2 * Postcopy migration for RAM
4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
7 * Dave Gilbert <dgilbert@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
15 * Postcopy is a migration technique where the execution flips from the
16 * source to the destination before all the data has been copied.
19 #include "qemu/osdep.h"
20 #include "qemu/madvise.h"
21 #include "exec/target_page.h"
22 #include "migration.h"
23 #include "qemu-file.h"
25 #include "postcopy-ram.h"
27 #include "qapi/error.h"
28 #include "qemu/notify.h"
30 #include "sysemu/sysemu.h"
31 #include "qemu/error-report.h"
33 #include "hw/boards.h"
34 #include "exec/ramblock.h"
36 #include "yank_functions.h"
38 #include "qemu/userfaultfd.h"
39 #include "qemu/mmap-alloc.h"
42 /* Arbitrary limit on size of each discard command,
43 * keeps them around ~200 bytes
45 #define MAX_DISCARDS_PER_COMMAND 12
47 struct PostcopyDiscardState
{
48 const char *ramblock_name
;
51 * Start and length of a discard range (bytes)
53 uint64_t start_list
[MAX_DISCARDS_PER_COMMAND
];
54 uint64_t length_list
[MAX_DISCARDS_PER_COMMAND
];
55 unsigned int nsentwords
;
56 unsigned int nsentcmds
;
59 static NotifierWithReturnList postcopy_notifier_list
;
61 void postcopy_infrastructure_init(void)
63 notifier_with_return_list_init(&postcopy_notifier_list
);
66 void postcopy_add_notifier(NotifierWithReturn
*nn
)
68 notifier_with_return_list_add(&postcopy_notifier_list
, nn
);
71 void postcopy_remove_notifier(NotifierWithReturn
*n
)
73 notifier_with_return_remove(n
);
76 int postcopy_notify(enum PostcopyNotifyReason reason
, Error
**errp
)
78 struct PostcopyNotifyData pnd
;
82 return notifier_with_return_list_notify(&postcopy_notifier_list
,
87 * NOTE: this routine is not thread safe, we can't call it concurrently. But it
88 * should be good enough for migration's purposes.
90 void postcopy_thread_create(MigrationIncomingState
*mis
,
91 QemuThread
*thread
, const char *name
,
92 void *(*fn
)(void *), int joinable
)
94 qemu_sem_init(&mis
->thread_sync_sem
, 0);
95 qemu_thread_create(thread
, name
, fn
, mis
, joinable
);
96 qemu_sem_wait(&mis
->thread_sync_sem
);
97 qemu_sem_destroy(&mis
->thread_sync_sem
);
100 /* Postcopy needs to detect accesses to pages that haven't yet been copied
101 * across, and efficiently map new pages in, the techniques for doing this
102 * are target OS specific.
104 #if defined(__linux__)
107 #include <sys/ioctl.h>
108 #include <sys/syscall.h>
109 #include <asm/types.h> /* for __u64 */
112 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
113 #include <sys/eventfd.h>
114 #include <linux/userfaultfd.h>
116 typedef struct PostcopyBlocktimeContext
{
117 /* time when page fault initiated per vCPU */
118 uint32_t *page_fault_vcpu_time
;
119 /* page address per vCPU */
120 uintptr_t *vcpu_addr
;
121 uint32_t total_blocktime
;
122 /* blocktime per vCPU */
123 uint32_t *vcpu_blocktime
;
124 /* point in time when last page fault was initiated */
126 /* number of vCPU are suspended */
131 * Handler for exit event, necessary for
132 * releasing whole blocktime_ctx
134 Notifier exit_notifier
;
135 } PostcopyBlocktimeContext
;
137 static void destroy_blocktime_context(struct PostcopyBlocktimeContext
*ctx
)
139 g_free(ctx
->page_fault_vcpu_time
);
140 g_free(ctx
->vcpu_addr
);
141 g_free(ctx
->vcpu_blocktime
);
145 static void migration_exit_cb(Notifier
*n
, void *data
)
147 PostcopyBlocktimeContext
*ctx
= container_of(n
, PostcopyBlocktimeContext
,
149 destroy_blocktime_context(ctx
);
152 static struct PostcopyBlocktimeContext
*blocktime_context_new(void)
154 MachineState
*ms
= MACHINE(qdev_get_machine());
155 unsigned int smp_cpus
= ms
->smp
.cpus
;
156 PostcopyBlocktimeContext
*ctx
= g_new0(PostcopyBlocktimeContext
, 1);
157 ctx
->page_fault_vcpu_time
= g_new0(uint32_t, smp_cpus
);
158 ctx
->vcpu_addr
= g_new0(uintptr_t, smp_cpus
);
159 ctx
->vcpu_blocktime
= g_new0(uint32_t, smp_cpus
);
161 ctx
->exit_notifier
.notify
= migration_exit_cb
;
162 ctx
->start_time
= qemu_clock_get_ms(QEMU_CLOCK_REALTIME
);
163 qemu_add_exit_notifier(&ctx
->exit_notifier
);
167 static uint32List
*get_vcpu_blocktime_list(PostcopyBlocktimeContext
*ctx
)
169 MachineState
*ms
= MACHINE(qdev_get_machine());
170 uint32List
*list
= NULL
;
173 for (i
= ms
->smp
.cpus
- 1; i
>= 0; i
--) {
174 QAPI_LIST_PREPEND(list
, ctx
->vcpu_blocktime
[i
]);
181 * This function just populates MigrationInfo from postcopy's
182 * blocktime context. It will not populate MigrationInfo,
183 * unless postcopy-blocktime capability was set.
185 * @info: pointer to MigrationInfo to populate
187 void fill_destination_postcopy_migration_info(MigrationInfo
*info
)
189 MigrationIncomingState
*mis
= migration_incoming_get_current();
190 PostcopyBlocktimeContext
*bc
= mis
->blocktime_ctx
;
196 info
->has_postcopy_blocktime
= true;
197 info
->postcopy_blocktime
= bc
->total_blocktime
;
198 info
->has_postcopy_vcpu_blocktime
= true;
199 info
->postcopy_vcpu_blocktime
= get_vcpu_blocktime_list(bc
);
202 static uint32_t get_postcopy_total_blocktime(void)
204 MigrationIncomingState
*mis
= migration_incoming_get_current();
205 PostcopyBlocktimeContext
*bc
= mis
->blocktime_ctx
;
211 return bc
->total_blocktime
;
215 * receive_ufd_features: check userfault fd features, to request only supported
216 * features in the future.
218 * Returns: true on success
220 * __NR_userfaultfd - should be checked before
221 * @features: out parameter will contain uffdio_api.features provided by kernel
224 static bool receive_ufd_features(uint64_t *features
)
226 struct uffdio_api api_struct
= {0};
230 ufd
= uffd_open(O_CLOEXEC
);
232 error_report("%s: uffd_open() failed: %s", __func__
, strerror(errno
));
237 api_struct
.api
= UFFD_API
;
238 api_struct
.features
= 0;
239 if (ioctl(ufd
, UFFDIO_API
, &api_struct
)) {
240 error_report("%s: UFFDIO_API failed: %s", __func__
,
246 *features
= api_struct
.features
;
254 * request_ufd_features: this function should be called only once on a newly
255 * opened ufd, subsequent calls will lead to error.
257 * Returns: true on success
259 * @ufd: fd obtained from userfaultfd syscall
260 * @features: bit mask see UFFD_API_FEATURES
262 static bool request_ufd_features(int ufd
, uint64_t features
)
264 struct uffdio_api api_struct
= {0};
267 api_struct
.api
= UFFD_API
;
268 api_struct
.features
= features
;
269 if (ioctl(ufd
, UFFDIO_API
, &api_struct
)) {
270 error_report("%s failed: UFFDIO_API failed: %s", __func__
,
275 ioctl_mask
= (__u64
)1 << _UFFDIO_REGISTER
|
276 (__u64
)1 << _UFFDIO_UNREGISTER
;
277 if ((api_struct
.ioctls
& ioctl_mask
) != ioctl_mask
) {
278 error_report("Missing userfault features: %" PRIx64
,
279 (uint64_t)(~api_struct
.ioctls
& ioctl_mask
));
286 static bool ufd_check_and_apply(int ufd
, MigrationIncomingState
*mis
,
289 uint64_t asked_features
= 0;
290 static uint64_t supported_features
;
294 * it's not possible to
295 * request UFFD_API twice per one fd
296 * userfault fd features is persistent
298 if (!supported_features
) {
299 if (!receive_ufd_features(&supported_features
)) {
300 error_setg(errp
, "Userfault feature detection failed");
305 #ifdef UFFD_FEATURE_THREAD_ID
306 if (UFFD_FEATURE_THREAD_ID
& supported_features
) {
307 asked_features
|= UFFD_FEATURE_THREAD_ID
;
308 if (migrate_postcopy_blocktime()) {
309 if (!mis
->blocktime_ctx
) {
310 mis
->blocktime_ctx
= blocktime_context_new();
317 * request features, even if asked_features is 0, due to
318 * kernel expects UFFD_API before UFFDIO_REGISTER, per
319 * userfault file descriptor
321 if (!request_ufd_features(ufd
, asked_features
)) {
322 error_setg(errp
, "Failed features %" PRIu64
, asked_features
);
326 if (qemu_real_host_page_size() != ram_pagesize_summary()) {
327 bool have_hp
= false;
328 /* We've got a huge page */
329 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS
330 have_hp
= supported_features
& UFFD_FEATURE_MISSING_HUGETLBFS
;
334 "Userfault on this host does not support huge pages");
341 /* Callback from postcopy_ram_supported_by_host block iterator.
343 static int test_ramblock_postcopiable(RAMBlock
*rb
, Error
**errp
)
345 const char *block_name
= qemu_ram_get_idstr(rb
);
346 ram_addr_t length
= qemu_ram_get_used_length(rb
);
347 size_t pagesize
= qemu_ram_pagesize(rb
);
350 if (length
% pagesize
) {
352 "Postcopy requires RAM blocks to be a page size multiple,"
353 " block %s is 0x" RAM_ADDR_FMT
" bytes with a "
354 "page size of 0x%zx", block_name
, length
, pagesize
);
359 fs
= qemu_fd_getfs(rb
->fd
);
360 if (fs
!= QEMU_FS_TYPE_TMPFS
&& fs
!= QEMU_FS_TYPE_HUGETLBFS
) {
362 "Host backend files need to be TMPFS or HUGETLBFS only");
371 * Note: This has the side effect of munlock'ing all of RAM, that's
372 * normally fine since if the postcopy succeeds it gets turned back on at the
375 bool postcopy_ram_supported_by_host(MigrationIncomingState
*mis
, Error
**errp
)
377 long pagesize
= qemu_real_host_page_size();
379 bool ret
= false; /* Error unless we change it */
380 void *testarea
= NULL
;
381 struct uffdio_register reg_struct
;
382 struct uffdio_range range_struct
;
383 uint64_t feature_mask
;
387 if (qemu_target_page_size() > pagesize
) {
388 error_setg(errp
, "Target page size bigger than host page size");
392 ufd
= uffd_open(O_CLOEXEC
);
394 error_setg(errp
, "Userfaultfd not available: %s", strerror(errno
));
398 /* Give devices a chance to object */
399 if (postcopy_notify(POSTCOPY_NOTIFY_PROBE
, errp
)) {
403 /* Version and features check */
404 if (!ufd_check_and_apply(ufd
, mis
, errp
)) {
409 * We don't support postcopy with some type of ramblocks.
411 * NOTE: we explicitly ignored migrate_ram_is_ignored() instead we checked
412 * all possible ramblocks. This is because this function can be called
413 * when creating the migration object, during the phase RAM_MIGRATABLE
414 * is not even properly set for all the ramblocks.
416 * A side effect of this is we'll also check against RAM_SHARED
417 * ramblocks even if migrate_ignore_shared() is set (in which case
418 * we'll never migrate RAM_SHARED at all), but normally this shouldn't
419 * affect in reality, or we can revisit.
421 RAMBLOCK_FOREACH(block
) {
422 if (test_ramblock_postcopiable(block
, errp
)) {
428 * userfault and mlock don't go together; we'll put it back later if
432 error_setg(errp
, "munlockall() failed: %s", strerror(errno
));
437 * We need to check that the ops we need are supported on anon memory
438 * To do that we need to register a chunk and see the flags that
441 testarea
= mmap(NULL
, pagesize
, PROT_READ
| PROT_WRITE
, MAP_PRIVATE
|
442 MAP_ANONYMOUS
, -1, 0);
443 if (testarea
== MAP_FAILED
) {
444 error_setg(errp
, "Failed to map test area: %s", strerror(errno
));
447 g_assert(QEMU_PTR_IS_ALIGNED(testarea
, pagesize
));
449 reg_struct
.range
.start
= (uintptr_t)testarea
;
450 reg_struct
.range
.len
= pagesize
;
451 reg_struct
.mode
= UFFDIO_REGISTER_MODE_MISSING
;
453 if (ioctl(ufd
, UFFDIO_REGISTER
, ®_struct
)) {
454 error_setg(errp
, "UFFDIO_REGISTER failed: %s", strerror(errno
));
458 range_struct
.start
= (uintptr_t)testarea
;
459 range_struct
.len
= pagesize
;
460 if (ioctl(ufd
, UFFDIO_UNREGISTER
, &range_struct
)) {
461 error_setg(errp
, "UFFDIO_UNREGISTER failed: %s", strerror(errno
));
465 feature_mask
= (__u64
)1 << _UFFDIO_WAKE
|
466 (__u64
)1 << _UFFDIO_COPY
|
467 (__u64
)1 << _UFFDIO_ZEROPAGE
;
468 if ((reg_struct
.ioctls
& feature_mask
) != feature_mask
) {
469 error_setg(errp
, "Missing userfault map features: %" PRIx64
,
470 (uint64_t)(~reg_struct
.ioctls
& feature_mask
));
478 munmap(testarea
, pagesize
);
487 * Setup an area of RAM so that it *can* be used for postcopy later; this
488 * must be done right at the start prior to pre-copy.
489 * opaque should be the MIS.
491 static int init_range(RAMBlock
*rb
, void *opaque
)
493 const char *block_name
= qemu_ram_get_idstr(rb
);
494 void *host_addr
= qemu_ram_get_host_addr(rb
);
495 ram_addr_t offset
= qemu_ram_get_offset(rb
);
496 ram_addr_t length
= qemu_ram_get_used_length(rb
);
497 trace_postcopy_init_range(block_name
, host_addr
, offset
, length
);
500 * Save the used_length before running the guest. In case we have to
501 * resize RAM blocks when syncing RAM block sizes from the source during
502 * precopy, we'll update it manually via the ram block notifier.
504 rb
->postcopy_length
= length
;
507 * We need the whole of RAM to be truly empty for postcopy, so things
508 * like ROMs and any data tables built during init must be zero'd
509 * - we're going to get the copy from the source anyway.
510 * (Precopy will just overwrite this data, so doesn't need the discard)
512 if (ram_discard_range(block_name
, 0, length
)) {
520 * At the end of migration, undo the effects of init_range
521 * opaque should be the MIS.
523 static int cleanup_range(RAMBlock
*rb
, void *opaque
)
525 const char *block_name
= qemu_ram_get_idstr(rb
);
526 void *host_addr
= qemu_ram_get_host_addr(rb
);
527 ram_addr_t offset
= qemu_ram_get_offset(rb
);
528 ram_addr_t length
= rb
->postcopy_length
;
529 MigrationIncomingState
*mis
= opaque
;
530 struct uffdio_range range_struct
;
531 trace_postcopy_cleanup_range(block_name
, host_addr
, offset
, length
);
534 * We turned off hugepage for the precopy stage with postcopy enabled
535 * we can turn it back on now.
537 qemu_madvise(host_addr
, length
, QEMU_MADV_HUGEPAGE
);
540 * We can also turn off userfault now since we should have all the
541 * pages. It can be useful to leave it on to debug postcopy
542 * if you're not sure it's always getting every page.
544 range_struct
.start
= (uintptr_t)host_addr
;
545 range_struct
.len
= length
;
547 if (ioctl(mis
->userfault_fd
, UFFDIO_UNREGISTER
, &range_struct
)) {
548 error_report("%s: userfault unregister %s", __func__
, strerror(errno
));
557 * Initialise postcopy-ram, setting the RAM to a state where we can go into
558 * postcopy later; must be called prior to any precopy.
559 * called from arch_init's similarly named ram_postcopy_incoming_init
561 int postcopy_ram_incoming_init(MigrationIncomingState
*mis
)
563 if (foreach_not_ignored_block(init_range
, NULL
)) {
570 static void postcopy_temp_pages_cleanup(MigrationIncomingState
*mis
)
574 if (mis
->postcopy_tmp_pages
) {
575 for (i
= 0; i
< mis
->postcopy_channels
; i
++) {
576 if (mis
->postcopy_tmp_pages
[i
].tmp_huge_page
) {
577 munmap(mis
->postcopy_tmp_pages
[i
].tmp_huge_page
,
578 mis
->largest_page_size
);
579 mis
->postcopy_tmp_pages
[i
].tmp_huge_page
= NULL
;
582 g_free(mis
->postcopy_tmp_pages
);
583 mis
->postcopy_tmp_pages
= NULL
;
586 if (mis
->postcopy_tmp_zero_page
) {
587 munmap(mis
->postcopy_tmp_zero_page
, mis
->largest_page_size
);
588 mis
->postcopy_tmp_zero_page
= NULL
;
593 * At the end of a migration where postcopy_ram_incoming_init was called.
595 int postcopy_ram_incoming_cleanup(MigrationIncomingState
*mis
)
597 trace_postcopy_ram_incoming_cleanup_entry();
599 if (mis
->preempt_thread_status
== PREEMPT_THREAD_CREATED
) {
600 /* Notify the fast load thread to quit */
601 mis
->preempt_thread_status
= PREEMPT_THREAD_QUIT
;
602 if (mis
->postcopy_qemufile_dst
) {
603 qemu_file_shutdown(mis
->postcopy_qemufile_dst
);
605 qemu_thread_join(&mis
->postcopy_prio_thread
);
606 mis
->preempt_thread_status
= PREEMPT_THREAD_NONE
;
609 if (mis
->have_fault_thread
) {
610 Error
*local_err
= NULL
;
612 /* Let the fault thread quit */
613 qatomic_set(&mis
->fault_thread_quit
, 1);
614 postcopy_fault_thread_notify(mis
);
615 trace_postcopy_ram_incoming_cleanup_join();
616 qemu_thread_join(&mis
->fault_thread
);
618 if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END
, &local_err
)) {
619 error_report_err(local_err
);
623 if (foreach_not_ignored_block(cleanup_range
, mis
)) {
627 trace_postcopy_ram_incoming_cleanup_closeuf();
628 close(mis
->userfault_fd
);
629 close(mis
->userfault_event_fd
);
630 mis
->have_fault_thread
= false;
634 if (os_mlock() < 0) {
635 error_report("mlock: %s", strerror(errno
));
637 * It doesn't feel right to fail at this point, we have a valid
643 postcopy_temp_pages_cleanup(mis
);
645 trace_postcopy_ram_incoming_cleanup_blocktime(
646 get_postcopy_total_blocktime());
648 trace_postcopy_ram_incoming_cleanup_exit();
653 * Disable huge pages on an area
655 static int nhp_range(RAMBlock
*rb
, void *opaque
)
657 const char *block_name
= qemu_ram_get_idstr(rb
);
658 void *host_addr
= qemu_ram_get_host_addr(rb
);
659 ram_addr_t offset
= qemu_ram_get_offset(rb
);
660 ram_addr_t length
= rb
->postcopy_length
;
661 trace_postcopy_nhp_range(block_name
, host_addr
, offset
, length
);
664 * Before we do discards we need to ensure those discards really
665 * do delete areas of the page, even if THP thinks a hugepage would
666 * be a good idea, so force hugepages off.
668 qemu_madvise(host_addr
, length
, QEMU_MADV_NOHUGEPAGE
);
674 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
675 * however leaving it until after precopy means that most of the precopy
678 int postcopy_ram_prepare_discard(MigrationIncomingState
*mis
)
680 if (foreach_not_ignored_block(nhp_range
, mis
)) {
684 postcopy_state_set(POSTCOPY_INCOMING_DISCARD
);
690 * Mark the given area of RAM as requiring notification to unwritten areas
691 * Used as a callback on foreach_not_ignored_block.
692 * host_addr: Base of area to mark
693 * offset: Offset in the whole ram arena
694 * length: Length of the section
695 * opaque: MigrationIncomingState pointer
696 * Returns 0 on success
698 static int ram_block_enable_notify(RAMBlock
*rb
, void *opaque
)
700 MigrationIncomingState
*mis
= opaque
;
701 struct uffdio_register reg_struct
;
703 reg_struct
.range
.start
= (uintptr_t)qemu_ram_get_host_addr(rb
);
704 reg_struct
.range
.len
= rb
->postcopy_length
;
705 reg_struct
.mode
= UFFDIO_REGISTER_MODE_MISSING
;
707 /* Now tell our userfault_fd that it's responsible for this area */
708 if (ioctl(mis
->userfault_fd
, UFFDIO_REGISTER
, ®_struct
)) {
709 error_report("%s userfault register: %s", __func__
, strerror(errno
));
712 if (!(reg_struct
.ioctls
& ((__u64
)1 << _UFFDIO_COPY
))) {
713 error_report("%s userfault: Region doesn't support COPY", __func__
);
716 if (reg_struct
.ioctls
& ((__u64
)1 << _UFFDIO_ZEROPAGE
)) {
717 qemu_ram_set_uf_zeroable(rb
);
723 int postcopy_wake_shared(struct PostCopyFD
*pcfd
,
724 uint64_t client_addr
,
727 size_t pagesize
= qemu_ram_pagesize(rb
);
728 struct uffdio_range range
;
730 trace_postcopy_wake_shared(client_addr
, qemu_ram_get_idstr(rb
));
731 range
.start
= ROUND_DOWN(client_addr
, pagesize
);
732 range
.len
= pagesize
;
733 ret
= ioctl(pcfd
->fd
, UFFDIO_WAKE
, &range
);
735 error_report("%s: Failed to wake: %zx in %s (%s)",
736 __func__
, (size_t)client_addr
, qemu_ram_get_idstr(rb
),
742 static int postcopy_request_page(MigrationIncomingState
*mis
, RAMBlock
*rb
,
743 ram_addr_t start
, uint64_t haddr
)
745 void *aligned
= (void *)(uintptr_t)ROUND_DOWN(haddr
, qemu_ram_pagesize(rb
));
748 * Discarded pages (via RamDiscardManager) are never migrated. On unlikely
749 * access, place a zeropage, which will also set the relevant bits in the
750 * recv_bitmap accordingly, so we won't try placing a zeropage twice.
752 * Checking a single bit is sufficient to handle pagesize > TPS as either
753 * all relevant bits are set or not.
755 assert(QEMU_IS_ALIGNED(start
, qemu_ram_pagesize(rb
)));
756 if (ramblock_page_is_discarded(rb
, start
)) {
757 bool received
= ramblock_recv_bitmap_test_byte_offset(rb
, start
);
759 return received
? 0 : postcopy_place_page_zero(mis
, aligned
, rb
);
762 return migrate_send_rp_req_pages(mis
, rb
, start
, haddr
);
766 * Callback from shared fault handlers to ask for a page,
767 * the page must be specified by a RAMBlock and an offset in that rb
768 * Note: Only for use by shared fault handlers (in fault thread)
770 int postcopy_request_shared_page(struct PostCopyFD
*pcfd
, RAMBlock
*rb
,
771 uint64_t client_addr
, uint64_t rb_offset
)
773 uint64_t aligned_rbo
= ROUND_DOWN(rb_offset
, qemu_ram_pagesize(rb
));
774 MigrationIncomingState
*mis
= migration_incoming_get_current();
776 trace_postcopy_request_shared_page(pcfd
->idstr
, qemu_ram_get_idstr(rb
),
778 if (ramblock_recv_bitmap_test_byte_offset(rb
, aligned_rbo
)) {
779 trace_postcopy_request_shared_page_present(pcfd
->idstr
,
780 qemu_ram_get_idstr(rb
), rb_offset
);
781 return postcopy_wake_shared(pcfd
, client_addr
, rb
);
783 postcopy_request_page(mis
, rb
, aligned_rbo
, client_addr
);
787 static int get_mem_fault_cpu_index(uint32_t pid
)
791 CPU_FOREACH(cpu_iter
) {
792 if (cpu_iter
->thread_id
== pid
) {
793 trace_get_mem_fault_cpu_index(cpu_iter
->cpu_index
, pid
);
794 return cpu_iter
->cpu_index
;
797 trace_get_mem_fault_cpu_index(-1, pid
);
801 static uint32_t get_low_time_offset(PostcopyBlocktimeContext
*dc
)
803 int64_t start_time_offset
= qemu_clock_get_ms(QEMU_CLOCK_REALTIME
) -
805 return start_time_offset
< 1 ? 1 : start_time_offset
& UINT32_MAX
;
809 * This function is being called when pagefault occurs. It
810 * tracks down vCPU blocking time.
812 * @addr: faulted host virtual address
813 * @ptid: faulted process thread id
814 * @rb: ramblock appropriate to addr
816 static void mark_postcopy_blocktime_begin(uintptr_t addr
, uint32_t ptid
,
819 int cpu
, already_received
;
820 MigrationIncomingState
*mis
= migration_incoming_get_current();
821 PostcopyBlocktimeContext
*dc
= mis
->blocktime_ctx
;
822 uint32_t low_time_offset
;
824 if (!dc
|| ptid
== 0) {
827 cpu
= get_mem_fault_cpu_index(ptid
);
832 low_time_offset
= get_low_time_offset(dc
);
833 if (dc
->vcpu_addr
[cpu
] == 0) {
834 qatomic_inc(&dc
->smp_cpus_down
);
837 qatomic_xchg(&dc
->last_begin
, low_time_offset
);
838 qatomic_xchg(&dc
->page_fault_vcpu_time
[cpu
], low_time_offset
);
839 qatomic_xchg(&dc
->vcpu_addr
[cpu
], addr
);
842 * check it here, not at the beginning of the function,
843 * due to, check could occur early than bitmap_set in
844 * qemu_ufd_copy_ioctl
846 already_received
= ramblock_recv_bitmap_test(rb
, (void *)addr
);
847 if (already_received
) {
848 qatomic_xchg(&dc
->vcpu_addr
[cpu
], 0);
849 qatomic_xchg(&dc
->page_fault_vcpu_time
[cpu
], 0);
850 qatomic_dec(&dc
->smp_cpus_down
);
852 trace_mark_postcopy_blocktime_begin(addr
, dc
, dc
->page_fault_vcpu_time
[cpu
],
853 cpu
, already_received
);
857 * This function just provide calculated blocktime per cpu and trace it.
858 * Total blocktime is calculated in mark_postcopy_blocktime_end.
861 * Assume we have 3 CPU
864 * -----***********------------xxx***************------------------------> CPU1
867 * ------------****************xxx---------------------------------------> CPU2
870 * ------------------------****xxx********-------------------------------> CPU3
872 * We have sequence S1,S2,E1,S3,S1,E2,E3,E1
873 * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
874 * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
875 * it's a part of total blocktime.
876 * S1 - here is last_begin
877 * Legend of the picture is following:
878 * * - means blocktime per vCPU
879 * x - means overlapped blocktime (total blocktime)
881 * @addr: host virtual address
883 static void mark_postcopy_blocktime_end(uintptr_t addr
)
885 MigrationIncomingState
*mis
= migration_incoming_get_current();
886 PostcopyBlocktimeContext
*dc
= mis
->blocktime_ctx
;
887 MachineState
*ms
= MACHINE(qdev_get_machine());
888 unsigned int smp_cpus
= ms
->smp
.cpus
;
889 int i
, affected_cpu
= 0;
890 bool vcpu_total_blocktime
= false;
891 uint32_t read_vcpu_time
, low_time_offset
;
897 low_time_offset
= get_low_time_offset(dc
);
898 /* lookup cpu, to clear it,
899 * that algorithm looks straightforward, but it's not
900 * optimal, more optimal algorithm is keeping tree or hash
901 * where key is address value is a list of */
902 for (i
= 0; i
< smp_cpus
; i
++) {
903 uint32_t vcpu_blocktime
= 0;
905 read_vcpu_time
= qatomic_fetch_add(&dc
->page_fault_vcpu_time
[i
], 0);
906 if (qatomic_fetch_add(&dc
->vcpu_addr
[i
], 0) != addr
||
907 read_vcpu_time
== 0) {
910 qatomic_xchg(&dc
->vcpu_addr
[i
], 0);
911 vcpu_blocktime
= low_time_offset
- read_vcpu_time
;
913 /* we need to know is that mark_postcopy_end was due to
914 * faulted page, another possible case it's prefetched
915 * page and in that case we shouldn't be here */
916 if (!vcpu_total_blocktime
&&
917 qatomic_fetch_add(&dc
->smp_cpus_down
, 0) == smp_cpus
) {
918 vcpu_total_blocktime
= true;
920 /* continue cycle, due to one page could affect several vCPUs */
921 dc
->vcpu_blocktime
[i
] += vcpu_blocktime
;
924 qatomic_sub(&dc
->smp_cpus_down
, affected_cpu
);
925 if (vcpu_total_blocktime
) {
926 dc
->total_blocktime
+= low_time_offset
- qatomic_fetch_add(
929 trace_mark_postcopy_blocktime_end(addr
, dc
, dc
->total_blocktime
,
933 static void postcopy_pause_fault_thread(MigrationIncomingState
*mis
)
935 trace_postcopy_pause_fault_thread();
936 qemu_sem_wait(&mis
->postcopy_pause_sem_fault
);
937 trace_postcopy_pause_fault_thread_continued();
941 * Handle faults detected by the USERFAULT markings
943 static void *postcopy_ram_fault_thread(void *opaque
)
945 MigrationIncomingState
*mis
= opaque
;
951 trace_postcopy_ram_fault_thread_entry();
952 rcu_register_thread();
953 mis
->last_rb
= NULL
; /* last RAMBlock we sent part of */
954 qemu_sem_post(&mis
->thread_sync_sem
);
957 size_t pfd_len
= 2 + mis
->postcopy_remote_fds
->len
;
959 pfd
= g_new0(struct pollfd
, pfd_len
);
961 pfd
[0].fd
= mis
->userfault_fd
;
962 pfd
[0].events
= POLLIN
;
963 pfd
[1].fd
= mis
->userfault_event_fd
;
964 pfd
[1].events
= POLLIN
; /* Waiting for eventfd to go positive */
965 trace_postcopy_ram_fault_thread_fds_core(pfd
[0].fd
, pfd
[1].fd
);
966 for (index
= 0; index
< mis
->postcopy_remote_fds
->len
; index
++) {
967 struct PostCopyFD
*pcfd
= &g_array_index(mis
->postcopy_remote_fds
,
968 struct PostCopyFD
, index
);
969 pfd
[2 + index
].fd
= pcfd
->fd
;
970 pfd
[2 + index
].events
= POLLIN
;
971 trace_postcopy_ram_fault_thread_fds_extra(2 + index
, pcfd
->idstr
,
976 ram_addr_t rb_offset
;
980 * We're mainly waiting for the kernel to give us a faulting HVA,
981 * however we can be told to quit via userfault_quit_fd which is
985 poll_result
= poll(pfd
, pfd_len
, -1 /* Wait forever */);
986 if (poll_result
== -1) {
987 error_report("%s: userfault poll: %s", __func__
, strerror(errno
));
991 if (!mis
->to_src_file
) {
993 * Possibly someone tells us that the return path is
994 * broken already using the event. We should hold until
995 * the channel is rebuilt.
997 postcopy_pause_fault_thread(mis
);
1000 if (pfd
[1].revents
) {
1003 /* Consume the signal */
1004 if (read(mis
->userfault_event_fd
, &tmp64
, 8) != 8) {
1005 /* Nothing obviously nicer than posting this error. */
1006 error_report("%s: read() failed", __func__
);
1009 if (qatomic_read(&mis
->fault_thread_quit
)) {
1010 trace_postcopy_ram_fault_thread_quit();
1015 if (pfd
[0].revents
) {
1017 ret
= read(mis
->userfault_fd
, &msg
, sizeof(msg
));
1018 if (ret
!= sizeof(msg
)) {
1019 if (errno
== EAGAIN
) {
1021 * if a wake up happens on the other thread just after
1022 * the poll, there is nothing to read.
1027 error_report("%s: Failed to read full userfault "
1029 __func__
, strerror(errno
));
1032 error_report("%s: Read %d bytes from userfaultfd "
1034 __func__
, ret
, sizeof(msg
));
1035 break; /* Lost alignment, don't know what we'd read next */
1038 if (msg
.event
!= UFFD_EVENT_PAGEFAULT
) {
1039 error_report("%s: Read unexpected event %ud from userfaultfd",
1040 __func__
, msg
.event
);
1041 continue; /* It's not a page fault, shouldn't happen */
1044 rb
= qemu_ram_block_from_host(
1045 (void *)(uintptr_t)msg
.arg
.pagefault
.address
,
1048 error_report("postcopy_ram_fault_thread: Fault outside guest: %"
1049 PRIx64
, (uint64_t)msg
.arg
.pagefault
.address
);
1053 rb_offset
= ROUND_DOWN(rb_offset
, qemu_ram_pagesize(rb
));
1054 trace_postcopy_ram_fault_thread_request(msg
.arg
.pagefault
.address
,
1055 qemu_ram_get_idstr(rb
),
1057 msg
.arg
.pagefault
.feat
.ptid
);
1058 mark_postcopy_blocktime_begin(
1059 (uintptr_t)(msg
.arg
.pagefault
.address
),
1060 msg
.arg
.pagefault
.feat
.ptid
, rb
);
1064 * Send the request to the source - we want to request one
1065 * of our host page sizes (which is >= TPS)
1067 ret
= postcopy_request_page(mis
, rb
, rb_offset
,
1068 msg
.arg
.pagefault
.address
);
1070 /* May be network failure, try to wait for recovery */
1071 postcopy_pause_fault_thread(mis
);
1076 /* Now handle any requests from external processes on shared memory */
1077 /* TODO: May need to handle devices deregistering during postcopy */
1078 for (index
= 2; index
< pfd_len
&& poll_result
; index
++) {
1079 if (pfd
[index
].revents
) {
1080 struct PostCopyFD
*pcfd
=
1081 &g_array_index(mis
->postcopy_remote_fds
,
1082 struct PostCopyFD
, index
- 2);
1085 if (pfd
[index
].revents
& POLLERR
) {
1086 error_report("%s: POLLERR on poll %zd fd=%d",
1087 __func__
, index
, pcfd
->fd
);
1088 pfd
[index
].events
= 0;
1092 ret
= read(pcfd
->fd
, &msg
, sizeof(msg
));
1093 if (ret
!= sizeof(msg
)) {
1094 if (errno
== EAGAIN
) {
1096 * if a wake up happens on the other thread just after
1097 * the poll, there is nothing to read.
1102 error_report("%s: Failed to read full userfault "
1103 "message: %s (shared) revents=%d",
1104 __func__
, strerror(errno
),
1105 pfd
[index
].revents
);
1106 /*TODO: Could just disable this sharer */
1109 error_report("%s: Read %d bytes from userfaultfd "
1110 "expected %zd (shared)",
1111 __func__
, ret
, sizeof(msg
));
1112 /*TODO: Could just disable this sharer */
1113 break; /*Lost alignment,don't know what we'd read next*/
1116 if (msg
.event
!= UFFD_EVENT_PAGEFAULT
) {
1117 error_report("%s: Read unexpected event %ud "
1118 "from userfaultfd (shared)",
1119 __func__
, msg
.event
);
1120 continue; /* It's not a page fault, shouldn't happen */
1122 /* Call the device handler registered with us */
1123 ret
= pcfd
->handler(pcfd
, &msg
);
1125 error_report("%s: Failed to resolve shared fault on %zd/%s",
1126 __func__
, index
, pcfd
->idstr
);
1127 /* TODO: Fail? Disable this sharer? */
1132 rcu_unregister_thread();
1133 trace_postcopy_ram_fault_thread_exit();
1138 static int postcopy_temp_pages_setup(MigrationIncomingState
*mis
)
1140 PostcopyTmpPage
*tmp_page
;
1141 int err
, i
, channels
;
1144 if (migrate_postcopy_preempt()) {
1145 /* If preemption enabled, need extra channel for urgent requests */
1146 mis
->postcopy_channels
= RAM_CHANNEL_MAX
;
1148 /* Both precopy/postcopy on the same channel */
1149 mis
->postcopy_channels
= 1;
1152 channels
= mis
->postcopy_channels
;
1153 mis
->postcopy_tmp_pages
= g_malloc0_n(sizeof(PostcopyTmpPage
), channels
);
1155 for (i
= 0; i
< channels
; i
++) {
1156 tmp_page
= &mis
->postcopy_tmp_pages
[i
];
1157 temp_page
= mmap(NULL
, mis
->largest_page_size
, PROT_READ
| PROT_WRITE
,
1158 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
1159 if (temp_page
== MAP_FAILED
) {
1161 error_report("%s: Failed to map postcopy_tmp_pages[%d]: %s",
1162 __func__
, i
, strerror(err
));
1163 /* Clean up will be done later */
1166 tmp_page
->tmp_huge_page
= temp_page
;
1167 /* Initialize default states for each tmp page */
1168 postcopy_temp_page_reset(tmp_page
);
1172 * Map large zero page when kernel can't use UFFDIO_ZEROPAGE for hugepages
1174 mis
->postcopy_tmp_zero_page
= mmap(NULL
, mis
->largest_page_size
,
1175 PROT_READ
| PROT_WRITE
,
1176 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
1177 if (mis
->postcopy_tmp_zero_page
== MAP_FAILED
) {
1179 mis
->postcopy_tmp_zero_page
= NULL
;
1180 error_report("%s: Failed to map large zero page %s",
1181 __func__
, strerror(err
));
1185 memset(mis
->postcopy_tmp_zero_page
, '\0', mis
->largest_page_size
);
1190 int postcopy_ram_incoming_setup(MigrationIncomingState
*mis
)
1192 Error
*local_err
= NULL
;
1194 /* Open the fd for the kernel to give us userfaults */
1195 mis
->userfault_fd
= uffd_open(O_CLOEXEC
| O_NONBLOCK
);
1196 if (mis
->userfault_fd
== -1) {
1197 error_report("%s: Failed to open userfault fd: %s", __func__
,
1203 * Although the host check already tested the API, we need to
1204 * do the check again as an ABI handshake on the new fd.
1206 if (!ufd_check_and_apply(mis
->userfault_fd
, mis
, &local_err
)) {
1207 error_report_err(local_err
);
1211 /* Now an eventfd we use to tell the fault-thread to quit */
1212 mis
->userfault_event_fd
= eventfd(0, EFD_CLOEXEC
);
1213 if (mis
->userfault_event_fd
== -1) {
1214 error_report("%s: Opening userfault_event_fd: %s", __func__
,
1216 close(mis
->userfault_fd
);
1220 postcopy_thread_create(mis
, &mis
->fault_thread
, "fault-default",
1221 postcopy_ram_fault_thread
, QEMU_THREAD_JOINABLE
);
1222 mis
->have_fault_thread
= true;
1224 /* Mark so that we get notified of accesses to unwritten areas */
1225 if (foreach_not_ignored_block(ram_block_enable_notify
, mis
)) {
1226 error_report("ram_block_enable_notify failed");
1230 if (postcopy_temp_pages_setup(mis
)) {
1231 /* Error dumped in the sub-function */
1235 if (migrate_postcopy_preempt()) {
1237 * This thread needs to be created after the temp pages because
1238 * it'll fetch RAM_CHANNEL_POSTCOPY PostcopyTmpPage immediately.
1240 postcopy_thread_create(mis
, &mis
->postcopy_prio_thread
, "fault-fast",
1241 postcopy_preempt_thread
, QEMU_THREAD_JOINABLE
);
1242 mis
->preempt_thread_status
= PREEMPT_THREAD_CREATED
;
1245 trace_postcopy_ram_enable_notify();
1250 static int qemu_ufd_copy_ioctl(MigrationIncomingState
*mis
, void *host_addr
,
1251 void *from_addr
, uint64_t pagesize
, RAMBlock
*rb
)
1253 int userfault_fd
= mis
->userfault_fd
;
1257 struct uffdio_copy copy_struct
;
1258 copy_struct
.dst
= (uint64_t)(uintptr_t)host_addr
;
1259 copy_struct
.src
= (uint64_t)(uintptr_t)from_addr
;
1260 copy_struct
.len
= pagesize
;
1261 copy_struct
.mode
= 0;
1262 ret
= ioctl(userfault_fd
, UFFDIO_COPY
, ©_struct
);
1264 struct uffdio_zeropage zero_struct
;
1265 zero_struct
.range
.start
= (uint64_t)(uintptr_t)host_addr
;
1266 zero_struct
.range
.len
= pagesize
;
1267 zero_struct
.mode
= 0;
1268 ret
= ioctl(userfault_fd
, UFFDIO_ZEROPAGE
, &zero_struct
);
1271 qemu_mutex_lock(&mis
->page_request_mutex
);
1272 ramblock_recv_bitmap_set_range(rb
, host_addr
,
1273 pagesize
/ qemu_target_page_size());
1275 * If this page resolves a page fault for a previous recorded faulted
1276 * address, take a special note to maintain the requested page list.
1278 if (g_tree_lookup(mis
->page_requested
, host_addr
)) {
1279 g_tree_remove(mis
->page_requested
, host_addr
);
1280 mis
->page_requested_count
--;
1281 trace_postcopy_page_req_del(host_addr
, mis
->page_requested_count
);
1283 qemu_mutex_unlock(&mis
->page_request_mutex
);
1284 mark_postcopy_blocktime_end((uintptr_t)host_addr
);
1289 int postcopy_notify_shared_wake(RAMBlock
*rb
, uint64_t offset
)
1292 MigrationIncomingState
*mis
= migration_incoming_get_current();
1293 GArray
*pcrfds
= mis
->postcopy_remote_fds
;
1295 for (i
= 0; i
< pcrfds
->len
; i
++) {
1296 struct PostCopyFD
*cur
= &g_array_index(pcrfds
, struct PostCopyFD
, i
);
1297 int ret
= cur
->waker(cur
, rb
, offset
);
1306 * Place a host page (from) at (host) atomically
1307 * returns 0 on success
1309 int postcopy_place_page(MigrationIncomingState
*mis
, void *host
, void *from
,
1312 size_t pagesize
= qemu_ram_pagesize(rb
);
1314 /* copy also acks to the kernel waking the stalled thread up
1315 * TODO: We can inhibit that ack and only do it if it was requested
1316 * which would be slightly cheaper, but we'd have to be careful
1317 * of the order of updating our page state.
1319 if (qemu_ufd_copy_ioctl(mis
, host
, from
, pagesize
, rb
)) {
1321 error_report("%s: %s copy host: %p from: %p (size: %zd)",
1322 __func__
, strerror(e
), host
, from
, pagesize
);
1327 trace_postcopy_place_page(host
);
1328 return postcopy_notify_shared_wake(rb
,
1329 qemu_ram_block_host_offset(rb
, host
));
1333 * Place a zero page at (host) atomically
1334 * returns 0 on success
1336 int postcopy_place_page_zero(MigrationIncomingState
*mis
, void *host
,
1339 size_t pagesize
= qemu_ram_pagesize(rb
);
1340 trace_postcopy_place_page_zero(host
);
1342 /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
1343 * but it's not available for everything (e.g. hugetlbpages)
1345 if (qemu_ram_is_uf_zeroable(rb
)) {
1346 if (qemu_ufd_copy_ioctl(mis
, host
, NULL
, pagesize
, rb
)) {
1348 error_report("%s: %s zero host: %p",
1349 __func__
, strerror(e
), host
);
1353 return postcopy_notify_shared_wake(rb
,
1354 qemu_ram_block_host_offset(rb
,
1357 return postcopy_place_page(mis
, host
, mis
->postcopy_tmp_zero_page
, rb
);
1362 /* No target OS support, stubs just fail */
1363 void fill_destination_postcopy_migration_info(MigrationInfo
*info
)
1367 bool postcopy_ram_supported_by_host(MigrationIncomingState
*mis
, Error
**errp
)
1369 error_report("%s: No OS support", __func__
);
1373 int postcopy_ram_incoming_init(MigrationIncomingState
*mis
)
1375 error_report("postcopy_ram_incoming_init: No OS support");
1379 int postcopy_ram_incoming_cleanup(MigrationIncomingState
*mis
)
1385 int postcopy_ram_prepare_discard(MigrationIncomingState
*mis
)
1391 int postcopy_request_shared_page(struct PostCopyFD
*pcfd
, RAMBlock
*rb
,
1392 uint64_t client_addr
, uint64_t rb_offset
)
1398 int postcopy_ram_incoming_setup(MigrationIncomingState
*mis
)
1404 int postcopy_place_page(MigrationIncomingState
*mis
, void *host
, void *from
,
1411 int postcopy_place_page_zero(MigrationIncomingState
*mis
, void *host
,
1418 int postcopy_wake_shared(struct PostCopyFD
*pcfd
,
1419 uint64_t client_addr
,
1427 /* ------------------------------------------------------------------------- */
1428 void postcopy_temp_page_reset(PostcopyTmpPage
*tmp_page
)
1430 tmp_page
->target_pages
= 0;
1431 tmp_page
->host_addr
= NULL
;
1433 * This is set to true when reset, and cleared as long as we received any
1434 * of the non-zero small page within this huge page.
1436 tmp_page
->all_zero
= true;
1439 void postcopy_fault_thread_notify(MigrationIncomingState
*mis
)
1444 * Wakeup the fault_thread. It's an eventfd that should currently
1445 * be at 0, we're going to increment it to 1
1447 if (write(mis
->userfault_event_fd
, &tmp64
, 8) != 8) {
1448 /* Not much we can do here, but may as well report it */
1449 error_report("%s: incrementing failed: %s", __func__
,
1455 * postcopy_discard_send_init: Called at the start of each RAMBlock before
1456 * asking to discard individual ranges.
1458 * @ms: The current migration state.
1459 * @offset: the bitmap offset of the named RAMBlock in the migration bitmap.
1460 * @name: RAMBlock that discards will operate on.
1462 static PostcopyDiscardState pds
= {0};
1463 void postcopy_discard_send_init(MigrationState
*ms
, const char *name
)
1465 pds
.ramblock_name
= name
;
1472 * postcopy_discard_send_range: Called by the bitmap code for each chunk to
1473 * discard. May send a discard message, may just leave it queued to
1476 * @ms: Current migration state.
1477 * @start,@length: a range of pages in the migration bitmap in the
1478 * RAM block passed to postcopy_discard_send_init() (length=1 is one page)
1480 void postcopy_discard_send_range(MigrationState
*ms
, unsigned long start
,
1481 unsigned long length
)
1483 size_t tp_size
= qemu_target_page_size();
1484 /* Convert to byte offsets within the RAM block */
1485 pds
.start_list
[pds
.cur_entry
] = start
* tp_size
;
1486 pds
.length_list
[pds
.cur_entry
] = length
* tp_size
;
1487 trace_postcopy_discard_send_range(pds
.ramblock_name
, start
, length
);
1491 if (pds
.cur_entry
== MAX_DISCARDS_PER_COMMAND
) {
1492 /* Full set, ship it! */
1493 qemu_savevm_send_postcopy_ram_discard(ms
->to_dst_file
,
1504 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
1505 * bitmap code. Sends any outstanding discard messages, frees the PDS
1507 * @ms: Current migration state.
1509 void postcopy_discard_send_finish(MigrationState
*ms
)
1511 /* Anything unsent? */
1512 if (pds
.cur_entry
) {
1513 qemu_savevm_send_postcopy_ram_discard(ms
->to_dst_file
,
1521 trace_postcopy_discard_send_finish(pds
.ramblock_name
, pds
.nsentwords
,
1526 * Current state of incoming postcopy; note this is not part of
1527 * MigrationIncomingState since it's state is used during cleanup
1528 * at the end as MIS is being freed.
1530 static PostcopyState incoming_postcopy_state
;
1532 PostcopyState
postcopy_state_get(void)
1534 return qatomic_load_acquire(&incoming_postcopy_state
);
1537 /* Set the state and return the old state */
1538 PostcopyState
postcopy_state_set(PostcopyState new_state
)
1540 return qatomic_xchg(&incoming_postcopy_state
, new_state
);
1543 /* Register a handler for external shared memory postcopy
1544 * called on the destination.
1546 void postcopy_register_shared_ufd(struct PostCopyFD
*pcfd
)
1548 MigrationIncomingState
*mis
= migration_incoming_get_current();
1550 mis
->postcopy_remote_fds
= g_array_append_val(mis
->postcopy_remote_fds
,
1554 /* Unregister a handler for external shared memory postcopy
1556 void postcopy_unregister_shared_ufd(struct PostCopyFD
*pcfd
)
1559 MigrationIncomingState
*mis
= migration_incoming_get_current();
1560 GArray
*pcrfds
= mis
->postcopy_remote_fds
;
1563 /* migration has already finished and freed the array */
1566 for (i
= 0; i
< pcrfds
->len
; i
++) {
1567 struct PostCopyFD
*cur
= &g_array_index(pcrfds
, struct PostCopyFD
, i
);
1568 if (cur
->fd
== pcfd
->fd
) {
1569 mis
->postcopy_remote_fds
= g_array_remove_index(pcrfds
, i
);
1575 void postcopy_preempt_new_channel(MigrationIncomingState
*mis
, QEMUFile
*file
)
1578 * The new loading channel has its own threads, so it needs to be
1579 * blocked too. It's by default true, just be explicit.
1581 qemu_file_set_blocking(file
, true);
1582 mis
->postcopy_qemufile_dst
= file
;
1583 qemu_sem_post(&mis
->postcopy_qemufile_dst_done
);
1584 trace_postcopy_preempt_new_channel();
1588 * Setup the postcopy preempt channel with the IOC. If ERROR is specified,
1589 * setup the error instead. This helper will free the ERROR if specified.
1592 postcopy_preempt_send_channel_done(MigrationState
*s
,
1593 QIOChannel
*ioc
, Error
*local_err
)
1596 migrate_set_error(s
, local_err
);
1597 error_free(local_err
);
1599 migration_ioc_register_yank(ioc
);
1600 s
->postcopy_qemufile_src
= qemu_file_new_output(ioc
);
1601 trace_postcopy_preempt_new_channel();
1605 * Kick the waiter in all cases. The waiter should check upon
1606 * postcopy_qemufile_src to know whether it failed or not.
1608 qemu_sem_post(&s
->postcopy_qemufile_src_sem
);
1612 postcopy_preempt_tls_handshake(QIOTask
*task
, gpointer opaque
)
1614 g_autoptr(QIOChannel
) ioc
= QIO_CHANNEL(qio_task_get_source(task
));
1615 MigrationState
*s
= opaque
;
1616 Error
*local_err
= NULL
;
1618 qio_task_propagate_error(task
, &local_err
);
1619 postcopy_preempt_send_channel_done(s
, ioc
, local_err
);
1623 postcopy_preempt_send_channel_new(QIOTask
*task
, gpointer opaque
)
1625 g_autoptr(QIOChannel
) ioc
= QIO_CHANNEL(qio_task_get_source(task
));
1626 MigrationState
*s
= opaque
;
1627 QIOChannelTLS
*tioc
;
1628 Error
*local_err
= NULL
;
1630 if (qio_task_propagate_error(task
, &local_err
)) {
1634 if (migrate_channel_requires_tls_upgrade(ioc
)) {
1635 tioc
= migration_tls_client_create(ioc
, s
->hostname
, &local_err
);
1639 trace_postcopy_preempt_tls_handshake();
1640 qio_channel_set_name(QIO_CHANNEL(tioc
), "migration-tls-preempt");
1641 qio_channel_tls_handshake(tioc
, postcopy_preempt_tls_handshake
,
1643 /* Setup the channel until TLS handshake finished */
1648 /* This handles both good and error cases */
1649 postcopy_preempt_send_channel_done(s
, ioc
, local_err
);
1653 * This function will kick off an async task to establish the preempt
1654 * channel, and wait until the connection setup completed. Returns 0 if
1655 * channel established, -1 for error.
1657 int postcopy_preempt_establish_channel(MigrationState
*s
)
1659 /* If preempt not enabled, no need to wait */
1660 if (!migrate_postcopy_preempt()) {
1665 * Kick off async task to establish preempt channel. Only do so with
1666 * 8.0+ machines, because 7.1/7.2 require the channel to be created in
1667 * setup phase of migration (even if racy in an unreliable network).
1669 if (!s
->preempt_pre_7_2
) {
1670 postcopy_preempt_setup(s
);
1674 * We need the postcopy preempt channel to be established before
1675 * starting doing anything.
1677 qemu_sem_wait(&s
->postcopy_qemufile_src_sem
);
1679 return s
->postcopy_qemufile_src
? 0 : -1;
1682 void postcopy_preempt_setup(MigrationState
*s
)
1684 /* Kick an async task to connect */
1685 socket_send_channel_create(postcopy_preempt_send_channel_new
, s
);
1688 static void postcopy_pause_ram_fast_load(MigrationIncomingState
*mis
)
1690 trace_postcopy_pause_fast_load();
1691 qemu_mutex_unlock(&mis
->postcopy_prio_thread_mutex
);
1692 qemu_sem_wait(&mis
->postcopy_pause_sem_fast_load
);
1693 qemu_mutex_lock(&mis
->postcopy_prio_thread_mutex
);
1694 trace_postcopy_pause_fast_load_continued();
1697 static bool preempt_thread_should_run(MigrationIncomingState
*mis
)
1699 return mis
->preempt_thread_status
!= PREEMPT_THREAD_QUIT
;
1702 void *postcopy_preempt_thread(void *opaque
)
1704 MigrationIncomingState
*mis
= opaque
;
1707 trace_postcopy_preempt_thread_entry();
1709 rcu_register_thread();
1711 qemu_sem_post(&mis
->thread_sync_sem
);
1714 * The preempt channel is established in asynchronous way. Wait
1715 * for its completion.
1717 qemu_sem_wait(&mis
->postcopy_qemufile_dst_done
);
1719 /* Sending RAM_SAVE_FLAG_EOS to terminate this thread */
1720 qemu_mutex_lock(&mis
->postcopy_prio_thread_mutex
);
1721 while (preempt_thread_should_run(mis
)) {
1722 ret
= ram_load_postcopy(mis
->postcopy_qemufile_dst
,
1723 RAM_CHANNEL_POSTCOPY
);
1724 /* If error happened, go into recovery routine */
1725 if (ret
&& preempt_thread_should_run(mis
)) {
1726 postcopy_pause_ram_fast_load(mis
);
1732 qemu_mutex_unlock(&mis
->postcopy_prio_thread_mutex
);
1734 rcu_unregister_thread();
1736 trace_postcopy_preempt_thread_exit();