCState
, isairq
, RTC_ISA_IRQ
),
976 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState
,
977 lost_tick_policy
, LOST_TICK_POLICY_DISCARD
),
978 DEFINE_PROP_END_OF_LIST(),
981 static void rtc_reset_enter(Object
*obj
, ResetType type
)
983 RTCState
*s
= MC146818_RTC(obj
);
985 /* Reason: VM do suspend self will set 0xfe
986 * Reset any values other than 0xfe(Guest suspend case) */
987 if (s
->cmos_data
[0x0f] != 0xfe) {
988 s
->cmos_data
[0x0f] = 0x00;
991 s
->cmos_data
[RTC_REG_B
] &= ~(REG_B_PIE
| REG_B_AIE
| REG_B_SQWE
);
992 s
->cmos_data
[RTC_REG_C
] &= ~(REG_C_UF
| REG_C_IRQF
| REG_C_PF
| REG_C_AF
);
993 check_update_timer(s
);
996 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
997 s
->irq_coalesced
= 0;
998 s
->irq_reinject_on_ack_count
= 0;
1002 static void rtc_reset_hold(Object
*obj
)
1004 RTCState
*s
= MC146818_RTC(obj
);
1006 qemu_irq_lower(s
->irq
);
1009 static void rtc_build_aml(AcpiDevAmlIf
*adev
, Aml
*scope
)
1011 RTCState
*s
= MC146818_RTC(adev
);
1016 * Reserving 8 io ports here, following what physical hardware
1017 * does, even though qemu only responds to the first two ports.
1019 crs
= aml_resource_template();
1020 aml_append(crs
, aml_io(AML_DECODE16
, s
->io_base
, s
->io_base
,
1022 aml_append(crs
, aml_irq_no_flags(s
->isairq
));
1024 dev
= aml_device("RTC");
1025 aml_append(dev
, aml_name_decl("_HID", aml_eisaid("PNP0B00")));
1026 aml_append(dev
, aml_name_decl("_CRS", crs
));
1028 aml_append(scope
, dev
);
1031 static void rtc_class_initfn(ObjectClass
*klass
, void *data
)
1033 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1034 ResettableClass
*rc
= RESETTABLE_CLASS(klass
);
1035 AcpiDevAmlIfClass
*adevc
= ACPI_DEV_AML_IF_CLASS(klass
);
1037 dc
->realize
= rtc_realizefn
;
1038 dc
->vmsd
= &vmstate_rtc
;
1039 rc
->phases
.enter
= rtc_reset_enter
;
1040 rc
->phases
.hold
= rtc_reset_hold
;
1041 adevc
->build_dev_aml
= rtc_build_aml
;
1042 device_class_set_props(dc
, mc146818rtc_properties
);
1043 set_bit(DEVICE_CATEGORY_MISC
, dc
->categories
);
1046 static const TypeInfo mc146818rtc_info
= {
1047 .name
= TYPE_MC146818_RTC
,
1048 .parent
= TYPE_ISA_DEVICE
,
1049 .instance_size
= sizeof(RTCState
),
1050 .class_init
= rtc_class_initfn
,
1051 .interfaces
= (InterfaceInfo
[]) {
1052 { TYPE_ACPI_DEV_AML_IF
},
1057 static void mc146818rtc_register_types(void)
1059 type_register_static(&mc146818rtc_info
);
1062 type_init(mc146818rtc_register_types
)