target/sparc: Use tcg_gen_movcond_i64 in gen_edge
[qemu/armbru.git] / migration / postcopy-ram.c
blob29aea9456d65f7ac9768da32e61574a2dd530435
1 /*
2 * Postcopy migration for RAM
4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Dave Gilbert <dgilbert@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
15 * Postcopy is a migration technique where the execution flips from the
16 * source to the destination before all the data has been copied.
19 #include "qemu/osdep.h"
20 #include "qemu/madvise.h"
21 #include "exec/target_page.h"
22 #include "migration.h"
23 #include "qemu-file.h"
24 #include "savevm.h"
25 #include "postcopy-ram.h"
26 #include "ram.h"
27 #include "qapi/error.h"
28 #include "qemu/notify.h"
29 #include "qemu/rcu.h"
30 #include "sysemu/sysemu.h"
31 #include "qemu/error-report.h"
32 #include "trace.h"
33 #include "hw/boards.h"
34 #include "exec/ramblock.h"
35 #include "socket.h"
36 #include "yank_functions.h"
37 #include "tls.h"
38 #include "qemu/userfaultfd.h"
39 #include "qemu/mmap-alloc.h"
40 #include "options.h"
42 /* Arbitrary limit on size of each discard command,
43 * keeps them around ~200 bytes
45 #define MAX_DISCARDS_PER_COMMAND 12
47 struct PostcopyDiscardState {
48 const char *ramblock_name;
49 uint16_t cur_entry;
51 * Start and length of a discard range (bytes)
53 uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
54 uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
55 unsigned int nsentwords;
56 unsigned int nsentcmds;
59 static NotifierWithReturnList postcopy_notifier_list;
61 void postcopy_infrastructure_init(void)
63 notifier_with_return_list_init(&postcopy_notifier_list);
66 void postcopy_add_notifier(NotifierWithReturn *nn)
68 notifier_with_return_list_add(&postcopy_notifier_list, nn);
71 void postcopy_remove_notifier(NotifierWithReturn *n)
73 notifier_with_return_remove(n);
76 int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp)
78 struct PostcopyNotifyData pnd;
79 pnd.reason = reason;
80 pnd.errp = errp;
82 return notifier_with_return_list_notify(&postcopy_notifier_list,
83 &pnd);
87 * NOTE: this routine is not thread safe, we can't call it concurrently. But it
88 * should be good enough for migration's purposes.
90 void postcopy_thread_create(MigrationIncomingState *mis,
91 QemuThread *thread, const char *name,
92 void *(*fn)(void *), int joinable)
94 qemu_sem_init(&mis->thread_sync_sem, 0);
95 qemu_thread_create(thread, name, fn, mis, joinable);
96 qemu_sem_wait(&mis->thread_sync_sem);
97 qemu_sem_destroy(&mis->thread_sync_sem);
100 /* Postcopy needs to detect accesses to pages that haven't yet been copied
101 * across, and efficiently map new pages in, the techniques for doing this
102 * are target OS specific.
104 #if defined(__linux__)
106 #include <poll.h>
107 #include <sys/ioctl.h>
108 #include <sys/syscall.h>
109 #include <asm/types.h> /* for __u64 */
110 #endif
112 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
113 #include <sys/eventfd.h>
114 #include <linux/userfaultfd.h>
116 typedef struct PostcopyBlocktimeContext {
117 /* time when page fault initiated per vCPU */
118 uint32_t *page_fault_vcpu_time;
119 /* page address per vCPU */
120 uintptr_t *vcpu_addr;
121 uint32_t total_blocktime;
122 /* blocktime per vCPU */
123 uint32_t *vcpu_blocktime;
124 /* point in time when last page fault was initiated */
125 uint32_t last_begin;
126 /* number of vCPU are suspended */
127 int smp_cpus_down;
128 uint64_t start_time;
131 * Handler for exit event, necessary for
132 * releasing whole blocktime_ctx
134 Notifier exit_notifier;
135 } PostcopyBlocktimeContext;
137 static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx)
139 g_free(ctx->page_fault_vcpu_time);
140 g_free(ctx->vcpu_addr);
141 g_free(ctx->vcpu_blocktime);
142 g_free(ctx);
145 static void migration_exit_cb(Notifier *n, void *data)
147 PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext,
148 exit_notifier);
149 destroy_blocktime_context(ctx);
152 static struct PostcopyBlocktimeContext *blocktime_context_new(void)
154 MachineState *ms = MACHINE(qdev_get_machine());
155 unsigned int smp_cpus = ms->smp.cpus;
156 PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1);
157 ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus);
158 ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus);
159 ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus);
161 ctx->exit_notifier.notify = migration_exit_cb;
162 ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
163 qemu_add_exit_notifier(&ctx->exit_notifier);
164 return ctx;
167 static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx)
169 MachineState *ms = MACHINE(qdev_get_machine());
170 uint32List *list = NULL;
171 int i;
173 for (i = ms->smp.cpus - 1; i >= 0; i--) {
174 QAPI_LIST_PREPEND(list, ctx->vcpu_blocktime[i]);
177 return list;
181 * This function just populates MigrationInfo from postcopy's
182 * blocktime context. It will not populate MigrationInfo,
183 * unless postcopy-blocktime capability was set.
185 * @info: pointer to MigrationInfo to populate
187 void fill_destination_postcopy_migration_info(MigrationInfo *info)
189 MigrationIncomingState *mis = migration_incoming_get_current();
190 PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
192 if (!bc) {
193 return;
196 info->has_postcopy_blocktime = true;
197 info->postcopy_blocktime = bc->total_blocktime;
198 info->has_postcopy_vcpu_blocktime = true;
199 info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc);
202 static uint32_t get_postcopy_total_blocktime(void)
204 MigrationIncomingState *mis = migration_incoming_get_current();
205 PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
207 if (!bc) {
208 return 0;
211 return bc->total_blocktime;
215 * receive_ufd_features: check userfault fd features, to request only supported
216 * features in the future.
218 * Returns: true on success
220 * __NR_userfaultfd - should be checked before
221 * @features: out parameter will contain uffdio_api.features provided by kernel
222 * in case of success
224 static bool receive_ufd_features(uint64_t *features)
226 struct uffdio_api api_struct = {0};
227 int ufd;
228 bool ret = true;
230 ufd = uffd_open(O_CLOEXEC);
231 if (ufd == -1) {
232 error_report("%s: uffd_open() failed: %s", __func__, strerror(errno));
233 return false;
236 /* ask features */
237 api_struct.api = UFFD_API;
238 api_struct.features = 0;
239 if (ioctl(ufd, UFFDIO_API, &api_struct)) {
240 error_report("%s: UFFDIO_API failed: %s", __func__,
241 strerror(errno));
242 ret = false;
243 goto release_ufd;
246 *features = api_struct.features;
248 release_ufd:
249 close(ufd);
250 return ret;
254 * request_ufd_features: this function should be called only once on a newly
255 * opened ufd, subsequent calls will lead to error.
257 * Returns: true on success
259 * @ufd: fd obtained from userfaultfd syscall
260 * @features: bit mask see UFFD_API_FEATURES
262 static bool request_ufd_features(int ufd, uint64_t features)
264 struct uffdio_api api_struct = {0};
265 uint64_t ioctl_mask;
267 api_struct.api = UFFD_API;
268 api_struct.features = features;
269 if (ioctl(ufd, UFFDIO_API, &api_struct)) {
270 error_report("%s failed: UFFDIO_API failed: %s", __func__,
271 strerror(errno));
272 return false;
275 ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
276 (__u64)1 << _UFFDIO_UNREGISTER;
277 if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
278 error_report("Missing userfault features: %" PRIx64,
279 (uint64_t)(~api_struct.ioctls & ioctl_mask));
280 return false;
283 return true;
286 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis,
287 Error **errp)
289 uint64_t asked_features = 0;
290 static uint64_t supported_features;
292 ERRP_GUARD();
294 * it's not possible to
295 * request UFFD_API twice per one fd
296 * userfault fd features is persistent
298 if (!supported_features) {
299 if (!receive_ufd_features(&supported_features)) {
300 error_setg(errp, "Userfault feature detection failed");
301 return false;
305 #ifdef UFFD_FEATURE_THREAD_ID
306 if (UFFD_FEATURE_THREAD_ID & supported_features) {
307 asked_features |= UFFD_FEATURE_THREAD_ID;
308 if (migrate_postcopy_blocktime()) {
309 if (!mis->blocktime_ctx) {
310 mis->blocktime_ctx = blocktime_context_new();
314 #endif
317 * request features, even if asked_features is 0, due to
318 * kernel expects UFFD_API before UFFDIO_REGISTER, per
319 * userfault file descriptor
321 if (!request_ufd_features(ufd, asked_features)) {
322 error_setg(errp, "Failed features %" PRIu64, asked_features);
323 return false;
326 if (qemu_real_host_page_size() != ram_pagesize_summary()) {
327 bool have_hp = false;
328 /* We've got a huge page */
329 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS
330 have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
331 #endif
332 if (!have_hp) {
333 error_setg(errp,
334 "Userfault on this host does not support huge pages");
335 return false;
338 return true;
341 /* Callback from postcopy_ram_supported_by_host block iterator.
343 static int test_ramblock_postcopiable(RAMBlock *rb, Error **errp)
345 const char *block_name = qemu_ram_get_idstr(rb);
346 ram_addr_t length = qemu_ram_get_used_length(rb);
347 size_t pagesize = qemu_ram_pagesize(rb);
348 QemuFsType fs;
350 if (length % pagesize) {
351 error_setg(errp,
352 "Postcopy requires RAM blocks to be a page size multiple,"
353 " block %s is 0x" RAM_ADDR_FMT " bytes with a "
354 "page size of 0x%zx", block_name, length, pagesize);
355 return 1;
358 if (rb->fd >= 0) {
359 fs = qemu_fd_getfs(rb->fd);
360 if (fs != QEMU_FS_TYPE_TMPFS && fs != QEMU_FS_TYPE_HUGETLBFS) {
361 error_setg(errp,
362 "Host backend files need to be TMPFS or HUGETLBFS only");
363 return 1;
367 return 0;
371 * Note: This has the side effect of munlock'ing all of RAM, that's
372 * normally fine since if the postcopy succeeds it gets turned back on at the
373 * end.
375 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis, Error **errp)
377 long pagesize = qemu_real_host_page_size();
378 int ufd = -1;
379 bool ret = false; /* Error unless we change it */
380 void *testarea = NULL;
381 struct uffdio_register reg_struct;
382 struct uffdio_range range_struct;
383 uint64_t feature_mask;
384 RAMBlock *block;
386 ERRP_GUARD();
387 if (qemu_target_page_size() > pagesize) {
388 error_setg(errp, "Target page size bigger than host page size");
389 goto out;
392 ufd = uffd_open(O_CLOEXEC);
393 if (ufd == -1) {
394 error_setg(errp, "Userfaultfd not available: %s", strerror(errno));
395 goto out;
398 /* Give devices a chance to object */
399 if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, errp)) {
400 goto out;
403 /* Version and features check */
404 if (!ufd_check_and_apply(ufd, mis, errp)) {
405 goto out;
409 * We don't support postcopy with some type of ramblocks.
411 * NOTE: we explicitly ignored migrate_ram_is_ignored() instead we checked
412 * all possible ramblocks. This is because this function can be called
413 * when creating the migration object, during the phase RAM_MIGRATABLE
414 * is not even properly set for all the ramblocks.
416 * A side effect of this is we'll also check against RAM_SHARED
417 * ramblocks even if migrate_ignore_shared() is set (in which case
418 * we'll never migrate RAM_SHARED at all), but normally this shouldn't
419 * affect in reality, or we can revisit.
421 RAMBLOCK_FOREACH(block) {
422 if (test_ramblock_postcopiable(block, errp)) {
423 goto out;
428 * userfault and mlock don't go together; we'll put it back later if
429 * it was enabled.
431 if (munlockall()) {
432 error_setg(errp, "munlockall() failed: %s", strerror(errno));
433 goto out;
437 * We need to check that the ops we need are supported on anon memory
438 * To do that we need to register a chunk and see the flags that
439 * are returned.
441 testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
442 MAP_ANONYMOUS, -1, 0);
443 if (testarea == MAP_FAILED) {
444 error_setg(errp, "Failed to map test area: %s", strerror(errno));
445 goto out;
447 g_assert(QEMU_PTR_IS_ALIGNED(testarea, pagesize));
449 reg_struct.range.start = (uintptr_t)testarea;
450 reg_struct.range.len = pagesize;
451 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
453 if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
454 error_setg(errp, "UFFDIO_REGISTER failed: %s", strerror(errno));
455 goto out;
458 range_struct.start = (uintptr_t)testarea;
459 range_struct.len = pagesize;
460 if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
461 error_setg(errp, "UFFDIO_UNREGISTER failed: %s", strerror(errno));
462 goto out;
465 feature_mask = (__u64)1 << _UFFDIO_WAKE |
466 (__u64)1 << _UFFDIO_COPY |
467 (__u64)1 << _UFFDIO_ZEROPAGE;
468 if ((reg_struct.ioctls & feature_mask) != feature_mask) {
469 error_setg(errp, "Missing userfault map features: %" PRIx64,
470 (uint64_t)(~reg_struct.ioctls & feature_mask));
471 goto out;
474 /* Success! */
475 ret = true;
476 out:
477 if (testarea) {
478 munmap(testarea, pagesize);
480 if (ufd != -1) {
481 close(ufd);
483 return ret;
487 * Setup an area of RAM so that it *can* be used for postcopy later; this
488 * must be done right at the start prior to pre-copy.
489 * opaque should be the MIS.
491 static int init_range(RAMBlock *rb, void *opaque)
493 const char *block_name = qemu_ram_get_idstr(rb);
494 void *host_addr = qemu_ram_get_host_addr(rb);
495 ram_addr_t offset = qemu_ram_get_offset(rb);
496 ram_addr_t length = qemu_ram_get_used_length(rb);
497 trace_postcopy_init_range(block_name, host_addr, offset, length);
500 * Save the used_length before running the guest. In case we have to
501 * resize RAM blocks when syncing RAM block sizes from the source during
502 * precopy, we'll update it manually via the ram block notifier.
504 rb->postcopy_length = length;
507 * We need the whole of RAM to be truly empty for postcopy, so things
508 * like ROMs and any data tables built during init must be zero'd
509 * - we're going to get the copy from the source anyway.
510 * (Precopy will just overwrite this data, so doesn't need the discard)
512 if (ram_discard_range(block_name, 0, length)) {
513 return -1;
516 return 0;
520 * At the end of migration, undo the effects of init_range
521 * opaque should be the MIS.
523 static int cleanup_range(RAMBlock *rb, void *opaque)
525 const char *block_name = qemu_ram_get_idstr(rb);
526 void *host_addr = qemu_ram_get_host_addr(rb);
527 ram_addr_t offset = qemu_ram_get_offset(rb);
528 ram_addr_t length = rb->postcopy_length;
529 MigrationIncomingState *mis = opaque;
530 struct uffdio_range range_struct;
531 trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
534 * We turned off hugepage for the precopy stage with postcopy enabled
535 * we can turn it back on now.
537 qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
540 * We can also turn off userfault now since we should have all the
541 * pages. It can be useful to leave it on to debug postcopy
542 * if you're not sure it's always getting every page.
544 range_struct.start = (uintptr_t)host_addr;
545 range_struct.len = length;
547 if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
548 error_report("%s: userfault unregister %s", __func__, strerror(errno));
550 return -1;
553 return 0;
557 * Initialise postcopy-ram, setting the RAM to a state where we can go into
558 * postcopy later; must be called prior to any precopy.
559 * called from arch_init's similarly named ram_postcopy_incoming_init
561 int postcopy_ram_incoming_init(MigrationIncomingState *mis)
563 if (foreach_not_ignored_block(init_range, NULL)) {
564 return -1;
567 return 0;
570 static void postcopy_temp_pages_cleanup(MigrationIncomingState *mis)
572 int i;
574 if (mis->postcopy_tmp_pages) {
575 for (i = 0; i < mis->postcopy_channels; i++) {
576 if (mis->postcopy_tmp_pages[i].tmp_huge_page) {
577 munmap(mis->postcopy_tmp_pages[i].tmp_huge_page,
578 mis->largest_page_size);
579 mis->postcopy_tmp_pages[i].tmp_huge_page = NULL;
582 g_free(mis->postcopy_tmp_pages);
583 mis->postcopy_tmp_pages = NULL;
586 if (mis->postcopy_tmp_zero_page) {
587 munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
588 mis->postcopy_tmp_zero_page = NULL;
593 * At the end of a migration where postcopy_ram_incoming_init was called.
595 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
597 trace_postcopy_ram_incoming_cleanup_entry();
599 if (mis->preempt_thread_status == PREEMPT_THREAD_CREATED) {
600 /* Notify the fast load thread to quit */
601 mis->preempt_thread_status = PREEMPT_THREAD_QUIT;
602 if (mis->postcopy_qemufile_dst) {
603 qemu_file_shutdown(mis->postcopy_qemufile_dst);
605 qemu_thread_join(&mis->postcopy_prio_thread);
606 mis->preempt_thread_status = PREEMPT_THREAD_NONE;
609 if (mis->have_fault_thread) {
610 Error *local_err = NULL;
612 /* Let the fault thread quit */
613 qatomic_set(&mis->fault_thread_quit, 1);
614 postcopy_fault_thread_notify(mis);
615 trace_postcopy_ram_incoming_cleanup_join();
616 qemu_thread_join(&mis->fault_thread);
618 if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) {
619 error_report_err(local_err);
620 return -1;
623 if (foreach_not_ignored_block(cleanup_range, mis)) {
624 return -1;
627 trace_postcopy_ram_incoming_cleanup_closeuf();
628 close(mis->userfault_fd);
629 close(mis->userfault_event_fd);
630 mis->have_fault_thread = false;
633 if (enable_mlock) {
634 if (os_mlock() < 0) {
635 error_report("mlock: %s", strerror(errno));
637 * It doesn't feel right to fail at this point, we have a valid
638 * VM state.
643 postcopy_temp_pages_cleanup(mis);
645 trace_postcopy_ram_incoming_cleanup_blocktime(
646 get_postcopy_total_blocktime());
648 trace_postcopy_ram_incoming_cleanup_exit();
649 return 0;
653 * Disable huge pages on an area
655 static int nhp_range(RAMBlock *rb, void *opaque)
657 const char *block_name = qemu_ram_get_idstr(rb);
658 void *host_addr = qemu_ram_get_host_addr(rb);
659 ram_addr_t offset = qemu_ram_get_offset(rb);
660 ram_addr_t length = rb->postcopy_length;
661 trace_postcopy_nhp_range(block_name, host_addr, offset, length);
664 * Before we do discards we need to ensure those discards really
665 * do delete areas of the page, even if THP thinks a hugepage would
666 * be a good idea, so force hugepages off.
668 qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
670 return 0;
674 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
675 * however leaving it until after precopy means that most of the precopy
676 * data is still THPd
678 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
680 if (foreach_not_ignored_block(nhp_range, mis)) {
681 return -1;
684 postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
686 return 0;
690 * Mark the given area of RAM as requiring notification to unwritten areas
691 * Used as a callback on foreach_not_ignored_block.
692 * host_addr: Base of area to mark
693 * offset: Offset in the whole ram arena
694 * length: Length of the section
695 * opaque: MigrationIncomingState pointer
696 * Returns 0 on success
698 static int ram_block_enable_notify(RAMBlock *rb, void *opaque)
700 MigrationIncomingState *mis = opaque;
701 struct uffdio_register reg_struct;
703 reg_struct.range.start = (uintptr_t)qemu_ram_get_host_addr(rb);
704 reg_struct.range.len = rb->postcopy_length;
705 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
707 /* Now tell our userfault_fd that it's responsible for this area */
708 if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
709 error_report("%s userfault register: %s", __func__, strerror(errno));
710 return -1;
712 if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
713 error_report("%s userfault: Region doesn't support COPY", __func__);
714 return -1;
716 if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) {
717 qemu_ram_set_uf_zeroable(rb);
720 return 0;
723 int postcopy_wake_shared(struct PostCopyFD *pcfd,
724 uint64_t client_addr,
725 RAMBlock *rb)
727 size_t pagesize = qemu_ram_pagesize(rb);
728 struct uffdio_range range;
729 int ret;
730 trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb));
731 range.start = ROUND_DOWN(client_addr, pagesize);
732 range.len = pagesize;
733 ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range);
734 if (ret) {
735 error_report("%s: Failed to wake: %zx in %s (%s)",
736 __func__, (size_t)client_addr, qemu_ram_get_idstr(rb),
737 strerror(errno));
739 return ret;
742 static int postcopy_request_page(MigrationIncomingState *mis, RAMBlock *rb,
743 ram_addr_t start, uint64_t haddr)
745 void *aligned = (void *)(uintptr_t)ROUND_DOWN(haddr, qemu_ram_pagesize(rb));
748 * Discarded pages (via RamDiscardManager) are never migrated. On unlikely
749 * access, place a zeropage, which will also set the relevant bits in the
750 * recv_bitmap accordingly, so we won't try placing a zeropage twice.
752 * Checking a single bit is sufficient to handle pagesize > TPS as either
753 * all relevant bits are set or not.
755 assert(QEMU_IS_ALIGNED(start, qemu_ram_pagesize(rb)));
756 if (ramblock_page_is_discarded(rb, start)) {
757 bool received = ramblock_recv_bitmap_test_byte_offset(rb, start);
759 return received ? 0 : postcopy_place_page_zero(mis, aligned, rb);
762 return migrate_send_rp_req_pages(mis, rb, start, haddr);
766 * Callback from shared fault handlers to ask for a page,
767 * the page must be specified by a RAMBlock and an offset in that rb
768 * Note: Only for use by shared fault handlers (in fault thread)
770 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
771 uint64_t client_addr, uint64_t rb_offset)
773 uint64_t aligned_rbo = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb));
774 MigrationIncomingState *mis = migration_incoming_get_current();
776 trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb),
777 rb_offset);
778 if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) {
779 trace_postcopy_request_shared_page_present(pcfd->idstr,
780 qemu_ram_get_idstr(rb), rb_offset);
781 return postcopy_wake_shared(pcfd, client_addr, rb);
783 postcopy_request_page(mis, rb, aligned_rbo, client_addr);
784 return 0;
787 static int get_mem_fault_cpu_index(uint32_t pid)
789 CPUState *cpu_iter;
791 CPU_FOREACH(cpu_iter) {
792 if (cpu_iter->thread_id == pid) {
793 trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid);
794 return cpu_iter->cpu_index;
797 trace_get_mem_fault_cpu_index(-1, pid);
798 return -1;
801 static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc)
803 int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) -
804 dc->start_time;
805 return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX;
809 * This function is being called when pagefault occurs. It
810 * tracks down vCPU blocking time.
812 * @addr: faulted host virtual address
813 * @ptid: faulted process thread id
814 * @rb: ramblock appropriate to addr
816 static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid,
817 RAMBlock *rb)
819 int cpu, already_received;
820 MigrationIncomingState *mis = migration_incoming_get_current();
821 PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
822 uint32_t low_time_offset;
824 if (!dc || ptid == 0) {
825 return;
827 cpu = get_mem_fault_cpu_index(ptid);
828 if (cpu < 0) {
829 return;
832 low_time_offset = get_low_time_offset(dc);
833 if (dc->vcpu_addr[cpu] == 0) {
834 qatomic_inc(&dc->smp_cpus_down);
837 qatomic_xchg(&dc->last_begin, low_time_offset);
838 qatomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset);
839 qatomic_xchg(&dc->vcpu_addr[cpu], addr);
842 * check it here, not at the beginning of the function,
843 * due to, check could occur early than bitmap_set in
844 * qemu_ufd_copy_ioctl
846 already_received = ramblock_recv_bitmap_test(rb, (void *)addr);
847 if (already_received) {
848 qatomic_xchg(&dc->vcpu_addr[cpu], 0);
849 qatomic_xchg(&dc->page_fault_vcpu_time[cpu], 0);
850 qatomic_dec(&dc->smp_cpus_down);
852 trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu],
853 cpu, already_received);
857 * This function just provide calculated blocktime per cpu and trace it.
858 * Total blocktime is calculated in mark_postcopy_blocktime_end.
861 * Assume we have 3 CPU
863 * S1 E1 S1 E1
864 * -----***********------------xxx***************------------------------> CPU1
866 * S2 E2
867 * ------------****************xxx---------------------------------------> CPU2
869 * S3 E3
870 * ------------------------****xxx********-------------------------------> CPU3
872 * We have sequence S1,S2,E1,S3,S1,E2,E3,E1
873 * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
874 * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
875 * it's a part of total blocktime.
876 * S1 - here is last_begin
877 * Legend of the picture is following:
878 * * - means blocktime per vCPU
879 * x - means overlapped blocktime (total blocktime)
881 * @addr: host virtual address
883 static void mark_postcopy_blocktime_end(uintptr_t addr)
885 MigrationIncomingState *mis = migration_incoming_get_current();
886 PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
887 MachineState *ms = MACHINE(qdev_get_machine());
888 unsigned int smp_cpus = ms->smp.cpus;
889 int i, affected_cpu = 0;
890 bool vcpu_total_blocktime = false;
891 uint32_t read_vcpu_time, low_time_offset;
893 if (!dc) {
894 return;
897 low_time_offset = get_low_time_offset(dc);
898 /* lookup cpu, to clear it,
899 * that algorithm looks straightforward, but it's not
900 * optimal, more optimal algorithm is keeping tree or hash
901 * where key is address value is a list of */
902 for (i = 0; i < smp_cpus; i++) {
903 uint32_t vcpu_blocktime = 0;
905 read_vcpu_time = qatomic_fetch_add(&dc->page_fault_vcpu_time[i], 0);
906 if (qatomic_fetch_add(&dc->vcpu_addr[i], 0) != addr ||
907 read_vcpu_time == 0) {
908 continue;
910 qatomic_xchg(&dc->vcpu_addr[i], 0);
911 vcpu_blocktime = low_time_offset - read_vcpu_time;
912 affected_cpu += 1;
913 /* we need to know is that mark_postcopy_end was due to
914 * faulted page, another possible case it's prefetched
915 * page and in that case we shouldn't be here */
916 if (!vcpu_total_blocktime &&
917 qatomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) {
918 vcpu_total_blocktime = true;
920 /* continue cycle, due to one page could affect several vCPUs */
921 dc->vcpu_blocktime[i] += vcpu_blocktime;
924 qatomic_sub(&dc->smp_cpus_down, affected_cpu);
925 if (vcpu_total_blocktime) {
926 dc->total_blocktime += low_time_offset - qatomic_fetch_add(
927 &dc->last_begin, 0);
929 trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime,
930 affected_cpu);
933 static void postcopy_pause_fault_thread(MigrationIncomingState *mis)
935 trace_postcopy_pause_fault_thread();
936 qemu_sem_wait(&mis->postcopy_pause_sem_fault);
937 trace_postcopy_pause_fault_thread_continued();
941 * Handle faults detected by the USERFAULT markings
943 static void *postcopy_ram_fault_thread(void *opaque)
945 MigrationIncomingState *mis = opaque;
946 struct uffd_msg msg;
947 int ret;
948 size_t index;
949 RAMBlock *rb = NULL;
951 trace_postcopy_ram_fault_thread_entry();
952 rcu_register_thread();
953 mis->last_rb = NULL; /* last RAMBlock we sent part of */
954 qemu_sem_post(&mis->thread_sync_sem);
956 struct pollfd *pfd;
957 size_t pfd_len = 2 + mis->postcopy_remote_fds->len;
959 pfd = g_new0(struct pollfd, pfd_len);
961 pfd[0].fd = mis->userfault_fd;
962 pfd[0].events = POLLIN;
963 pfd[1].fd = mis->userfault_event_fd;
964 pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
965 trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd);
966 for (index = 0; index < mis->postcopy_remote_fds->len; index++) {
967 struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds,
968 struct PostCopyFD, index);
969 pfd[2 + index].fd = pcfd->fd;
970 pfd[2 + index].events = POLLIN;
971 trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr,
972 pcfd->fd);
975 while (true) {
976 ram_addr_t rb_offset;
977 int poll_result;
980 * We're mainly waiting for the kernel to give us a faulting HVA,
981 * however we can be told to quit via userfault_quit_fd which is
982 * an eventfd
985 poll_result = poll(pfd, pfd_len, -1 /* Wait forever */);
986 if (poll_result == -1) {
987 error_report("%s: userfault poll: %s", __func__, strerror(errno));
988 break;
991 if (!mis->to_src_file) {
993 * Possibly someone tells us that the return path is
994 * broken already using the event. We should hold until
995 * the channel is rebuilt.
997 postcopy_pause_fault_thread(mis);
1000 if (pfd[1].revents) {
1001 uint64_t tmp64 = 0;
1003 /* Consume the signal */
1004 if (read(mis->userfault_event_fd, &tmp64, 8) != 8) {
1005 /* Nothing obviously nicer than posting this error. */
1006 error_report("%s: read() failed", __func__);
1009 if (qatomic_read(&mis->fault_thread_quit)) {
1010 trace_postcopy_ram_fault_thread_quit();
1011 break;
1015 if (pfd[0].revents) {
1016 poll_result--;
1017 ret = read(mis->userfault_fd, &msg, sizeof(msg));
1018 if (ret != sizeof(msg)) {
1019 if (errno == EAGAIN) {
1021 * if a wake up happens on the other thread just after
1022 * the poll, there is nothing to read.
1024 continue;
1026 if (ret < 0) {
1027 error_report("%s: Failed to read full userfault "
1028 "message: %s",
1029 __func__, strerror(errno));
1030 break;
1031 } else {
1032 error_report("%s: Read %d bytes from userfaultfd "
1033 "expected %zd",
1034 __func__, ret, sizeof(msg));
1035 break; /* Lost alignment, don't know what we'd read next */
1038 if (msg.event != UFFD_EVENT_PAGEFAULT) {
1039 error_report("%s: Read unexpected event %ud from userfaultfd",
1040 __func__, msg.event);
1041 continue; /* It's not a page fault, shouldn't happen */
1044 rb = qemu_ram_block_from_host(
1045 (void *)(uintptr_t)msg.arg.pagefault.address,
1046 true, &rb_offset);
1047 if (!rb) {
1048 error_report("postcopy_ram_fault_thread: Fault outside guest: %"
1049 PRIx64, (uint64_t)msg.arg.pagefault.address);
1050 break;
1053 rb_offset = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb));
1054 trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
1055 qemu_ram_get_idstr(rb),
1056 rb_offset,
1057 msg.arg.pagefault.feat.ptid);
1058 mark_postcopy_blocktime_begin(
1059 (uintptr_t)(msg.arg.pagefault.address),
1060 msg.arg.pagefault.feat.ptid, rb);
1062 retry:
1064 * Send the request to the source - we want to request one
1065 * of our host page sizes (which is >= TPS)
1067 ret = postcopy_request_page(mis, rb, rb_offset,
1068 msg.arg.pagefault.address);
1069 if (ret) {
1070 /* May be network failure, try to wait for recovery */
1071 postcopy_pause_fault_thread(mis);
1072 goto retry;
1076 /* Now handle any requests from external processes on shared memory */
1077 /* TODO: May need to handle devices deregistering during postcopy */
1078 for (index = 2; index < pfd_len && poll_result; index++) {
1079 if (pfd[index].revents) {
1080 struct PostCopyFD *pcfd =
1081 &g_array_index(mis->postcopy_remote_fds,
1082 struct PostCopyFD, index - 2);
1084 poll_result--;
1085 if (pfd[index].revents & POLLERR) {
1086 error_report("%s: POLLERR on poll %zd fd=%d",
1087 __func__, index, pcfd->fd);
1088 pfd[index].events = 0;
1089 continue;
1092 ret = read(pcfd->fd, &msg, sizeof(msg));
1093 if (ret != sizeof(msg)) {
1094 if (errno == EAGAIN) {
1096 * if a wake up happens on the other thread just after
1097 * the poll, there is nothing to read.
1099 continue;
1101 if (ret < 0) {
1102 error_report("%s: Failed to read full userfault "
1103 "message: %s (shared) revents=%d",
1104 __func__, strerror(errno),
1105 pfd[index].revents);
1106 /*TODO: Could just disable this sharer */
1107 break;
1108 } else {
1109 error_report("%s: Read %d bytes from userfaultfd "
1110 "expected %zd (shared)",
1111 __func__, ret, sizeof(msg));
1112 /*TODO: Could just disable this sharer */
1113 break; /*Lost alignment,don't know what we'd read next*/
1116 if (msg.event != UFFD_EVENT_PAGEFAULT) {
1117 error_report("%s: Read unexpected event %ud "
1118 "from userfaultfd (shared)",
1119 __func__, msg.event);
1120 continue; /* It's not a page fault, shouldn't happen */
1122 /* Call the device handler registered with us */
1123 ret = pcfd->handler(pcfd, &msg);
1124 if (ret) {
1125 error_report("%s: Failed to resolve shared fault on %zd/%s",
1126 __func__, index, pcfd->idstr);
1127 /* TODO: Fail? Disable this sharer? */
1132 rcu_unregister_thread();
1133 trace_postcopy_ram_fault_thread_exit();
1134 g_free(pfd);
1135 return NULL;
1138 static int postcopy_temp_pages_setup(MigrationIncomingState *mis)
1140 PostcopyTmpPage *tmp_page;
1141 int err, i, channels;
1142 void *temp_page;
1144 if (migrate_postcopy_preempt()) {
1145 /* If preemption enabled, need extra channel for urgent requests */
1146 mis->postcopy_channels = RAM_CHANNEL_MAX;
1147 } else {
1148 /* Both precopy/postcopy on the same channel */
1149 mis->postcopy_channels = 1;
1152 channels = mis->postcopy_channels;
1153 mis->postcopy_tmp_pages = g_malloc0_n(sizeof(PostcopyTmpPage), channels);
1155 for (i = 0; i < channels; i++) {
1156 tmp_page = &mis->postcopy_tmp_pages[i];
1157 temp_page = mmap(NULL, mis->largest_page_size, PROT_READ | PROT_WRITE,
1158 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1159 if (temp_page == MAP_FAILED) {
1160 err = errno;
1161 error_report("%s: Failed to map postcopy_tmp_pages[%d]: %s",
1162 __func__, i, strerror(err));
1163 /* Clean up will be done later */
1164 return -err;
1166 tmp_page->tmp_huge_page = temp_page;
1167 /* Initialize default states for each tmp page */
1168 postcopy_temp_page_reset(tmp_page);
1172 * Map large zero page when kernel can't use UFFDIO_ZEROPAGE for hugepages
1174 mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
1175 PROT_READ | PROT_WRITE,
1176 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1177 if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
1178 err = errno;
1179 mis->postcopy_tmp_zero_page = NULL;
1180 error_report("%s: Failed to map large zero page %s",
1181 __func__, strerror(err));
1182 return -err;
1185 memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
1187 return 0;
1190 int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
1192 Error *local_err = NULL;
1194 /* Open the fd for the kernel to give us userfaults */
1195 mis->userfault_fd = uffd_open(O_CLOEXEC | O_NONBLOCK);
1196 if (mis->userfault_fd == -1) {
1197 error_report("%s: Failed to open userfault fd: %s", __func__,
1198 strerror(errno));
1199 return -1;
1203 * Although the host check already tested the API, we need to
1204 * do the check again as an ABI handshake on the new fd.
1206 if (!ufd_check_and_apply(mis->userfault_fd, mis, &local_err)) {
1207 error_report_err(local_err);
1208 return -1;
1211 /* Now an eventfd we use to tell the fault-thread to quit */
1212 mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC);
1213 if (mis->userfault_event_fd == -1) {
1214 error_report("%s: Opening userfault_event_fd: %s", __func__,
1215 strerror(errno));
1216 close(mis->userfault_fd);
1217 return -1;
1220 postcopy_thread_create(mis, &mis->fault_thread, "fault-default",
1221 postcopy_ram_fault_thread, QEMU_THREAD_JOINABLE);
1222 mis->have_fault_thread = true;
1224 /* Mark so that we get notified of accesses to unwritten areas */
1225 if (foreach_not_ignored_block(ram_block_enable_notify, mis)) {
1226 error_report("ram_block_enable_notify failed");
1227 return -1;
1230 if (postcopy_temp_pages_setup(mis)) {
1231 /* Error dumped in the sub-function */
1232 return -1;
1235 if (migrate_postcopy_preempt()) {
1237 * This thread needs to be created after the temp pages because
1238 * it'll fetch RAM_CHANNEL_POSTCOPY PostcopyTmpPage immediately.
1240 postcopy_thread_create(mis, &mis->postcopy_prio_thread, "fault-fast",
1241 postcopy_preempt_thread, QEMU_THREAD_JOINABLE);
1242 mis->preempt_thread_status = PREEMPT_THREAD_CREATED;
1245 trace_postcopy_ram_enable_notify();
1247 return 0;
1250 static int qemu_ufd_copy_ioctl(MigrationIncomingState *mis, void *host_addr,
1251 void *from_addr, uint64_t pagesize, RAMBlock *rb)
1253 int userfault_fd = mis->userfault_fd;
1254 int ret;
1256 if (from_addr) {
1257 struct uffdio_copy copy_struct;
1258 copy_struct.dst = (uint64_t)(uintptr_t)host_addr;
1259 copy_struct.src = (uint64_t)(uintptr_t)from_addr;
1260 copy_struct.len = pagesize;
1261 copy_struct.mode = 0;
1262 ret = ioctl(userfault_fd, UFFDIO_COPY, &copy_struct);
1263 } else {
1264 struct uffdio_zeropage zero_struct;
1265 zero_struct.range.start = (uint64_t)(uintptr_t)host_addr;
1266 zero_struct.range.len = pagesize;
1267 zero_struct.mode = 0;
1268 ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct);
1270 if (!ret) {
1271 qemu_mutex_lock(&mis->page_request_mutex);
1272 ramblock_recv_bitmap_set_range(rb, host_addr,
1273 pagesize / qemu_target_page_size());
1275 * If this page resolves a page fault for a previous recorded faulted
1276 * address, take a special note to maintain the requested page list.
1278 if (g_tree_lookup(mis->page_requested, host_addr)) {
1279 g_tree_remove(mis->page_requested, host_addr);
1280 mis->page_requested_count--;
1281 trace_postcopy_page_req_del(host_addr, mis->page_requested_count);
1283 qemu_mutex_unlock(&mis->page_request_mutex);
1284 mark_postcopy_blocktime_end((uintptr_t)host_addr);
1286 return ret;
1289 int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset)
1291 int i;
1292 MigrationIncomingState *mis = migration_incoming_get_current();
1293 GArray *pcrfds = mis->postcopy_remote_fds;
1295 for (i = 0; i < pcrfds->len; i++) {
1296 struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1297 int ret = cur->waker(cur, rb, offset);
1298 if (ret) {
1299 return ret;
1302 return 0;
1306 * Place a host page (from) at (host) atomically
1307 * returns 0 on success
1309 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1310 RAMBlock *rb)
1312 size_t pagesize = qemu_ram_pagesize(rb);
1314 /* copy also acks to the kernel waking the stalled thread up
1315 * TODO: We can inhibit that ack and only do it if it was requested
1316 * which would be slightly cheaper, but we'd have to be careful
1317 * of the order of updating our page state.
1319 if (qemu_ufd_copy_ioctl(mis, host, from, pagesize, rb)) {
1320 int e = errno;
1321 error_report("%s: %s copy host: %p from: %p (size: %zd)",
1322 __func__, strerror(e), host, from, pagesize);
1324 return -e;
1327 trace_postcopy_place_page(host);
1328 return postcopy_notify_shared_wake(rb,
1329 qemu_ram_block_host_offset(rb, host));
1333 * Place a zero page at (host) atomically
1334 * returns 0 on success
1336 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1337 RAMBlock *rb)
1339 size_t pagesize = qemu_ram_pagesize(rb);
1340 trace_postcopy_place_page_zero(host);
1342 /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
1343 * but it's not available for everything (e.g. hugetlbpages)
1345 if (qemu_ram_is_uf_zeroable(rb)) {
1346 if (qemu_ufd_copy_ioctl(mis, host, NULL, pagesize, rb)) {
1347 int e = errno;
1348 error_report("%s: %s zero host: %p",
1349 __func__, strerror(e), host);
1351 return -e;
1353 return postcopy_notify_shared_wake(rb,
1354 qemu_ram_block_host_offset(rb,
1355 host));
1356 } else {
1357 return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, rb);
1361 #else
1362 /* No target OS support, stubs just fail */
1363 void fill_destination_postcopy_migration_info(MigrationInfo *info)
1367 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis, Error **errp)
1369 error_report("%s: No OS support", __func__);
1370 return false;
1373 int postcopy_ram_incoming_init(MigrationIncomingState *mis)
1375 error_report("postcopy_ram_incoming_init: No OS support");
1376 return -1;
1379 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
1381 assert(0);
1382 return -1;
1385 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
1387 assert(0);
1388 return -1;
1391 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
1392 uint64_t client_addr, uint64_t rb_offset)
1394 assert(0);
1395 return -1;
1398 int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
1400 assert(0);
1401 return -1;
1404 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1405 RAMBlock *rb)
1407 assert(0);
1408 return -1;
1411 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1412 RAMBlock *rb)
1414 assert(0);
1415 return -1;
1418 int postcopy_wake_shared(struct PostCopyFD *pcfd,
1419 uint64_t client_addr,
1420 RAMBlock *rb)
1422 assert(0);
1423 return -1;
1425 #endif
1427 /* ------------------------------------------------------------------------- */
1428 void postcopy_temp_page_reset(PostcopyTmpPage *tmp_page)
1430 tmp_page->target_pages = 0;
1431 tmp_page->host_addr = NULL;
1433 * This is set to true when reset, and cleared as long as we received any
1434 * of the non-zero small page within this huge page.
1436 tmp_page->all_zero = true;
1439 void postcopy_fault_thread_notify(MigrationIncomingState *mis)
1441 uint64_t tmp64 = 1;
1444 * Wakeup the fault_thread. It's an eventfd that should currently
1445 * be at 0, we're going to increment it to 1
1447 if (write(mis->userfault_event_fd, &tmp64, 8) != 8) {
1448 /* Not much we can do here, but may as well report it */
1449 error_report("%s: incrementing failed: %s", __func__,
1450 strerror(errno));
1455 * postcopy_discard_send_init: Called at the start of each RAMBlock before
1456 * asking to discard individual ranges.
1458 * @ms: The current migration state.
1459 * @offset: the bitmap offset of the named RAMBlock in the migration bitmap.
1460 * @name: RAMBlock that discards will operate on.
1462 static PostcopyDiscardState pds = {0};
1463 void postcopy_discard_send_init(MigrationState *ms, const char *name)
1465 pds.ramblock_name = name;
1466 pds.cur_entry = 0;
1467 pds.nsentwords = 0;
1468 pds.nsentcmds = 0;
1472 * postcopy_discard_send_range: Called by the bitmap code for each chunk to
1473 * discard. May send a discard message, may just leave it queued to
1474 * be sent later.
1476 * @ms: Current migration state.
1477 * @start,@length: a range of pages in the migration bitmap in the
1478 * RAM block passed to postcopy_discard_send_init() (length=1 is one page)
1480 void postcopy_discard_send_range(MigrationState *ms, unsigned long start,
1481 unsigned long length)
1483 size_t tp_size = qemu_target_page_size();
1484 /* Convert to byte offsets within the RAM block */
1485 pds.start_list[pds.cur_entry] = start * tp_size;
1486 pds.length_list[pds.cur_entry] = length * tp_size;
1487 trace_postcopy_discard_send_range(pds.ramblock_name, start, length);
1488 pds.cur_entry++;
1489 pds.nsentwords++;
1491 if (pds.cur_entry == MAX_DISCARDS_PER_COMMAND) {
1492 /* Full set, ship it! */
1493 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1494 pds.ramblock_name,
1495 pds.cur_entry,
1496 pds.start_list,
1497 pds.length_list);
1498 pds.nsentcmds++;
1499 pds.cur_entry = 0;
1504 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
1505 * bitmap code. Sends any outstanding discard messages, frees the PDS
1507 * @ms: Current migration state.
1509 void postcopy_discard_send_finish(MigrationState *ms)
1511 /* Anything unsent? */
1512 if (pds.cur_entry) {
1513 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1514 pds.ramblock_name,
1515 pds.cur_entry,
1516 pds.start_list,
1517 pds.length_list);
1518 pds.nsentcmds++;
1521 trace_postcopy_discard_send_finish(pds.ramblock_name, pds.nsentwords,
1522 pds.nsentcmds);
1526 * Current state of incoming postcopy; note this is not part of
1527 * MigrationIncomingState since it's state is used during cleanup
1528 * at the end as MIS is being freed.
1530 static PostcopyState incoming_postcopy_state;
1532 PostcopyState postcopy_state_get(void)
1534 return qatomic_load_acquire(&incoming_postcopy_state);
1537 /* Set the state and return the old state */
1538 PostcopyState postcopy_state_set(PostcopyState new_state)
1540 return qatomic_xchg(&incoming_postcopy_state, new_state);
1543 /* Register a handler for external shared memory postcopy
1544 * called on the destination.
1546 void postcopy_register_shared_ufd(struct PostCopyFD *pcfd)
1548 MigrationIncomingState *mis = migration_incoming_get_current();
1550 mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds,
1551 *pcfd);
1554 /* Unregister a handler for external shared memory postcopy
1556 void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd)
1558 guint i;
1559 MigrationIncomingState *mis = migration_incoming_get_current();
1560 GArray *pcrfds = mis->postcopy_remote_fds;
1562 if (!pcrfds) {
1563 /* migration has already finished and freed the array */
1564 return;
1566 for (i = 0; i < pcrfds->len; i++) {
1567 struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1568 if (cur->fd == pcfd->fd) {
1569 mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i);
1570 return;
1575 void postcopy_preempt_new_channel(MigrationIncomingState *mis, QEMUFile *file)
1578 * The new loading channel has its own threads, so it needs to be
1579 * blocked too. It's by default true, just be explicit.
1581 qemu_file_set_blocking(file, true);
1582 mis->postcopy_qemufile_dst = file;
1583 qemu_sem_post(&mis->postcopy_qemufile_dst_done);
1584 trace_postcopy_preempt_new_channel();
1588 * Setup the postcopy preempt channel with the IOC. If ERROR is specified,
1589 * setup the error instead. This helper will free the ERROR if specified.
1591 static void
1592 postcopy_preempt_send_channel_done(MigrationState *s,
1593 QIOChannel *ioc, Error *local_err)
1595 if (local_err) {
1596 migrate_set_error(s, local_err);
1597 error_free(local_err);
1598 } else {
1599 migration_ioc_register_yank(ioc);
1600 s->postcopy_qemufile_src = qemu_file_new_output(ioc);
1601 trace_postcopy_preempt_new_channel();
1605 * Kick the waiter in all cases. The waiter should check upon
1606 * postcopy_qemufile_src to know whether it failed or not.
1608 qemu_sem_post(&s->postcopy_qemufile_src_sem);
1611 static void
1612 postcopy_preempt_tls_handshake(QIOTask *task, gpointer opaque)
1614 g_autoptr(QIOChannel) ioc = QIO_CHANNEL(qio_task_get_source(task));
1615 MigrationState *s = opaque;
1616 Error *local_err = NULL;
1618 qio_task_propagate_error(task, &local_err);
1619 postcopy_preempt_send_channel_done(s, ioc, local_err);
1622 static void
1623 postcopy_preempt_send_channel_new(QIOTask *task, gpointer opaque)
1625 g_autoptr(QIOChannel) ioc = QIO_CHANNEL(qio_task_get_source(task));
1626 MigrationState *s = opaque;
1627 QIOChannelTLS *tioc;
1628 Error *local_err = NULL;
1630 if (qio_task_propagate_error(task, &local_err)) {
1631 goto out;
1634 if (migrate_channel_requires_tls_upgrade(ioc)) {
1635 tioc = migration_tls_client_create(ioc, s->hostname, &local_err);
1636 if (!tioc) {
1637 goto out;
1639 trace_postcopy_preempt_tls_handshake();
1640 qio_channel_set_name(QIO_CHANNEL(tioc), "migration-tls-preempt");
1641 qio_channel_tls_handshake(tioc, postcopy_preempt_tls_handshake,
1642 s, NULL, NULL);
1643 /* Setup the channel until TLS handshake finished */
1644 return;
1647 out:
1648 /* This handles both good and error cases */
1649 postcopy_preempt_send_channel_done(s, ioc, local_err);
1653 * This function will kick off an async task to establish the preempt
1654 * channel, and wait until the connection setup completed. Returns 0 if
1655 * channel established, -1 for error.
1657 int postcopy_preempt_establish_channel(MigrationState *s)
1659 /* If preempt not enabled, no need to wait */
1660 if (!migrate_postcopy_preempt()) {
1661 return 0;
1665 * Kick off async task to establish preempt channel. Only do so with
1666 * 8.0+ machines, because 7.1/7.2 require the channel to be created in
1667 * setup phase of migration (even if racy in an unreliable network).
1669 if (!s->preempt_pre_7_2) {
1670 postcopy_preempt_setup(s);
1674 * We need the postcopy preempt channel to be established before
1675 * starting doing anything.
1677 qemu_sem_wait(&s->postcopy_qemufile_src_sem);
1679 return s->postcopy_qemufile_src ? 0 : -1;
1682 void postcopy_preempt_setup(MigrationState *s)
1684 /* Kick an async task to connect */
1685 socket_send_channel_create(postcopy_preempt_send_channel_new, s);
1688 static void postcopy_pause_ram_fast_load(MigrationIncomingState *mis)
1690 trace_postcopy_pause_fast_load();
1691 qemu_mutex_unlock(&mis->postcopy_prio_thread_mutex);
1692 qemu_sem_wait(&mis->postcopy_pause_sem_fast_load);
1693 qemu_mutex_lock(&mis->postcopy_prio_thread_mutex);
1694 trace_postcopy_pause_fast_load_continued();
1697 static bool preempt_thread_should_run(MigrationIncomingState *mis)
1699 return mis->preempt_thread_status != PREEMPT_THREAD_QUIT;
1702 void *postcopy_preempt_thread(void *opaque)
1704 MigrationIncomingState *mis = opaque;
1705 int ret;
1707 trace_postcopy_preempt_thread_entry();
1709 rcu_register_thread();
1711 qemu_sem_post(&mis->thread_sync_sem);
1714 * The preempt channel is established in asynchronous way. Wait
1715 * for its completion.
1717 qemu_sem_wait(&mis->postcopy_qemufile_dst_done);
1719 /* Sending RAM_SAVE_FLAG_EOS to terminate this thread */
1720 qemu_mutex_lock(&mis->postcopy_prio_thread_mutex);
1721 while (preempt_thread_should_run(mis)) {
1722 ret = ram_load_postcopy(mis->postcopy_qemufile_dst,
1723 RAM_CHANNEL_POSTCOPY);
1724 /* If error happened, go into recovery routine */
1725 if (ret && preempt_thread_should_run(mis)) {
1726 postcopy_pause_ram_fast_load(mis);
1727 } else {
1728 /* We're done */
1729 break;
1732 qemu_mutex_unlock(&mis->postcopy_prio_thread_mutex);
1734 rcu_unregister_thread();
1736 trace_postcopy_preempt_thread_exit();
1738 return NULL;