elf2dmp: Check curl_easy_setopt() return value
[qemu/armbru.git] / softmmu / physmem.c
blob23e77cb77153100d48e4df0e884aa12f0ea4e7b8
1 /*
2 * RAM allocation and memory access
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
27 #ifdef CONFIG_TCG
28 #include "hw/core/tcg-cpu-ops.h"
29 #endif /* CONFIG_TCG */
31 #include "exec/exec-all.h"
32 #include "exec/target_page.h"
33 #include "hw/qdev-core.h"
34 #include "hw/qdev-properties.h"
35 #include "hw/boards.h"
36 #include "hw/xen/xen.h"
37 #include "sysemu/kvm.h"
38 #include "sysemu/tcg.h"
39 #include "sysemu/qtest.h"
40 #include "qemu/timer.h"
41 #include "qemu/config-file.h"
42 #include "qemu/error-report.h"
43 #include "qemu/qemu-print.h"
44 #include "exec/memory.h"
45 #include "exec/ioport.h"
46 #include "sysemu/dma.h"
47 #include "sysemu/hostmem.h"
48 #include "sysemu/hw_accel.h"
49 #include "sysemu/xen-mapcache.h"
50 #include "trace/trace-root.h"
52 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
53 #include <linux/falloc.h>
54 #endif
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "exec/translate-all.h"
59 #include "sysemu/replay.h"
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
63 #include "exec/log.h"
65 #include "qemu/pmem.h"
67 #include "migration/vmstate.h"
69 #include "qemu/range.h"
70 #ifndef _WIN32
71 #include "qemu/mmap-alloc.h"
72 #endif
74 #include "monitor/monitor.h"
76 #ifdef CONFIG_LIBDAXCTL
77 #include <daxctl/libdaxctl.h>
78 #endif
80 //#define DEBUG_SUBPAGE
82 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
83 * are protected by the ramlist lock.
85 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
87 static MemoryRegion *system_memory;
88 static MemoryRegion *system_io;
90 AddressSpace address_space_io;
91 AddressSpace address_space_memory;
93 static MemoryRegion io_mem_unassigned;
95 typedef struct PhysPageEntry PhysPageEntry;
97 struct PhysPageEntry {
98 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
99 uint32_t skip : 6;
100 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
101 uint32_t ptr : 26;
104 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
106 /* Size of the L2 (and L3, etc) page tables. */
107 #define ADDR_SPACE_BITS 64
109 #define P_L2_BITS 9
110 #define P_L2_SIZE (1 << P_L2_BITS)
112 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
114 typedef PhysPageEntry Node[P_L2_SIZE];
116 typedef struct PhysPageMap {
117 struct rcu_head rcu;
119 unsigned sections_nb;
120 unsigned sections_nb_alloc;
121 unsigned nodes_nb;
122 unsigned nodes_nb_alloc;
123 Node *nodes;
124 MemoryRegionSection *sections;
125 } PhysPageMap;
127 struct AddressSpaceDispatch {
128 MemoryRegionSection *mru_section;
129 /* This is a multi-level map on the physical address space.
130 * The bottom level has pointers to MemoryRegionSections.
132 PhysPageEntry phys_map;
133 PhysPageMap map;
136 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
137 typedef struct subpage_t {
138 MemoryRegion iomem;
139 FlatView *fv;
140 hwaddr base;
141 uint16_t sub_section[];
142 } subpage_t;
144 #define PHYS_SECTION_UNASSIGNED 0
146 static void io_mem_init(void);
147 static void memory_map_init(void);
148 static void tcg_log_global_after_sync(MemoryListener *listener);
149 static void tcg_commit(MemoryListener *listener);
152 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
153 * @cpu: the CPU whose AddressSpace this is
154 * @as: the AddressSpace itself
155 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
156 * @tcg_as_listener: listener for tracking changes to the AddressSpace
158 struct CPUAddressSpace {
159 CPUState *cpu;
160 AddressSpace *as;
161 struct AddressSpaceDispatch *memory_dispatch;
162 MemoryListener tcg_as_listener;
165 struct DirtyBitmapSnapshot {
166 ram_addr_t start;
167 ram_addr_t end;
168 unsigned long dirty[];
171 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
173 static unsigned alloc_hint = 16;
174 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
175 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
176 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
177 alloc_hint = map->nodes_nb_alloc;
181 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
183 unsigned i;
184 uint32_t ret;
185 PhysPageEntry e;
186 PhysPageEntry *p;
188 ret = map->nodes_nb++;
189 p = map->nodes[ret];
190 assert(ret != PHYS_MAP_NODE_NIL);
191 assert(ret != map->nodes_nb_alloc);
193 e.skip = leaf ? 0 : 1;
194 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
195 for (i = 0; i < P_L2_SIZE; ++i) {
196 memcpy(&p[i], &e, sizeof(e));
198 return ret;
201 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
202 hwaddr *index, uint64_t *nb, uint16_t leaf,
203 int level)
205 PhysPageEntry *p;
206 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
208 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
209 lp->ptr = phys_map_node_alloc(map, level == 0);
211 p = map->nodes[lp->ptr];
212 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
214 while (*nb && lp < &p[P_L2_SIZE]) {
215 if ((*index & (step - 1)) == 0 && *nb >= step) {
216 lp->skip = 0;
217 lp->ptr = leaf;
218 *index += step;
219 *nb -= step;
220 } else {
221 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
223 ++lp;
227 static void phys_page_set(AddressSpaceDispatch *d,
228 hwaddr index, uint64_t nb,
229 uint16_t leaf)
231 /* Wildly overreserve - it doesn't matter much. */
232 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
234 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
237 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
238 * and update our entry so we can skip it and go directly to the destination.
240 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
242 unsigned valid_ptr = P_L2_SIZE;
243 int valid = 0;
244 PhysPageEntry *p;
245 int i;
247 if (lp->ptr == PHYS_MAP_NODE_NIL) {
248 return;
251 p = nodes[lp->ptr];
252 for (i = 0; i < P_L2_SIZE; i++) {
253 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
254 continue;
257 valid_ptr = i;
258 valid++;
259 if (p[i].skip) {
260 phys_page_compact(&p[i], nodes);
264 /* We can only compress if there's only one child. */
265 if (valid != 1) {
266 return;
269 assert(valid_ptr < P_L2_SIZE);
271 /* Don't compress if it won't fit in the # of bits we have. */
272 if (P_L2_LEVELS >= (1 << 6) &&
273 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
274 return;
277 lp->ptr = p[valid_ptr].ptr;
278 if (!p[valid_ptr].skip) {
279 /* If our only child is a leaf, make this a leaf. */
280 /* By design, we should have made this node a leaf to begin with so we
281 * should never reach here.
282 * But since it's so simple to handle this, let's do it just in case we
283 * change this rule.
285 lp->skip = 0;
286 } else {
287 lp->skip += p[valid_ptr].skip;
291 void address_space_dispatch_compact(AddressSpaceDispatch *d)
293 if (d->phys_map.skip) {
294 phys_page_compact(&d->phys_map, d->map.nodes);
298 static inline bool section_covers_addr(const MemoryRegionSection *section,
299 hwaddr addr)
301 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
302 * the section must cover the entire address space.
304 return int128_gethi(section->size) ||
305 range_covers_byte(section->offset_within_address_space,
306 int128_getlo(section->size), addr);
309 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
311 PhysPageEntry lp = d->phys_map, *p;
312 Node *nodes = d->map.nodes;
313 MemoryRegionSection *sections = d->map.sections;
314 hwaddr index = addr >> TARGET_PAGE_BITS;
315 int i;
317 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
318 if (lp.ptr == PHYS_MAP_NODE_NIL) {
319 return &sections[PHYS_SECTION_UNASSIGNED];
321 p = nodes[lp.ptr];
322 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
325 if (section_covers_addr(&sections[lp.ptr], addr)) {
326 return &sections[lp.ptr];
327 } else {
328 return &sections[PHYS_SECTION_UNASSIGNED];
332 /* Called from RCU critical section */
333 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
334 hwaddr addr,
335 bool resolve_subpage)
337 MemoryRegionSection *section = qatomic_read(&d->mru_section);
338 subpage_t *subpage;
340 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
341 !section_covers_addr(section, addr)) {
342 section = phys_page_find(d, addr);
343 qatomic_set(&d->mru_section, section);
345 if (resolve_subpage && section->mr->subpage) {
346 subpage = container_of(section->mr, subpage_t, iomem);
347 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
349 return section;
352 /* Called from RCU critical section */
353 static MemoryRegionSection *
354 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
355 hwaddr *plen, bool resolve_subpage)
357 MemoryRegionSection *section;
358 MemoryRegion *mr;
359 Int128 diff;
361 section = address_space_lookup_region(d, addr, resolve_subpage);
362 /* Compute offset within MemoryRegionSection */
363 addr -= section->offset_within_address_space;
365 /* Compute offset within MemoryRegion */
366 *xlat = addr + section->offset_within_region;
368 mr = section->mr;
370 /* MMIO registers can be expected to perform full-width accesses based only
371 * on their address, without considering adjacent registers that could
372 * decode to completely different MemoryRegions. When such registers
373 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
374 * regions overlap wildly. For this reason we cannot clamp the accesses
375 * here.
377 * If the length is small (as is the case for address_space_ldl/stl),
378 * everything works fine. If the incoming length is large, however,
379 * the caller really has to do the clamping through memory_access_size.
381 if (memory_region_is_ram(mr)) {
382 diff = int128_sub(section->size, int128_make64(addr));
383 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
385 return section;
389 * address_space_translate_iommu - translate an address through an IOMMU
390 * memory region and then through the target address space.
392 * @iommu_mr: the IOMMU memory region that we start the translation from
393 * @addr: the address to be translated through the MMU
394 * @xlat: the translated address offset within the destination memory region.
395 * It cannot be %NULL.
396 * @plen_out: valid read/write length of the translated address. It
397 * cannot be %NULL.
398 * @page_mask_out: page mask for the translated address. This
399 * should only be meaningful for IOMMU translated
400 * addresses, since there may be huge pages that this bit
401 * would tell. It can be %NULL if we don't care about it.
402 * @is_write: whether the translation operation is for write
403 * @is_mmio: whether this can be MMIO, set true if it can
404 * @target_as: the address space targeted by the IOMMU
405 * @attrs: transaction attributes
407 * This function is called from RCU critical section. It is the common
408 * part of flatview_do_translate and address_space_translate_cached.
410 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
411 hwaddr *xlat,
412 hwaddr *plen_out,
413 hwaddr *page_mask_out,
414 bool is_write,
415 bool is_mmio,
416 AddressSpace **target_as,
417 MemTxAttrs attrs)
419 MemoryRegionSection *section;
420 hwaddr page_mask = (hwaddr)-1;
422 do {
423 hwaddr addr = *xlat;
424 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
425 int iommu_idx = 0;
426 IOMMUTLBEntry iotlb;
428 if (imrc->attrs_to_index) {
429 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
432 iotlb = imrc->translate(iommu_mr, addr, is_write ?
433 IOMMU_WO : IOMMU_RO, iommu_idx);
435 if (!(iotlb.perm & (1 << is_write))) {
436 goto unassigned;
439 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
440 | (addr & iotlb.addr_mask));
441 page_mask &= iotlb.addr_mask;
442 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
443 *target_as = iotlb.target_as;
445 section = address_space_translate_internal(
446 address_space_to_dispatch(iotlb.target_as), addr, xlat,
447 plen_out, is_mmio);
449 iommu_mr = memory_region_get_iommu(section->mr);
450 } while (unlikely(iommu_mr));
452 if (page_mask_out) {
453 *page_mask_out = page_mask;
455 return *section;
457 unassigned:
458 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
462 * flatview_do_translate - translate an address in FlatView
464 * @fv: the flat view that we want to translate on
465 * @addr: the address to be translated in above address space
466 * @xlat: the translated address offset within memory region. It
467 * cannot be @NULL.
468 * @plen_out: valid read/write length of the translated address. It
469 * can be @NULL when we don't care about it.
470 * @page_mask_out: page mask for the translated address. This
471 * should only be meaningful for IOMMU translated
472 * addresses, since there may be huge pages that this bit
473 * would tell. It can be @NULL if we don't care about it.
474 * @is_write: whether the translation operation is for write
475 * @is_mmio: whether this can be MMIO, set true if it can
476 * @target_as: the address space targeted by the IOMMU
477 * @attrs: memory transaction attributes
479 * This function is called from RCU critical section
481 static MemoryRegionSection flatview_do_translate(FlatView *fv,
482 hwaddr addr,
483 hwaddr *xlat,
484 hwaddr *plen_out,
485 hwaddr *page_mask_out,
486 bool is_write,
487 bool is_mmio,
488 AddressSpace **target_as,
489 MemTxAttrs attrs)
491 MemoryRegionSection *section;
492 IOMMUMemoryRegion *iommu_mr;
493 hwaddr plen = (hwaddr)(-1);
495 if (!plen_out) {
496 plen_out = &plen;
499 section = address_space_translate_internal(
500 flatview_to_dispatch(fv), addr, xlat,
501 plen_out, is_mmio);
503 iommu_mr = memory_region_get_iommu(section->mr);
504 if (unlikely(iommu_mr)) {
505 return address_space_translate_iommu(iommu_mr, xlat,
506 plen_out, page_mask_out,
507 is_write, is_mmio,
508 target_as, attrs);
510 if (page_mask_out) {
511 /* Not behind an IOMMU, use default page size. */
512 *page_mask_out = ~TARGET_PAGE_MASK;
515 return *section;
518 /* Called from RCU critical section */
519 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
520 bool is_write, MemTxAttrs attrs)
522 MemoryRegionSection section;
523 hwaddr xlat, page_mask;
526 * This can never be MMIO, and we don't really care about plen,
527 * but page mask.
529 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
530 NULL, &page_mask, is_write, false, &as,
531 attrs);
533 /* Illegal translation */
534 if (section.mr == &io_mem_unassigned) {
535 goto iotlb_fail;
538 /* Convert memory region offset into address space offset */
539 xlat += section.offset_within_address_space -
540 section.offset_within_region;
542 return (IOMMUTLBEntry) {
543 .target_as = as,
544 .iova = addr & ~page_mask,
545 .translated_addr = xlat & ~page_mask,
546 .addr_mask = page_mask,
547 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
548 .perm = IOMMU_RW,
551 iotlb_fail:
552 return (IOMMUTLBEntry) {0};
555 /* Called from RCU critical section */
556 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
557 hwaddr *plen, bool is_write,
558 MemTxAttrs attrs)
560 MemoryRegion *mr;
561 MemoryRegionSection section;
562 AddressSpace *as = NULL;
564 /* This can be MMIO, so setup MMIO bit. */
565 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
566 is_write, true, &as, attrs);
567 mr = section.mr;
569 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
570 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
571 *plen = MIN(page, *plen);
574 return mr;
577 typedef struct TCGIOMMUNotifier {
578 IOMMUNotifier n;
579 MemoryRegion *mr;
580 CPUState *cpu;
581 int iommu_idx;
582 bool active;
583 } TCGIOMMUNotifier;
585 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
587 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
589 if (!notifier->active) {
590 return;
592 tlb_flush(notifier->cpu);
593 notifier->active = false;
594 /* We leave the notifier struct on the list to avoid reallocating it later.
595 * Generally the number of IOMMUs a CPU deals with will be small.
596 * In any case we can't unregister the iommu notifier from a notify
597 * callback.
601 static void tcg_register_iommu_notifier(CPUState *cpu,
602 IOMMUMemoryRegion *iommu_mr,
603 int iommu_idx)
605 /* Make sure this CPU has an IOMMU notifier registered for this
606 * IOMMU/IOMMU index combination, so that we can flush its TLB
607 * when the IOMMU tells us the mappings we've cached have changed.
609 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
610 TCGIOMMUNotifier *notifier = NULL;
611 int i;
613 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
614 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
615 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
616 break;
619 if (i == cpu->iommu_notifiers->len) {
620 /* Not found, add a new entry at the end of the array */
621 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
622 notifier = g_new0(TCGIOMMUNotifier, 1);
623 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
625 notifier->mr = mr;
626 notifier->iommu_idx = iommu_idx;
627 notifier->cpu = cpu;
628 /* Rather than trying to register interest in the specific part
629 * of the iommu's address space that we've accessed and then
630 * expand it later as subsequent accesses touch more of it, we
631 * just register interest in the whole thing, on the assumption
632 * that iommu reconfiguration will be rare.
634 iommu_notifier_init(&notifier->n,
635 tcg_iommu_unmap_notify,
636 IOMMU_NOTIFIER_UNMAP,
638 HWADDR_MAX,
639 iommu_idx);
640 memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
641 &error_fatal);
644 if (!notifier->active) {
645 notifier->active = true;
649 void tcg_iommu_free_notifier_list(CPUState *cpu)
651 /* Destroy the CPU's notifier list */
652 int i;
653 TCGIOMMUNotifier *notifier;
655 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
656 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
657 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
658 g_free(notifier);
660 g_array_free(cpu->iommu_notifiers, true);
663 void tcg_iommu_init_notifier_list(CPUState *cpu)
665 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
668 /* Called from RCU critical section */
669 MemoryRegionSection *
670 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
671 hwaddr *xlat, hwaddr *plen,
672 MemTxAttrs attrs, int *prot)
674 MemoryRegionSection *section;
675 IOMMUMemoryRegion *iommu_mr;
676 IOMMUMemoryRegionClass *imrc;
677 IOMMUTLBEntry iotlb;
678 int iommu_idx;
679 AddressSpaceDispatch *d =
680 qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
682 for (;;) {
683 section = address_space_translate_internal(d, addr, &addr, plen, false);
685 iommu_mr = memory_region_get_iommu(section->mr);
686 if (!iommu_mr) {
687 break;
690 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
692 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
693 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
694 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
695 * doesn't short-cut its translation table walk.
697 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
698 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
699 | (addr & iotlb.addr_mask));
700 /* Update the caller's prot bits to remove permissions the IOMMU
701 * is giving us a failure response for. If we get down to no
702 * permissions left at all we can give up now.
704 if (!(iotlb.perm & IOMMU_RO)) {
705 *prot &= ~(PAGE_READ | PAGE_EXEC);
707 if (!(iotlb.perm & IOMMU_WO)) {
708 *prot &= ~PAGE_WRITE;
711 if (!*prot) {
712 goto translate_fail;
715 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
718 assert(!memory_region_is_iommu(section->mr));
719 *xlat = addr;
720 return section;
722 translate_fail:
723 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
726 void cpu_address_space_init(CPUState *cpu, int asidx,
727 const char *prefix, MemoryRegion *mr)
729 CPUAddressSpace *newas;
730 AddressSpace *as = g_new0(AddressSpace, 1);
731 char *as_name;
733 assert(mr);
734 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
735 address_space_init(as, mr, as_name);
736 g_free(as_name);
738 /* Target code should have set num_ases before calling us */
739 assert(asidx < cpu->num_ases);
741 if (asidx == 0) {
742 /* address space 0 gets the convenience alias */
743 cpu->as = as;
746 /* KVM cannot currently support multiple address spaces. */
747 assert(asidx == 0 || !kvm_enabled());
749 if (!cpu->cpu_ases) {
750 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
753 newas = &cpu->cpu_ases[asidx];
754 newas->cpu = cpu;
755 newas->as = as;
756 if (tcg_enabled()) {
757 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
758 newas->tcg_as_listener.commit = tcg_commit;
759 memory_listener_register(&newas->tcg_as_listener, as);
763 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
765 /* Return the AddressSpace corresponding to the specified index */
766 return cpu->cpu_ases[asidx].as;
769 /* Add a watchpoint. */
770 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
771 int flags, CPUWatchpoint **watchpoint)
773 CPUWatchpoint *wp;
774 vaddr in_page;
776 /* forbid ranges which are empty or run off the end of the address space */
777 if (len == 0 || (addr + len - 1) < addr) {
778 error_report("tried to set invalid watchpoint at %"
779 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
780 return -EINVAL;
782 wp = g_malloc(sizeof(*wp));
784 wp->vaddr = addr;
785 wp->len = len;
786 wp->flags = flags;
788 /* keep all GDB-injected watchpoints in front */
789 if (flags & BP_GDB) {
790 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
791 } else {
792 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
795 in_page = -(addr | TARGET_PAGE_MASK);
796 if (len <= in_page) {
797 tlb_flush_page(cpu, addr);
798 } else {
799 tlb_flush(cpu);
802 if (watchpoint)
803 *watchpoint = wp;
804 return 0;
807 /* Remove a specific watchpoint. */
808 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
809 int flags)
811 CPUWatchpoint *wp;
813 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
814 if (addr == wp->vaddr && len == wp->len
815 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
816 cpu_watchpoint_remove_by_ref(cpu, wp);
817 return 0;
820 return -ENOENT;
823 /* Remove a specific watchpoint by reference. */
824 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
826 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
828 tlb_flush_page(cpu, watchpoint->vaddr);
830 g_free(watchpoint);
833 /* Remove all matching watchpoints. */
834 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
836 CPUWatchpoint *wp, *next;
838 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
839 if (wp->flags & mask) {
840 cpu_watchpoint_remove_by_ref(cpu, wp);
845 #ifdef CONFIG_TCG
846 /* Return true if this watchpoint address matches the specified
847 * access (ie the address range covered by the watchpoint overlaps
848 * partially or completely with the address range covered by the
849 * access).
851 static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
852 vaddr addr, vaddr len)
854 /* We know the lengths are non-zero, but a little caution is
855 * required to avoid errors in the case where the range ends
856 * exactly at the top of the address space and so addr + len
857 * wraps round to zero.
859 vaddr wpend = wp->vaddr + wp->len - 1;
860 vaddr addrend = addr + len - 1;
862 return !(addr > wpend || wp->vaddr > addrend);
865 /* Return flags for watchpoints that match addr + prot. */
866 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
868 CPUWatchpoint *wp;
869 int ret = 0;
871 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
872 if (watchpoint_address_matches(wp, addr, len)) {
873 ret |= wp->flags;
876 return ret;
879 /* Generate a debug exception if a watchpoint has been hit. */
880 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
881 MemTxAttrs attrs, int flags, uintptr_t ra)
883 CPUClass *cc = CPU_GET_CLASS(cpu);
884 CPUWatchpoint *wp;
886 assert(tcg_enabled());
887 if (cpu->watchpoint_hit) {
889 * We re-entered the check after replacing the TB.
890 * Now raise the debug interrupt so that it will
891 * trigger after the current instruction.
893 qemu_mutex_lock_iothread();
894 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
895 qemu_mutex_unlock_iothread();
896 return;
899 if (cc->tcg_ops->adjust_watchpoint_address) {
900 /* this is currently used only by ARM BE32 */
901 addr = cc->tcg_ops->adjust_watchpoint_address(cpu, addr, len);
903 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
904 if (watchpoint_address_matches(wp, addr, len)
905 && (wp->flags & flags)) {
906 if (replay_running_debug()) {
908 * replay_breakpoint reads icount.
909 * Force recompile to succeed, because icount may
910 * be read only at the end of the block.
912 if (!cpu->can_do_io) {
913 /* Force execution of one insn next time. */
914 cpu->cflags_next_tb = 1 | CF_LAST_IO | curr_cflags(cpu);
915 cpu_loop_exit_restore(cpu, ra);
918 * Don't process the watchpoints when we are
919 * in a reverse debugging operation.
921 replay_breakpoint();
922 return;
924 if (flags == BP_MEM_READ) {
925 wp->flags |= BP_WATCHPOINT_HIT_READ;
926 } else {
927 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
929 wp->hitaddr = MAX(addr, wp->vaddr);
930 wp->hitattrs = attrs;
931 if (!cpu->watchpoint_hit) {
932 if (wp->flags & BP_CPU && cc->tcg_ops->debug_check_watchpoint &&
933 !cc->tcg_ops->debug_check_watchpoint(cpu, wp)) {
934 wp->flags &= ~BP_WATCHPOINT_HIT;
935 continue;
937 cpu->watchpoint_hit = wp;
939 mmap_lock();
940 tb_check_watchpoint(cpu, ra);
941 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
942 cpu->exception_index = EXCP_DEBUG;
943 mmap_unlock();
944 cpu_loop_exit_restore(cpu, ra);
945 } else {
946 /* Force execution of one insn next time. */
947 cpu->cflags_next_tb = 1 | curr_cflags(cpu);
948 mmap_unlock();
949 if (ra) {
950 cpu_restore_state(cpu, ra, true);
952 cpu_loop_exit_noexc(cpu);
955 } else {
956 wp->flags &= ~BP_WATCHPOINT_HIT;
961 #endif /* CONFIG_TCG */
963 /* Called from RCU critical section */
964 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
966 RAMBlock *block;
968 block = qatomic_rcu_read(&ram_list.mru_block);
969 if (block && addr - block->offset < block->max_length) {
970 return block;
972 RAMBLOCK_FOREACH(block) {
973 if (addr - block->offset < block->max_length) {
974 goto found;
978 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
979 abort();
981 found:
982 /* It is safe to write mru_block outside the iothread lock. This
983 * is what happens:
985 * mru_block = xxx
986 * rcu_read_unlock()
987 * xxx removed from list
988 * rcu_read_lock()
989 * read mru_block
990 * mru_block = NULL;
991 * call_rcu(reclaim_ramblock, xxx);
992 * rcu_read_unlock()
994 * qatomic_rcu_set is not needed here. The block was already published
995 * when it was placed into the list. Here we're just making an extra
996 * copy of the pointer.
998 ram_list.mru_block = block;
999 return block;
1002 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1004 CPUState *cpu;
1005 ram_addr_t start1;
1006 RAMBlock *block;
1007 ram_addr_t end;
1009 assert(tcg_enabled());
1010 end = TARGET_PAGE_ALIGN(start + length);
1011 start &= TARGET_PAGE_MASK;
1013 RCU_READ_LOCK_GUARD();
1014 block = qemu_get_ram_block(start);
1015 assert(block == qemu_get_ram_block(end - 1));
1016 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1017 CPU_FOREACH(cpu) {
1018 tlb_reset_dirty(cpu, start1, length);
1022 /* Note: start and end must be within the same ram block. */
1023 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1024 ram_addr_t length,
1025 unsigned client)
1027 DirtyMemoryBlocks *blocks;
1028 unsigned long end, page, start_page;
1029 bool dirty = false;
1030 RAMBlock *ramblock;
1031 uint64_t mr_offset, mr_size;
1033 if (length == 0) {
1034 return false;
1037 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1038 start_page = start >> TARGET_PAGE_BITS;
1039 page = start_page;
1041 WITH_RCU_READ_LOCK_GUARD() {
1042 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
1043 ramblock = qemu_get_ram_block(start);
1044 /* Range sanity check on the ramblock */
1045 assert(start >= ramblock->offset &&
1046 start + length <= ramblock->offset + ramblock->used_length);
1048 while (page < end) {
1049 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1050 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1051 unsigned long num = MIN(end - page,
1052 DIRTY_MEMORY_BLOCK_SIZE - offset);
1054 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1055 offset, num);
1056 page += num;
1059 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
1060 mr_size = (end - start_page) << TARGET_PAGE_BITS;
1061 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1064 if (dirty && tcg_enabled()) {
1065 tlb_reset_dirty_range_all(start, length);
1068 return dirty;
1071 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1072 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1074 DirtyMemoryBlocks *blocks;
1075 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1076 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1077 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1078 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1079 DirtyBitmapSnapshot *snap;
1080 unsigned long page, end, dest;
1082 snap = g_malloc0(sizeof(*snap) +
1083 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1084 snap->start = first;
1085 snap->end = last;
1087 page = first >> TARGET_PAGE_BITS;
1088 end = last >> TARGET_PAGE_BITS;
1089 dest = 0;
1091 WITH_RCU_READ_LOCK_GUARD() {
1092 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
1094 while (page < end) {
1095 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1096 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1097 unsigned long num = MIN(end - page,
1098 DIRTY_MEMORY_BLOCK_SIZE - offset);
1100 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1101 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1102 offset >>= BITS_PER_LEVEL;
1104 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1105 blocks->blocks[idx] + offset,
1106 num);
1107 page += num;
1108 dest += num >> BITS_PER_LEVEL;
1112 if (tcg_enabled()) {
1113 tlb_reset_dirty_range_all(start, length);
1116 memory_region_clear_dirty_bitmap(mr, offset, length);
1118 return snap;
1121 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1122 ram_addr_t start,
1123 ram_addr_t length)
1125 unsigned long page, end;
1127 assert(start >= snap->start);
1128 assert(start + length <= snap->end);
1130 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1131 page = (start - snap->start) >> TARGET_PAGE_BITS;
1133 while (page < end) {
1134 if (test_bit(page, snap->dirty)) {
1135 return true;
1137 page++;
1139 return false;
1142 /* Called from RCU critical section */
1143 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1144 MemoryRegionSection *section)
1146 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1147 return section - d->map.sections;
1150 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1151 uint16_t section);
1152 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1154 static uint16_t phys_section_add(PhysPageMap *map,
1155 MemoryRegionSection *section)
1157 /* The physical section number is ORed with a page-aligned
1158 * pointer to produce the iotlb entries. Thus it should
1159 * never overflow into the page-aligned value.
1161 assert(map->sections_nb < TARGET_PAGE_SIZE);
1163 if (map->sections_nb == map->sections_nb_alloc) {
1164 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1165 map->sections = g_renew(MemoryRegionSection, map->sections,
1166 map->sections_nb_alloc);
1168 map->sections[map->sections_nb] = *section;
1169 memory_region_ref(section->mr);
1170 return map->sections_nb++;
1173 static void phys_section_destroy(MemoryRegion *mr)
1175 bool have_sub_page = mr->subpage;
1177 memory_region_unref(mr);
1179 if (have_sub_page) {
1180 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1181 object_unref(OBJECT(&subpage->iomem));
1182 g_free(subpage);
1186 static void phys_sections_free(PhysPageMap *map)
1188 while (map->sections_nb > 0) {
1189 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1190 phys_section_destroy(section->mr);
1192 g_free(map->sections);
1193 g_free(map->nodes);
1196 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1198 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1199 subpage_t *subpage;
1200 hwaddr base = section->offset_within_address_space
1201 & TARGET_PAGE_MASK;
1202 MemoryRegionSection *existing = phys_page_find(d, base);
1203 MemoryRegionSection subsection = {
1204 .offset_within_address_space = base,
1205 .size = int128_make64(TARGET_PAGE_SIZE),
1207 hwaddr start, end;
1209 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1211 if (!(existing->mr->subpage)) {
1212 subpage = subpage_init(fv, base);
1213 subsection.fv = fv;
1214 subsection.mr = &subpage->iomem;
1215 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1216 phys_section_add(&d->map, &subsection));
1217 } else {
1218 subpage = container_of(existing->mr, subpage_t, iomem);
1220 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1221 end = start + int128_get64(section->size) - 1;
1222 subpage_register(subpage, start, end,
1223 phys_section_add(&d->map, section));
1227 static void register_multipage(FlatView *fv,
1228 MemoryRegionSection *section)
1230 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1231 hwaddr start_addr = section->offset_within_address_space;
1232 uint16_t section_index = phys_section_add(&d->map, section);
1233 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1234 TARGET_PAGE_BITS));
1236 assert(num_pages);
1237 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1241 * The range in *section* may look like this:
1243 * |s|PPPPPPP|s|
1245 * where s stands for subpage and P for page.
1247 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1249 MemoryRegionSection remain = *section;
1250 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1252 /* register first subpage */
1253 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1254 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1255 - remain.offset_within_address_space;
1257 MemoryRegionSection now = remain;
1258 now.size = int128_min(int128_make64(left), now.size);
1259 register_subpage(fv, &now);
1260 if (int128_eq(remain.size, now.size)) {
1261 return;
1263 remain.size = int128_sub(remain.size, now.size);
1264 remain.offset_within_address_space += int128_get64(now.size);
1265 remain.offset_within_region += int128_get64(now.size);
1268 /* register whole pages */
1269 if (int128_ge(remain.size, page_size)) {
1270 MemoryRegionSection now = remain;
1271 now.size = int128_and(now.size, int128_neg(page_size));
1272 register_multipage(fv, &now);
1273 if (int128_eq(remain.size, now.size)) {
1274 return;
1276 remain.size = int128_sub(remain.size, now.size);
1277 remain.offset_within_address_space += int128_get64(now.size);
1278 remain.offset_within_region += int128_get64(now.size);
1281 /* register last subpage */
1282 register_subpage(fv, &remain);
1285 void qemu_flush_coalesced_mmio_buffer(void)
1287 if (kvm_enabled())
1288 kvm_flush_coalesced_mmio_buffer();
1291 void qemu_mutex_lock_ramlist(void)
1293 qemu_mutex_lock(&ram_list.mutex);
1296 void qemu_mutex_unlock_ramlist(void)
1298 qemu_mutex_unlock(&ram_list.mutex);
1301 void ram_block_dump(Monitor *mon)
1303 RAMBlock *block;
1304 char *psize;
1306 RCU_READ_LOCK_GUARD();
1307 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1308 "Block Name", "PSize", "Offset", "Used", "Total");
1309 RAMBLOCK_FOREACH(block) {
1310 psize = size_to_str(block->page_size);
1311 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1312 " 0x%016" PRIx64 "\n", block->idstr, psize,
1313 (uint64_t)block->offset,
1314 (uint64_t)block->used_length,
1315 (uint64_t)block->max_length);
1316 g_free(psize);
1320 #ifdef __linux__
1322 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1323 * may or may not name the same files / on the same filesystem now as
1324 * when we actually open and map them. Iterate over the file
1325 * descriptors instead, and use qemu_fd_getpagesize().
1327 static int find_min_backend_pagesize(Object *obj, void *opaque)
1329 long *hpsize_min = opaque;
1331 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1332 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1333 long hpsize = host_memory_backend_pagesize(backend);
1335 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1336 *hpsize_min = hpsize;
1340 return 0;
1343 static int find_max_backend_pagesize(Object *obj, void *opaque)
1345 long *hpsize_max = opaque;
1347 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1348 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1349 long hpsize = host_memory_backend_pagesize(backend);
1351 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1352 *hpsize_max = hpsize;
1356 return 0;
1360 * TODO: We assume right now that all mapped host memory backends are
1361 * used as RAM, however some might be used for different purposes.
1363 long qemu_minrampagesize(void)
1365 long hpsize = LONG_MAX;
1366 Object *memdev_root = object_resolve_path("/objects", NULL);
1368 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1369 return hpsize;
1372 long qemu_maxrampagesize(void)
1374 long pagesize = 0;
1375 Object *memdev_root = object_resolve_path("/objects", NULL);
1377 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1378 return pagesize;
1380 #else
1381 long qemu_minrampagesize(void)
1383 return qemu_real_host_page_size;
1385 long qemu_maxrampagesize(void)
1387 return qemu_real_host_page_size;
1389 #endif
1391 #ifdef CONFIG_POSIX
1392 static int64_t get_file_size(int fd)
1394 int64_t size;
1395 #if defined(__linux__)
1396 struct stat st;
1398 if (fstat(fd, &st) < 0) {
1399 return -errno;
1402 /* Special handling for devdax character devices */
1403 if (S_ISCHR(st.st_mode)) {
1404 g_autofree char *subsystem_path = NULL;
1405 g_autofree char *subsystem = NULL;
1407 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1408 major(st.st_rdev), minor(st.st_rdev));
1409 subsystem = g_file_read_link(subsystem_path, NULL);
1411 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1412 g_autofree char *size_path = NULL;
1413 g_autofree char *size_str = NULL;
1415 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1416 major(st.st_rdev), minor(st.st_rdev));
1418 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1419 return g_ascii_strtoll(size_str, NULL, 0);
1423 #endif /* defined(__linux__) */
1425 /* st.st_size may be zero for special files yet lseek(2) works */
1426 size = lseek(fd, 0, SEEK_END);
1427 if (size < 0) {
1428 return -errno;
1430 return size;
1433 static int64_t get_file_align(int fd)
1435 int64_t align = -1;
1436 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1437 struct stat st;
1439 if (fstat(fd, &st) < 0) {
1440 return -errno;
1443 /* Special handling for devdax character devices */
1444 if (S_ISCHR(st.st_mode)) {
1445 g_autofree char *path = NULL;
1446 g_autofree char *rpath = NULL;
1447 struct daxctl_ctx *ctx;
1448 struct daxctl_region *region;
1449 int rc = 0;
1451 path = g_strdup_printf("/sys/dev/char/%d:%d",
1452 major(st.st_rdev), minor(st.st_rdev));
1453 rpath = realpath(path, NULL);
1454 if (!rpath) {
1455 return -errno;
1458 rc = daxctl_new(&ctx);
1459 if (rc) {
1460 return -1;
1463 daxctl_region_foreach(ctx, region) {
1464 if (strstr(rpath, daxctl_region_get_path(region))) {
1465 align = daxctl_region_get_align(region);
1466 break;
1469 daxctl_unref(ctx);
1471 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1473 return align;
1476 static int file_ram_open(const char *path,
1477 const char *region_name,
1478 bool readonly,
1479 bool *created,
1480 Error **errp)
1482 char *filename;
1483 char *sanitized_name;
1484 char *c;
1485 int fd = -1;
1487 *created = false;
1488 for (;;) {
1489 fd = open(path, readonly ? O_RDONLY : O_RDWR);
1490 if (fd >= 0) {
1491 /* @path names an existing file, use it */
1492 break;
1494 if (errno == ENOENT) {
1495 /* @path names a file that doesn't exist, create it */
1496 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1497 if (fd >= 0) {
1498 *created = true;
1499 break;
1501 } else if (errno == EISDIR) {
1502 /* @path names a directory, create a file there */
1503 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1504 sanitized_name = g_strdup(region_name);
1505 for (c = sanitized_name; *c != '\0'; c++) {
1506 if (*c == '/') {
1507 *c = '_';
1511 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1512 sanitized_name);
1513 g_free(sanitized_name);
1515 fd = mkstemp(filename);
1516 if (fd >= 0) {
1517 unlink(filename);
1518 g_free(filename);
1519 break;
1521 g_free(filename);
1523 if (errno != EEXIST && errno != EINTR) {
1524 error_setg_errno(errp, errno,
1525 "can't open backing store %s for guest RAM",
1526 path);
1527 return -1;
1530 * Try again on EINTR and EEXIST. The latter happens when
1531 * something else creates the file between our two open().
1535 return fd;
1538 static void *file_ram_alloc(RAMBlock *block,
1539 ram_addr_t memory,
1540 int fd,
1541 bool readonly,
1542 bool truncate,
1543 off_t offset,
1544 Error **errp)
1546 uint32_t qemu_map_flags;
1547 void *area;
1549 block->page_size = qemu_fd_getpagesize(fd);
1550 if (block->mr->align % block->page_size) {
1551 error_setg(errp, "alignment 0x%" PRIx64
1552 " must be multiples of page size 0x%zx",
1553 block->mr->align, block->page_size);
1554 return NULL;
1555 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1556 error_setg(errp, "alignment 0x%" PRIx64
1557 " must be a power of two", block->mr->align);
1558 return NULL;
1560 block->mr->align = MAX(block->page_size, block->mr->align);
1561 #if defined(__s390x__)
1562 if (kvm_enabled()) {
1563 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1565 #endif
1567 if (memory < block->page_size) {
1568 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1569 "or larger than page size 0x%zx",
1570 memory, block->page_size);
1571 return NULL;
1574 memory = ROUND_UP(memory, block->page_size);
1577 * ftruncate is not supported by hugetlbfs in older
1578 * hosts, so don't bother bailing out on errors.
1579 * If anything goes wrong with it under other filesystems,
1580 * mmap will fail.
1582 * Do not truncate the non-empty backend file to avoid corrupting
1583 * the existing data in the file. Disabling shrinking is not
1584 * enough. For example, the current vNVDIMM implementation stores
1585 * the guest NVDIMM labels at the end of the backend file. If the
1586 * backend file is later extended, QEMU will not be able to find
1587 * those labels. Therefore, extending the non-empty backend file
1588 * is disabled as well.
1590 if (truncate && ftruncate(fd, memory)) {
1591 perror("ftruncate");
1594 qemu_map_flags = readonly ? QEMU_MAP_READONLY : 0;
1595 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1596 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1597 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1598 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1599 if (area == MAP_FAILED) {
1600 error_setg_errno(errp, errno,
1601 "unable to map backing store for guest RAM");
1602 return NULL;
1605 block->fd = fd;
1606 return area;
1608 #endif
1610 /* Allocate space within the ram_addr_t space that governs the
1611 * dirty bitmaps.
1612 * Called with the ramlist lock held.
1614 static ram_addr_t find_ram_offset(ram_addr_t size)
1616 RAMBlock *block, *next_block;
1617 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1619 assert(size != 0); /* it would hand out same offset multiple times */
1621 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1622 return 0;
1625 RAMBLOCK_FOREACH(block) {
1626 ram_addr_t candidate, next = RAM_ADDR_MAX;
1628 /* Align blocks to start on a 'long' in the bitmap
1629 * which makes the bitmap sync'ing take the fast path.
1631 candidate = block->offset + block->max_length;
1632 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1634 /* Search for the closest following block
1635 * and find the gap.
1637 RAMBLOCK_FOREACH(next_block) {
1638 if (next_block->offset >= candidate) {
1639 next = MIN(next, next_block->offset);
1643 /* If it fits remember our place and remember the size
1644 * of gap, but keep going so that we might find a smaller
1645 * gap to fill so avoiding fragmentation.
1647 if (next - candidate >= size && next - candidate < mingap) {
1648 offset = candidate;
1649 mingap = next - candidate;
1652 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1655 if (offset == RAM_ADDR_MAX) {
1656 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1657 (uint64_t)size);
1658 abort();
1661 trace_find_ram_offset(size, offset);
1663 return offset;
1666 static unsigned long last_ram_page(void)
1668 RAMBlock *block;
1669 ram_addr_t last = 0;
1671 RCU_READ_LOCK_GUARD();
1672 RAMBLOCK_FOREACH(block) {
1673 last = MAX(last, block->offset + block->max_length);
1675 return last >> TARGET_PAGE_BITS;
1678 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1680 int ret;
1682 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1683 if (!machine_dump_guest_core(current_machine)) {
1684 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1685 if (ret) {
1686 perror("qemu_madvise");
1687 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1688 "but dump_guest_core=off specified\n");
1693 const char *qemu_ram_get_idstr(RAMBlock *rb)
1695 return rb->idstr;
1698 void *qemu_ram_get_host_addr(RAMBlock *rb)
1700 return rb->host;
1703 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1705 return rb->offset;
1708 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1710 return rb->used_length;
1713 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1715 return rb->max_length;
1718 bool qemu_ram_is_shared(RAMBlock *rb)
1720 return rb->flags & RAM_SHARED;
1723 bool qemu_ram_is_noreserve(RAMBlock *rb)
1725 return rb->flags & RAM_NORESERVE;
1728 /* Note: Only set at the start of postcopy */
1729 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1731 return rb->flags & RAM_UF_ZEROPAGE;
1734 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1736 rb->flags |= RAM_UF_ZEROPAGE;
1739 bool qemu_ram_is_migratable(RAMBlock *rb)
1741 return rb->flags & RAM_MIGRATABLE;
1744 void qemu_ram_set_migratable(RAMBlock *rb)
1746 rb->flags |= RAM_MIGRATABLE;
1749 void qemu_ram_unset_migratable(RAMBlock *rb)
1751 rb->flags &= ~RAM_MIGRATABLE;
1754 /* Called with iothread lock held. */
1755 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1757 RAMBlock *block;
1759 assert(new_block);
1760 assert(!new_block->idstr[0]);
1762 if (dev) {
1763 char *id = qdev_get_dev_path(dev);
1764 if (id) {
1765 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1766 g_free(id);
1769 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1771 RCU_READ_LOCK_GUARD();
1772 RAMBLOCK_FOREACH(block) {
1773 if (block != new_block &&
1774 !strcmp(block->idstr, new_block->idstr)) {
1775 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1776 new_block->idstr);
1777 abort();
1782 /* Called with iothread lock held. */
1783 void qemu_ram_unset_idstr(RAMBlock *block)
1785 /* FIXME: arch_init.c assumes that this is not called throughout
1786 * migration. Ignore the problem since hot-unplug during migration
1787 * does not work anyway.
1789 if (block) {
1790 memset(block->idstr, 0, sizeof(block->idstr));
1794 size_t qemu_ram_pagesize(RAMBlock *rb)
1796 return rb->page_size;
1799 /* Returns the largest size of page in use */
1800 size_t qemu_ram_pagesize_largest(void)
1802 RAMBlock *block;
1803 size_t largest = 0;
1805 RAMBLOCK_FOREACH(block) {
1806 largest = MAX(largest, qemu_ram_pagesize(block));
1809 return largest;
1812 static int memory_try_enable_merging(void *addr, size_t len)
1814 if (!machine_mem_merge(current_machine)) {
1815 /* disabled by the user */
1816 return 0;
1819 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1823 * Resizing RAM while migrating can result in the migration being canceled.
1824 * Care has to be taken if the guest might have already detected the memory.
1826 * As memory core doesn't know how is memory accessed, it is up to
1827 * resize callback to update device state and/or add assertions to detect
1828 * misuse, if necessary.
1830 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1832 const ram_addr_t oldsize = block->used_length;
1833 const ram_addr_t unaligned_size = newsize;
1835 assert(block);
1837 newsize = HOST_PAGE_ALIGN(newsize);
1839 if (block->used_length == newsize) {
1841 * We don't have to resize the ram block (which only knows aligned
1842 * sizes), however, we have to notify if the unaligned size changed.
1844 if (unaligned_size != memory_region_size(block->mr)) {
1845 memory_region_set_size(block->mr, unaligned_size);
1846 if (block->resized) {
1847 block->resized(block->idstr, unaligned_size, block->host);
1850 return 0;
1853 if (!(block->flags & RAM_RESIZEABLE)) {
1854 error_setg_errno(errp, EINVAL,
1855 "Size mismatch: %s: 0x" RAM_ADDR_FMT
1856 " != 0x" RAM_ADDR_FMT, block->idstr,
1857 newsize, block->used_length);
1858 return -EINVAL;
1861 if (block->max_length < newsize) {
1862 error_setg_errno(errp, EINVAL,
1863 "Size too large: %s: 0x" RAM_ADDR_FMT
1864 " > 0x" RAM_ADDR_FMT, block->idstr,
1865 newsize, block->max_length);
1866 return -EINVAL;
1869 /* Notify before modifying the ram block and touching the bitmaps. */
1870 if (block->host) {
1871 ram_block_notify_resize(block->host, oldsize, newsize);
1874 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1875 block->used_length = newsize;
1876 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1877 DIRTY_CLIENTS_ALL);
1878 memory_region_set_size(block->mr, unaligned_size);
1879 if (block->resized) {
1880 block->resized(block->idstr, unaligned_size, block->host);
1882 return 0;
1886 * Trigger sync on the given ram block for range [start, start + length]
1887 * with the backing store if one is available.
1888 * Otherwise no-op.
1889 * @Note: this is supposed to be a synchronous op.
1891 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1893 /* The requested range should fit in within the block range */
1894 g_assert((start + length) <= block->used_length);
1896 #ifdef CONFIG_LIBPMEM
1897 /* The lack of support for pmem should not block the sync */
1898 if (ramblock_is_pmem(block)) {
1899 void *addr = ramblock_ptr(block, start);
1900 pmem_persist(addr, length);
1901 return;
1903 #endif
1904 if (block->fd >= 0) {
1906 * Case there is no support for PMEM or the memory has not been
1907 * specified as persistent (or is not one) - use the msync.
1908 * Less optimal but still achieves the same goal
1910 void *addr = ramblock_ptr(block, start);
1911 if (qemu_msync(addr, length, block->fd)) {
1912 warn_report("%s: failed to sync memory range: start: "
1913 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1914 __func__, start, length);
1919 /* Called with ram_list.mutex held */
1920 static void dirty_memory_extend(ram_addr_t old_ram_size,
1921 ram_addr_t new_ram_size)
1923 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1924 DIRTY_MEMORY_BLOCK_SIZE);
1925 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1926 DIRTY_MEMORY_BLOCK_SIZE);
1927 int i;
1929 /* Only need to extend if block count increased */
1930 if (new_num_blocks <= old_num_blocks) {
1931 return;
1934 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1935 DirtyMemoryBlocks *old_blocks;
1936 DirtyMemoryBlocks *new_blocks;
1937 int j;
1939 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1940 new_blocks = g_malloc(sizeof(*new_blocks) +
1941 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1943 if (old_num_blocks) {
1944 memcpy(new_blocks->blocks, old_blocks->blocks,
1945 old_num_blocks * sizeof(old_blocks->blocks[0]));
1948 for (j = old_num_blocks; j < new_num_blocks; j++) {
1949 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1952 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1954 if (old_blocks) {
1955 g_free_rcu(old_blocks, rcu);
1960 static void ram_block_add(RAMBlock *new_block, Error **errp)
1962 const bool noreserve = qemu_ram_is_noreserve(new_block);
1963 const bool shared = qemu_ram_is_shared(new_block);
1964 RAMBlock *block;
1965 RAMBlock *last_block = NULL;
1966 ram_addr_t old_ram_size, new_ram_size;
1967 Error *err = NULL;
1969 old_ram_size = last_ram_page();
1971 qemu_mutex_lock_ramlist();
1972 new_block->offset = find_ram_offset(new_block->max_length);
1974 if (!new_block->host) {
1975 if (xen_enabled()) {
1976 xen_ram_alloc(new_block->offset, new_block->max_length,
1977 new_block->mr, &err);
1978 if (err) {
1979 error_propagate(errp, err);
1980 qemu_mutex_unlock_ramlist();
1981 return;
1983 } else {
1984 new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1985 &new_block->mr->align,
1986 shared, noreserve);
1987 if (!new_block->host) {
1988 error_setg_errno(errp, errno,
1989 "cannot set up guest memory '%s'",
1990 memory_region_name(new_block->mr));
1991 qemu_mutex_unlock_ramlist();
1992 return;
1994 memory_try_enable_merging(new_block->host, new_block->max_length);
1998 new_ram_size = MAX(old_ram_size,
1999 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2000 if (new_ram_size > old_ram_size) {
2001 dirty_memory_extend(old_ram_size, new_ram_size);
2003 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2004 * QLIST (which has an RCU-friendly variant) does not have insertion at
2005 * tail, so save the last element in last_block.
2007 RAMBLOCK_FOREACH(block) {
2008 last_block = block;
2009 if (block->max_length < new_block->max_length) {
2010 break;
2013 if (block) {
2014 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2015 } else if (last_block) {
2016 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2017 } else { /* list is empty */
2018 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2020 ram_list.mru_block = NULL;
2022 /* Write list before version */
2023 smp_wmb();
2024 ram_list.version++;
2025 qemu_mutex_unlock_ramlist();
2027 cpu_physical_memory_set_dirty_range(new_block->offset,
2028 new_block->used_length,
2029 DIRTY_CLIENTS_ALL);
2031 if (new_block->host) {
2032 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2033 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2035 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2036 * Configure it unless the machine is a qtest server, in which case
2037 * KVM is not used and it may be forked (eg for fuzzing purposes).
2039 if (!qtest_enabled()) {
2040 qemu_madvise(new_block->host, new_block->max_length,
2041 QEMU_MADV_DONTFORK);
2043 ram_block_notify_add(new_block->host, new_block->used_length,
2044 new_block->max_length);
2048 #ifdef CONFIG_POSIX
2049 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2050 uint32_t ram_flags, int fd, off_t offset,
2051 bool readonly, Error **errp)
2053 RAMBlock *new_block;
2054 Error *local_err = NULL;
2055 int64_t file_size, file_align;
2057 /* Just support these ram flags by now. */
2058 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE)) == 0);
2060 if (xen_enabled()) {
2061 error_setg(errp, "-mem-path not supported with Xen");
2062 return NULL;
2065 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2066 error_setg(errp,
2067 "host lacks kvm mmu notifiers, -mem-path unsupported");
2068 return NULL;
2071 size = HOST_PAGE_ALIGN(size);
2072 file_size = get_file_size(fd);
2073 if (file_size > 0 && file_size < size) {
2074 error_setg(errp, "backing store size 0x%" PRIx64
2075 " does not match 'size' option 0x" RAM_ADDR_FMT,
2076 file_size, size);
2077 return NULL;
2080 file_align = get_file_align(fd);
2081 if (file_align > 0 && file_align > mr->align) {
2082 error_setg(errp, "backing store align 0x%" PRIx64
2083 " is larger than 'align' option 0x%" PRIx64,
2084 file_align, mr->align);
2085 return NULL;
2088 new_block = g_malloc0(sizeof(*new_block));
2089 new_block->mr = mr;
2090 new_block->used_length = size;
2091 new_block->max_length = size;
2092 new_block->flags = ram_flags;
2093 new_block->host = file_ram_alloc(new_block, size, fd, readonly,
2094 !file_size, offset, errp);
2095 if (!new_block->host) {
2096 g_free(new_block);
2097 return NULL;
2100 ram_block_add(new_block, &local_err);
2101 if (local_err) {
2102 g_free(new_block);
2103 error_propagate(errp, local_err);
2104 return NULL;
2106 return new_block;
2111 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2112 uint32_t ram_flags, const char *mem_path,
2113 bool readonly, Error **errp)
2115 int fd;
2116 bool created;
2117 RAMBlock *block;
2119 fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created,
2120 errp);
2121 if (fd < 0) {
2122 return NULL;
2125 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, 0, readonly, errp);
2126 if (!block) {
2127 if (created) {
2128 unlink(mem_path);
2130 close(fd);
2131 return NULL;
2134 return block;
2136 #endif
2138 static
2139 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2140 void (*resized)(const char*,
2141 uint64_t length,
2142 void *host),
2143 void *host, uint32_t ram_flags,
2144 MemoryRegion *mr, Error **errp)
2146 RAMBlock *new_block;
2147 Error *local_err = NULL;
2149 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
2150 RAM_NORESERVE)) == 0);
2151 assert(!host ^ (ram_flags & RAM_PREALLOC));
2153 size = HOST_PAGE_ALIGN(size);
2154 max_size = HOST_PAGE_ALIGN(max_size);
2155 new_block = g_malloc0(sizeof(*new_block));
2156 new_block->mr = mr;
2157 new_block->resized = resized;
2158 new_block->used_length = size;
2159 new_block->max_length = max_size;
2160 assert(max_size >= size);
2161 new_block->fd = -1;
2162 new_block->page_size = qemu_real_host_page_size;
2163 new_block->host = host;
2164 new_block->flags = ram_flags;
2165 ram_block_add(new_block, &local_err);
2166 if (local_err) {
2167 g_free(new_block);
2168 error_propagate(errp, local_err);
2169 return NULL;
2171 return new_block;
2174 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2175 MemoryRegion *mr, Error **errp)
2177 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2178 errp);
2181 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2182 MemoryRegion *mr, Error **errp)
2184 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0);
2185 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2188 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2189 void (*resized)(const char*,
2190 uint64_t length,
2191 void *host),
2192 MemoryRegion *mr, Error **errp)
2194 return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2195 RAM_RESIZEABLE, mr, errp);
2198 static void reclaim_ramblock(RAMBlock *block)
2200 if (block->flags & RAM_PREALLOC) {
2202 } else if (xen_enabled()) {
2203 xen_invalidate_map_cache_entry(block->host);
2204 #ifndef _WIN32
2205 } else if (block->fd >= 0) {
2206 qemu_ram_munmap(block->fd, block->host, block->max_length);
2207 close(block->fd);
2208 #endif
2209 } else {
2210 qemu_anon_ram_free(block->host, block->max_length);
2212 g_free(block);
2215 void qemu_ram_free(RAMBlock *block)
2217 if (!block) {
2218 return;
2221 if (block->host) {
2222 ram_block_notify_remove(block->host, block->used_length,
2223 block->max_length);
2226 qemu_mutex_lock_ramlist();
2227 QLIST_REMOVE_RCU(block, next);
2228 ram_list.mru_block = NULL;
2229 /* Write list before version */
2230 smp_wmb();
2231 ram_list.version++;
2232 call_rcu(block, reclaim_ramblock, rcu);
2233 qemu_mutex_unlock_ramlist();
2236 #ifndef _WIN32
2237 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2239 RAMBlock *block;
2240 ram_addr_t offset;
2241 int flags;
2242 void *area, *vaddr;
2244 RAMBLOCK_FOREACH(block) {
2245 offset = addr - block->offset;
2246 if (offset < block->max_length) {
2247 vaddr = ramblock_ptr(block, offset);
2248 if (block->flags & RAM_PREALLOC) {
2250 } else if (xen_enabled()) {
2251 abort();
2252 } else {
2253 flags = MAP_FIXED;
2254 flags |= block->flags & RAM_SHARED ?
2255 MAP_SHARED : MAP_PRIVATE;
2256 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2257 if (block->fd >= 0) {
2258 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2259 flags, block->fd, offset);
2260 } else {
2261 flags |= MAP_ANONYMOUS;
2262 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2263 flags, -1, 0);
2265 if (area != vaddr) {
2266 error_report("Could not remap addr: "
2267 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2268 length, addr);
2269 exit(1);
2271 memory_try_enable_merging(vaddr, length);
2272 qemu_ram_setup_dump(vaddr, length);
2277 #endif /* !_WIN32 */
2279 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2280 * This should not be used for general purpose DMA. Use address_space_map
2281 * or address_space_rw instead. For local memory (e.g. video ram) that the
2282 * device owns, use memory_region_get_ram_ptr.
2284 * Called within RCU critical section.
2286 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2288 RAMBlock *block = ram_block;
2290 if (block == NULL) {
2291 block = qemu_get_ram_block(addr);
2292 addr -= block->offset;
2295 if (xen_enabled() && block->host == NULL) {
2296 /* We need to check if the requested address is in the RAM
2297 * because we don't want to map the entire memory in QEMU.
2298 * In that case just map until the end of the page.
2300 if (block->offset == 0) {
2301 return xen_map_cache(addr, 0, 0, false);
2304 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2306 return ramblock_ptr(block, addr);
2309 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2310 * but takes a size argument.
2312 * Called within RCU critical section.
2314 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2315 hwaddr *size, bool lock)
2317 RAMBlock *block = ram_block;
2318 if (*size == 0) {
2319 return NULL;
2322 if (block == NULL) {
2323 block = qemu_get_ram_block(addr);
2324 addr -= block->offset;
2326 *size = MIN(*size, block->max_length - addr);
2328 if (xen_enabled() && block->host == NULL) {
2329 /* We need to check if the requested address is in the RAM
2330 * because we don't want to map the entire memory in QEMU.
2331 * In that case just map the requested area.
2333 if (block->offset == 0) {
2334 return xen_map_cache(addr, *size, lock, lock);
2337 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2340 return ramblock_ptr(block, addr);
2343 /* Return the offset of a hostpointer within a ramblock */
2344 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2346 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2347 assert((uintptr_t)host >= (uintptr_t)rb->host);
2348 assert(res < rb->max_length);
2350 return res;
2354 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2355 * in that RAMBlock.
2357 * ptr: Host pointer to look up
2358 * round_offset: If true round the result offset down to a page boundary
2359 * *ram_addr: set to result ram_addr
2360 * *offset: set to result offset within the RAMBlock
2362 * Returns: RAMBlock (or NULL if not found)
2364 * By the time this function returns, the returned pointer is not protected
2365 * by RCU anymore. If the caller is not within an RCU critical section and
2366 * does not hold the iothread lock, it must have other means of protecting the
2367 * pointer, such as a reference to the region that includes the incoming
2368 * ram_addr_t.
2370 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2371 ram_addr_t *offset)
2373 RAMBlock *block;
2374 uint8_t *host = ptr;
2376 if (xen_enabled()) {
2377 ram_addr_t ram_addr;
2378 RCU_READ_LOCK_GUARD();
2379 ram_addr = xen_ram_addr_from_mapcache(ptr);
2380 block = qemu_get_ram_block(ram_addr);
2381 if (block) {
2382 *offset = ram_addr - block->offset;
2384 return block;
2387 RCU_READ_LOCK_GUARD();
2388 block = qatomic_rcu_read(&ram_list.mru_block);
2389 if (block && block->host && host - block->host < block->max_length) {
2390 goto found;
2393 RAMBLOCK_FOREACH(block) {
2394 /* This case append when the block is not mapped. */
2395 if (block->host == NULL) {
2396 continue;
2398 if (host - block->host < block->max_length) {
2399 goto found;
2403 return NULL;
2405 found:
2406 *offset = (host - block->host);
2407 if (round_offset) {
2408 *offset &= TARGET_PAGE_MASK;
2410 return block;
2414 * Finds the named RAMBlock
2416 * name: The name of RAMBlock to find
2418 * Returns: RAMBlock (or NULL if not found)
2420 RAMBlock *qemu_ram_block_by_name(const char *name)
2422 RAMBlock *block;
2424 RAMBLOCK_FOREACH(block) {
2425 if (!strcmp(name, block->idstr)) {
2426 return block;
2430 return NULL;
2433 /* Some of the softmmu routines need to translate from a host pointer
2434 (typically a TLB entry) back to a ram offset. */
2435 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2437 RAMBlock *block;
2438 ram_addr_t offset;
2440 block = qemu_ram_block_from_host(ptr, false, &offset);
2441 if (!block) {
2442 return RAM_ADDR_INVALID;
2445 return block->offset + offset;
2448 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2449 MemTxAttrs attrs, void *buf, hwaddr len);
2450 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2451 const void *buf, hwaddr len);
2452 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2453 bool is_write, MemTxAttrs attrs);
2455 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2456 unsigned len, MemTxAttrs attrs)
2458 subpage_t *subpage = opaque;
2459 uint8_t buf[8];
2460 MemTxResult res;
2462 #if defined(DEBUG_SUBPAGE)
2463 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2464 subpage, len, addr);
2465 #endif
2466 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2467 if (res) {
2468 return res;
2470 *data = ldn_p(buf, len);
2471 return MEMTX_OK;
2474 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2475 uint64_t value, unsigned len, MemTxAttrs attrs)
2477 subpage_t *subpage = opaque;
2478 uint8_t buf[8];
2480 #if defined(DEBUG_SUBPAGE)
2481 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2482 " value %"PRIx64"\n",
2483 __func__, subpage, len, addr, value);
2484 #endif
2485 stn_p(buf, len, value);
2486 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2489 static bool subpage_accepts(void *opaque, hwaddr addr,
2490 unsigned len, bool is_write,
2491 MemTxAttrs attrs)
2493 subpage_t *subpage = opaque;
2494 #if defined(DEBUG_SUBPAGE)
2495 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2496 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2497 #endif
2499 return flatview_access_valid(subpage->fv, addr + subpage->base,
2500 len, is_write, attrs);
2503 static const MemoryRegionOps subpage_ops = {
2504 .read_with_attrs = subpage_read,
2505 .write_with_attrs = subpage_write,
2506 .impl.min_access_size = 1,
2507 .impl.max_access_size = 8,
2508 .valid.min_access_size = 1,
2509 .valid.max_access_size = 8,
2510 .valid.accepts = subpage_accepts,
2511 .endianness = DEVICE_NATIVE_ENDIAN,
2514 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2515 uint16_t section)
2517 int idx, eidx;
2519 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2520 return -1;
2521 idx = SUBPAGE_IDX(start);
2522 eidx = SUBPAGE_IDX(end);
2523 #if defined(DEBUG_SUBPAGE)
2524 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2525 __func__, mmio, start, end, idx, eidx, section);
2526 #endif
2527 for (; idx <= eidx; idx++) {
2528 mmio->sub_section[idx] = section;
2531 return 0;
2534 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2536 subpage_t *mmio;
2538 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2539 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2540 mmio->fv = fv;
2541 mmio->base = base;
2542 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2543 NULL, TARGET_PAGE_SIZE);
2544 mmio->iomem.subpage = true;
2545 #if defined(DEBUG_SUBPAGE)
2546 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2547 mmio, base, TARGET_PAGE_SIZE);
2548 #endif
2550 return mmio;
2553 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2555 assert(fv);
2556 MemoryRegionSection section = {
2557 .fv = fv,
2558 .mr = mr,
2559 .offset_within_address_space = 0,
2560 .offset_within_region = 0,
2561 .size = int128_2_64(),
2564 return phys_section_add(map, &section);
2567 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2568 hwaddr index, MemTxAttrs attrs)
2570 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2571 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2572 AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch);
2573 MemoryRegionSection *sections = d->map.sections;
2575 return &sections[index & ~TARGET_PAGE_MASK];
2578 static void io_mem_init(void)
2580 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2581 NULL, UINT64_MAX);
2584 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2586 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2587 uint16_t n;
2589 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2590 assert(n == PHYS_SECTION_UNASSIGNED);
2592 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2594 return d;
2597 void address_space_dispatch_free(AddressSpaceDispatch *d)
2599 phys_sections_free(&d->map);
2600 g_free(d);
2603 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2607 static void tcg_log_global_after_sync(MemoryListener *listener)
2609 CPUAddressSpace *cpuas;
2611 /* Wait for the CPU to end the current TB. This avoids the following
2612 * incorrect race:
2614 * vCPU migration
2615 * ---------------------- -------------------------
2616 * TLB check -> slow path
2617 * notdirty_mem_write
2618 * write to RAM
2619 * mark dirty
2620 * clear dirty flag
2621 * TLB check -> fast path
2622 * read memory
2623 * write to RAM
2625 * by pushing the migration thread's memory read after the vCPU thread has
2626 * written the memory.
2628 if (replay_mode == REPLAY_MODE_NONE) {
2630 * VGA can make calls to this function while updating the screen.
2631 * In record/replay mode this causes a deadlock, because
2632 * run_on_cpu waits for rr mutex. Therefore no races are possible
2633 * in this case and no need for making run_on_cpu when
2634 * record/replay is not enabled.
2636 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2637 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2641 static void tcg_commit(MemoryListener *listener)
2643 CPUAddressSpace *cpuas;
2644 AddressSpaceDispatch *d;
2646 assert(tcg_enabled());
2647 /* since each CPU stores ram addresses in its TLB cache, we must
2648 reset the modified entries */
2649 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2650 cpu_reloading_memory_map();
2651 /* The CPU and TLB are protected by the iothread lock.
2652 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2653 * may have split the RCU critical section.
2655 d = address_space_to_dispatch(cpuas->as);
2656 qatomic_rcu_set(&cpuas->memory_dispatch, d);
2657 tlb_flush(cpuas->cpu);
2660 static void memory_map_init(void)
2662 system_memory = g_malloc(sizeof(*system_memory));
2664 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2665 address_space_init(&address_space_memory, system_memory, "memory");
2667 system_io = g_malloc(sizeof(*system_io));
2668 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2669 65536);
2670 address_space_init(&address_space_io, system_io, "I/O");
2673 MemoryRegion *get_system_memory(void)
2675 return system_memory;
2678 MemoryRegion *get_system_io(void)
2680 return system_io;
2683 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2684 hwaddr length)
2686 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2687 addr += memory_region_get_ram_addr(mr);
2689 /* No early return if dirty_log_mask is or becomes 0, because
2690 * cpu_physical_memory_set_dirty_range will still call
2691 * xen_modified_memory.
2693 if (dirty_log_mask) {
2694 dirty_log_mask =
2695 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2697 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2698 assert(tcg_enabled());
2699 tb_invalidate_phys_range(addr, addr + length);
2700 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2702 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2705 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2708 * In principle this function would work on other memory region types too,
2709 * but the ROM device use case is the only one where this operation is
2710 * necessary. Other memory regions should use the
2711 * address_space_read/write() APIs.
2713 assert(memory_region_is_romd(mr));
2715 invalidate_and_set_dirty(mr, addr, size);
2718 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2720 unsigned access_size_max = mr->ops->valid.max_access_size;
2722 /* Regions are assumed to support 1-4 byte accesses unless
2723 otherwise specified. */
2724 if (access_size_max == 0) {
2725 access_size_max = 4;
2728 /* Bound the maximum access by the alignment of the address. */
2729 if (!mr->ops->impl.unaligned) {
2730 unsigned align_size_max = addr & -addr;
2731 if (align_size_max != 0 && align_size_max < access_size_max) {
2732 access_size_max = align_size_max;
2736 /* Don't attempt accesses larger than the maximum. */
2737 if (l > access_size_max) {
2738 l = access_size_max;
2740 l = pow2floor(l);
2742 return l;
2745 static bool prepare_mmio_access(MemoryRegion *mr)
2747 bool release_lock = false;
2749 if (!qemu_mutex_iothread_locked()) {
2750 qemu_mutex_lock_iothread();
2751 release_lock = true;
2753 if (mr->flush_coalesced_mmio) {
2754 qemu_flush_coalesced_mmio_buffer();
2757 return release_lock;
2760 /* Called within RCU critical section. */
2761 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2762 MemTxAttrs attrs,
2763 const void *ptr,
2764 hwaddr len, hwaddr addr1,
2765 hwaddr l, MemoryRegion *mr)
2767 uint8_t *ram_ptr;
2768 uint64_t val;
2769 MemTxResult result = MEMTX_OK;
2770 bool release_lock = false;
2771 const uint8_t *buf = ptr;
2773 for (;;) {
2774 if (!memory_access_is_direct(mr, true)) {
2775 release_lock |= prepare_mmio_access(mr);
2776 l = memory_access_size(mr, l, addr1);
2777 /* XXX: could force current_cpu to NULL to avoid
2778 potential bugs */
2779 val = ldn_he_p(buf, l);
2780 result |= memory_region_dispatch_write(mr, addr1, val,
2781 size_memop(l), attrs);
2782 } else {
2783 /* RAM case */
2784 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2785 memcpy(ram_ptr, buf, l);
2786 invalidate_and_set_dirty(mr, addr1, l);
2789 if (release_lock) {
2790 qemu_mutex_unlock_iothread();
2791 release_lock = false;
2794 len -= l;
2795 buf += l;
2796 addr += l;
2798 if (!len) {
2799 break;
2802 l = len;
2803 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2806 return result;
2809 /* Called from RCU critical section. */
2810 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2811 const void *buf, hwaddr len)
2813 hwaddr l;
2814 hwaddr addr1;
2815 MemoryRegion *mr;
2816 MemTxResult result = MEMTX_OK;
2818 l = len;
2819 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2820 result = flatview_write_continue(fv, addr, attrs, buf, len,
2821 addr1, l, mr);
2823 return result;
2826 /* Called within RCU critical section. */
2827 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2828 MemTxAttrs attrs, void *ptr,
2829 hwaddr len, hwaddr addr1, hwaddr l,
2830 MemoryRegion *mr)
2832 uint8_t *ram_ptr;
2833 uint64_t val;
2834 MemTxResult result = MEMTX_OK;
2835 bool release_lock = false;
2836 uint8_t *buf = ptr;
2838 fuzz_dma_read_cb(addr, len, mr);
2839 for (;;) {
2840 if (!memory_access_is_direct(mr, false)) {
2841 /* I/O case */
2842 release_lock |= prepare_mmio_access(mr);
2843 l = memory_access_size(mr, l, addr1);
2844 result |= memory_region_dispatch_read(mr, addr1, &val,
2845 size_memop(l), attrs);
2846 stn_he_p(buf, l, val);
2847 } else {
2848 /* RAM case */
2849 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2850 memcpy(buf, ram_ptr, l);
2853 if (release_lock) {
2854 qemu_mutex_unlock_iothread();
2855 release_lock = false;
2858 len -= l;
2859 buf += l;
2860 addr += l;
2862 if (!len) {
2863 break;
2866 l = len;
2867 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2870 return result;
2873 /* Called from RCU critical section. */
2874 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2875 MemTxAttrs attrs, void *buf, hwaddr len)
2877 hwaddr l;
2878 hwaddr addr1;
2879 MemoryRegion *mr;
2881 l = len;
2882 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2883 return flatview_read_continue(fv, addr, attrs, buf, len,
2884 addr1, l, mr);
2887 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2888 MemTxAttrs attrs, void *buf, hwaddr len)
2890 MemTxResult result = MEMTX_OK;
2891 FlatView *fv;
2893 if (len > 0) {
2894 RCU_READ_LOCK_GUARD();
2895 fv = address_space_to_flatview(as);
2896 result = flatview_read(fv, addr, attrs, buf, len);
2899 return result;
2902 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2903 MemTxAttrs attrs,
2904 const void *buf, hwaddr len)
2906 MemTxResult result = MEMTX_OK;
2907 FlatView *fv;
2909 if (len > 0) {
2910 RCU_READ_LOCK_GUARD();
2911 fv = address_space_to_flatview(as);
2912 result = flatview_write(fv, addr, attrs, buf, len);
2915 return result;
2918 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2919 void *buf, hwaddr len, bool is_write)
2921 if (is_write) {
2922 return address_space_write(as, addr, attrs, buf, len);
2923 } else {
2924 return address_space_read_full(as, addr, attrs, buf, len);
2928 void cpu_physical_memory_rw(hwaddr addr, void *buf,
2929 hwaddr len, bool is_write)
2931 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2932 buf, len, is_write);
2935 enum write_rom_type {
2936 WRITE_DATA,
2937 FLUSH_CACHE,
2940 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
2941 hwaddr addr,
2942 MemTxAttrs attrs,
2943 const void *ptr,
2944 hwaddr len,
2945 enum write_rom_type type)
2947 hwaddr l;
2948 uint8_t *ram_ptr;
2949 hwaddr addr1;
2950 MemoryRegion *mr;
2951 const uint8_t *buf = ptr;
2953 RCU_READ_LOCK_GUARD();
2954 while (len > 0) {
2955 l = len;
2956 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
2958 if (!(memory_region_is_ram(mr) ||
2959 memory_region_is_romd(mr))) {
2960 l = memory_access_size(mr, l, addr1);
2961 } else {
2962 /* ROM/RAM case */
2963 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2964 switch (type) {
2965 case WRITE_DATA:
2966 memcpy(ram_ptr, buf, l);
2967 invalidate_and_set_dirty(mr, addr1, l);
2968 break;
2969 case FLUSH_CACHE:
2970 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
2971 break;
2974 len -= l;
2975 buf += l;
2976 addr += l;
2978 return MEMTX_OK;
2981 /* used for ROM loading : can write in RAM and ROM */
2982 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2983 MemTxAttrs attrs,
2984 const void *buf, hwaddr len)
2986 return address_space_write_rom_internal(as, addr, attrs,
2987 buf, len, WRITE_DATA);
2990 void cpu_flush_icache_range(hwaddr start, hwaddr len)
2993 * This function should do the same thing as an icache flush that was
2994 * triggered from within the guest. For TCG we are always cache coherent,
2995 * so there is no need to flush anything. For KVM / Xen we need to flush
2996 * the host's instruction cache at least.
2998 if (tcg_enabled()) {
2999 return;
3002 address_space_write_rom_internal(&address_space_memory,
3003 start, MEMTXATTRS_UNSPECIFIED,
3004 NULL, len, FLUSH_CACHE);
3007 typedef struct {
3008 MemoryRegion *mr;
3009 void *buffer;
3010 hwaddr addr;
3011 hwaddr len;
3012 bool in_use;
3013 } BounceBuffer;
3015 static BounceBuffer bounce;
3017 typedef struct MapClient {
3018 QEMUBH *bh;
3019 QLIST_ENTRY(MapClient) link;
3020 } MapClient;
3022 QemuMutex map_client_list_lock;
3023 static QLIST_HEAD(, MapClient) map_client_list
3024 = QLIST_HEAD_INITIALIZER(map_client_list);
3026 static void cpu_unregister_map_client_do(MapClient *client)
3028 QLIST_REMOVE(client, link);
3029 g_free(client);
3032 static void cpu_notify_map_clients_locked(void)
3034 MapClient *client;
3036 while (!QLIST_EMPTY(&map_client_list)) {
3037 client = QLIST_FIRST(&map_client_list);
3038 qemu_bh_schedule(client->bh);
3039 cpu_unregister_map_client_do(client);
3043 void cpu_register_map_client(QEMUBH *bh)
3045 MapClient *client = g_malloc(sizeof(*client));
3047 qemu_mutex_lock(&map_client_list_lock);
3048 client->bh = bh;
3049 QLIST_INSERT_HEAD(&map_client_list, client, link);
3050 if (!qatomic_read(&bounce.in_use)) {
3051 cpu_notify_map_clients_locked();
3053 qemu_mutex_unlock(&map_client_list_lock);
3056 void cpu_exec_init_all(void)
3058 qemu_mutex_init(&ram_list.mutex);
3059 /* The data structures we set up here depend on knowing the page size,
3060 * so no more changes can be made after this point.
3061 * In an ideal world, nothing we did before we had finished the
3062 * machine setup would care about the target page size, and we could
3063 * do this much later, rather than requiring board models to state
3064 * up front what their requirements are.
3066 finalize_target_page_bits();
3067 io_mem_init();
3068 memory_map_init();
3069 qemu_mutex_init(&map_client_list_lock);
3072 void cpu_unregister_map_client(QEMUBH *bh)
3074 MapClient *client;
3076 qemu_mutex_lock(&map_client_list_lock);
3077 QLIST_FOREACH(client, &map_client_list, link) {
3078 if (client->bh == bh) {
3079 cpu_unregister_map_client_do(client);
3080 break;
3083 qemu_mutex_unlock(&map_client_list_lock);
3086 static void cpu_notify_map_clients(void)
3088 qemu_mutex_lock(&map_client_list_lock);
3089 cpu_notify_map_clients_locked();
3090 qemu_mutex_unlock(&map_client_list_lock);
3093 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3094 bool is_write, MemTxAttrs attrs)
3096 MemoryRegion *mr;
3097 hwaddr l, xlat;
3099 while (len > 0) {
3100 l = len;
3101 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3102 if (!memory_access_is_direct(mr, is_write)) {
3103 l = memory_access_size(mr, l, addr);
3104 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3105 return false;
3109 len -= l;
3110 addr += l;
3112 return true;
3115 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3116 hwaddr len, bool is_write,
3117 MemTxAttrs attrs)
3119 FlatView *fv;
3120 bool result;
3122 RCU_READ_LOCK_GUARD();
3123 fv = address_space_to_flatview(as);
3124 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3125 return result;
3128 static hwaddr
3129 flatview_extend_translation(FlatView *fv, hwaddr addr,
3130 hwaddr target_len,
3131 MemoryRegion *mr, hwaddr base, hwaddr len,
3132 bool is_write, MemTxAttrs attrs)
3134 hwaddr done = 0;
3135 hwaddr xlat;
3136 MemoryRegion *this_mr;
3138 for (;;) {
3139 target_len -= len;
3140 addr += len;
3141 done += len;
3142 if (target_len == 0) {
3143 return done;
3146 len = target_len;
3147 this_mr = flatview_translate(fv, addr, &xlat,
3148 &len, is_write, attrs);
3149 if (this_mr != mr || xlat != base + done) {
3150 return done;
3155 /* Map a physical memory region into a host virtual address.
3156 * May map a subset of the requested range, given by and returned in *plen.
3157 * May return NULL if resources needed to perform the mapping are exhausted.
3158 * Use only for reads OR writes - not for read-modify-write operations.
3159 * Use cpu_register_map_client() to know when retrying the map operation is
3160 * likely to succeed.
3162 void *address_space_map(AddressSpace *as,
3163 hwaddr addr,
3164 hwaddr *plen,
3165 bool is_write,
3166 MemTxAttrs attrs)
3168 hwaddr len = *plen;
3169 hwaddr l, xlat;
3170 MemoryRegion *mr;
3171 void *ptr;
3172 FlatView *fv;
3174 if (len == 0) {
3175 return NULL;
3178 l = len;
3179 RCU_READ_LOCK_GUARD();
3180 fv = address_space_to_flatview(as);
3181 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3183 if (!memory_access_is_direct(mr, is_write)) {
3184 if (qatomic_xchg(&bounce.in_use, true)) {
3185 *plen = 0;
3186 return NULL;
3188 /* Avoid unbounded allocations */
3189 l = MIN(l, TARGET_PAGE_SIZE);
3190 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3191 bounce.addr = addr;
3192 bounce.len = l;
3194 memory_region_ref(mr);
3195 bounce.mr = mr;
3196 if (!is_write) {
3197 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3198 bounce.buffer, l);
3201 *plen = l;
3202 return bounce.buffer;
3206 memory_region_ref(mr);
3207 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3208 l, is_write, attrs);
3209 fuzz_dma_read_cb(addr, *plen, mr);
3210 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3212 return ptr;
3215 /* Unmaps a memory region previously mapped by address_space_map().
3216 * Will also mark the memory as dirty if is_write is true. access_len gives
3217 * the amount of memory that was actually read or written by the caller.
3219 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3220 bool is_write, hwaddr access_len)
3222 if (buffer != bounce.buffer) {
3223 MemoryRegion *mr;
3224 ram_addr_t addr1;
3226 mr = memory_region_from_host(buffer, &addr1);
3227 assert(mr != NULL);
3228 if (is_write) {
3229 invalidate_and_set_dirty(mr, addr1, access_len);
3231 if (xen_enabled()) {
3232 xen_invalidate_map_cache_entry(buffer);
3234 memory_region_unref(mr);
3235 return;
3237 if (is_write) {
3238 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3239 bounce.buffer, access_len);
3241 qemu_vfree(bounce.buffer);
3242 bounce.buffer = NULL;
3243 memory_region_unref(bounce.mr);
3244 qatomic_mb_set(&bounce.in_use, false);
3245 cpu_notify_map_clients();
3248 void *cpu_physical_memory_map(hwaddr addr,
3249 hwaddr *plen,
3250 bool is_write)
3252 return address_space_map(&address_space_memory, addr, plen, is_write,
3253 MEMTXATTRS_UNSPECIFIED);
3256 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3257 bool is_write, hwaddr access_len)
3259 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3262 #define ARG1_DECL AddressSpace *as
3263 #define ARG1 as
3264 #define SUFFIX
3265 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3266 #define RCU_READ_LOCK(...) rcu_read_lock()
3267 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3268 #include "memory_ldst.c.inc"
3270 int64_t address_space_cache_init(MemoryRegionCache *cache,
3271 AddressSpace *as,
3272 hwaddr addr,
3273 hwaddr len,
3274 bool is_write)
3276 AddressSpaceDispatch *d;
3277 hwaddr l;
3278 MemoryRegion *mr;
3279 Int128 diff;
3281 assert(len > 0);
3283 l = len;
3284 cache->fv = address_space_get_flatview(as);
3285 d = flatview_to_dispatch(cache->fv);
3286 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3289 * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3290 * Take that into account to compute how many bytes are there between
3291 * cache->xlat and the end of the section.
3293 diff = int128_sub(cache->mrs.size,
3294 int128_make64(cache->xlat - cache->mrs.offset_within_region));
3295 l = int128_get64(int128_min(diff, int128_make64(l)));
3297 mr = cache->mrs.mr;
3298 memory_region_ref(mr);
3299 if (memory_access_is_direct(mr, is_write)) {
3300 /* We don't care about the memory attributes here as we're only
3301 * doing this if we found actual RAM, which behaves the same
3302 * regardless of attributes; so UNSPECIFIED is fine.
3304 l = flatview_extend_translation(cache->fv, addr, len, mr,
3305 cache->xlat, l, is_write,
3306 MEMTXATTRS_UNSPECIFIED);
3307 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3308 } else {
3309 cache->ptr = NULL;
3312 cache->len = l;
3313 cache->is_write = is_write;
3314 return l;
3317 void address_space_cache_invalidate(MemoryRegionCache *cache,
3318 hwaddr addr,
3319 hwaddr access_len)
3321 assert(cache->is_write);
3322 if (likely(cache->ptr)) {
3323 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3327 void address_space_cache_destroy(MemoryRegionCache *cache)
3329 if (!cache->mrs.mr) {
3330 return;
3333 if (xen_enabled()) {
3334 xen_invalidate_map_cache_entry(cache->ptr);
3336 memory_region_unref(cache->mrs.mr);
3337 flatview_unref(cache->fv);
3338 cache->mrs.mr = NULL;
3339 cache->fv = NULL;
3342 /* Called from RCU critical section. This function has the same
3343 * semantics as address_space_translate, but it only works on a
3344 * predefined range of a MemoryRegion that was mapped with
3345 * address_space_cache_init.
3347 static inline MemoryRegion *address_space_translate_cached(
3348 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3349 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3351 MemoryRegionSection section;
3352 MemoryRegion *mr;
3353 IOMMUMemoryRegion *iommu_mr;
3354 AddressSpace *target_as;
3356 assert(!cache->ptr);
3357 *xlat = addr + cache->xlat;
3359 mr = cache->mrs.mr;
3360 iommu_mr = memory_region_get_iommu(mr);
3361 if (!iommu_mr) {
3362 /* MMIO region. */
3363 return mr;
3366 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3367 NULL, is_write, true,
3368 &target_as, attrs);
3369 return section.mr;
3372 /* Called from RCU critical section. address_space_read_cached uses this
3373 * out of line function when the target is an MMIO or IOMMU region.
3375 MemTxResult
3376 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3377 void *buf, hwaddr len)
3379 hwaddr addr1, l;
3380 MemoryRegion *mr;
3382 l = len;
3383 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3384 MEMTXATTRS_UNSPECIFIED);
3385 return flatview_read_continue(cache->fv,
3386 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3387 addr1, l, mr);
3390 /* Called from RCU critical section. address_space_write_cached uses this
3391 * out of line function when the target is an MMIO or IOMMU region.
3393 MemTxResult
3394 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3395 const void *buf, hwaddr len)
3397 hwaddr addr1, l;
3398 MemoryRegion *mr;
3400 l = len;
3401 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3402 MEMTXATTRS_UNSPECIFIED);
3403 return flatview_write_continue(cache->fv,
3404 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3405 addr1, l, mr);
3408 #define ARG1_DECL MemoryRegionCache *cache
3409 #define ARG1 cache
3410 #define SUFFIX _cached_slow
3411 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3412 #define RCU_READ_LOCK() ((void)0)
3413 #define RCU_READ_UNLOCK() ((void)0)
3414 #include "memory_ldst.c.inc"
3416 /* virtual memory access for debug (includes writing to ROM) */
3417 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3418 void *ptr, target_ulong len, bool is_write)
3420 hwaddr phys_addr;
3421 target_ulong l, page;
3422 uint8_t *buf = ptr;
3424 cpu_synchronize_state(cpu);
3425 while (len > 0) {
3426 int asidx;
3427 MemTxAttrs attrs;
3428 MemTxResult res;
3430 page = addr & TARGET_PAGE_MASK;
3431 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3432 asidx = cpu_asidx_from_attrs(cpu, attrs);
3433 /* if no physical page mapped, return an error */
3434 if (phys_addr == -1)
3435 return -1;
3436 l = (page + TARGET_PAGE_SIZE) - addr;
3437 if (l > len)
3438 l = len;
3439 phys_addr += (addr & ~TARGET_PAGE_MASK);
3440 if (is_write) {
3441 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3442 attrs, buf, l);
3443 } else {
3444 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3445 attrs, buf, l);
3447 if (res != MEMTX_OK) {
3448 return -1;
3450 len -= l;
3451 buf += l;
3452 addr += l;
3454 return 0;
3458 * Allows code that needs to deal with migration bitmaps etc to still be built
3459 * target independent.
3461 size_t qemu_target_page_size(void)
3463 return TARGET_PAGE_SIZE;
3466 int qemu_target_page_bits(void)
3468 return TARGET_PAGE_BITS;
3471 int qemu_target_page_bits_min(void)
3473 return TARGET_PAGE_BITS_MIN;
3476 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3478 MemoryRegion*mr;
3479 hwaddr l = 1;
3480 bool res;
3482 RCU_READ_LOCK_GUARD();
3483 mr = address_space_translate(&address_space_memory,
3484 phys_addr, &phys_addr, &l, false,
3485 MEMTXATTRS_UNSPECIFIED);
3487 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3488 return res;
3491 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3493 RAMBlock *block;
3494 int ret = 0;
3496 RCU_READ_LOCK_GUARD();
3497 RAMBLOCK_FOREACH(block) {
3498 ret = func(block, opaque);
3499 if (ret) {
3500 break;
3503 return ret;
3507 * Unmap pages of memory from start to start+length such that
3508 * they a) read as 0, b) Trigger whatever fault mechanism
3509 * the OS provides for postcopy.
3510 * The pages must be unmapped by the end of the function.
3511 * Returns: 0 on success, none-0 on failure
3514 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3516 int ret = -1;
3518 uint8_t *host_startaddr = rb->host + start;
3520 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3521 error_report("ram_block_discard_range: Unaligned start address: %p",
3522 host_startaddr);
3523 goto err;
3526 if ((start + length) <= rb->max_length) {
3527 bool need_madvise, need_fallocate;
3528 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3529 error_report("ram_block_discard_range: Unaligned length: %zx",
3530 length);
3531 goto err;
3534 errno = ENOTSUP; /* If we are missing MADVISE etc */
3536 /* The logic here is messy;
3537 * madvise DONTNEED fails for hugepages
3538 * fallocate works on hugepages and shmem
3539 * shared anonymous memory requires madvise REMOVE
3541 need_madvise = (rb->page_size == qemu_host_page_size);
3542 need_fallocate = rb->fd != -1;
3543 if (need_fallocate) {
3544 /* For a file, this causes the area of the file to be zero'd
3545 * if read, and for hugetlbfs also causes it to be unmapped
3546 * so a userfault will trigger.
3548 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3549 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3550 start, length);
3551 if (ret) {
3552 ret = -errno;
3553 error_report("ram_block_discard_range: Failed to fallocate "
3554 "%s:%" PRIx64 " +%zx (%d)",
3555 rb->idstr, start, length, ret);
3556 goto err;
3558 #else
3559 ret = -ENOSYS;
3560 error_report("ram_block_discard_range: fallocate not available/file"
3561 "%s:%" PRIx64 " +%zx (%d)",
3562 rb->idstr, start, length, ret);
3563 goto err;
3564 #endif
3566 if (need_madvise) {
3567 /* For normal RAM this causes it to be unmapped,
3568 * for shared memory it causes the local mapping to disappear
3569 * and to fall back on the file contents (which we just
3570 * fallocate'd away).
3572 #if defined(CONFIG_MADVISE)
3573 if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3574 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3575 } else {
3576 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3578 if (ret) {
3579 ret = -errno;
3580 error_report("ram_block_discard_range: Failed to discard range "
3581 "%s:%" PRIx64 " +%zx (%d)",
3582 rb->idstr, start, length, ret);
3583 goto err;
3585 #else
3586 ret = -ENOSYS;
3587 error_report("ram_block_discard_range: MADVISE not available"
3588 "%s:%" PRIx64 " +%zx (%d)",
3589 rb->idstr, start, length, ret);
3590 goto err;
3591 #endif
3593 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3594 need_madvise, need_fallocate, ret);
3595 } else {
3596 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3597 "/%zx/" RAM_ADDR_FMT")",
3598 rb->idstr, start, length, rb->max_length);
3601 err:
3602 return ret;
3605 bool ramblock_is_pmem(RAMBlock *rb)
3607 return rb->flags & RAM_PMEM;
3610 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3612 if (start == end - 1) {
3613 qemu_printf("\t%3d ", start);
3614 } else {
3615 qemu_printf("\t%3d..%-3d ", start, end - 1);
3617 qemu_printf(" skip=%d ", skip);
3618 if (ptr == PHYS_MAP_NODE_NIL) {
3619 qemu_printf(" ptr=NIL");
3620 } else if (!skip) {
3621 qemu_printf(" ptr=#%d", ptr);
3622 } else {
3623 qemu_printf(" ptr=[%d]", ptr);
3625 qemu_printf("\n");
3628 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3629 int128_sub((size), int128_one())) : 0)
3631 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3633 int i;
3635 qemu_printf(" Dispatch\n");
3636 qemu_printf(" Physical sections\n");
3638 for (i = 0; i < d->map.sections_nb; ++i) {
3639 MemoryRegionSection *s = d->map.sections + i;
3640 const char *names[] = { " [unassigned]", " [not dirty]",
3641 " [ROM]", " [watch]" };
3643 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
3644 " %s%s%s%s%s",
3646 s->offset_within_address_space,
3647 s->offset_within_address_space + MR_SIZE(s->mr->size),
3648 s->mr->name ? s->mr->name : "(noname)",
3649 i < ARRAY_SIZE(names) ? names[i] : "",
3650 s->mr == root ? " [ROOT]" : "",
3651 s == d->mru_section ? " [MRU]" : "",
3652 s->mr->is_iommu ? " [iommu]" : "");
3654 if (s->mr->alias) {
3655 qemu_printf(" alias=%s", s->mr->alias->name ?
3656 s->mr->alias->name : "noname");
3658 qemu_printf("\n");
3661 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3662 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3663 for (i = 0; i < d->map.nodes_nb; ++i) {
3664 int j, jprev;
3665 PhysPageEntry prev;
3666 Node *n = d->map.nodes + i;
3668 qemu_printf(" [%d]\n", i);
3670 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3671 PhysPageEntry *pe = *n + j;
3673 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3674 continue;
3677 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3679 jprev = j;
3680 prev = *pe;
3683 if (jprev != ARRAY_SIZE(*n)) {
3684 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3689 /* Require any discards to work. */
3690 static unsigned int ram_block_discard_required_cnt;
3691 /* Require only coordinated discards to work. */
3692 static unsigned int ram_block_coordinated_discard_required_cnt;
3693 /* Disable any discards. */
3694 static unsigned int ram_block_discard_disabled_cnt;
3695 /* Disable only uncoordinated discards. */
3696 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3697 static QemuMutex ram_block_discard_disable_mutex;
3699 static void ram_block_discard_disable_mutex_lock(void)
3701 static gsize initialized;
3703 if (g_once_init_enter(&initialized)) {
3704 qemu_mutex_init(&ram_block_discard_disable_mutex);
3705 g_once_init_leave(&initialized, 1);
3707 qemu_mutex_lock(&ram_block_discard_disable_mutex);
3710 static void ram_block_discard_disable_mutex_unlock(void)
3712 qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3715 int ram_block_discard_disable(bool state)
3717 int ret = 0;
3719 ram_block_discard_disable_mutex_lock();
3720 if (!state) {
3721 ram_block_discard_disabled_cnt--;
3722 } else if (ram_block_discard_required_cnt ||
3723 ram_block_coordinated_discard_required_cnt) {
3724 ret = -EBUSY;
3725 } else {
3726 ram_block_discard_disabled_cnt++;
3728 ram_block_discard_disable_mutex_unlock();
3729 return ret;
3732 int ram_block_uncoordinated_discard_disable(bool state)
3734 int ret = 0;
3736 ram_block_discard_disable_mutex_lock();
3737 if (!state) {
3738 ram_block_uncoordinated_discard_disabled_cnt--;
3739 } else if (ram_block_discard_required_cnt) {
3740 ret = -EBUSY;
3741 } else {
3742 ram_block_uncoordinated_discard_disabled_cnt++;
3744 ram_block_discard_disable_mutex_unlock();
3745 return ret;
3748 int ram_block_discard_require(bool state)
3750 int ret = 0;
3752 ram_block_discard_disable_mutex_lock();
3753 if (!state) {
3754 ram_block_discard_required_cnt--;
3755 } else if (ram_block_discard_disabled_cnt ||
3756 ram_block_uncoordinated_discard_disabled_cnt) {
3757 ret = -EBUSY;
3758 } else {
3759 ram_block_discard_required_cnt++;
3761 ram_block_discard_disable_mutex_unlock();
3762 return ret;
3765 int ram_block_coordinated_discard_require(bool state)
3767 int ret = 0;
3769 ram_block_discard_disable_mutex_lock();
3770 if (!state) {
3771 ram_block_coordinated_discard_required_cnt--;
3772 } else if (ram_block_discard_disabled_cnt) {
3773 ret = -EBUSY;
3774 } else {
3775 ram_block_coordinated_discard_required_cnt++;
3777 ram_block_discard_disable_mutex_unlock();
3778 return ret;
3781 bool ram_block_discard_is_disabled(void)
3783 return qatomic_read(&ram_block_discard_disabled_cnt) ||
3784 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3787 bool ram_block_discard_is_required(void)
3789 return qatomic_read(&ram_block_discard_required_cnt) ||
3790 qatomic_read(&ram_block_coordinated_discard_required_cnt);