2 * QEMU generic PowerPC hardware System Emulator
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
27 #include "hw/ppc/ppc.h"
28 #include "hw/ppc/ppc_e500.h"
29 #include "qemu/timer.h"
30 #include "sysemu/cpus.h"
32 #include "qemu/main-loop.h"
33 #include "qemu/error-report.h"
34 #include "sysemu/kvm.h"
35 #include "sysemu/replay.h"
36 #include "sysemu/runstate.h"
38 #include "migration/vmstate.h"
41 static void cpu_ppc_tb_stop (CPUPPCState
*env
);
42 static void cpu_ppc_tb_start (CPUPPCState
*env
);
44 void ppc_set_irq(PowerPCCPU
*cpu
, int irq
, int level
)
46 CPUPPCState
*env
= &cpu
->env
;
47 unsigned int old_pending
;
49 /* We may already have the BQL if coming from the reset path */
52 old_pending
= env
->pending_interrupts
;
55 env
->pending_interrupts
|= irq
;
57 env
->pending_interrupts
&= ~irq
;
60 if (old_pending
!= env
->pending_interrupts
) {
61 ppc_maybe_interrupt(env
);
63 kvmppc_set_interrupt(cpu
, irq
, level
);
67 trace_ppc_irq_set_exit(env
, irq
, level
, env
->pending_interrupts
,
68 CPU(cpu
)->interrupt_request
);
71 /* PowerPC 6xx / 7xx internal IRQ controller */
72 static void ppc6xx_set_irq(void *opaque
, int pin
, int level
)
74 PowerPCCPU
*cpu
= opaque
;
75 CPUPPCState
*env
= &cpu
->env
;
78 trace_ppc_irq_set(env
, pin
, level
);
80 cur_level
= (env
->irq_input_state
>> pin
) & 1;
81 /* Don't generate spurious events */
82 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
83 CPUState
*cs
= CPU(cpu
);
86 case PPC6xx_INPUT_TBEN
:
87 /* Level sensitive - active high */
88 trace_ppc_irq_set_state("time base", level
);
90 cpu_ppc_tb_start(env
);
95 case PPC6xx_INPUT_INT
:
96 /* Level sensitive - active high */
97 trace_ppc_irq_set_state("external IRQ", level
);
98 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
100 case PPC6xx_INPUT_SMI
:
101 /* Level sensitive - active high */
102 trace_ppc_irq_set_state("SMI IRQ", level
);
103 ppc_set_irq(cpu
, PPC_INTERRUPT_SMI
, level
);
105 case PPC6xx_INPUT_MCP
:
106 /* Negative edge sensitive */
107 /* XXX: TODO: actual reaction may depends on HID0 status
108 * 603/604/740/750: check HID0[EMCP]
110 if (cur_level
== 1 && level
== 0) {
111 trace_ppc_irq_set_state("machine check", 1);
112 ppc_set_irq(cpu
, PPC_INTERRUPT_MCK
, 1);
115 case PPC6xx_INPUT_CKSTP_IN
:
116 /* Level sensitive - active low */
117 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
118 /* XXX: Note that the only way to restart the CPU is to reset it */
120 trace_ppc_irq_cpu("stop");
124 case PPC6xx_INPUT_HRESET
:
125 /* Level sensitive - active low */
127 trace_ppc_irq_reset("CPU");
128 cpu_interrupt(cs
, CPU_INTERRUPT_RESET
);
131 case PPC6xx_INPUT_SRESET
:
132 trace_ppc_irq_set_state("RESET IRQ", level
);
133 ppc_set_irq(cpu
, PPC_INTERRUPT_RESET
, level
);
136 g_assert_not_reached();
139 env
->irq_input_state
|= 1 << pin
;
141 env
->irq_input_state
&= ~(1 << pin
);
145 void ppc6xx_irq_init(PowerPCCPU
*cpu
)
147 qdev_init_gpio_in(DEVICE(cpu
), ppc6xx_set_irq
, PPC6xx_INPUT_NB
);
150 #if defined(TARGET_PPC64)
151 /* PowerPC 970 internal IRQ controller */
152 static void ppc970_set_irq(void *opaque
, int pin
, int level
)
154 PowerPCCPU
*cpu
= opaque
;
155 CPUPPCState
*env
= &cpu
->env
;
158 trace_ppc_irq_set(env
, pin
, level
);
160 cur_level
= (env
->irq_input_state
>> pin
) & 1;
161 /* Don't generate spurious events */
162 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
163 CPUState
*cs
= CPU(cpu
);
166 case PPC970_INPUT_INT
:
167 /* Level sensitive - active high */
168 trace_ppc_irq_set_state("external IRQ", level
);
169 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
171 case PPC970_INPUT_THINT
:
172 /* Level sensitive - active high */
173 trace_ppc_irq_set_state("SMI IRQ", level
);
174 ppc_set_irq(cpu
, PPC_INTERRUPT_THERM
, level
);
176 case PPC970_INPUT_MCP
:
177 /* Negative edge sensitive */
178 /* XXX: TODO: actual reaction may depends on HID0 status
179 * 603/604/740/750: check HID0[EMCP]
181 if (cur_level
== 1 && level
== 0) {
182 trace_ppc_irq_set_state("machine check", 1);
183 ppc_set_irq(cpu
, PPC_INTERRUPT_MCK
, 1);
186 case PPC970_INPUT_CKSTP
:
187 /* Level sensitive - active low */
188 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
190 trace_ppc_irq_cpu("stop");
193 trace_ppc_irq_cpu("restart");
198 case PPC970_INPUT_HRESET
:
199 /* Level sensitive - active low */
201 cpu_interrupt(cs
, CPU_INTERRUPT_RESET
);
204 case PPC970_INPUT_SRESET
:
205 trace_ppc_irq_set_state("RESET IRQ", level
);
206 ppc_set_irq(cpu
, PPC_INTERRUPT_RESET
, level
);
208 case PPC970_INPUT_TBEN
:
209 trace_ppc_irq_set_state("TBEN IRQ", level
);
213 g_assert_not_reached();
216 env
->irq_input_state
|= 1 << pin
;
218 env
->irq_input_state
&= ~(1 << pin
);
222 void ppc970_irq_init(PowerPCCPU
*cpu
)
224 qdev_init_gpio_in(DEVICE(cpu
), ppc970_set_irq
, PPC970_INPUT_NB
);
227 /* POWER7 internal IRQ controller */
228 static void power7_set_irq(void *opaque
, int pin
, int level
)
230 PowerPCCPU
*cpu
= opaque
;
232 trace_ppc_irq_set(&cpu
->env
, pin
, level
);
235 case POWER7_INPUT_INT
:
236 /* Level sensitive - active high */
237 trace_ppc_irq_set_state("external IRQ", level
);
238 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
241 g_assert_not_reached();
245 void ppcPOWER7_irq_init(PowerPCCPU
*cpu
)
247 qdev_init_gpio_in(DEVICE(cpu
), power7_set_irq
, POWER7_INPUT_NB
);
250 /* POWER9 internal IRQ controller */
251 static void power9_set_irq(void *opaque
, int pin
, int level
)
253 PowerPCCPU
*cpu
= opaque
;
255 trace_ppc_irq_set(&cpu
->env
, pin
, level
);
258 case POWER9_INPUT_INT
:
259 /* Level sensitive - active high */
260 trace_ppc_irq_set_state("external IRQ", level
);
261 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
263 case POWER9_INPUT_HINT
:
264 /* Level sensitive - active high */
265 trace_ppc_irq_set_state("HV external IRQ", level
);
266 ppc_set_irq(cpu
, PPC_INTERRUPT_HVIRT
, level
);
269 g_assert_not_reached();
274 void ppcPOWER9_irq_init(PowerPCCPU
*cpu
)
276 qdev_init_gpio_in(DEVICE(cpu
), power9_set_irq
, POWER9_INPUT_NB
);
278 #endif /* defined(TARGET_PPC64) */
280 void ppc40x_core_reset(PowerPCCPU
*cpu
)
282 CPUPPCState
*env
= &cpu
->env
;
285 qemu_log_mask(CPU_LOG_RESET
, "Reset PowerPC core\n");
286 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_RESET
);
287 dbsr
= env
->spr
[SPR_40x_DBSR
];
290 env
->spr
[SPR_40x_DBSR
] = dbsr
;
293 void ppc40x_chip_reset(PowerPCCPU
*cpu
)
295 CPUPPCState
*env
= &cpu
->env
;
298 qemu_log_mask(CPU_LOG_RESET
, "Reset PowerPC chip\n");
299 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_RESET
);
300 /* XXX: TODO reset all internal peripherals */
301 dbsr
= env
->spr
[SPR_40x_DBSR
];
304 env
->spr
[SPR_40x_DBSR
] = dbsr
;
307 void ppc40x_system_reset(PowerPCCPU
*cpu
)
309 qemu_log_mask(CPU_LOG_RESET
, "Reset PowerPC system\n");
310 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
313 void store_40x_dbcr0(CPUPPCState
*env
, uint32_t val
)
315 PowerPCCPU
*cpu
= env_archcpu(env
);
319 switch ((val
>> 28) & 0x3) {
325 ppc40x_core_reset(cpu
);
329 ppc40x_chip_reset(cpu
);
333 ppc40x_system_reset(cpu
);
340 /* PowerPC 40x internal IRQ controller */
341 static void ppc40x_set_irq(void *opaque
, int pin
, int level
)
343 PowerPCCPU
*cpu
= opaque
;
344 CPUPPCState
*env
= &cpu
->env
;
347 trace_ppc_irq_set(env
, pin
, level
);
349 cur_level
= (env
->irq_input_state
>> pin
) & 1;
350 /* Don't generate spurious events */
351 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
352 CPUState
*cs
= CPU(cpu
);
355 case PPC40x_INPUT_RESET_SYS
:
357 trace_ppc_irq_reset("system");
358 ppc40x_system_reset(cpu
);
361 case PPC40x_INPUT_RESET_CHIP
:
363 trace_ppc_irq_reset("chip");
364 ppc40x_chip_reset(cpu
);
367 case PPC40x_INPUT_RESET_CORE
:
368 /* XXX: TODO: update DBSR[MRR] */
370 trace_ppc_irq_reset("core");
371 ppc40x_core_reset(cpu
);
374 case PPC40x_INPUT_CINT
:
375 /* Level sensitive - active high */
376 trace_ppc_irq_set_state("critical IRQ", level
);
377 ppc_set_irq(cpu
, PPC_INTERRUPT_CEXT
, level
);
379 case PPC40x_INPUT_INT
:
380 /* Level sensitive - active high */
381 trace_ppc_irq_set_state("external IRQ", level
);
382 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
384 case PPC40x_INPUT_HALT
:
385 /* Level sensitive - active low */
387 trace_ppc_irq_cpu("stop");
390 trace_ppc_irq_cpu("restart");
395 case PPC40x_INPUT_DEBUG
:
396 /* Level sensitive - active high */
397 trace_ppc_irq_set_state("debug pin", level
);
398 ppc_set_irq(cpu
, PPC_INTERRUPT_DEBUG
, level
);
401 g_assert_not_reached();
404 env
->irq_input_state
|= 1 << pin
;
406 env
->irq_input_state
&= ~(1 << pin
);
410 void ppc40x_irq_init(PowerPCCPU
*cpu
)
412 qdev_init_gpio_in(DEVICE(cpu
), ppc40x_set_irq
, PPC40x_INPUT_NB
);
415 /* PowerPC E500 internal IRQ controller */
416 static void ppce500_set_irq(void *opaque
, int pin
, int level
)
418 PowerPCCPU
*cpu
= opaque
;
419 CPUPPCState
*env
= &cpu
->env
;
422 trace_ppc_irq_set(env
, pin
, level
);
424 cur_level
= (env
->irq_input_state
>> pin
) & 1;
425 /* Don't generate spurious events */
426 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
428 case PPCE500_INPUT_MCK
:
430 trace_ppc_irq_reset("system");
431 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
434 case PPCE500_INPUT_RESET_CORE
:
436 trace_ppc_irq_reset("core");
437 ppc_set_irq(cpu
, PPC_INTERRUPT_MCK
, level
);
440 case PPCE500_INPUT_CINT
:
441 /* Level sensitive - active high */
442 trace_ppc_irq_set_state("critical IRQ", level
);
443 ppc_set_irq(cpu
, PPC_INTERRUPT_CEXT
, level
);
445 case PPCE500_INPUT_INT
:
446 /* Level sensitive - active high */
447 trace_ppc_irq_set_state("core IRQ", level
);
448 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
450 case PPCE500_INPUT_DEBUG
:
451 /* Level sensitive - active high */
452 trace_ppc_irq_set_state("debug pin", level
);
453 ppc_set_irq(cpu
, PPC_INTERRUPT_DEBUG
, level
);
456 g_assert_not_reached();
459 env
->irq_input_state
|= 1 << pin
;
461 env
->irq_input_state
&= ~(1 << pin
);
465 void ppce500_irq_init(PowerPCCPU
*cpu
)
467 qdev_init_gpio_in(DEVICE(cpu
), ppce500_set_irq
, PPCE500_INPUT_NB
);
470 /* Enable or Disable the E500 EPR capability */
471 void ppce500_set_mpic_proxy(bool enabled
)
476 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
478 cpu
->env
.mpic_proxy
= enabled
;
480 kvmppc_set_mpic_proxy(cpu
, enabled
);
485 /*****************************************************************************/
486 /* PowerPC time base and decrementer emulation */
489 * Conversion between QEMU_CLOCK_VIRTUAL ns and timebase (TB) ticks:
490 * TB ticks are arrived at by multiplying tb_freq then dividing by
491 * ns per second, and rounding down. TB ticks drive all clocks and
492 * timers in the target machine.
494 * Converting TB intervals to ns for the purpose of setting a
495 * QEMU_CLOCK_VIRTUAL timer should go the other way, but rounding
496 * up. Rounding down could cause the timer to fire before the TB
497 * value has been reached.
499 static uint64_t ns_to_tb(uint32_t freq
, int64_t clock
)
501 return muldiv64(clock
, freq
, NANOSECONDS_PER_SECOND
);
504 /* virtual clock in TB ticks, not adjusted by TB offset */
505 static int64_t tb_to_ns_round_up(uint32_t freq
, uint64_t tb
)
507 return muldiv64_round_up(tb
, NANOSECONDS_PER_SECOND
, freq
);
510 uint64_t cpu_ppc_get_tb(ppc_tb_t
*tb_env
, uint64_t vmclk
, int64_t tb_offset
)
512 /* TB time in tb periods */
513 return ns_to_tb(tb_env
->tb_freq
, vmclk
) + tb_offset
;
516 uint64_t cpu_ppc_load_tbl (CPUPPCState
*env
)
518 ppc_tb_t
*tb_env
= env
->tb_env
;
522 return env
->spr
[SPR_TBL
];
525 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
527 trace_ppc_tb_load(tb
);
532 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState
*env
)
534 ppc_tb_t
*tb_env
= env
->tb_env
;
537 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
539 trace_ppc_tb_load(tb
);
544 uint32_t cpu_ppc_load_tbu (CPUPPCState
*env
)
547 return env
->spr
[SPR_TBU
];
550 return _cpu_ppc_load_tbu(env
);
553 static inline void cpu_ppc_store_tb(ppc_tb_t
*tb_env
, uint64_t vmclk
,
554 int64_t *tb_offsetp
, uint64_t value
)
556 *tb_offsetp
= value
- ns_to_tb(tb_env
->tb_freq
, vmclk
);
558 trace_ppc_tb_store(value
, *tb_offsetp
);
561 void cpu_ppc_store_tbl (CPUPPCState
*env
, uint32_t value
)
563 ppc_tb_t
*tb_env
= env
->tb_env
;
564 int64_t clock
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
567 tb
= cpu_ppc_get_tb(tb_env
, clock
, tb_env
->tb_offset
);
568 tb
&= 0xFFFFFFFF00000000ULL
;
569 cpu_ppc_store_tb(tb_env
, clock
, &tb_env
->tb_offset
, tb
| (uint64_t)value
);
572 static inline void _cpu_ppc_store_tbu(CPUPPCState
*env
, uint32_t value
)
574 ppc_tb_t
*tb_env
= env
->tb_env
;
575 int64_t clock
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
578 tb
= cpu_ppc_get_tb(tb_env
, clock
, tb_env
->tb_offset
);
579 tb
&= 0x00000000FFFFFFFFULL
;
580 cpu_ppc_store_tb(tb_env
, clock
, &tb_env
->tb_offset
,
581 ((uint64_t)value
<< 32) | tb
);
584 void cpu_ppc_store_tbu (CPUPPCState
*env
, uint32_t value
)
586 _cpu_ppc_store_tbu(env
, value
);
589 uint64_t cpu_ppc_load_atbl (CPUPPCState
*env
)
591 ppc_tb_t
*tb_env
= env
->tb_env
;
594 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
596 trace_ppc_tb_load(tb
);
601 uint32_t cpu_ppc_load_atbu (CPUPPCState
*env
)
603 ppc_tb_t
*tb_env
= env
->tb_env
;
606 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
608 trace_ppc_tb_load(tb
);
613 void cpu_ppc_store_atbl (CPUPPCState
*env
, uint32_t value
)
615 ppc_tb_t
*tb_env
= env
->tb_env
;
616 int64_t clock
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
619 tb
= cpu_ppc_get_tb(tb_env
, clock
, tb_env
->atb_offset
);
620 tb
&= 0xFFFFFFFF00000000ULL
;
621 cpu_ppc_store_tb(tb_env
, clock
, &tb_env
->atb_offset
, tb
| (uint64_t)value
);
624 void cpu_ppc_store_atbu (CPUPPCState
*env
, uint32_t value
)
626 ppc_tb_t
*tb_env
= env
->tb_env
;
627 int64_t clock
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
630 tb
= cpu_ppc_get_tb(tb_env
, clock
, tb_env
->atb_offset
);
631 tb
&= 0x00000000FFFFFFFFULL
;
632 cpu_ppc_store_tb(tb_env
, clock
, &tb_env
->atb_offset
,
633 ((uint64_t)value
<< 32) | tb
);
636 void cpu_ppc_increase_tb_by_offset(CPUPPCState
*env
, int64_t offset
)
638 env
->tb_env
->tb_offset
+= offset
;
641 void cpu_ppc_decrease_tb_by_offset(CPUPPCState
*env
, int64_t offset
)
643 env
->tb_env
->tb_offset
-= offset
;
646 uint64_t cpu_ppc_load_vtb(CPUPPCState
*env
)
648 ppc_tb_t
*tb_env
= env
->tb_env
;
650 return cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
654 void cpu_ppc_store_vtb(CPUPPCState
*env
, uint64_t value
)
656 ppc_tb_t
*tb_env
= env
->tb_env
;
658 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
659 &tb_env
->vtb_offset
, value
);
662 void cpu_ppc_store_tbu40(CPUPPCState
*env
, uint64_t value
)
664 ppc_tb_t
*tb_env
= env
->tb_env
;
665 int64_t clock
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
668 tb
= cpu_ppc_get_tb(tb_env
, clock
, tb_env
->tb_offset
);
670 tb
|= (value
& ~0xFFFFFFUL
);
671 cpu_ppc_store_tb(tb_env
, clock
, &tb_env
->tb_offset
, tb
);
674 static void cpu_ppc_tb_stop (CPUPPCState
*env
)
676 ppc_tb_t
*tb_env
= env
->tb_env
;
677 uint64_t tb
, atb
, vmclk
;
679 /* If the time base is already frozen, do nothing */
680 if (tb_env
->tb_freq
!= 0) {
681 vmclk
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
682 /* Get the time base */
683 tb
= cpu_ppc_get_tb(tb_env
, vmclk
, tb_env
->tb_offset
);
684 /* Get the alternate time base */
685 atb
= cpu_ppc_get_tb(tb_env
, vmclk
, tb_env
->atb_offset
);
686 /* Store the time base value (ie compute the current offset) */
687 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->tb_offset
, tb
);
688 /* Store the alternate time base value (compute the current offset) */
689 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->atb_offset
, atb
);
690 /* Set the time base frequency to zero */
692 /* Now, the time bases are frozen to tb_offset / atb_offset value */
696 static void cpu_ppc_tb_start (CPUPPCState
*env
)
698 ppc_tb_t
*tb_env
= env
->tb_env
;
699 uint64_t tb
, atb
, vmclk
;
701 /* If the time base is not frozen, do nothing */
702 if (tb_env
->tb_freq
== 0) {
703 vmclk
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
704 /* Get the time base from tb_offset */
705 tb
= tb_env
->tb_offset
;
706 /* Get the alternate time base from atb_offset */
707 atb
= tb_env
->atb_offset
;
708 /* Restore the tb frequency from the decrementer frequency */
709 tb_env
->tb_freq
= tb_env
->decr_freq
;
710 /* Store the time base value */
711 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->tb_offset
, tb
);
712 /* Store the alternate time base value */
713 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->atb_offset
, atb
);
717 bool ppc_decr_clear_on_delivery(CPUPPCState
*env
)
719 ppc_tb_t
*tb_env
= env
->tb_env
;
720 int flags
= PPC_DECR_UNDERFLOW_TRIGGERED
| PPC_DECR_UNDERFLOW_LEVEL
;
721 return ((tb_env
->flags
& flags
) == PPC_DECR_UNDERFLOW_TRIGGERED
);
724 static inline int64_t __cpu_ppc_load_decr(CPUPPCState
*env
, int64_t now
,
727 ppc_tb_t
*tb_env
= env
->tb_env
;
731 n
= ns_to_tb(tb_env
->decr_freq
, now
);
732 if (next
> n
&& tb_env
->flags
& PPC_TIMER_BOOKE
) {
738 trace_ppc_decr_load(decr
);
743 static target_ulong
_cpu_ppc_load_decr(CPUPPCState
*env
, int64_t now
)
745 ppc_tb_t
*tb_env
= env
->tb_env
;
748 decr
= __cpu_ppc_load_decr(env
, now
, tb_env
->decr_next
);
751 * If large decrementer is enabled then the decrementer is signed extended
752 * to 64 bits, otherwise it is a 32 bit value.
754 if (env
->spr
[SPR_LPCR
] & LPCR_LD
) {
755 PowerPCCPU
*cpu
= env_archcpu(env
);
756 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cpu
);
757 return sextract64(decr
, 0, pcc
->lrg_decr_bits
);
759 return (uint32_t) decr
;
762 target_ulong
cpu_ppc_load_decr(CPUPPCState
*env
)
765 return env
->spr
[SPR_DECR
];
767 return _cpu_ppc_load_decr(env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
));
771 static target_ulong
_cpu_ppc_load_hdecr(CPUPPCState
*env
, int64_t now
)
773 PowerPCCPU
*cpu
= env_archcpu(env
);
774 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cpu
);
775 ppc_tb_t
*tb_env
= env
->tb_env
;
778 hdecr
= __cpu_ppc_load_decr(env
, now
, tb_env
->hdecr_next
);
781 * If we have a large decrementer (POWER9 or later) then hdecr is sign
782 * extended to 64 bits, otherwise it is 32 bits.
784 if (pcc
->lrg_decr_bits
> 32) {
785 return sextract64(hdecr
, 0, pcc
->lrg_decr_bits
);
787 return (uint32_t) hdecr
;
790 target_ulong
cpu_ppc_load_hdecr(CPUPPCState
*env
)
792 return _cpu_ppc_load_hdecr(env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
));
795 uint64_t cpu_ppc_load_purr (CPUPPCState
*env
)
797 ppc_tb_t
*tb_env
= env
->tb_env
;
799 return cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
800 tb_env
->purr_offset
);
803 /* When decrementer expires,
804 * all we need to do is generate or queue a CPU exception
806 static inline void cpu_ppc_decr_excp(PowerPCCPU
*cpu
)
809 trace_ppc_decr_excp("raise");
810 ppc_set_irq(cpu
, PPC_INTERRUPT_DECR
, 1);
813 static inline void cpu_ppc_decr_lower(PowerPCCPU
*cpu
)
815 ppc_set_irq(cpu
, PPC_INTERRUPT_DECR
, 0);
818 static inline void cpu_ppc_hdecr_excp(PowerPCCPU
*cpu
)
820 CPUPPCState
*env
= &cpu
->env
;
823 trace_ppc_decr_excp("raise HV");
825 /* The architecture specifies that we don't deliver HDEC
826 * interrupts in a PM state. Not only they don't cause a
827 * wakeup but they also get effectively discarded.
829 if (!env
->resume_as_sreset
) {
830 ppc_set_irq(cpu
, PPC_INTERRUPT_HDECR
, 1);
834 static inline void cpu_ppc_hdecr_lower(PowerPCCPU
*cpu
)
836 ppc_set_irq(cpu
, PPC_INTERRUPT_HDECR
, 0);
839 static void __cpu_ppc_store_decr(PowerPCCPU
*cpu
, int64_t now
, uint64_t *nextp
,
841 void (*raise_excp
)(void *),
842 void (*lower_excp
)(PowerPCCPU
*),
843 uint32_t flags
, target_ulong decr
,
844 target_ulong value
, int nr_bits
)
846 CPUPPCState
*env
= &cpu
->env
;
847 ppc_tb_t
*tb_env
= env
->tb_env
;
849 int64_t signed_value
;
852 /* Truncate value to decr_width and sign extend for simplicity */
853 value
= extract64(value
, 0, nr_bits
);
854 decr
= extract64(decr
, 0, nr_bits
);
855 signed_value
= sextract64(value
, 0, nr_bits
);
856 signed_decr
= sextract64(decr
, 0, nr_bits
);
858 trace_ppc_decr_store(nr_bits
, decr
, value
);
861 * Calculate the next decrementer event and set a timer.
862 * decr_next is in timebase units to keep rounding simple. Note it is
863 * not adjusted by tb_offset because if TB changes via tb_offset changing,
864 * decrementer does not change, so not directly comparable with TB.
866 next
= ns_to_tb(tb_env
->decr_freq
, now
) + value
;
867 *nextp
= next
; /* nextp is in timebase units */
870 * Going from 1 -> 0 or 0 -> -1 is the event to generate a DEC interrupt.
872 * On MSB level based DEC implementations the MSB always means the interrupt
873 * is pending, so raise it on those.
875 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
876 * an edge interrupt, so raise it here too.
878 if (((flags
& PPC_DECR_UNDERFLOW_LEVEL
) && signed_value
< 0) ||
879 ((flags
& PPC_DECR_UNDERFLOW_TRIGGERED
) && signed_value
< 0
880 && signed_decr
>= 0)) {
885 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
886 if (signed_value
>= 0 && (flags
& PPC_DECR_UNDERFLOW_LEVEL
)) {
891 timer_mod(timer
, tb_to_ns_round_up(tb_env
->decr_freq
, next
));
894 static inline void _cpu_ppc_store_decr(PowerPCCPU
*cpu
, int64_t now
,
895 target_ulong decr
, target_ulong value
,
898 ppc_tb_t
*tb_env
= cpu
->env
.tb_env
;
900 __cpu_ppc_store_decr(cpu
, now
, &tb_env
->decr_next
, tb_env
->decr_timer
,
901 tb_env
->decr_timer
->cb
, &cpu_ppc_decr_lower
,
902 tb_env
->flags
, decr
, value
, nr_bits
);
905 void cpu_ppc_store_decr(CPUPPCState
*env
, target_ulong value
)
907 PowerPCCPU
*cpu
= env_archcpu(env
);
908 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cpu
);
914 /* KVM handles decrementer exceptions, we don't need our own timer */
918 if (env
->spr
[SPR_LPCR
] & LPCR_LD
) {
919 nr_bits
= pcc
->lrg_decr_bits
;
922 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
923 decr
= _cpu_ppc_load_decr(env
, now
);
924 _cpu_ppc_store_decr(cpu
, now
, decr
, value
, nr_bits
);
927 static void cpu_ppc_decr_cb(void *opaque
)
929 PowerPCCPU
*cpu
= opaque
;
931 cpu_ppc_decr_excp(cpu
);
934 static inline void _cpu_ppc_store_hdecr(PowerPCCPU
*cpu
, int64_t now
,
935 target_ulong hdecr
, target_ulong value
,
938 ppc_tb_t
*tb_env
= cpu
->env
.tb_env
;
940 if (tb_env
->hdecr_timer
!= NULL
) {
941 /* HDECR (Book3S 64bit) is edge-based, not level like DECR */
942 __cpu_ppc_store_decr(cpu
, now
, &tb_env
->hdecr_next
, tb_env
->hdecr_timer
,
943 tb_env
->hdecr_timer
->cb
, &cpu_ppc_hdecr_lower
,
944 PPC_DECR_UNDERFLOW_TRIGGERED
,
945 hdecr
, value
, nr_bits
);
949 void cpu_ppc_store_hdecr(CPUPPCState
*env
, target_ulong value
)
951 PowerPCCPU
*cpu
= env_archcpu(env
);
952 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cpu
);
956 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
957 hdecr
= _cpu_ppc_load_hdecr(env
, now
);
958 _cpu_ppc_store_hdecr(cpu
, now
, hdecr
, value
, pcc
->lrg_decr_bits
);
961 static void cpu_ppc_hdecr_cb(void *opaque
)
963 PowerPCCPU
*cpu
= opaque
;
965 cpu_ppc_hdecr_excp(cpu
);
968 static void _cpu_ppc_store_purr(CPUPPCState
*env
, int64_t now
, uint64_t value
)
970 ppc_tb_t
*tb_env
= env
->tb_env
;
972 cpu_ppc_store_tb(tb_env
, now
, &tb_env
->purr_offset
, value
);
975 void cpu_ppc_store_purr(CPUPPCState
*env
, uint64_t value
)
977 _cpu_ppc_store_purr(env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), value
);
980 static void timebase_save(PPCTimebase
*tb
)
982 uint64_t ticks
= cpu_get_host_ticks();
983 PowerPCCPU
*first_ppc_cpu
= POWERPC_CPU(first_cpu
);
985 if (!first_ppc_cpu
->env
.tb_env
) {
986 error_report("No timebase object");
990 if (replay_mode
== REPLAY_MODE_NONE
) {
991 /* not used anymore, we keep it for compatibility */
992 tb
->time_of_the_day_ns
= qemu_clock_get_ns(QEMU_CLOCK_HOST
);
994 /* simpler for record-replay to avoid this event, compat not needed */
995 tb
->time_of_the_day_ns
= 0;
999 * tb_offset is only expected to be changed by QEMU so
1000 * there is no need to update it from KVM here
1002 tb
->guest_timebase
= ticks
+ first_ppc_cpu
->env
.tb_env
->tb_offset
;
1004 tb
->runstate_paused
=
1005 runstate_check(RUN_STATE_PAUSED
) || runstate_check(RUN_STATE_SAVE_VM
);
1008 static void timebase_load(PPCTimebase
*tb
)
1011 PowerPCCPU
*first_ppc_cpu
= POWERPC_CPU(first_cpu
);
1012 int64_t tb_off_adj
, tb_off
;
1015 if (!first_ppc_cpu
->env
.tb_env
) {
1016 error_report("No timebase object");
1020 freq
= first_ppc_cpu
->env
.tb_env
->tb_freq
;
1022 tb_off_adj
= tb
->guest_timebase
- cpu_get_host_ticks();
1024 tb_off
= first_ppc_cpu
->env
.tb_env
->tb_offset
;
1025 trace_ppc_tb_adjust(tb_off
, tb_off_adj
, tb_off_adj
- tb_off
,
1026 (tb_off_adj
- tb_off
) / freq
);
1028 /* Set new offset to all CPUs */
1030 PowerPCCPU
*pcpu
= POWERPC_CPU(cpu
);
1031 pcpu
->env
.tb_env
->tb_offset
= tb_off_adj
;
1032 kvmppc_set_reg_tb_offset(pcpu
, pcpu
->env
.tb_env
->tb_offset
);
1036 void cpu_ppc_clock_vm_state_change(void *opaque
, bool running
,
1039 PPCTimebase
*tb
= opaque
;
1049 * When migrating a running guest, read the clock just
1050 * before migration, so that the guest clock counts
1051 * during the events between:
1057 * This reduces clock difference on migration from 5s
1058 * to 0.1s (when max_downtime == 5s), because sending the
1059 * final pages of memory (which happens between vm_stop()
1060 * and pre_save()) takes max_downtime.
1062 static int timebase_pre_save(void *opaque
)
1064 PPCTimebase
*tb
= opaque
;
1066 /* guest_timebase won't be overridden in case of paused guest or savevm */
1067 if (!tb
->runstate_paused
) {
1074 const VMStateDescription vmstate_ppc_timebase
= {
1077 .minimum_version_id
= 1,
1078 .pre_save
= timebase_pre_save
,
1079 .fields
= (const VMStateField
[]) {
1080 VMSTATE_UINT64(guest_timebase
, PPCTimebase
),
1081 VMSTATE_INT64(time_of_the_day_ns
, PPCTimebase
),
1082 VMSTATE_END_OF_LIST()
1086 /* Set up (once) timebase frequency (in Hz) */
1087 void cpu_ppc_tb_init(CPUPPCState
*env
, uint32_t freq
)
1089 PowerPCCPU
*cpu
= env_archcpu(env
);
1092 tb_env
= g_new0(ppc_tb_t
, 1);
1093 env
->tb_env
= tb_env
;
1094 tb_env
->flags
= PPC_DECR_UNDERFLOW_TRIGGERED
;
1095 if (is_book3s_arch2x(env
)) {
1096 /* All Book3S 64bit CPUs implement level based DEC logic */
1097 tb_env
->flags
|= PPC_DECR_UNDERFLOW_LEVEL
;
1099 /* Create new timer */
1100 tb_env
->decr_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
,
1101 &cpu_ppc_decr_cb
, cpu
);
1102 if (env
->has_hv_mode
&& !cpu
->vhyp
) {
1103 tb_env
->hdecr_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
,
1104 &cpu_ppc_hdecr_cb
, cpu
);
1106 tb_env
->hdecr_timer
= NULL
;
1109 tb_env
->tb_freq
= freq
;
1110 tb_env
->decr_freq
= freq
;
1113 void cpu_ppc_tb_reset(CPUPPCState
*env
)
1115 PowerPCCPU
*cpu
= env_archcpu(env
);
1116 ppc_tb_t
*tb_env
= env
->tb_env
;
1118 timer_del(tb_env
->decr_timer
);
1119 ppc_set_irq(cpu
, PPC_INTERRUPT_DECR
, 0);
1120 tb_env
->decr_next
= 0;
1121 if (tb_env
->hdecr_timer
!= NULL
) {
1122 timer_del(tb_env
->hdecr_timer
);
1123 ppc_set_irq(cpu
, PPC_INTERRUPT_HDECR
, 0);
1124 tb_env
->hdecr_next
= 0;
1128 * There is a bug in Linux 2.4 kernels:
1129 * if a decrementer exception is pending when it enables msr_ee at startup,
1130 * it's not ready to handle it...
1132 cpu_ppc_store_decr(env
, -1);
1133 cpu_ppc_store_hdecr(env
, -1);
1134 cpu_ppc_store_purr(env
, 0x0000000000000000ULL
);
1137 void cpu_ppc_tb_free(CPUPPCState
*env
)
1139 timer_free(env
->tb_env
->decr_timer
);
1140 timer_free(env
->tb_env
->hdecr_timer
);
1141 g_free(env
->tb_env
);
1144 /* cpu_ppc_hdecr_init may be used if the timer is not used by HDEC emulation */
1145 void cpu_ppc_hdecr_init(CPUPPCState
*env
)
1147 PowerPCCPU
*cpu
= env_archcpu(env
);
1149 assert(env
->tb_env
->hdecr_timer
== NULL
);
1151 env
->tb_env
->hdecr_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
,
1152 &cpu_ppc_hdecr_cb
, cpu
);
1155 void cpu_ppc_hdecr_exit(CPUPPCState
*env
)
1157 PowerPCCPU
*cpu
= env_archcpu(env
);
1159 timer_free(env
->tb_env
->hdecr_timer
);
1160 env
->tb_env
->hdecr_timer
= NULL
;
1162 cpu_ppc_hdecr_lower(cpu
);
1165 /*****************************************************************************/
1166 /* PowerPC 40x timers */
1168 /* PIT, FIT & WDT */
1169 typedef struct ppc40x_timer_t ppc40x_timer_t
;
1170 struct ppc40x_timer_t
{
1171 uint64_t pit_reload
; /* PIT auto-reload value */
1172 uint64_t fit_next
; /* Tick for next FIT interrupt */
1173 QEMUTimer
*fit_timer
;
1174 uint64_t wdt_next
; /* Tick for next WDT interrupt */
1175 QEMUTimer
*wdt_timer
;
1177 /* 405 have the PIT, 440 have a DECR. */
1178 unsigned int decr_excp
;
1181 /* Fixed interval timer */
1182 static void cpu_4xx_fit_cb (void *opaque
)
1184 PowerPCCPU
*cpu
= opaque
;
1185 CPUPPCState
*env
= &cpu
->env
;
1187 ppc40x_timer_t
*ppc40x_timer
;
1190 tb_env
= env
->tb_env
;
1191 ppc40x_timer
= tb_env
->opaque
;
1192 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
1193 switch ((env
->spr
[SPR_40x_TCR
] >> 24) & 0x3) {
1207 /* Cannot occur, but makes gcc happy */
1210 next
= now
+ tb_to_ns_round_up(tb_env
->tb_freq
, next
);
1211 timer_mod(ppc40x_timer
->fit_timer
, next
);
1212 env
->spr
[SPR_40x_TSR
] |= 1 << 26;
1213 if ((env
->spr
[SPR_40x_TCR
] >> 23) & 0x1) {
1214 ppc_set_irq(cpu
, PPC_INTERRUPT_FIT
, 1);
1216 trace_ppc4xx_fit((int)((env
->spr
[SPR_40x_TCR
] >> 23) & 0x1),
1217 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
]);
1220 /* Programmable interval timer */
1221 static void start_stop_pit (CPUPPCState
*env
, ppc_tb_t
*tb_env
, int is_excp
)
1223 ppc40x_timer_t
*ppc40x_timer
;
1226 ppc40x_timer
= tb_env
->opaque
;
1227 if (ppc40x_timer
->pit_reload
<= 1 ||
1228 !((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1) ||
1229 (is_excp
&& !((env
->spr
[SPR_40x_TCR
] >> 22) & 0x1))) {
1231 trace_ppc4xx_pit_stop();
1232 timer_del(tb_env
->decr_timer
);
1234 trace_ppc4xx_pit_start(ppc40x_timer
->pit_reload
);
1235 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
1238 tb_env
->decr_next
+= ppc40x_timer
->pit_reload
;
1240 tb_env
->decr_next
= ns_to_tb(tb_env
->decr_freq
, now
)
1241 + ppc40x_timer
->pit_reload
;
1243 next
= tb_to_ns_round_up(tb_env
->decr_freq
, tb_env
->decr_next
);
1244 timer_mod(tb_env
->decr_timer
, next
);
1248 static void cpu_4xx_pit_cb (void *opaque
)
1250 PowerPCCPU
*cpu
= opaque
;
1251 CPUPPCState
*env
= &cpu
->env
;
1253 ppc40x_timer_t
*ppc40x_timer
;
1255 tb_env
= env
->tb_env
;
1256 ppc40x_timer
= tb_env
->opaque
;
1257 env
->spr
[SPR_40x_TSR
] |= 1 << 27;
1258 if ((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1) {
1259 ppc_set_irq(cpu
, ppc40x_timer
->decr_excp
, 1);
1261 start_stop_pit(env
, tb_env
, 1);
1262 trace_ppc4xx_pit((int)((env
->spr
[SPR_40x_TCR
] >> 22) & 0x1),
1263 (int)((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1),
1264 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
],
1265 ppc40x_timer
->pit_reload
);
1268 /* Watchdog timer */
1269 static void cpu_4xx_wdt_cb (void *opaque
)
1271 PowerPCCPU
*cpu
= opaque
;
1272 CPUPPCState
*env
= &cpu
->env
;
1274 ppc40x_timer_t
*ppc40x_timer
;
1277 tb_env
= env
->tb_env
;
1278 ppc40x_timer
= tb_env
->opaque
;
1279 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
1280 switch ((env
->spr
[SPR_40x_TCR
] >> 30) & 0x3) {
1294 /* Cannot occur, but makes gcc happy */
1297 next
= now
+ tb_to_ns_round_up(tb_env
->decr_freq
, next
);
1298 trace_ppc4xx_wdt(env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
]);
1299 switch ((env
->spr
[SPR_40x_TSR
] >> 30) & 0x3) {
1302 timer_mod(ppc40x_timer
->wdt_timer
, next
);
1303 ppc40x_timer
->wdt_next
= next
;
1304 env
->spr
[SPR_40x_TSR
] |= 1U << 31;
1307 timer_mod(ppc40x_timer
->wdt_timer
, next
);
1308 ppc40x_timer
->wdt_next
= next
;
1309 env
->spr
[SPR_40x_TSR
] |= 1 << 30;
1310 if ((env
->spr
[SPR_40x_TCR
] >> 27) & 0x1) {
1311 ppc_set_irq(cpu
, PPC_INTERRUPT_WDT
, 1);
1315 env
->spr
[SPR_40x_TSR
] &= ~0x30000000;
1316 env
->spr
[SPR_40x_TSR
] |= env
->spr
[SPR_40x_TCR
] & 0x30000000;
1317 switch ((env
->spr
[SPR_40x_TCR
] >> 28) & 0x3) {
1321 case 0x1: /* Core reset */
1322 ppc40x_core_reset(cpu
);
1324 case 0x2: /* Chip reset */
1325 ppc40x_chip_reset(cpu
);
1327 case 0x3: /* System reset */
1328 ppc40x_system_reset(cpu
);
1334 void store_40x_pit (CPUPPCState
*env
, target_ulong val
)
1337 ppc40x_timer_t
*ppc40x_timer
;
1339 tb_env
= env
->tb_env
;
1340 ppc40x_timer
= tb_env
->opaque
;
1341 trace_ppc40x_store_pit(val
);
1342 ppc40x_timer
->pit_reload
= val
;
1343 start_stop_pit(env
, tb_env
, 0);
1346 target_ulong
load_40x_pit (CPUPPCState
*env
)
1348 return cpu_ppc_load_decr(env
);
1351 void store_40x_tsr(CPUPPCState
*env
, target_ulong val
)
1353 PowerPCCPU
*cpu
= env_archcpu(env
);
1355 trace_ppc40x_store_tcr(val
);
1357 env
->spr
[SPR_40x_TSR
] &= ~(val
& 0xFC000000);
1358 if (val
& 0x80000000) {
1359 ppc_set_irq(cpu
, PPC_INTERRUPT_PIT
, 0);
1363 void store_40x_tcr(CPUPPCState
*env
, target_ulong val
)
1365 PowerPCCPU
*cpu
= env_archcpu(env
);
1368 trace_ppc40x_store_tsr(val
);
1370 tb_env
= env
->tb_env
;
1371 env
->spr
[SPR_40x_TCR
] = val
& 0xFFC00000;
1372 start_stop_pit(env
, tb_env
, 1);
1373 cpu_4xx_wdt_cb(cpu
);
1376 static void ppc_40x_set_tb_clk (void *opaque
, uint32_t freq
)
1378 CPUPPCState
*env
= opaque
;
1379 ppc_tb_t
*tb_env
= env
->tb_env
;
1381 trace_ppc40x_set_tb_clk(freq
);
1382 tb_env
->tb_freq
= freq
;
1383 tb_env
->decr_freq
= freq
;
1384 /* XXX: we should also update all timers */
1387 clk_setup_cb
ppc_40x_timers_init (CPUPPCState
*env
, uint32_t freq
,
1388 unsigned int decr_excp
)
1391 ppc40x_timer_t
*ppc40x_timer
;
1392 PowerPCCPU
*cpu
= env_archcpu(env
);
1394 trace_ppc40x_timers_init(freq
);
1396 tb_env
= g_new0(ppc_tb_t
, 1);
1397 ppc40x_timer
= g_new0(ppc40x_timer_t
, 1);
1399 env
->tb_env
= tb_env
;
1400 tb_env
->flags
= PPC_DECR_UNDERFLOW_TRIGGERED
;
1401 tb_env
->tb_freq
= freq
;
1402 tb_env
->decr_freq
= freq
;
1403 tb_env
->opaque
= ppc40x_timer
;
1405 /* We use decr timer for PIT */
1406 tb_env
->decr_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_4xx_pit_cb
, cpu
);
1407 ppc40x_timer
->fit_timer
=
1408 timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_4xx_fit_cb
, cpu
);
1409 ppc40x_timer
->wdt_timer
=
1410 timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_4xx_wdt_cb
, cpu
);
1411 ppc40x_timer
->decr_excp
= decr_excp
;
1413 return &ppc_40x_set_tb_clk
;
1416 /*****************************************************************************/
1417 /* Embedded PowerPC Device Control Registers */
1418 typedef struct ppc_dcrn_t ppc_dcrn_t
;
1420 dcr_read_cb dcr_read
;
1421 dcr_write_cb dcr_write
;
1425 /* XXX: on 460, DCR addresses are 32 bits wide,
1426 * using DCRIPR to get the 22 upper bits of the DCR address
1428 #define DCRN_NB 1024
1430 ppc_dcrn_t dcrn
[DCRN_NB
];
1431 int (*read_error
)(int dcrn
);
1432 int (*write_error
)(int dcrn
);
1435 int ppc_dcr_read (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t *valp
)
1439 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1441 dcr
= &dcr_env
->dcrn
[dcrn
];
1442 if (dcr
->dcr_read
== NULL
)
1444 *valp
= (*dcr
->dcr_read
)(dcr
->opaque
, dcrn
);
1445 trace_ppc_dcr_read(dcrn
, *valp
);
1450 if (dcr_env
->read_error
!= NULL
)
1451 return (*dcr_env
->read_error
)(dcrn
);
1456 int ppc_dcr_write (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t val
)
1460 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1462 dcr
= &dcr_env
->dcrn
[dcrn
];
1463 if (dcr
->dcr_write
== NULL
)
1465 trace_ppc_dcr_write(dcrn
, val
);
1466 (*dcr
->dcr_write
)(dcr
->opaque
, dcrn
, val
);
1471 if (dcr_env
->write_error
!= NULL
)
1472 return (*dcr_env
->write_error
)(dcrn
);
1477 int ppc_dcr_register (CPUPPCState
*env
, int dcrn
, void *opaque
,
1478 dcr_read_cb dcr_read
, dcr_write_cb dcr_write
)
1483 dcr_env
= env
->dcr_env
;
1484 if (dcr_env
== NULL
)
1486 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1488 dcr
= &dcr_env
->dcrn
[dcrn
];
1489 if (dcr
->opaque
!= NULL
||
1490 dcr
->dcr_read
!= NULL
||
1491 dcr
->dcr_write
!= NULL
)
1493 dcr
->opaque
= opaque
;
1494 dcr
->dcr_read
= dcr_read
;
1495 dcr
->dcr_write
= dcr_write
;
1500 int ppc_dcr_init (CPUPPCState
*env
, int (*read_error
)(int dcrn
),
1501 int (*write_error
)(int dcrn
))
1505 dcr_env
= g_new0(ppc_dcr_t
, 1);
1506 dcr_env
->read_error
= read_error
;
1507 dcr_env
->write_error
= write_error
;
1508 env
->dcr_env
= dcr_env
;
1513 /*****************************************************************************/
1515 int ppc_cpu_pir(PowerPCCPU
*cpu
)
1517 CPUPPCState
*env
= &cpu
->env
;
1518 return env
->spr_cb
[SPR_PIR
].default_value
;
1521 int ppc_cpu_tir(PowerPCCPU
*cpu
)
1523 CPUPPCState
*env
= &cpu
->env
;
1524 return env
->spr_cb
[SPR_TIR
].default_value
;
1527 PowerPCCPU
*ppc_get_vcpu_by_pir(int pir
)
1532 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
1534 if (ppc_cpu_pir(cpu
) == pir
) {
1542 void ppc_irq_reset(PowerPCCPU
*cpu
)
1544 CPUPPCState
*env
= &cpu
->env
;
1546 env
->irq_input_state
= 0;
1547 if (kvm_enabled()) {
1548 kvmppc_set_interrupt(cpu
, PPC_INTERRUPT_EXT
, 0);