hw/arm/mps2-tz.c: Add extra data parameter to MakeDevFn
[qemu/armbru.git] / hw / arm / mps2-tz.c
blob746ba3cc59effb048f76c9708b13e00cfcba15c5
1 /*
2 * ARM V2M MPS2 board emulation, trustzone aware FPGA images
4 * Copyright (c) 2017 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13 * FPGA but is otherwise the same as the 2). Since the CPU itself
14 * and most of the devices are in the FPGA, the details of the board
15 * as seen by the guest depend significantly on the FPGA image.
16 * This source file covers the following FPGA images, for TrustZone cores:
17 * "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
18 * "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
19 * "mps2-an524" -- Dual Cortex-M33 as documented in Application Note AN524
20 * "mps2-an547" -- Single Cortex-M55 as documented in Application Note AN547
22 * Links to the TRM for the board itself and to the various Application
23 * Notes which document the FPGA images can be found here:
24 * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
26 * Board TRM:
27 * https://developer.arm.com/documentation/100112/latest/
28 * Application Note AN505:
29 * https://developer.arm.com/documentation/dai0505/latest/
30 * Application Note AN521:
31 * https://developer.arm.com/documentation/dai0521/latest/
32 * Application Note AN524:
33 * https://developer.arm.com/documentation/dai0524/latest/
34 * Application Note AN547:
35 * https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/DAI0547B_SSE300_PLUS_U55_FPGA_for_mps3.pdf
37 * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
38 * (ARM ECM0601256) for the details of some of the device layout:
39 * https://developer.arm.com/documentation/ecm0601256/latest
40 * Similarly, the AN521 and AN524 use the SSE-200, and the SSE-200 TRM defines
41 * most of the device layout:
42 * https://developer.arm.com/documentation/101104/latest/
43 * and the AN547 uses the SSE-300, whose layout is in the SSE-300 TRM:
44 * https://developer.arm.com/documentation/101773/latest/
47 #include "qemu/osdep.h"
48 #include "qemu/units.h"
49 #include "qemu/cutils.h"
50 #include "qapi/error.h"
51 #include "qemu/error-report.h"
52 #include "hw/arm/boot.h"
53 #include "hw/arm/armv7m.h"
54 #include "hw/or-irq.h"
55 #include "hw/boards.h"
56 #include "exec/address-spaces.h"
57 #include "sysemu/sysemu.h"
58 #include "sysemu/reset.h"
59 #include "hw/misc/unimp.h"
60 #include "hw/char/cmsdk-apb-uart.h"
61 #include "hw/timer/cmsdk-apb-timer.h"
62 #include "hw/misc/mps2-scc.h"
63 #include "hw/misc/mps2-fpgaio.h"
64 #include "hw/misc/tz-mpc.h"
65 #include "hw/misc/tz-msc.h"
66 #include "hw/arm/armsse.h"
67 #include "hw/dma/pl080.h"
68 #include "hw/rtc/pl031.h"
69 #include "hw/ssi/pl022.h"
70 #include "hw/i2c/arm_sbcon_i2c.h"
71 #include "hw/net/lan9118.h"
72 #include "net/net.h"
73 #include "hw/core/split-irq.h"
74 #include "hw/qdev-clock.h"
75 #include "qom/object.h"
76 #include "hw/irq.h"
78 #define MPS2TZ_NUMIRQ_MAX 96
79 #define MPS2TZ_RAM_MAX 5
81 typedef enum MPS2TZFPGAType {
82 FPGA_AN505,
83 FPGA_AN521,
84 FPGA_AN524,
85 FPGA_AN547,
86 } MPS2TZFPGAType;
89 * Define the layout of RAM in a board, including which parts are
90 * behind which MPCs.
91 * mrindex specifies the index into mms->ram[] to use for the backing RAM;
92 * -1 means "use the system RAM".
94 typedef struct RAMInfo {
95 const char *name;
96 uint32_t base;
97 uint32_t size;
98 int mpc; /* MPC number, -1 for "not behind an MPC" */
99 int mrindex;
100 int flags;
101 } RAMInfo;
104 * Flag values:
105 * IS_ALIAS: this RAM area is an alias to the upstream end of the
106 * MPC specified by its .mpc value
107 * IS_ROM: this RAM area is read-only
109 #define IS_ALIAS 1
110 #define IS_ROM 2
112 struct MPS2TZMachineClass {
113 MachineClass parent;
114 MPS2TZFPGAType fpga_type;
115 uint32_t scc_id;
116 uint32_t sysclk_frq; /* Main SYSCLK frequency in Hz */
117 uint32_t apb_periph_frq; /* APB peripheral frequency in Hz */
118 uint32_t len_oscclk;
119 const uint32_t *oscclk;
120 uint32_t fpgaio_num_leds; /* Number of LEDs in FPGAIO LED0 register */
121 bool fpgaio_has_switches; /* Does FPGAIO have SWITCH register? */
122 bool fpgaio_has_dbgctrl; /* Does FPGAIO have DBGCTRL register? */
123 int numirq; /* Number of external interrupts */
124 int uart_overflow_irq; /* number of the combined UART overflow IRQ */
125 uint32_t init_svtor; /* init-svtor setting for SSE */
126 uint32_t sram_addr_width; /* SRAM_ADDR_WIDTH setting for SSE */
127 const RAMInfo *raminfo;
128 const char *armsse_type;
129 uint32_t boot_ram_size; /* size of ram at address 0; 0 == find in raminfo */
132 struct MPS2TZMachineState {
133 MachineState parent;
135 ARMSSE iotkit;
136 MemoryRegion ram[MPS2TZ_RAM_MAX];
137 MemoryRegion eth_usb_container;
139 MPS2SCC scc;
140 MPS2FPGAIO fpgaio;
141 TZPPC ppc[5];
142 TZMPC mpc[3];
143 PL022State spi[5];
144 ArmSbconI2CState i2c[5];
145 UnimplementedDeviceState i2s_audio;
146 UnimplementedDeviceState gpio[4];
147 UnimplementedDeviceState gfx;
148 UnimplementedDeviceState cldc;
149 UnimplementedDeviceState usb;
150 PL031State rtc;
151 PL080State dma[4];
152 TZMSC msc[4];
153 CMSDKAPBUART uart[6];
154 SplitIRQ sec_resp_splitter;
155 qemu_or_irq uart_irq_orgate;
156 DeviceState *lan9118;
157 SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ_MAX];
158 Clock *sysclk;
159 Clock *s32kclk;
161 bool remap;
162 qemu_irq remap_irq;
165 #define TYPE_MPS2TZ_MACHINE "mps2tz"
166 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
167 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
168 #define TYPE_MPS3TZ_AN524_MACHINE MACHINE_TYPE_NAME("mps3-an524")
169 #define TYPE_MPS3TZ_AN547_MACHINE MACHINE_TYPE_NAME("mps3-an547")
171 OBJECT_DECLARE_TYPE(MPS2TZMachineState, MPS2TZMachineClass, MPS2TZ_MACHINE)
173 /* Slow 32Khz S32KCLK frequency in Hz */
174 #define S32KCLK_FRQ (32 * 1000)
177 * The MPS3 DDR is 2GiB, but on a 32-bit host QEMU doesn't permit
178 * emulation of that much guest RAM, so artificially make it smaller.
180 #if HOST_LONG_BITS == 32
181 #define MPS3_DDR_SIZE (1 * GiB)
182 #else
183 #define MPS3_DDR_SIZE (2 * GiB)
184 #endif
186 static const uint32_t an505_oscclk[] = {
187 40000000,
188 24580000,
189 25000000,
192 static const uint32_t an524_oscclk[] = {
193 24000000,
194 32000000,
195 50000000,
196 50000000,
197 24576000,
198 23750000,
201 static const RAMInfo an505_raminfo[] = { {
202 .name = "ssram-0",
203 .base = 0x00000000,
204 .size = 0x00400000,
205 .mpc = 0,
206 .mrindex = 0,
207 }, {
208 .name = "ssram-1",
209 .base = 0x28000000,
210 .size = 0x00200000,
211 .mpc = 1,
212 .mrindex = 1,
213 }, {
214 .name = "ssram-2",
215 .base = 0x28200000,
216 .size = 0x00200000,
217 .mpc = 2,
218 .mrindex = 2,
219 }, {
220 .name = "ssram-0-alias",
221 .base = 0x00400000,
222 .size = 0x00400000,
223 .mpc = 0,
224 .mrindex = 3,
225 .flags = IS_ALIAS,
226 }, {
227 /* Use the largest bit of contiguous RAM as our "system memory" */
228 .name = "mps.ram",
229 .base = 0x80000000,
230 .size = 16 * MiB,
231 .mpc = -1,
232 .mrindex = -1,
233 }, {
234 .name = NULL,
239 * Note that the addresses and MPC numbering here should match up
240 * with those used in remap_memory(), which can swap the BRAM and QSPI.
242 static const RAMInfo an524_raminfo[] = { {
243 .name = "bram",
244 .base = 0x00000000,
245 .size = 512 * KiB,
246 .mpc = 0,
247 .mrindex = 0,
248 }, {
249 /* We don't model QSPI flash yet; for now expose it as simple ROM */
250 .name = "QSPI",
251 .base = 0x28000000,
252 .size = 8 * MiB,
253 .mpc = 1,
254 .mrindex = 1,
255 .flags = IS_ROM,
256 }, {
257 .name = "DDR",
258 .base = 0x60000000,
259 .size = MPS3_DDR_SIZE,
260 .mpc = 2,
261 .mrindex = -1,
262 }, {
263 .name = NULL,
267 static const RAMInfo an547_raminfo[] = { {
268 .name = "sram",
269 .base = 0x01000000,
270 .size = 2 * MiB,
271 .mpc = 0,
272 .mrindex = 1,
273 }, {
274 .name = "sram 2",
275 .base = 0x21000000,
276 .size = 4 * MiB,
277 .mpc = -1,
278 .mrindex = 3,
279 }, {
280 /* We don't model QSPI flash yet; for now expose it as simple ROM */
281 .name = "QSPI",
282 .base = 0x28000000,
283 .size = 8 * MiB,
284 .mpc = 1,
285 .mrindex = 4,
286 .flags = IS_ROM,
287 }, {
288 .name = "DDR",
289 .base = 0x60000000,
290 .size = MPS3_DDR_SIZE,
291 .mpc = 2,
292 .mrindex = -1,
293 }, {
294 .name = NULL,
298 static const RAMInfo *find_raminfo_for_mpc(MPS2TZMachineState *mms, int mpc)
300 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
301 const RAMInfo *p;
302 const RAMInfo *found = NULL;
304 for (p = mmc->raminfo; p->name; p++) {
305 if (p->mpc == mpc && !(p->flags & IS_ALIAS)) {
306 /* There should only be one entry in the array for this MPC */
307 g_assert(!found);
308 found = p;
311 /* if raminfo array doesn't have an entry for each MPC this is a bug */
312 assert(found);
313 return found;
316 static MemoryRegion *mr_for_raminfo(MPS2TZMachineState *mms,
317 const RAMInfo *raminfo)
319 /* Return an initialized MemoryRegion for the RAMInfo. */
320 MemoryRegion *ram;
322 if (raminfo->mrindex < 0) {
323 /* Means this RAMInfo is for QEMU's "system memory" */
324 MachineState *machine = MACHINE(mms);
325 assert(!(raminfo->flags & IS_ROM));
326 return machine->ram;
329 assert(raminfo->mrindex < MPS2TZ_RAM_MAX);
330 ram = &mms->ram[raminfo->mrindex];
332 memory_region_init_ram(ram, NULL, raminfo->name,
333 raminfo->size, &error_fatal);
334 if (raminfo->flags & IS_ROM) {
335 memory_region_set_readonly(ram, true);
337 return ram;
340 /* Create an alias of an entire original MemoryRegion @orig
341 * located at @base in the memory map.
343 static void make_ram_alias(MemoryRegion *mr, const char *name,
344 MemoryRegion *orig, hwaddr base)
346 memory_region_init_alias(mr, NULL, name, orig, 0,
347 memory_region_size(orig));
348 memory_region_add_subregion(get_system_memory(), base, mr);
351 static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
354 * Return a qemu_irq which will signal IRQ n to all CPUs in the
355 * SSE. The irqno should be as the CPU sees it, so the first
356 * external-to-the-SSE interrupt is 32.
358 MachineClass *mc = MACHINE_GET_CLASS(mms);
359 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
361 assert(irqno >= 32 && irqno < (mmc->numirq + 32));
364 * Convert from "CPU irq number" (as listed in the FPGA image
365 * documentation) to the SSE external-interrupt number.
367 irqno -= 32;
369 if (mc->max_cpus > 1) {
370 return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
371 } else {
372 return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
376 /* Union describing the device-specific extra data we pass to the devfn. */
377 typedef union PPCExtraData {
378 } PPCExtraData;
380 /* Most of the devices in the AN505 FPGA image sit behind
381 * Peripheral Protection Controllers. These data structures
382 * define the layout of which devices sit behind which PPCs.
383 * The devfn for each port is a function which creates, configures
384 * and initializes the device, returning the MemoryRegion which
385 * needs to be plugged into the downstream end of the PPC port.
387 typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
388 const char *name, hwaddr size,
389 const int *irqs,
390 const PPCExtraData *extradata);
392 typedef struct PPCPortInfo {
393 const char *name;
394 MakeDevFn *devfn;
395 void *opaque;
396 hwaddr addr;
397 hwaddr size;
398 int irqs[3]; /* currently no device needs more IRQ lines than this */
399 PPCExtraData extradata; /* to pass device-specific info to the devfn */
400 } PPCPortInfo;
402 typedef struct PPCInfo {
403 const char *name;
404 PPCPortInfo ports[TZ_NUM_PORTS];
405 } PPCInfo;
407 static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
408 void *opaque,
409 const char *name, hwaddr size,
410 const int *irqs,
411 const PPCExtraData *extradata)
413 /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
414 * and return a pointer to its MemoryRegion.
416 UnimplementedDeviceState *uds = opaque;
418 object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
419 qdev_prop_set_string(DEVICE(uds), "name", name);
420 qdev_prop_set_uint64(DEVICE(uds), "size", size);
421 sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
422 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
425 static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
426 const char *name, hwaddr size,
427 const int *irqs, const PPCExtraData *extradata)
429 /* The irq[] array is tx, rx, combined, in that order */
430 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
431 CMSDKAPBUART *uart = opaque;
432 int i = uart - &mms->uart[0];
433 SysBusDevice *s;
434 DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
436 object_initialize_child(OBJECT(mms), name, uart, TYPE_CMSDK_APB_UART);
437 qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
438 qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", mmc->apb_periph_frq);
439 sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
440 s = SYS_BUS_DEVICE(uart);
441 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
442 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1]));
443 sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
444 sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
445 sysbus_connect_irq(s, 4, get_sse_irq_in(mms, irqs[2]));
446 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
449 static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
450 const char *name, hwaddr size,
451 const int *irqs, const PPCExtraData *extradata)
453 MPS2SCC *scc = opaque;
454 DeviceState *sccdev;
455 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
456 uint32_t i;
458 object_initialize_child(OBJECT(mms), "scc", scc, TYPE_MPS2_SCC);
459 sccdev = DEVICE(scc);
460 qdev_prop_set_uint32(sccdev, "scc-cfg0", mms->remap ? 1 : 0);
461 qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
462 qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
463 qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
464 qdev_prop_set_uint32(sccdev, "len-oscclk", mmc->len_oscclk);
465 for (i = 0; i < mmc->len_oscclk; i++) {
466 g_autofree char *propname = g_strdup_printf("oscclk[%u]", i);
467 qdev_prop_set_uint32(sccdev, propname, mmc->oscclk[i]);
469 sysbus_realize(SYS_BUS_DEVICE(scc), &error_fatal);
470 return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
473 static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
474 const char *name, hwaddr size,
475 const int *irqs, const PPCExtraData *extradata)
477 MPS2FPGAIO *fpgaio = opaque;
478 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
480 object_initialize_child(OBJECT(mms), "fpgaio", fpgaio, TYPE_MPS2_FPGAIO);
481 qdev_prop_set_uint32(DEVICE(fpgaio), "num-leds", mmc->fpgaio_num_leds);
482 qdev_prop_set_bit(DEVICE(fpgaio), "has-switches", mmc->fpgaio_has_switches);
483 qdev_prop_set_bit(DEVICE(fpgaio), "has-dbgctrl", mmc->fpgaio_has_dbgctrl);
484 sysbus_realize(SYS_BUS_DEVICE(fpgaio), &error_fatal);
485 return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
488 static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
489 const char *name, hwaddr size,
490 const int *irqs,
491 const PPCExtraData *extradata)
493 SysBusDevice *s;
494 NICInfo *nd = &nd_table[0];
496 /* In hardware this is a LAN9220; the LAN9118 is software compatible
497 * except that it doesn't support the checksum-offload feature.
499 qemu_check_nic_model(nd, "lan9118");
500 mms->lan9118 = qdev_new(TYPE_LAN9118);
501 qdev_set_nic_properties(mms->lan9118, nd);
503 s = SYS_BUS_DEVICE(mms->lan9118);
504 sysbus_realize_and_unref(s, &error_fatal);
505 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
506 return sysbus_mmio_get_region(s, 0);
509 static MemoryRegion *make_eth_usb(MPS2TZMachineState *mms, void *opaque,
510 const char *name, hwaddr size,
511 const int *irqs,
512 const PPCExtraData *extradata)
515 * The AN524 makes the ethernet and USB share a PPC port.
516 * irqs[] is the ethernet IRQ.
518 SysBusDevice *s;
519 NICInfo *nd = &nd_table[0];
521 memory_region_init(&mms->eth_usb_container, OBJECT(mms),
522 "mps2-tz-eth-usb-container", 0x200000);
525 * In hardware this is a LAN9220; the LAN9118 is software compatible
526 * except that it doesn't support the checksum-offload feature.
528 qemu_check_nic_model(nd, "lan9118");
529 mms->lan9118 = qdev_new(TYPE_LAN9118);
530 qdev_set_nic_properties(mms->lan9118, nd);
532 s = SYS_BUS_DEVICE(mms->lan9118);
533 sysbus_realize_and_unref(s, &error_fatal);
534 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
536 memory_region_add_subregion(&mms->eth_usb_container,
537 0, sysbus_mmio_get_region(s, 0));
539 /* The USB OTG controller is an ISP1763; we don't have a model of it. */
540 object_initialize_child(OBJECT(mms), "usb-otg",
541 &mms->usb, TYPE_UNIMPLEMENTED_DEVICE);
542 qdev_prop_set_string(DEVICE(&mms->usb), "name", "usb-otg");
543 qdev_prop_set_uint64(DEVICE(&mms->usb), "size", 0x100000);
544 s = SYS_BUS_DEVICE(&mms->usb);
545 sysbus_realize(s, &error_fatal);
547 memory_region_add_subregion(&mms->eth_usb_container,
548 0x100000, sysbus_mmio_get_region(s, 0));
550 return &mms->eth_usb_container;
553 static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
554 const char *name, hwaddr size,
555 const int *irqs, const PPCExtraData *extradata)
557 TZMPC *mpc = opaque;
558 int i = mpc - &mms->mpc[0];
559 MemoryRegion *upstream;
560 const RAMInfo *raminfo = find_raminfo_for_mpc(mms, i);
561 MemoryRegion *ram = mr_for_raminfo(mms, raminfo);
563 object_initialize_child(OBJECT(mms), name, mpc, TYPE_TZ_MPC);
564 object_property_set_link(OBJECT(mpc), "downstream", OBJECT(ram),
565 &error_fatal);
566 sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
567 /* Map the upstream end of the MPC into system memory */
568 upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
569 memory_region_add_subregion(get_system_memory(), raminfo->base, upstream);
570 /* and connect its interrupt to the IoTKit */
571 qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
572 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
573 "mpcexp_status", i));
575 /* Return the register interface MR for our caller to map behind the PPC */
576 return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
579 static hwaddr boot_mem_base(MPS2TZMachineState *mms)
582 * Return the canonical address of the block which will be mapped
583 * at address 0x0 (i.e. where the vector table is).
584 * This is usually 0, but if the AN524 alternate memory map is
585 * enabled it will be the base address of the QSPI block.
587 return mms->remap ? 0x28000000 : 0;
590 static void remap_memory(MPS2TZMachineState *mms, int map)
593 * Remap the memory for the AN524. 'map' is the value of
594 * SCC CFG_REG0 bit 0, i.e. 0 for the default map and 1
595 * for the "option 1" mapping where QSPI is at address 0.
597 * Effectively we need to swap around the "upstream" ends of
598 * MPC 0 and MPC 1.
600 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
601 int i;
603 if (mmc->fpga_type != FPGA_AN524) {
604 return;
607 memory_region_transaction_begin();
608 for (i = 0; i < 2; i++) {
609 TZMPC *mpc = &mms->mpc[i];
610 MemoryRegion *upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
611 hwaddr addr = (i ^ map) ? 0x28000000 : 0;
613 memory_region_set_address(upstream, addr);
615 memory_region_transaction_commit();
618 static void remap_irq_fn(void *opaque, int n, int level)
620 MPS2TZMachineState *mms = opaque;
622 remap_memory(mms, level);
625 static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
626 const char *name, hwaddr size,
627 const int *irqs, const PPCExtraData *extradata)
629 /* The irq[] array is DMACINTR, DMACINTERR, DMACINTTC, in that order */
630 PL080State *dma = opaque;
631 int i = dma - &mms->dma[0];
632 SysBusDevice *s;
633 char *mscname = g_strdup_printf("%s-msc", name);
634 TZMSC *msc = &mms->msc[i];
635 DeviceState *iotkitdev = DEVICE(&mms->iotkit);
636 MemoryRegion *msc_upstream;
637 MemoryRegion *msc_downstream;
640 * Each DMA device is a PL081 whose transaction master interface
641 * is guarded by a Master Security Controller. The downstream end of
642 * the MSC connects to the IoTKit AHB Slave Expansion port, so the
643 * DMA devices can see all devices and memory that the CPU does.
645 object_initialize_child(OBJECT(mms), mscname, msc, TYPE_TZ_MSC);
646 msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
647 object_property_set_link(OBJECT(msc), "downstream",
648 OBJECT(msc_downstream), &error_fatal);
649 object_property_set_link(OBJECT(msc), "idau", OBJECT(mms), &error_fatal);
650 sysbus_realize(SYS_BUS_DEVICE(msc), &error_fatal);
652 qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
653 qdev_get_gpio_in_named(iotkitdev,
654 "mscexp_status", i));
655 qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
656 qdev_get_gpio_in_named(DEVICE(msc),
657 "irq_clear", 0));
658 qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
659 qdev_get_gpio_in_named(DEVICE(msc),
660 "cfg_nonsec", 0));
661 qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
662 ARRAY_SIZE(mms->ppc) + i,
663 qdev_get_gpio_in_named(DEVICE(msc),
664 "cfg_sec_resp", 0));
665 msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
667 object_initialize_child(OBJECT(mms), name, dma, TYPE_PL081);
668 object_property_set_link(OBJECT(dma), "downstream", OBJECT(msc_upstream),
669 &error_fatal);
670 sysbus_realize(SYS_BUS_DEVICE(dma), &error_fatal);
672 s = SYS_BUS_DEVICE(dma);
673 /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
674 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
675 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1]));
676 sysbus_connect_irq(s, 2, get_sse_irq_in(mms, irqs[2]));
678 g_free(mscname);
679 return sysbus_mmio_get_region(s, 0);
682 static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
683 const char *name, hwaddr size,
684 const int *irqs, const PPCExtraData *extradata)
687 * The AN505 has five PL022 SPI controllers.
688 * One of these should have the LCD controller behind it; the others
689 * are connected only to the FPGA's "general purpose SPI connector"
690 * or "shield" expansion connectors.
691 * Note that if we do implement devices behind SPI, the chip select
692 * lines are set via the "MISC" register in the MPS2 FPGAIO device.
694 PL022State *spi = opaque;
695 SysBusDevice *s;
697 object_initialize_child(OBJECT(mms), name, spi, TYPE_PL022);
698 sysbus_realize(SYS_BUS_DEVICE(spi), &error_fatal);
699 s = SYS_BUS_DEVICE(spi);
700 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
701 return sysbus_mmio_get_region(s, 0);
704 static MemoryRegion *make_i2c(MPS2TZMachineState *mms, void *opaque,
705 const char *name, hwaddr size,
706 const int *irqs, const PPCExtraData *extradata)
708 ArmSbconI2CState *i2c = opaque;
709 SysBusDevice *s;
711 object_initialize_child(OBJECT(mms), name, i2c, TYPE_ARM_SBCON_I2C);
712 s = SYS_BUS_DEVICE(i2c);
713 sysbus_realize(s, &error_fatal);
714 return sysbus_mmio_get_region(s, 0);
717 static MemoryRegion *make_rtc(MPS2TZMachineState *mms, void *opaque,
718 const char *name, hwaddr size,
719 const int *irqs, const PPCExtraData *extradata)
721 PL031State *pl031 = opaque;
722 SysBusDevice *s;
724 object_initialize_child(OBJECT(mms), name, pl031, TYPE_PL031);
725 s = SYS_BUS_DEVICE(pl031);
726 sysbus_realize(s, &error_fatal);
728 * The board docs don't give an IRQ number for the PL031, so
729 * presumably it is not connected.
731 return sysbus_mmio_get_region(s, 0);
734 static void create_non_mpc_ram(MPS2TZMachineState *mms)
737 * Handle the RAMs which are either not behind MPCs or which are
738 * aliases to another MPC.
740 const RAMInfo *p;
741 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
743 for (p = mmc->raminfo; p->name; p++) {
744 if (p->flags & IS_ALIAS) {
745 SysBusDevice *mpc_sbd = SYS_BUS_DEVICE(&mms->mpc[p->mpc]);
746 MemoryRegion *upstream = sysbus_mmio_get_region(mpc_sbd, 1);
747 make_ram_alias(&mms->ram[p->mrindex], p->name, upstream, p->base);
748 } else if (p->mpc == -1) {
749 /* RAM not behind an MPC */
750 MemoryRegion *mr = mr_for_raminfo(mms, p);
751 memory_region_add_subregion(get_system_memory(), p->base, mr);
756 static uint32_t boot_ram_size(MPS2TZMachineState *mms)
758 /* Return the size of the RAM block at guest address zero */
759 const RAMInfo *p;
760 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
763 * Use a per-board specification (for when the boot RAM is in
764 * the SSE and so doesn't have a RAMInfo list entry)
766 if (mmc->boot_ram_size) {
767 return mmc->boot_ram_size;
770 for (p = mmc->raminfo; p->name; p++) {
771 if (p->base == boot_mem_base(mms)) {
772 return p->size;
775 g_assert_not_reached();
778 static void mps2tz_common_init(MachineState *machine)
780 MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
781 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
782 MachineClass *mc = MACHINE_GET_CLASS(machine);
783 MemoryRegion *system_memory = get_system_memory();
784 DeviceState *iotkitdev;
785 DeviceState *dev_splitter;
786 const PPCInfo *ppcs;
787 int num_ppcs;
788 int i;
790 if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
791 error_report("This board can only be used with CPU %s",
792 mc->default_cpu_type);
793 exit(1);
796 if (machine->ram_size != mc->default_ram_size) {
797 char *sz = size_to_str(mc->default_ram_size);
798 error_report("Invalid RAM size, should be %s", sz);
799 g_free(sz);
800 exit(EXIT_FAILURE);
803 /* These clocks don't need migration because they are fixed-frequency */
804 mms->sysclk = clock_new(OBJECT(machine), "SYSCLK");
805 clock_set_hz(mms->sysclk, mmc->sysclk_frq);
806 mms->s32kclk = clock_new(OBJECT(machine), "S32KCLK");
807 clock_set_hz(mms->s32kclk, S32KCLK_FRQ);
809 object_initialize_child(OBJECT(machine), TYPE_IOTKIT, &mms->iotkit,
810 mmc->armsse_type);
811 iotkitdev = DEVICE(&mms->iotkit);
812 object_property_set_link(OBJECT(&mms->iotkit), "memory",
813 OBJECT(system_memory), &error_abort);
814 qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", mmc->numirq);
815 qdev_prop_set_uint32(iotkitdev, "init-svtor", mmc->init_svtor);
816 qdev_prop_set_uint32(iotkitdev, "SRAM_ADDR_WIDTH", mmc->sram_addr_width);
817 qdev_connect_clock_in(iotkitdev, "MAINCLK", mms->sysclk);
818 qdev_connect_clock_in(iotkitdev, "S32KCLK", mms->s32kclk);
819 sysbus_realize(SYS_BUS_DEVICE(&mms->iotkit), &error_fatal);
822 * If this board has more than one CPU, then we need to create splitters
823 * to feed the IRQ inputs for each CPU in the SSE from each device in the
824 * board. If there is only one CPU, we can just wire the device IRQ
825 * directly to the SSE's IRQ input.
827 assert(mmc->numirq <= MPS2TZ_NUMIRQ_MAX);
828 if (mc->max_cpus > 1) {
829 for (i = 0; i < mmc->numirq; i++) {
830 char *name = g_strdup_printf("mps2-irq-splitter%d", i);
831 SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
833 object_initialize_child_with_props(OBJECT(machine), name,
834 splitter, sizeof(*splitter),
835 TYPE_SPLIT_IRQ, &error_fatal,
836 NULL);
837 g_free(name);
839 object_property_set_int(OBJECT(splitter), "num-lines", 2,
840 &error_fatal);
841 qdev_realize(DEVICE(splitter), NULL, &error_fatal);
842 qdev_connect_gpio_out(DEVICE(splitter), 0,
843 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
844 "EXP_IRQ", i));
845 qdev_connect_gpio_out(DEVICE(splitter), 1,
846 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
847 "EXP_CPU1_IRQ", i));
851 /* The sec_resp_cfg output from the IoTKit must be split into multiple
852 * lines, one for each of the PPCs we create here, plus one per MSC.
854 object_initialize_child(OBJECT(machine), "sec-resp-splitter",
855 &mms->sec_resp_splitter, TYPE_SPLIT_IRQ);
856 object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines",
857 ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
858 &error_fatal);
859 qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
860 dev_splitter = DEVICE(&mms->sec_resp_splitter);
861 qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
862 qdev_get_gpio_in(dev_splitter, 0));
865 * The IoTKit sets up much of the memory layout, including
866 * the aliases between secure and non-secure regions in the
867 * address space, and also most of the devices in the system.
868 * The FPGA itself contains various RAMs and some additional devices.
869 * The FPGA images have an odd combination of different RAMs,
870 * because in hardware they are different implementations and
871 * connected to different buses, giving varying performance/size
872 * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
873 * call the largest lump our "system memory".
877 * The overflow IRQs for all UARTs are ORed together.
878 * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
879 * Create the OR gate for this: it has one input for the TX overflow
880 * and one for the RX overflow for each UART we might have.
881 * (If the board has fewer than the maximum possible number of UARTs
882 * those inputs are never wired up and are treated as always-zero.)
884 object_initialize_child(OBJECT(mms), "uart-irq-orgate",
885 &mms->uart_irq_orgate, TYPE_OR_IRQ);
886 object_property_set_int(OBJECT(&mms->uart_irq_orgate), "num-lines",
887 2 * ARRAY_SIZE(mms->uart),
888 &error_fatal);
889 qdev_realize(DEVICE(&mms->uart_irq_orgate), NULL, &error_fatal);
890 qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
891 get_sse_irq_in(mms, mmc->uart_overflow_irq));
893 /* Most of the devices in the FPGA are behind Peripheral Protection
894 * Controllers. The required order for initializing things is:
895 * + initialize the PPC
896 * + initialize, configure and realize downstream devices
897 * + connect downstream device MemoryRegions to the PPC
898 * + realize the PPC
899 * + map the PPC's MemoryRegions to the places in the address map
900 * where the downstream devices should appear
901 * + wire up the PPC's control lines to the IoTKit object
904 const PPCInfo an505_ppcs[] = { {
905 .name = "apb_ppcexp0",
906 .ports = {
907 { "ssram-0-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 },
908 { "ssram-1-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 },
909 { "ssram-2-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 },
911 }, {
912 .name = "apb_ppcexp1",
913 .ports = {
914 { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000, { 51 } },
915 { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000, { 52 } },
916 { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000, { 53 } },
917 { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000, { 54 } },
918 { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000, { 55 } },
919 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000, { 32, 33, 42 } },
920 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000, { 34, 35, 43 } },
921 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000, { 36, 37, 44 } },
922 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000, { 38, 39, 45 } },
923 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000, { 40, 41, 46 } },
924 { "i2c0", make_i2c, &mms->i2c[0], 0x40207000, 0x1000 },
925 { "i2c1", make_i2c, &mms->i2c[1], 0x40208000, 0x1000 },
926 { "i2c2", make_i2c, &mms->i2c[2], 0x4020c000, 0x1000 },
927 { "i2c3", make_i2c, &mms->i2c[3], 0x4020d000, 0x1000 },
929 }, {
930 .name = "apb_ppcexp2",
931 .ports = {
932 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
933 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
934 0x40301000, 0x1000 },
935 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
937 }, {
938 .name = "ahb_ppcexp0",
939 .ports = {
940 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
941 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
942 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
943 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
944 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
945 { "eth", make_eth_dev, NULL, 0x42000000, 0x100000, { 48 } },
947 }, {
948 .name = "ahb_ppcexp1",
949 .ports = {
950 { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000, { 58, 56, 57 } },
951 { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000, { 61, 59, 60 } },
952 { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000, { 64, 62, 63 } },
953 { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000, { 67, 65, 66 } },
958 const PPCInfo an524_ppcs[] = { {
959 .name = "apb_ppcexp0",
960 .ports = {
961 { "bram-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 },
962 { "qspi-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 },
963 { "ddr-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 },
965 }, {
966 .name = "apb_ppcexp1",
967 .ports = {
968 { "i2c0", make_i2c, &mms->i2c[0], 0x41200000, 0x1000 },
969 { "i2c1", make_i2c, &mms->i2c[1], 0x41201000, 0x1000 },
970 { "spi0", make_spi, &mms->spi[0], 0x41202000, 0x1000, { 52 } },
971 { "spi1", make_spi, &mms->spi[1], 0x41203000, 0x1000, { 53 } },
972 { "spi2", make_spi, &mms->spi[2], 0x41204000, 0x1000, { 54 } },
973 { "i2c2", make_i2c, &mms->i2c[2], 0x41205000, 0x1000 },
974 { "i2c3", make_i2c, &mms->i2c[3], 0x41206000, 0x1000 },
975 { /* port 7 reserved */ },
976 { "i2c4", make_i2c, &mms->i2c[4], 0x41208000, 0x1000 },
978 }, {
979 .name = "apb_ppcexp2",
980 .ports = {
981 { "scc", make_scc, &mms->scc, 0x41300000, 0x1000 },
982 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
983 0x41301000, 0x1000 },
984 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x41302000, 0x1000 },
985 { "uart0", make_uart, &mms->uart[0], 0x41303000, 0x1000, { 32, 33, 42 } },
986 { "uart1", make_uart, &mms->uart[1], 0x41304000, 0x1000, { 34, 35, 43 } },
987 { "uart2", make_uart, &mms->uart[2], 0x41305000, 0x1000, { 36, 37, 44 } },
988 { "uart3", make_uart, &mms->uart[3], 0x41306000, 0x1000, { 38, 39, 45 } },
989 { "uart4", make_uart, &mms->uart[4], 0x41307000, 0x1000, { 40, 41, 46 } },
990 { "uart5", make_uart, &mms->uart[5], 0x41308000, 0x1000, { 124, 125, 126 } },
992 { /* port 9 reserved */ },
993 { "clcd", make_unimp_dev, &mms->cldc, 0x4130a000, 0x1000 },
994 { "rtc", make_rtc, &mms->rtc, 0x4130b000, 0x1000 },
996 }, {
997 .name = "ahb_ppcexp0",
998 .ports = {
999 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x41100000, 0x1000 },
1000 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x41101000, 0x1000 },
1001 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x41102000, 0x1000 },
1002 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x41103000, 0x1000 },
1003 { "eth-usb", make_eth_usb, NULL, 0x41400000, 0x200000, { 48 } },
1008 const PPCInfo an547_ppcs[] = { {
1009 .name = "apb_ppcexp0",
1010 .ports = {
1011 { "ssram-mpc", make_mpc, &mms->mpc[0], 0x57000000, 0x1000 },
1012 { "qspi-mpc", make_mpc, &mms->mpc[1], 0x57001000, 0x1000 },
1013 { "ddr-mpc", make_mpc, &mms->mpc[2], 0x57002000, 0x1000 },
1015 }, {
1016 .name = "apb_ppcexp1",
1017 .ports = {
1018 { "i2c0", make_i2c, &mms->i2c[0], 0x49200000, 0x1000 },
1019 { "i2c1", make_i2c, &mms->i2c[1], 0x49201000, 0x1000 },
1020 { "spi0", make_spi, &mms->spi[0], 0x49202000, 0x1000, { 53 } },
1021 { "spi1", make_spi, &mms->spi[1], 0x49203000, 0x1000, { 54 } },
1022 { "spi2", make_spi, &mms->spi[2], 0x49204000, 0x1000, { 55 } },
1023 { "i2c2", make_i2c, &mms->i2c[2], 0x49205000, 0x1000 },
1024 { "i2c3", make_i2c, &mms->i2c[3], 0x49206000, 0x1000 },
1025 { /* port 7 reserved */ },
1026 { "i2c4", make_i2c, &mms->i2c[4], 0x49208000, 0x1000 },
1028 }, {
1029 .name = "apb_ppcexp2",
1030 .ports = {
1031 { "scc", make_scc, &mms->scc, 0x49300000, 0x1000 },
1032 { "i2s-audio", make_unimp_dev, &mms->i2s_audio, 0x49301000, 0x1000 },
1033 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x49302000, 0x1000 },
1034 { "uart0", make_uart, &mms->uart[0], 0x49303000, 0x1000, { 33, 34, 43 } },
1035 { "uart1", make_uart, &mms->uart[1], 0x49304000, 0x1000, { 35, 36, 44 } },
1036 { "uart2", make_uart, &mms->uart[2], 0x49305000, 0x1000, { 37, 38, 45 } },
1037 { "uart3", make_uart, &mms->uart[3], 0x49306000, 0x1000, { 39, 40, 46 } },
1038 { "uart4", make_uart, &mms->uart[4], 0x49307000, 0x1000, { 41, 42, 47 } },
1039 { "uart5", make_uart, &mms->uart[5], 0x49308000, 0x1000, { 125, 126, 127 } },
1041 { /* port 9 reserved */ },
1042 { "clcd", make_unimp_dev, &mms->cldc, 0x4930a000, 0x1000 },
1043 { "rtc", make_rtc, &mms->rtc, 0x4930b000, 0x1000 },
1045 }, {
1046 .name = "ahb_ppcexp0",
1047 .ports = {
1048 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x41100000, 0x1000 },
1049 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x41101000, 0x1000 },
1050 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x41102000, 0x1000 },
1051 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x41103000, 0x1000 },
1052 { "eth-usb", make_eth_usb, NULL, 0x41400000, 0x200000, { 49 } },
1057 switch (mmc->fpga_type) {
1058 case FPGA_AN505:
1059 case FPGA_AN521:
1060 ppcs = an505_ppcs;
1061 num_ppcs = ARRAY_SIZE(an505_ppcs);
1062 break;
1063 case FPGA_AN524:
1064 ppcs = an524_ppcs;
1065 num_ppcs = ARRAY_SIZE(an524_ppcs);
1066 break;
1067 case FPGA_AN547:
1068 ppcs = an547_ppcs;
1069 num_ppcs = ARRAY_SIZE(an547_ppcs);
1070 break;
1071 default:
1072 g_assert_not_reached();
1075 for (i = 0; i < num_ppcs; i++) {
1076 const PPCInfo *ppcinfo = &ppcs[i];
1077 TZPPC *ppc = &mms->ppc[i];
1078 DeviceState *ppcdev;
1079 int port;
1080 char *gpioname;
1082 object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
1083 TYPE_TZ_PPC);
1084 ppcdev = DEVICE(ppc);
1086 for (port = 0; port < TZ_NUM_PORTS; port++) {
1087 const PPCPortInfo *pinfo = &ppcinfo->ports[port];
1088 MemoryRegion *mr;
1089 char *portname;
1091 if (!pinfo->devfn) {
1092 continue;
1095 mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size,
1096 pinfo->irqs, &pinfo->extradata);
1097 portname = g_strdup_printf("port[%d]", port);
1098 object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
1099 &error_fatal);
1100 g_free(portname);
1103 sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
1105 for (port = 0; port < TZ_NUM_PORTS; port++) {
1106 const PPCPortInfo *pinfo = &ppcinfo->ports[port];
1108 if (!pinfo->devfn) {
1109 continue;
1111 sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
1113 gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
1114 qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
1115 qdev_get_gpio_in_named(ppcdev,
1116 "cfg_nonsec",
1117 port));
1118 g_free(gpioname);
1119 gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
1120 qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
1121 qdev_get_gpio_in_named(ppcdev,
1122 "cfg_ap", port));
1123 g_free(gpioname);
1126 gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
1127 qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
1128 qdev_get_gpio_in_named(ppcdev,
1129 "irq_enable", 0));
1130 g_free(gpioname);
1131 gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
1132 qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
1133 qdev_get_gpio_in_named(ppcdev,
1134 "irq_clear", 0));
1135 g_free(gpioname);
1136 gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
1137 qdev_connect_gpio_out_named(ppcdev, "irq", 0,
1138 qdev_get_gpio_in_named(iotkitdev,
1139 gpioname, 0));
1140 g_free(gpioname);
1142 qdev_connect_gpio_out(dev_splitter, i,
1143 qdev_get_gpio_in_named(ppcdev,
1144 "cfg_sec_resp", 0));
1147 create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
1149 if (mmc->fpga_type == FPGA_AN547) {
1150 create_unimplemented_device("U55 timing adapter 0", 0x48102000, 0x1000);
1151 create_unimplemented_device("U55 timing adapter 1", 0x48103000, 0x1000);
1154 create_non_mpc_ram(mms);
1156 if (mmc->fpga_type == FPGA_AN524) {
1158 * Connect the line from the SCC so that we can remap when the
1159 * guest updates that register.
1161 mms->remap_irq = qemu_allocate_irq(remap_irq_fn, mms, 0);
1162 qdev_connect_gpio_out_named(DEVICE(&mms->scc), "remap", 0,
1163 mms->remap_irq);
1166 armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename,
1167 boot_ram_size(mms));
1170 static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
1171 int *iregion, bool *exempt, bool *ns, bool *nsc)
1174 * The MPS2 TZ FPGA images have IDAUs in them which are connected to
1175 * the Master Security Controllers. Thes have the same logic as
1176 * is used by the IoTKit for the IDAU connected to the CPU, except
1177 * that MSCs don't care about the NSC attribute.
1179 int region = extract32(address, 28, 4);
1181 *ns = !(region & 1);
1182 *nsc = false;
1183 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1184 *exempt = (address & 0xeff00000) == 0xe0000000;
1185 *iregion = region;
1188 static char *mps2_get_remap(Object *obj, Error **errp)
1190 MPS2TZMachineState *mms = MPS2TZ_MACHINE(obj);
1191 const char *val = mms->remap ? "QSPI" : "BRAM";
1192 return g_strdup(val);
1195 static void mps2_set_remap(Object *obj, const char *value, Error **errp)
1197 MPS2TZMachineState *mms = MPS2TZ_MACHINE(obj);
1199 if (!strcmp(value, "BRAM")) {
1200 mms->remap = false;
1201 } else if (!strcmp(value, "QSPI")) {
1202 mms->remap = true;
1203 } else {
1204 error_setg(errp, "Invalid remap value");
1205 error_append_hint(errp, "Valid values are BRAM and QSPI.\n");
1209 static void mps2_machine_reset(MachineState *machine)
1211 MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
1214 * Set the initial memory mapping before triggering the reset of
1215 * the rest of the system, so that the guest image loader and CPU
1216 * reset see the correct mapping.
1218 remap_memory(mms, mms->remap);
1219 qemu_devices_reset();
1222 static void mps2tz_class_init(ObjectClass *oc, void *data)
1224 MachineClass *mc = MACHINE_CLASS(oc);
1225 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
1227 mc->init = mps2tz_common_init;
1228 mc->reset = mps2_machine_reset;
1229 iic->check = mps2_tz_idau_check;
1232 static void mps2tz_set_default_ram_info(MPS2TZMachineClass *mmc)
1235 * Set mc->default_ram_size and default_ram_id from the
1236 * information in mmc->raminfo.
1238 MachineClass *mc = MACHINE_CLASS(mmc);
1239 const RAMInfo *p;
1241 for (p = mmc->raminfo; p->name; p++) {
1242 if (p->mrindex < 0) {
1243 /* Found the entry for "system memory" */
1244 mc->default_ram_size = p->size;
1245 mc->default_ram_id = p->name;
1246 return;
1249 g_assert_not_reached();
1252 static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
1254 MachineClass *mc = MACHINE_CLASS(oc);
1255 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1257 mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
1258 mc->default_cpus = 1;
1259 mc->min_cpus = mc->default_cpus;
1260 mc->max_cpus = mc->default_cpus;
1261 mmc->fpga_type = FPGA_AN505;
1262 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1263 mmc->scc_id = 0x41045050;
1264 mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */
1265 mmc->apb_periph_frq = mmc->sysclk_frq;
1266 mmc->oscclk = an505_oscclk;
1267 mmc->len_oscclk = ARRAY_SIZE(an505_oscclk);
1268 mmc->fpgaio_num_leds = 2;
1269 mmc->fpgaio_has_switches = false;
1270 mmc->fpgaio_has_dbgctrl = false;
1271 mmc->numirq = 92;
1272 mmc->uart_overflow_irq = 47;
1273 mmc->init_svtor = 0x10000000;
1274 mmc->sram_addr_width = 15;
1275 mmc->raminfo = an505_raminfo;
1276 mmc->armsse_type = TYPE_IOTKIT;
1277 mmc->boot_ram_size = 0;
1278 mps2tz_set_default_ram_info(mmc);
1281 static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
1283 MachineClass *mc = MACHINE_CLASS(oc);
1284 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1286 mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
1287 mc->default_cpus = 2;
1288 mc->min_cpus = mc->default_cpus;
1289 mc->max_cpus = mc->default_cpus;
1290 mmc->fpga_type = FPGA_AN521;
1291 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1292 mmc->scc_id = 0x41045210;
1293 mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */
1294 mmc->apb_periph_frq = mmc->sysclk_frq;
1295 mmc->oscclk = an505_oscclk; /* AN521 is the same as AN505 here */
1296 mmc->len_oscclk = ARRAY_SIZE(an505_oscclk);
1297 mmc->fpgaio_num_leds = 2;
1298 mmc->fpgaio_has_switches = false;
1299 mmc->fpgaio_has_dbgctrl = false;
1300 mmc->numirq = 92;
1301 mmc->uart_overflow_irq = 47;
1302 mmc->init_svtor = 0x10000000;
1303 mmc->sram_addr_width = 15;
1304 mmc->raminfo = an505_raminfo; /* AN521 is the same as AN505 here */
1305 mmc->armsse_type = TYPE_SSE200;
1306 mmc->boot_ram_size = 0;
1307 mps2tz_set_default_ram_info(mmc);
1310 static void mps3tz_an524_class_init(ObjectClass *oc, void *data)
1312 MachineClass *mc = MACHINE_CLASS(oc);
1313 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1315 mc->desc = "ARM MPS3 with AN524 FPGA image for dual Cortex-M33";
1316 mc->default_cpus = 2;
1317 mc->min_cpus = mc->default_cpus;
1318 mc->max_cpus = mc->default_cpus;
1319 mmc->fpga_type = FPGA_AN524;
1320 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1321 mmc->scc_id = 0x41045240;
1322 mmc->sysclk_frq = 32 * 1000 * 1000; /* 32MHz */
1323 mmc->apb_periph_frq = mmc->sysclk_frq;
1324 mmc->oscclk = an524_oscclk;
1325 mmc->len_oscclk = ARRAY_SIZE(an524_oscclk);
1326 mmc->fpgaio_num_leds = 10;
1327 mmc->fpgaio_has_switches = true;
1328 mmc->fpgaio_has_dbgctrl = false;
1329 mmc->numirq = 95;
1330 mmc->uart_overflow_irq = 47;
1331 mmc->init_svtor = 0x10000000;
1332 mmc->sram_addr_width = 15;
1333 mmc->raminfo = an524_raminfo;
1334 mmc->armsse_type = TYPE_SSE200;
1335 mmc->boot_ram_size = 0;
1336 mps2tz_set_default_ram_info(mmc);
1338 object_class_property_add_str(oc, "remap", mps2_get_remap, mps2_set_remap);
1339 object_class_property_set_description(oc, "remap",
1340 "Set memory mapping. Valid values "
1341 "are BRAM (default) and QSPI.");
1344 static void mps3tz_an547_class_init(ObjectClass *oc, void *data)
1346 MachineClass *mc = MACHINE_CLASS(oc);
1347 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1349 mc->desc = "ARM MPS3 with AN547 FPGA image for Cortex-M55";
1350 mc->default_cpus = 1;
1351 mc->min_cpus = mc->default_cpus;
1352 mc->max_cpus = mc->default_cpus;
1353 mmc->fpga_type = FPGA_AN547;
1354 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m55");
1355 mmc->scc_id = 0x41055470;
1356 mmc->sysclk_frq = 32 * 1000 * 1000; /* 32MHz */
1357 mmc->apb_periph_frq = 25 * 1000 * 1000; /* 25MHz */
1358 mmc->oscclk = an524_oscclk; /* same as AN524 */
1359 mmc->len_oscclk = ARRAY_SIZE(an524_oscclk);
1360 mmc->fpgaio_num_leds = 10;
1361 mmc->fpgaio_has_switches = true;
1362 mmc->fpgaio_has_dbgctrl = true;
1363 mmc->numirq = 96;
1364 mmc->uart_overflow_irq = 48;
1365 mmc->init_svtor = 0x00000000;
1366 mmc->sram_addr_width = 21;
1367 mmc->raminfo = an547_raminfo;
1368 mmc->armsse_type = TYPE_SSE300;
1369 mmc->boot_ram_size = 512 * KiB;
1370 mps2tz_set_default_ram_info(mmc);
1373 static const TypeInfo mps2tz_info = {
1374 .name = TYPE_MPS2TZ_MACHINE,
1375 .parent = TYPE_MACHINE,
1376 .abstract = true,
1377 .instance_size = sizeof(MPS2TZMachineState),
1378 .class_size = sizeof(MPS2TZMachineClass),
1379 .class_init = mps2tz_class_init,
1380 .interfaces = (InterfaceInfo[]) {
1381 { TYPE_IDAU_INTERFACE },
1386 static const TypeInfo mps2tz_an505_info = {
1387 .name = TYPE_MPS2TZ_AN505_MACHINE,
1388 .parent = TYPE_MPS2TZ_MACHINE,
1389 .class_init = mps2tz_an505_class_init,
1392 static const TypeInfo mps2tz_an521_info = {
1393 .name = TYPE_MPS2TZ_AN521_MACHINE,
1394 .parent = TYPE_MPS2TZ_MACHINE,
1395 .class_init = mps2tz_an521_class_init,
1398 static const TypeInfo mps3tz_an524_info = {
1399 .name = TYPE_MPS3TZ_AN524_MACHINE,
1400 .parent = TYPE_MPS2TZ_MACHINE,
1401 .class_init = mps3tz_an524_class_init,
1404 static const TypeInfo mps3tz_an547_info = {
1405 .name = TYPE_MPS3TZ_AN547_MACHINE,
1406 .parent = TYPE_MPS2TZ_MACHINE,
1407 .class_init = mps3tz_an547_class_init,
1410 static void mps2tz_machine_init(void)
1412 type_register_static(&mps2tz_info);
1413 type_register_static(&mps2tz_an505_info);
1414 type_register_static(&mps2tz_an521_info);
1415 type_register_static(&mps3tz_an524_info);
1416 type_register_static(&mps3tz_an547_info);
1419 type_init(mps2tz_machine_init);