target/arm: Expose arm_cpu_mp_affinity() in 'multiprocessing.h' header
[qemu/armbru.git] / target / arm / hvf / hvf.c
blob71a26db1886fbf6582e0f187fdaea49b34cf186e
1 /*
2 * QEMU Hypervisor.framework support for Apple Silicon
4 * Copyright 2020 Alexander Graf <agraf@csgraf.de>
5 * Copyright 2020 Google LLC
7 * This work is licensed under the terms of the GNU GPL, version 2 or later.
8 * See the COPYING file in the top-level directory.
12 #include "qemu/osdep.h"
13 #include "qemu/error-report.h"
15 #include "sysemu/runstate.h"
16 #include "sysemu/hvf.h"
17 #include "sysemu/hvf_int.h"
18 #include "sysemu/hw_accel.h"
19 #include "hvf_arm.h"
20 #include "cpregs.h"
22 #include <mach/mach_time.h>
24 #include "exec/address-spaces.h"
25 #include "hw/irq.h"
26 #include "qemu/main-loop.h"
27 #include "sysemu/cpus.h"
28 #include "arm-powerctl.h"
29 #include "target/arm/cpu.h"
30 #include "target/arm/internals.h"
31 #include "target/arm/multiprocessing.h"
32 #include "trace/trace-target_arm_hvf.h"
33 #include "migration/vmstate.h"
35 #include "exec/gdbstub.h"
37 #define MDSCR_EL1_SS_SHIFT 0
38 #define MDSCR_EL1_MDE_SHIFT 15
40 static const uint16_t dbgbcr_regs[] = {
41 HV_SYS_REG_DBGBCR0_EL1,
42 HV_SYS_REG_DBGBCR1_EL1,
43 HV_SYS_REG_DBGBCR2_EL1,
44 HV_SYS_REG_DBGBCR3_EL1,
45 HV_SYS_REG_DBGBCR4_EL1,
46 HV_SYS_REG_DBGBCR5_EL1,
47 HV_SYS_REG_DBGBCR6_EL1,
48 HV_SYS_REG_DBGBCR7_EL1,
49 HV_SYS_REG_DBGBCR8_EL1,
50 HV_SYS_REG_DBGBCR9_EL1,
51 HV_SYS_REG_DBGBCR10_EL1,
52 HV_SYS_REG_DBGBCR11_EL1,
53 HV_SYS_REG_DBGBCR12_EL1,
54 HV_SYS_REG_DBGBCR13_EL1,
55 HV_SYS_REG_DBGBCR14_EL1,
56 HV_SYS_REG_DBGBCR15_EL1,
59 static const uint16_t dbgbvr_regs[] = {
60 HV_SYS_REG_DBGBVR0_EL1,
61 HV_SYS_REG_DBGBVR1_EL1,
62 HV_SYS_REG_DBGBVR2_EL1,
63 HV_SYS_REG_DBGBVR3_EL1,
64 HV_SYS_REG_DBGBVR4_EL1,
65 HV_SYS_REG_DBGBVR5_EL1,
66 HV_SYS_REG_DBGBVR6_EL1,
67 HV_SYS_REG_DBGBVR7_EL1,
68 HV_SYS_REG_DBGBVR8_EL1,
69 HV_SYS_REG_DBGBVR9_EL1,
70 HV_SYS_REG_DBGBVR10_EL1,
71 HV_SYS_REG_DBGBVR11_EL1,
72 HV_SYS_REG_DBGBVR12_EL1,
73 HV_SYS_REG_DBGBVR13_EL1,
74 HV_SYS_REG_DBGBVR14_EL1,
75 HV_SYS_REG_DBGBVR15_EL1,
78 static const uint16_t dbgwcr_regs[] = {
79 HV_SYS_REG_DBGWCR0_EL1,
80 HV_SYS_REG_DBGWCR1_EL1,
81 HV_SYS_REG_DBGWCR2_EL1,
82 HV_SYS_REG_DBGWCR3_EL1,
83 HV_SYS_REG_DBGWCR4_EL1,
84 HV_SYS_REG_DBGWCR5_EL1,
85 HV_SYS_REG_DBGWCR6_EL1,
86 HV_SYS_REG_DBGWCR7_EL1,
87 HV_SYS_REG_DBGWCR8_EL1,
88 HV_SYS_REG_DBGWCR9_EL1,
89 HV_SYS_REG_DBGWCR10_EL1,
90 HV_SYS_REG_DBGWCR11_EL1,
91 HV_SYS_REG_DBGWCR12_EL1,
92 HV_SYS_REG_DBGWCR13_EL1,
93 HV_SYS_REG_DBGWCR14_EL1,
94 HV_SYS_REG_DBGWCR15_EL1,
97 static const uint16_t dbgwvr_regs[] = {
98 HV_SYS_REG_DBGWVR0_EL1,
99 HV_SYS_REG_DBGWVR1_EL1,
100 HV_SYS_REG_DBGWVR2_EL1,
101 HV_SYS_REG_DBGWVR3_EL1,
102 HV_SYS_REG_DBGWVR4_EL1,
103 HV_SYS_REG_DBGWVR5_EL1,
104 HV_SYS_REG_DBGWVR6_EL1,
105 HV_SYS_REG_DBGWVR7_EL1,
106 HV_SYS_REG_DBGWVR8_EL1,
107 HV_SYS_REG_DBGWVR9_EL1,
108 HV_SYS_REG_DBGWVR10_EL1,
109 HV_SYS_REG_DBGWVR11_EL1,
110 HV_SYS_REG_DBGWVR12_EL1,
111 HV_SYS_REG_DBGWVR13_EL1,
112 HV_SYS_REG_DBGWVR14_EL1,
113 HV_SYS_REG_DBGWVR15_EL1,
116 static inline int hvf_arm_num_brps(hv_vcpu_config_t config)
118 uint64_t val;
119 hv_return_t ret;
120 ret = hv_vcpu_config_get_feature_reg(config, HV_FEATURE_REG_ID_AA64DFR0_EL1,
121 &val);
122 assert_hvf_ok(ret);
123 return FIELD_EX64(val, ID_AA64DFR0, BRPS) + 1;
126 static inline int hvf_arm_num_wrps(hv_vcpu_config_t config)
128 uint64_t val;
129 hv_return_t ret;
130 ret = hv_vcpu_config_get_feature_reg(config, HV_FEATURE_REG_ID_AA64DFR0_EL1,
131 &val);
132 assert_hvf_ok(ret);
133 return FIELD_EX64(val, ID_AA64DFR0, WRPS) + 1;
136 void hvf_arm_init_debug(void)
138 hv_vcpu_config_t config;
139 config = hv_vcpu_config_create();
141 max_hw_bps = hvf_arm_num_brps(config);
142 hw_breakpoints =
143 g_array_sized_new(true, true, sizeof(HWBreakpoint), max_hw_bps);
145 max_hw_wps = hvf_arm_num_wrps(config);
146 hw_watchpoints =
147 g_array_sized_new(true, true, sizeof(HWWatchpoint), max_hw_wps);
150 #define HVF_SYSREG(crn, crm, op0, op1, op2) \
151 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
152 #define PL1_WRITE_MASK 0x4
154 #define SYSREG_OP0_SHIFT 20
155 #define SYSREG_OP0_MASK 0x3
156 #define SYSREG_OP0(sysreg) ((sysreg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK)
157 #define SYSREG_OP1_SHIFT 14
158 #define SYSREG_OP1_MASK 0x7
159 #define SYSREG_OP1(sysreg) ((sysreg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK)
160 #define SYSREG_CRN_SHIFT 10
161 #define SYSREG_CRN_MASK 0xf
162 #define SYSREG_CRN(sysreg) ((sysreg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK)
163 #define SYSREG_CRM_SHIFT 1
164 #define SYSREG_CRM_MASK 0xf
165 #define SYSREG_CRM(sysreg) ((sysreg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK)
166 #define SYSREG_OP2_SHIFT 17
167 #define SYSREG_OP2_MASK 0x7
168 #define SYSREG_OP2(sysreg) ((sysreg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK)
170 #define SYSREG(op0, op1, crn, crm, op2) \
171 ((op0 << SYSREG_OP0_SHIFT) | \
172 (op1 << SYSREG_OP1_SHIFT) | \
173 (crn << SYSREG_CRN_SHIFT) | \
174 (crm << SYSREG_CRM_SHIFT) | \
175 (op2 << SYSREG_OP2_SHIFT))
176 #define SYSREG_MASK \
177 SYSREG(SYSREG_OP0_MASK, \
178 SYSREG_OP1_MASK, \
179 SYSREG_CRN_MASK, \
180 SYSREG_CRM_MASK, \
181 SYSREG_OP2_MASK)
182 #define SYSREG_OSLAR_EL1 SYSREG(2, 0, 1, 0, 4)
183 #define SYSREG_OSLSR_EL1 SYSREG(2, 0, 1, 1, 4)
184 #define SYSREG_OSDLR_EL1 SYSREG(2, 0, 1, 3, 4)
185 #define SYSREG_CNTPCT_EL0 SYSREG(3, 3, 14, 0, 1)
186 #define SYSREG_PMCR_EL0 SYSREG(3, 3, 9, 12, 0)
187 #define SYSREG_PMUSERENR_EL0 SYSREG(3, 3, 9, 14, 0)
188 #define SYSREG_PMCNTENSET_EL0 SYSREG(3, 3, 9, 12, 1)
189 #define SYSREG_PMCNTENCLR_EL0 SYSREG(3, 3, 9, 12, 2)
190 #define SYSREG_PMINTENCLR_EL1 SYSREG(3, 0, 9, 14, 2)
191 #define SYSREG_PMOVSCLR_EL0 SYSREG(3, 3, 9, 12, 3)
192 #define SYSREG_PMSWINC_EL0 SYSREG(3, 3, 9, 12, 4)
193 #define SYSREG_PMSELR_EL0 SYSREG(3, 3, 9, 12, 5)
194 #define SYSREG_PMCEID0_EL0 SYSREG(3, 3, 9, 12, 6)
195 #define SYSREG_PMCEID1_EL0 SYSREG(3, 3, 9, 12, 7)
196 #define SYSREG_PMCCNTR_EL0 SYSREG(3, 3, 9, 13, 0)
197 #define SYSREG_PMCCFILTR_EL0 SYSREG(3, 3, 14, 15, 7)
199 #define SYSREG_ICC_AP0R0_EL1 SYSREG(3, 0, 12, 8, 4)
200 #define SYSREG_ICC_AP0R1_EL1 SYSREG(3, 0, 12, 8, 5)
201 #define SYSREG_ICC_AP0R2_EL1 SYSREG(3, 0, 12, 8, 6)
202 #define SYSREG_ICC_AP0R3_EL1 SYSREG(3, 0, 12, 8, 7)
203 #define SYSREG_ICC_AP1R0_EL1 SYSREG(3, 0, 12, 9, 0)
204 #define SYSREG_ICC_AP1R1_EL1 SYSREG(3, 0, 12, 9, 1)
205 #define SYSREG_ICC_AP1R2_EL1 SYSREG(3, 0, 12, 9, 2)
206 #define SYSREG_ICC_AP1R3_EL1 SYSREG(3, 0, 12, 9, 3)
207 #define SYSREG_ICC_ASGI1R_EL1 SYSREG(3, 0, 12, 11, 6)
208 #define SYSREG_ICC_BPR0_EL1 SYSREG(3, 0, 12, 8, 3)
209 #define SYSREG_ICC_BPR1_EL1 SYSREG(3, 0, 12, 12, 3)
210 #define SYSREG_ICC_CTLR_EL1 SYSREG(3, 0, 12, 12, 4)
211 #define SYSREG_ICC_DIR_EL1 SYSREG(3, 0, 12, 11, 1)
212 #define SYSREG_ICC_EOIR0_EL1 SYSREG(3, 0, 12, 8, 1)
213 #define SYSREG_ICC_EOIR1_EL1 SYSREG(3, 0, 12, 12, 1)
214 #define SYSREG_ICC_HPPIR0_EL1 SYSREG(3, 0, 12, 8, 2)
215 #define SYSREG_ICC_HPPIR1_EL1 SYSREG(3, 0, 12, 12, 2)
216 #define SYSREG_ICC_IAR0_EL1 SYSREG(3, 0, 12, 8, 0)
217 #define SYSREG_ICC_IAR1_EL1 SYSREG(3, 0, 12, 12, 0)
218 #define SYSREG_ICC_IGRPEN0_EL1 SYSREG(3, 0, 12, 12, 6)
219 #define SYSREG_ICC_IGRPEN1_EL1 SYSREG(3, 0, 12, 12, 7)
220 #define SYSREG_ICC_PMR_EL1 SYSREG(3, 0, 4, 6, 0)
221 #define SYSREG_ICC_RPR_EL1 SYSREG(3, 0, 12, 11, 3)
222 #define SYSREG_ICC_SGI0R_EL1 SYSREG(3, 0, 12, 11, 7)
223 #define SYSREG_ICC_SGI1R_EL1 SYSREG(3, 0, 12, 11, 5)
224 #define SYSREG_ICC_SRE_EL1 SYSREG(3, 0, 12, 12, 5)
226 #define SYSREG_MDSCR_EL1 SYSREG(2, 0, 0, 2, 2)
227 #define SYSREG_DBGBVR0_EL1 SYSREG(2, 0, 0, 0, 4)
228 #define SYSREG_DBGBCR0_EL1 SYSREG(2, 0, 0, 0, 5)
229 #define SYSREG_DBGWVR0_EL1 SYSREG(2, 0, 0, 0, 6)
230 #define SYSREG_DBGWCR0_EL1 SYSREG(2, 0, 0, 0, 7)
231 #define SYSREG_DBGBVR1_EL1 SYSREG(2, 0, 0, 1, 4)
232 #define SYSREG_DBGBCR1_EL1 SYSREG(2, 0, 0, 1, 5)
233 #define SYSREG_DBGWVR1_EL1 SYSREG(2, 0, 0, 1, 6)
234 #define SYSREG_DBGWCR1_EL1 SYSREG(2, 0, 0, 1, 7)
235 #define SYSREG_DBGBVR2_EL1 SYSREG(2, 0, 0, 2, 4)
236 #define SYSREG_DBGBCR2_EL1 SYSREG(2, 0, 0, 2, 5)
237 #define SYSREG_DBGWVR2_EL1 SYSREG(2, 0, 0, 2, 6)
238 #define SYSREG_DBGWCR2_EL1 SYSREG(2, 0, 0, 2, 7)
239 #define SYSREG_DBGBVR3_EL1 SYSREG(2, 0, 0, 3, 4)
240 #define SYSREG_DBGBCR3_EL1 SYSREG(2, 0, 0, 3, 5)
241 #define SYSREG_DBGWVR3_EL1 SYSREG(2, 0, 0, 3, 6)
242 #define SYSREG_DBGWCR3_EL1 SYSREG(2, 0, 0, 3, 7)
243 #define SYSREG_DBGBVR4_EL1 SYSREG(2, 0, 0, 4, 4)
244 #define SYSREG_DBGBCR4_EL1 SYSREG(2, 0, 0, 4, 5)
245 #define SYSREG_DBGWVR4_EL1 SYSREG(2, 0, 0, 4, 6)
246 #define SYSREG_DBGWCR4_EL1 SYSREG(2, 0, 0, 4, 7)
247 #define SYSREG_DBGBVR5_EL1 SYSREG(2, 0, 0, 5, 4)
248 #define SYSREG_DBGBCR5_EL1 SYSREG(2, 0, 0, 5, 5)
249 #define SYSREG_DBGWVR5_EL1 SYSREG(2, 0, 0, 5, 6)
250 #define SYSREG_DBGWCR5_EL1 SYSREG(2, 0, 0, 5, 7)
251 #define SYSREG_DBGBVR6_EL1 SYSREG(2, 0, 0, 6, 4)
252 #define SYSREG_DBGBCR6_EL1 SYSREG(2, 0, 0, 6, 5)
253 #define SYSREG_DBGWVR6_EL1 SYSREG(2, 0, 0, 6, 6)
254 #define SYSREG_DBGWCR6_EL1 SYSREG(2, 0, 0, 6, 7)
255 #define SYSREG_DBGBVR7_EL1 SYSREG(2, 0, 0, 7, 4)
256 #define SYSREG_DBGBCR7_EL1 SYSREG(2, 0, 0, 7, 5)
257 #define SYSREG_DBGWVR7_EL1 SYSREG(2, 0, 0, 7, 6)
258 #define SYSREG_DBGWCR7_EL1 SYSREG(2, 0, 0, 7, 7)
259 #define SYSREG_DBGBVR8_EL1 SYSREG(2, 0, 0, 8, 4)
260 #define SYSREG_DBGBCR8_EL1 SYSREG(2, 0, 0, 8, 5)
261 #define SYSREG_DBGWVR8_EL1 SYSREG(2, 0, 0, 8, 6)
262 #define SYSREG_DBGWCR8_EL1 SYSREG(2, 0, 0, 8, 7)
263 #define SYSREG_DBGBVR9_EL1 SYSREG(2, 0, 0, 9, 4)
264 #define SYSREG_DBGBCR9_EL1 SYSREG(2, 0, 0, 9, 5)
265 #define SYSREG_DBGWVR9_EL1 SYSREG(2, 0, 0, 9, 6)
266 #define SYSREG_DBGWCR9_EL1 SYSREG(2, 0, 0, 9, 7)
267 #define SYSREG_DBGBVR10_EL1 SYSREG(2, 0, 0, 10, 4)
268 #define SYSREG_DBGBCR10_EL1 SYSREG(2, 0, 0, 10, 5)
269 #define SYSREG_DBGWVR10_EL1 SYSREG(2, 0, 0, 10, 6)
270 #define SYSREG_DBGWCR10_EL1 SYSREG(2, 0, 0, 10, 7)
271 #define SYSREG_DBGBVR11_EL1 SYSREG(2, 0, 0, 11, 4)
272 #define SYSREG_DBGBCR11_EL1 SYSREG(2, 0, 0, 11, 5)
273 #define SYSREG_DBGWVR11_EL1 SYSREG(2, 0, 0, 11, 6)
274 #define SYSREG_DBGWCR11_EL1 SYSREG(2, 0, 0, 11, 7)
275 #define SYSREG_DBGBVR12_EL1 SYSREG(2, 0, 0, 12, 4)
276 #define SYSREG_DBGBCR12_EL1 SYSREG(2, 0, 0, 12, 5)
277 #define SYSREG_DBGWVR12_EL1 SYSREG(2, 0, 0, 12, 6)
278 #define SYSREG_DBGWCR12_EL1 SYSREG(2, 0, 0, 12, 7)
279 #define SYSREG_DBGBVR13_EL1 SYSREG(2, 0, 0, 13, 4)
280 #define SYSREG_DBGBCR13_EL1 SYSREG(2, 0, 0, 13, 5)
281 #define SYSREG_DBGWVR13_EL1 SYSREG(2, 0, 0, 13, 6)
282 #define SYSREG_DBGWCR13_EL1 SYSREG(2, 0, 0, 13, 7)
283 #define SYSREG_DBGBVR14_EL1 SYSREG(2, 0, 0, 14, 4)
284 #define SYSREG_DBGBCR14_EL1 SYSREG(2, 0, 0, 14, 5)
285 #define SYSREG_DBGWVR14_EL1 SYSREG(2, 0, 0, 14, 6)
286 #define SYSREG_DBGWCR14_EL1 SYSREG(2, 0, 0, 14, 7)
287 #define SYSREG_DBGBVR15_EL1 SYSREG(2, 0, 0, 15, 4)
288 #define SYSREG_DBGBCR15_EL1 SYSREG(2, 0, 0, 15, 5)
289 #define SYSREG_DBGWVR15_EL1 SYSREG(2, 0, 0, 15, 6)
290 #define SYSREG_DBGWCR15_EL1 SYSREG(2, 0, 0, 15, 7)
292 #define WFX_IS_WFE (1 << 0)
294 #define TMR_CTL_ENABLE (1 << 0)
295 #define TMR_CTL_IMASK (1 << 1)
296 #define TMR_CTL_ISTATUS (1 << 2)
298 static void hvf_wfi(CPUState *cpu);
300 typedef struct HVFVTimer {
301 /* Vtimer value during migration and paused state */
302 uint64_t vtimer_val;
303 } HVFVTimer;
305 static HVFVTimer vtimer;
307 typedef struct ARMHostCPUFeatures {
308 ARMISARegisters isar;
309 uint64_t features;
310 uint64_t midr;
311 uint32_t reset_sctlr;
312 const char *dtb_compatible;
313 } ARMHostCPUFeatures;
315 static ARMHostCPUFeatures arm_host_cpu_features;
317 struct hvf_reg_match {
318 int reg;
319 uint64_t offset;
322 static const struct hvf_reg_match hvf_reg_match[] = {
323 { HV_REG_X0, offsetof(CPUARMState, xregs[0]) },
324 { HV_REG_X1, offsetof(CPUARMState, xregs[1]) },
325 { HV_REG_X2, offsetof(CPUARMState, xregs[2]) },
326 { HV_REG_X3, offsetof(CPUARMState, xregs[3]) },
327 { HV_REG_X4, offsetof(CPUARMState, xregs[4]) },
328 { HV_REG_X5, offsetof(CPUARMState, xregs[5]) },
329 { HV_REG_X6, offsetof(CPUARMState, xregs[6]) },
330 { HV_REG_X7, offsetof(CPUARMState, xregs[7]) },
331 { HV_REG_X8, offsetof(CPUARMState, xregs[8]) },
332 { HV_REG_X9, offsetof(CPUARMState, xregs[9]) },
333 { HV_REG_X10, offsetof(CPUARMState, xregs[10]) },
334 { HV_REG_X11, offsetof(CPUARMState, xregs[11]) },
335 { HV_REG_X12, offsetof(CPUARMState, xregs[12]) },
336 { HV_REG_X13, offsetof(CPUARMState, xregs[13]) },
337 { HV_REG_X14, offsetof(CPUARMState, xregs[14]) },
338 { HV_REG_X15, offsetof(CPUARMState, xregs[15]) },
339 { HV_REG_X16, offsetof(CPUARMState, xregs[16]) },
340 { HV_REG_X17, offsetof(CPUARMState, xregs[17]) },
341 { HV_REG_X18, offsetof(CPUARMState, xregs[18]) },
342 { HV_REG_X19, offsetof(CPUARMState, xregs[19]) },
343 { HV_REG_X20, offsetof(CPUARMState, xregs[20]) },
344 { HV_REG_X21, offsetof(CPUARMState, xregs[21]) },
345 { HV_REG_X22, offsetof(CPUARMState, xregs[22]) },
346 { HV_REG_X23, offsetof(CPUARMState, xregs[23]) },
347 { HV_REG_X24, offsetof(CPUARMState, xregs[24]) },
348 { HV_REG_X25, offsetof(CPUARMState, xregs[25]) },
349 { HV_REG_X26, offsetof(CPUARMState, xregs[26]) },
350 { HV_REG_X27, offsetof(CPUARMState, xregs[27]) },
351 { HV_REG_X28, offsetof(CPUARMState, xregs[28]) },
352 { HV_REG_X29, offsetof(CPUARMState, xregs[29]) },
353 { HV_REG_X30, offsetof(CPUARMState, xregs[30]) },
354 { HV_REG_PC, offsetof(CPUARMState, pc) },
357 static const struct hvf_reg_match hvf_fpreg_match[] = {
358 { HV_SIMD_FP_REG_Q0, offsetof(CPUARMState, vfp.zregs[0]) },
359 { HV_SIMD_FP_REG_Q1, offsetof(CPUARMState, vfp.zregs[1]) },
360 { HV_SIMD_FP_REG_Q2, offsetof(CPUARMState, vfp.zregs[2]) },
361 { HV_SIMD_FP_REG_Q3, offsetof(CPUARMState, vfp.zregs[3]) },
362 { HV_SIMD_FP_REG_Q4, offsetof(CPUARMState, vfp.zregs[4]) },
363 { HV_SIMD_FP_REG_Q5, offsetof(CPUARMState, vfp.zregs[5]) },
364 { HV_SIMD_FP_REG_Q6, offsetof(CPUARMState, vfp.zregs[6]) },
365 { HV_SIMD_FP_REG_Q7, offsetof(CPUARMState, vfp.zregs[7]) },
366 { HV_SIMD_FP_REG_Q8, offsetof(CPUARMState, vfp.zregs[8]) },
367 { HV_SIMD_FP_REG_Q9, offsetof(CPUARMState, vfp.zregs[9]) },
368 { HV_SIMD_FP_REG_Q10, offsetof(CPUARMState, vfp.zregs[10]) },
369 { HV_SIMD_FP_REG_Q11, offsetof(CPUARMState, vfp.zregs[11]) },
370 { HV_SIMD_FP_REG_Q12, offsetof(CPUARMState, vfp.zregs[12]) },
371 { HV_SIMD_FP_REG_Q13, offsetof(CPUARMState, vfp.zregs[13]) },
372 { HV_SIMD_FP_REG_Q14, offsetof(CPUARMState, vfp.zregs[14]) },
373 { HV_SIMD_FP_REG_Q15, offsetof(CPUARMState, vfp.zregs[15]) },
374 { HV_SIMD_FP_REG_Q16, offsetof(CPUARMState, vfp.zregs[16]) },
375 { HV_SIMD_FP_REG_Q17, offsetof(CPUARMState, vfp.zregs[17]) },
376 { HV_SIMD_FP_REG_Q18, offsetof(CPUARMState, vfp.zregs[18]) },
377 { HV_SIMD_FP_REG_Q19, offsetof(CPUARMState, vfp.zregs[19]) },
378 { HV_SIMD_FP_REG_Q20, offsetof(CPUARMState, vfp.zregs[20]) },
379 { HV_SIMD_FP_REG_Q21, offsetof(CPUARMState, vfp.zregs[21]) },
380 { HV_SIMD_FP_REG_Q22, offsetof(CPUARMState, vfp.zregs[22]) },
381 { HV_SIMD_FP_REG_Q23, offsetof(CPUARMState, vfp.zregs[23]) },
382 { HV_SIMD_FP_REG_Q24, offsetof(CPUARMState, vfp.zregs[24]) },
383 { HV_SIMD_FP_REG_Q25, offsetof(CPUARMState, vfp.zregs[25]) },
384 { HV_SIMD_FP_REG_Q26, offsetof(CPUARMState, vfp.zregs[26]) },
385 { HV_SIMD_FP_REG_Q27, offsetof(CPUARMState, vfp.zregs[27]) },
386 { HV_SIMD_FP_REG_Q28, offsetof(CPUARMState, vfp.zregs[28]) },
387 { HV_SIMD_FP_REG_Q29, offsetof(CPUARMState, vfp.zregs[29]) },
388 { HV_SIMD_FP_REG_Q30, offsetof(CPUARMState, vfp.zregs[30]) },
389 { HV_SIMD_FP_REG_Q31, offsetof(CPUARMState, vfp.zregs[31]) },
392 struct hvf_sreg_match {
393 int reg;
394 uint32_t key;
395 uint32_t cp_idx;
398 static struct hvf_sreg_match hvf_sreg_match[] = {
399 { HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 4) },
400 { HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 5) },
401 { HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 6) },
402 { HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 7) },
404 { HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 4) },
405 { HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 5) },
406 { HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 6) },
407 { HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 7) },
409 { HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 4) },
410 { HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 5) },
411 { HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 6) },
412 { HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 7) },
414 { HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 4) },
415 { HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 5) },
416 { HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 6) },
417 { HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 7) },
419 { HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 4) },
420 { HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 5) },
421 { HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 6) },
422 { HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 7) },
424 { HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 4) },
425 { HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 5) },
426 { HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 6) },
427 { HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 7) },
429 { HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 4) },
430 { HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 5) },
431 { HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 6) },
432 { HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 7) },
434 { HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 4) },
435 { HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 5) },
436 { HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 6) },
437 { HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 7) },
439 { HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 4) },
440 { HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 5) },
441 { HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 6) },
442 { HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 7) },
444 { HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 4) },
445 { HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 5) },
446 { HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 6) },
447 { HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 7) },
449 { HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 4) },
450 { HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 5) },
451 { HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 6) },
452 { HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 7) },
454 { HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 4) },
455 { HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 5) },
456 { HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 6) },
457 { HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 7) },
459 { HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 4) },
460 { HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 5) },
461 { HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 6) },
462 { HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 7) },
464 { HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 4) },
465 { HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 5) },
466 { HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 6) },
467 { HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 7) },
469 { HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 4) },
470 { HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 5) },
471 { HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 6) },
472 { HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 7) },
474 { HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 4) },
475 { HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 5) },
476 { HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 6) },
477 { HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 7) },
479 #ifdef SYNC_NO_RAW_REGS
481 * The registers below are manually synced on init because they are
482 * marked as NO_RAW. We still list them to make number space sync easier.
484 { HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) },
485 { HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) },
486 { HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) },
487 { HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) },
488 #endif
489 { HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 2) },
490 { HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) },
491 { HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) },
492 { HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) },
493 { HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) },
494 #ifdef SYNC_NO_MMFR0
495 /* We keep the hardware MMFR0 around. HW limits are there anyway */
496 { HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) },
497 #endif
498 { HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) },
499 { HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) },
501 { HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) },
502 { HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) },
503 { HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) },
504 { HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) },
505 { HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) },
506 { HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) },
508 { HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) },
509 { HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) },
510 { HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) },
511 { HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) },
512 { HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) },
513 { HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) },
514 { HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) },
515 { HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) },
516 { HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) },
517 { HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) },
519 { HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 0, 0) },
520 { HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) },
521 { HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) },
522 { HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) },
523 { HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) },
524 { HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) },
525 { HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) },
526 { HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) },
527 { HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) },
528 { HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) },
529 { HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) },
530 { HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) },
531 { HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) },
532 { HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) },
533 { HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) },
534 { HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) },
535 { HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) },
536 { HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) },
537 { HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) },
538 { HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) },
541 int hvf_get_registers(CPUState *cpu)
543 ARMCPU *arm_cpu = ARM_CPU(cpu);
544 CPUARMState *env = &arm_cpu->env;
545 hv_return_t ret;
546 uint64_t val;
547 hv_simd_fp_uchar16_t fpval;
548 int i;
550 for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
551 ret = hv_vcpu_get_reg(cpu->accel->fd, hvf_reg_match[i].reg, &val);
552 *(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val;
553 assert_hvf_ok(ret);
556 for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
557 ret = hv_vcpu_get_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg,
558 &fpval);
559 memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval));
560 assert_hvf_ok(ret);
563 val = 0;
564 ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPCR, &val);
565 assert_hvf_ok(ret);
566 vfp_set_fpcr(env, val);
568 val = 0;
569 ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPSR, &val);
570 assert_hvf_ok(ret);
571 vfp_set_fpsr(env, val);
573 ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_CPSR, &val);
574 assert_hvf_ok(ret);
575 pstate_write(env, val);
577 for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
578 if (hvf_sreg_match[i].cp_idx == -1) {
579 continue;
582 if (cpu->accel->guest_debug_enabled) {
583 /* Handle debug registers */
584 switch (hvf_sreg_match[i].reg) {
585 case HV_SYS_REG_DBGBVR0_EL1:
586 case HV_SYS_REG_DBGBCR0_EL1:
587 case HV_SYS_REG_DBGWVR0_EL1:
588 case HV_SYS_REG_DBGWCR0_EL1:
589 case HV_SYS_REG_DBGBVR1_EL1:
590 case HV_SYS_REG_DBGBCR1_EL1:
591 case HV_SYS_REG_DBGWVR1_EL1:
592 case HV_SYS_REG_DBGWCR1_EL1:
593 case HV_SYS_REG_DBGBVR2_EL1:
594 case HV_SYS_REG_DBGBCR2_EL1:
595 case HV_SYS_REG_DBGWVR2_EL1:
596 case HV_SYS_REG_DBGWCR2_EL1:
597 case HV_SYS_REG_DBGBVR3_EL1:
598 case HV_SYS_REG_DBGBCR3_EL1:
599 case HV_SYS_REG_DBGWVR3_EL1:
600 case HV_SYS_REG_DBGWCR3_EL1:
601 case HV_SYS_REG_DBGBVR4_EL1:
602 case HV_SYS_REG_DBGBCR4_EL1:
603 case HV_SYS_REG_DBGWVR4_EL1:
604 case HV_SYS_REG_DBGWCR4_EL1:
605 case HV_SYS_REG_DBGBVR5_EL1:
606 case HV_SYS_REG_DBGBCR5_EL1:
607 case HV_SYS_REG_DBGWVR5_EL1:
608 case HV_SYS_REG_DBGWCR5_EL1:
609 case HV_SYS_REG_DBGBVR6_EL1:
610 case HV_SYS_REG_DBGBCR6_EL1:
611 case HV_SYS_REG_DBGWVR6_EL1:
612 case HV_SYS_REG_DBGWCR6_EL1:
613 case HV_SYS_REG_DBGBVR7_EL1:
614 case HV_SYS_REG_DBGBCR7_EL1:
615 case HV_SYS_REG_DBGWVR7_EL1:
616 case HV_SYS_REG_DBGWCR7_EL1:
617 case HV_SYS_REG_DBGBVR8_EL1:
618 case HV_SYS_REG_DBGBCR8_EL1:
619 case HV_SYS_REG_DBGWVR8_EL1:
620 case HV_SYS_REG_DBGWCR8_EL1:
621 case HV_SYS_REG_DBGBVR9_EL1:
622 case HV_SYS_REG_DBGBCR9_EL1:
623 case HV_SYS_REG_DBGWVR9_EL1:
624 case HV_SYS_REG_DBGWCR9_EL1:
625 case HV_SYS_REG_DBGBVR10_EL1:
626 case HV_SYS_REG_DBGBCR10_EL1:
627 case HV_SYS_REG_DBGWVR10_EL1:
628 case HV_SYS_REG_DBGWCR10_EL1:
629 case HV_SYS_REG_DBGBVR11_EL1:
630 case HV_SYS_REG_DBGBCR11_EL1:
631 case HV_SYS_REG_DBGWVR11_EL1:
632 case HV_SYS_REG_DBGWCR11_EL1:
633 case HV_SYS_REG_DBGBVR12_EL1:
634 case HV_SYS_REG_DBGBCR12_EL1:
635 case HV_SYS_REG_DBGWVR12_EL1:
636 case HV_SYS_REG_DBGWCR12_EL1:
637 case HV_SYS_REG_DBGBVR13_EL1:
638 case HV_SYS_REG_DBGBCR13_EL1:
639 case HV_SYS_REG_DBGWVR13_EL1:
640 case HV_SYS_REG_DBGWCR13_EL1:
641 case HV_SYS_REG_DBGBVR14_EL1:
642 case HV_SYS_REG_DBGBCR14_EL1:
643 case HV_SYS_REG_DBGWVR14_EL1:
644 case HV_SYS_REG_DBGWCR14_EL1:
645 case HV_SYS_REG_DBGBVR15_EL1:
646 case HV_SYS_REG_DBGBCR15_EL1:
647 case HV_SYS_REG_DBGWVR15_EL1:
648 case HV_SYS_REG_DBGWCR15_EL1: {
650 * If the guest is being debugged, the vCPU's debug registers
651 * are holding the gdbstub's view of the registers (set in
652 * hvf_arch_update_guest_debug()).
653 * Since the environment is used to store only the guest's view
654 * of the registers, don't update it with the values from the
655 * vCPU but simply keep the values from the previous
656 * environment.
658 const ARMCPRegInfo *ri;
659 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_sreg_match[i].key);
660 val = read_raw_cp_reg(env, ri);
662 arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
663 continue;
668 ret = hv_vcpu_get_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, &val);
669 assert_hvf_ok(ret);
671 arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
673 assert(write_list_to_cpustate(arm_cpu));
675 aarch64_restore_sp(env, arm_current_el(env));
677 return 0;
680 int hvf_put_registers(CPUState *cpu)
682 ARMCPU *arm_cpu = ARM_CPU(cpu);
683 CPUARMState *env = &arm_cpu->env;
684 hv_return_t ret;
685 uint64_t val;
686 hv_simd_fp_uchar16_t fpval;
687 int i;
689 for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
690 val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset);
691 ret = hv_vcpu_set_reg(cpu->accel->fd, hvf_reg_match[i].reg, val);
692 assert_hvf_ok(ret);
695 for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
696 memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval));
697 ret = hv_vcpu_set_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg,
698 fpval);
699 assert_hvf_ok(ret);
702 ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPCR, vfp_get_fpcr(env));
703 assert_hvf_ok(ret);
705 ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPSR, vfp_get_fpsr(env));
706 assert_hvf_ok(ret);
708 ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_CPSR, pstate_read(env));
709 assert_hvf_ok(ret);
711 aarch64_save_sp(env, arm_current_el(env));
713 assert(write_cpustate_to_list(arm_cpu, false));
714 for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
715 if (hvf_sreg_match[i].cp_idx == -1) {
716 continue;
719 if (cpu->accel->guest_debug_enabled) {
720 /* Handle debug registers */
721 switch (hvf_sreg_match[i].reg) {
722 case HV_SYS_REG_DBGBVR0_EL1:
723 case HV_SYS_REG_DBGBCR0_EL1:
724 case HV_SYS_REG_DBGWVR0_EL1:
725 case HV_SYS_REG_DBGWCR0_EL1:
726 case HV_SYS_REG_DBGBVR1_EL1:
727 case HV_SYS_REG_DBGBCR1_EL1:
728 case HV_SYS_REG_DBGWVR1_EL1:
729 case HV_SYS_REG_DBGWCR1_EL1:
730 case HV_SYS_REG_DBGBVR2_EL1:
731 case HV_SYS_REG_DBGBCR2_EL1:
732 case HV_SYS_REG_DBGWVR2_EL1:
733 case HV_SYS_REG_DBGWCR2_EL1:
734 case HV_SYS_REG_DBGBVR3_EL1:
735 case HV_SYS_REG_DBGBCR3_EL1:
736 case HV_SYS_REG_DBGWVR3_EL1:
737 case HV_SYS_REG_DBGWCR3_EL1:
738 case HV_SYS_REG_DBGBVR4_EL1:
739 case HV_SYS_REG_DBGBCR4_EL1:
740 case HV_SYS_REG_DBGWVR4_EL1:
741 case HV_SYS_REG_DBGWCR4_EL1:
742 case HV_SYS_REG_DBGBVR5_EL1:
743 case HV_SYS_REG_DBGBCR5_EL1:
744 case HV_SYS_REG_DBGWVR5_EL1:
745 case HV_SYS_REG_DBGWCR5_EL1:
746 case HV_SYS_REG_DBGBVR6_EL1:
747 case HV_SYS_REG_DBGBCR6_EL1:
748 case HV_SYS_REG_DBGWVR6_EL1:
749 case HV_SYS_REG_DBGWCR6_EL1:
750 case HV_SYS_REG_DBGBVR7_EL1:
751 case HV_SYS_REG_DBGBCR7_EL1:
752 case HV_SYS_REG_DBGWVR7_EL1:
753 case HV_SYS_REG_DBGWCR7_EL1:
754 case HV_SYS_REG_DBGBVR8_EL1:
755 case HV_SYS_REG_DBGBCR8_EL1:
756 case HV_SYS_REG_DBGWVR8_EL1:
757 case HV_SYS_REG_DBGWCR8_EL1:
758 case HV_SYS_REG_DBGBVR9_EL1:
759 case HV_SYS_REG_DBGBCR9_EL1:
760 case HV_SYS_REG_DBGWVR9_EL1:
761 case HV_SYS_REG_DBGWCR9_EL1:
762 case HV_SYS_REG_DBGBVR10_EL1:
763 case HV_SYS_REG_DBGBCR10_EL1:
764 case HV_SYS_REG_DBGWVR10_EL1:
765 case HV_SYS_REG_DBGWCR10_EL1:
766 case HV_SYS_REG_DBGBVR11_EL1:
767 case HV_SYS_REG_DBGBCR11_EL1:
768 case HV_SYS_REG_DBGWVR11_EL1:
769 case HV_SYS_REG_DBGWCR11_EL1:
770 case HV_SYS_REG_DBGBVR12_EL1:
771 case HV_SYS_REG_DBGBCR12_EL1:
772 case HV_SYS_REG_DBGWVR12_EL1:
773 case HV_SYS_REG_DBGWCR12_EL1:
774 case HV_SYS_REG_DBGBVR13_EL1:
775 case HV_SYS_REG_DBGBCR13_EL1:
776 case HV_SYS_REG_DBGWVR13_EL1:
777 case HV_SYS_REG_DBGWCR13_EL1:
778 case HV_SYS_REG_DBGBVR14_EL1:
779 case HV_SYS_REG_DBGBCR14_EL1:
780 case HV_SYS_REG_DBGWVR14_EL1:
781 case HV_SYS_REG_DBGWCR14_EL1:
782 case HV_SYS_REG_DBGBVR15_EL1:
783 case HV_SYS_REG_DBGBCR15_EL1:
784 case HV_SYS_REG_DBGWVR15_EL1:
785 case HV_SYS_REG_DBGWCR15_EL1:
787 * If the guest is being debugged, the vCPU's debug registers
788 * are already holding the gdbstub's view of the registers (set
789 * in hvf_arch_update_guest_debug()).
791 continue;
795 val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx];
796 ret = hv_vcpu_set_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, val);
797 assert_hvf_ok(ret);
800 ret = hv_vcpu_set_vtimer_offset(cpu->accel->fd, hvf_state->vtimer_offset);
801 assert_hvf_ok(ret);
803 return 0;
806 static void flush_cpu_state(CPUState *cpu)
808 if (cpu->vcpu_dirty) {
809 hvf_put_registers(cpu);
810 cpu->vcpu_dirty = false;
814 static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val)
816 hv_return_t r;
818 flush_cpu_state(cpu);
820 if (rt < 31) {
821 r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_X0 + rt, val);
822 assert_hvf_ok(r);
826 static uint64_t hvf_get_reg(CPUState *cpu, int rt)
828 uint64_t val = 0;
829 hv_return_t r;
831 flush_cpu_state(cpu);
833 if (rt < 31) {
834 r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_X0 + rt, &val);
835 assert_hvf_ok(r);
838 return val;
841 static bool hvf_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
843 ARMISARegisters host_isar = {};
844 const struct isar_regs {
845 int reg;
846 uint64_t *val;
847 } regs[] = {
848 { HV_SYS_REG_ID_AA64PFR0_EL1, &host_isar.id_aa64pfr0 },
849 { HV_SYS_REG_ID_AA64PFR1_EL1, &host_isar.id_aa64pfr1 },
850 { HV_SYS_REG_ID_AA64DFR0_EL1, &host_isar.id_aa64dfr0 },
851 { HV_SYS_REG_ID_AA64DFR1_EL1, &host_isar.id_aa64dfr1 },
852 { HV_SYS_REG_ID_AA64ISAR0_EL1, &host_isar.id_aa64isar0 },
853 { HV_SYS_REG_ID_AA64ISAR1_EL1, &host_isar.id_aa64isar1 },
854 /* Add ID_AA64ISAR2_EL1 here when HVF supports it */
855 { HV_SYS_REG_ID_AA64MMFR0_EL1, &host_isar.id_aa64mmfr0 },
856 { HV_SYS_REG_ID_AA64MMFR1_EL1, &host_isar.id_aa64mmfr1 },
857 { HV_SYS_REG_ID_AA64MMFR2_EL1, &host_isar.id_aa64mmfr2 },
859 hv_vcpu_t fd;
860 hv_return_t r = HV_SUCCESS;
861 hv_vcpu_exit_t *exit;
862 int i;
864 ahcf->dtb_compatible = "arm,arm-v8";
865 ahcf->features = (1ULL << ARM_FEATURE_V8) |
866 (1ULL << ARM_FEATURE_NEON) |
867 (1ULL << ARM_FEATURE_AARCH64) |
868 (1ULL << ARM_FEATURE_PMU) |
869 (1ULL << ARM_FEATURE_GENERIC_TIMER);
871 /* We set up a small vcpu to extract host registers */
873 if (hv_vcpu_create(&fd, &exit, NULL) != HV_SUCCESS) {
874 return false;
877 for (i = 0; i < ARRAY_SIZE(regs); i++) {
878 r |= hv_vcpu_get_sys_reg(fd, regs[i].reg, regs[i].val);
880 r |= hv_vcpu_get_sys_reg(fd, HV_SYS_REG_MIDR_EL1, &ahcf->midr);
881 r |= hv_vcpu_destroy(fd);
883 ahcf->isar = host_isar;
886 * A scratch vCPU returns SCTLR 0, so let's fill our default with the M1
887 * boot SCTLR from https://github.com/AsahiLinux/m1n1/issues/97
889 ahcf->reset_sctlr = 0x30100180;
891 * SPAN is disabled by default when SCTLR.SPAN=1. To improve compatibility,
892 * let's disable it on boot and then allow guest software to turn it on by
893 * setting it to 0.
895 ahcf->reset_sctlr |= 0x00800000;
897 /* Make sure we don't advertise AArch32 support for EL0/EL1 */
898 if ((host_isar.id_aa64pfr0 & 0xff) != 0x11) {
899 return false;
902 return r == HV_SUCCESS;
905 void hvf_arm_set_cpu_features_from_host(ARMCPU *cpu)
907 if (!arm_host_cpu_features.dtb_compatible) {
908 if (!hvf_enabled() ||
909 !hvf_arm_get_host_cpu_features(&arm_host_cpu_features)) {
911 * We can't report this error yet, so flag that we need to
912 * in arm_cpu_realizefn().
914 cpu->host_cpu_probe_failed = true;
915 return;
919 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
920 cpu->isar = arm_host_cpu_features.isar;
921 cpu->env.features = arm_host_cpu_features.features;
922 cpu->midr = arm_host_cpu_features.midr;
923 cpu->reset_sctlr = arm_host_cpu_features.reset_sctlr;
926 void hvf_arch_vcpu_destroy(CPUState *cpu)
930 int hvf_arch_init_vcpu(CPUState *cpu)
932 ARMCPU *arm_cpu = ARM_CPU(cpu);
933 CPUARMState *env = &arm_cpu->env;
934 uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match);
935 uint32_t sregs_cnt = 0;
936 uint64_t pfr;
937 hv_return_t ret;
938 int i;
940 env->aarch64 = true;
941 asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz));
943 /* Allocate enough space for our sysreg sync */
944 arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes,
945 sregs_match_len);
946 arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values,
947 sregs_match_len);
948 arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t,
949 arm_cpu->cpreg_vmstate_indexes,
950 sregs_match_len);
951 arm_cpu->cpreg_vmstate_values = g_renew(uint64_t,
952 arm_cpu->cpreg_vmstate_values,
953 sregs_match_len);
955 memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t));
957 /* Populate cp list for all known sysregs */
958 for (i = 0; i < sregs_match_len; i++) {
959 const ARMCPRegInfo *ri;
960 uint32_t key = hvf_sreg_match[i].key;
962 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, key);
963 if (ri) {
964 assert(!(ri->type & ARM_CP_NO_RAW));
965 hvf_sreg_match[i].cp_idx = sregs_cnt;
966 arm_cpu->cpreg_indexes[sregs_cnt++] = cpreg_to_kvm_id(key);
967 } else {
968 hvf_sreg_match[i].cp_idx = -1;
971 arm_cpu->cpreg_array_len = sregs_cnt;
972 arm_cpu->cpreg_vmstate_array_len = sregs_cnt;
974 assert(write_cpustate_to_list(arm_cpu, false));
976 /* Set CP_NO_RAW system registers on init */
977 ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MIDR_EL1,
978 arm_cpu->midr);
979 assert_hvf_ok(ret);
981 ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MPIDR_EL1,
982 arm_cpu->mp_affinity);
983 assert_hvf_ok(ret);
985 ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr);
986 assert_hvf_ok(ret);
987 pfr |= env->gicv3state ? (1 << 24) : 0;
988 ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr);
989 assert_hvf_ok(ret);
991 /* We're limited to underlying hardware caps, override internal versions */
992 ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
993 &arm_cpu->isar.id_aa64mmfr0);
994 assert_hvf_ok(ret);
996 return 0;
999 void hvf_kick_vcpu_thread(CPUState *cpu)
1001 cpus_kick_thread(cpu);
1002 hv_vcpus_exit(&cpu->accel->fd, 1);
1005 static void hvf_raise_exception(CPUState *cpu, uint32_t excp,
1006 uint32_t syndrome)
1008 ARMCPU *arm_cpu = ARM_CPU(cpu);
1009 CPUARMState *env = &arm_cpu->env;
1011 cpu->exception_index = excp;
1012 env->exception.target_el = 1;
1013 env->exception.syndrome = syndrome;
1015 arm_cpu_do_interrupt(cpu);
1018 static void hvf_psci_cpu_off(ARMCPU *arm_cpu)
1020 int32_t ret = arm_set_cpu_off(arm_cpu_mp_affinity(arm_cpu));
1021 assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS);
1025 * Handle a PSCI call.
1027 * Returns 0 on success
1028 * -1 when the PSCI call is unknown,
1030 static bool hvf_handle_psci_call(CPUState *cpu)
1032 ARMCPU *arm_cpu = ARM_CPU(cpu);
1033 CPUARMState *env = &arm_cpu->env;
1034 uint64_t param[4] = {
1035 env->xregs[0],
1036 env->xregs[1],
1037 env->xregs[2],
1038 env->xregs[3]
1040 uint64_t context_id, mpidr;
1041 bool target_aarch64 = true;
1042 CPUState *target_cpu_state;
1043 ARMCPU *target_cpu;
1044 target_ulong entry;
1045 int target_el = 1;
1046 int32_t ret = 0;
1048 trace_hvf_psci_call(param[0], param[1], param[2], param[3],
1049 arm_cpu_mp_affinity(arm_cpu));
1051 switch (param[0]) {
1052 case QEMU_PSCI_0_2_FN_PSCI_VERSION:
1053 ret = QEMU_PSCI_VERSION_1_1;
1054 break;
1055 case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
1056 ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
1057 break;
1058 case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
1059 case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
1060 mpidr = param[1];
1062 switch (param[2]) {
1063 case 0:
1064 target_cpu_state = arm_get_cpu_by_id(mpidr);
1065 if (!target_cpu_state) {
1066 ret = QEMU_PSCI_RET_INVALID_PARAMS;
1067 break;
1069 target_cpu = ARM_CPU(target_cpu_state);
1071 ret = target_cpu->power_state;
1072 break;
1073 default:
1074 /* Everything above affinity level 0 is always on. */
1075 ret = 0;
1077 break;
1078 case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
1079 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1081 * QEMU reset and shutdown are async requests, but PSCI
1082 * mandates that we never return from the reset/shutdown
1083 * call, so power the CPU off now so it doesn't execute
1084 * anything further.
1086 hvf_psci_cpu_off(arm_cpu);
1087 break;
1088 case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
1089 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1090 hvf_psci_cpu_off(arm_cpu);
1091 break;
1092 case QEMU_PSCI_0_1_FN_CPU_ON:
1093 case QEMU_PSCI_0_2_FN_CPU_ON:
1094 case QEMU_PSCI_0_2_FN64_CPU_ON:
1095 mpidr = param[1];
1096 entry = param[2];
1097 context_id = param[3];
1098 ret = arm_set_cpu_on(mpidr, entry, context_id,
1099 target_el, target_aarch64);
1100 break;
1101 case QEMU_PSCI_0_1_FN_CPU_OFF:
1102 case QEMU_PSCI_0_2_FN_CPU_OFF:
1103 hvf_psci_cpu_off(arm_cpu);
1104 break;
1105 case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
1106 case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
1107 case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
1108 /* Affinity levels are not supported in QEMU */
1109 if (param[1] & 0xfffe0000) {
1110 ret = QEMU_PSCI_RET_INVALID_PARAMS;
1111 break;
1113 /* Powerdown is not supported, we always go into WFI */
1114 env->xregs[0] = 0;
1115 hvf_wfi(cpu);
1116 break;
1117 case QEMU_PSCI_0_1_FN_MIGRATE:
1118 case QEMU_PSCI_0_2_FN_MIGRATE:
1119 ret = QEMU_PSCI_RET_NOT_SUPPORTED;
1120 break;
1121 case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
1122 switch (param[1]) {
1123 case QEMU_PSCI_0_2_FN_PSCI_VERSION:
1124 case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
1125 case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
1126 case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
1127 case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
1128 case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
1129 case QEMU_PSCI_0_1_FN_CPU_ON:
1130 case QEMU_PSCI_0_2_FN_CPU_ON:
1131 case QEMU_PSCI_0_2_FN64_CPU_ON:
1132 case QEMU_PSCI_0_1_FN_CPU_OFF:
1133 case QEMU_PSCI_0_2_FN_CPU_OFF:
1134 case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
1135 case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
1136 case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
1137 case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
1138 ret = 0;
1139 break;
1140 case QEMU_PSCI_0_1_FN_MIGRATE:
1141 case QEMU_PSCI_0_2_FN_MIGRATE:
1142 default:
1143 ret = QEMU_PSCI_RET_NOT_SUPPORTED;
1145 break;
1146 default:
1147 return false;
1150 env->xregs[0] = ret;
1151 return true;
1154 static bool is_id_sysreg(uint32_t reg)
1156 return SYSREG_OP0(reg) == 3 &&
1157 SYSREG_OP1(reg) == 0 &&
1158 SYSREG_CRN(reg) == 0 &&
1159 SYSREG_CRM(reg) >= 1 &&
1160 SYSREG_CRM(reg) < 8;
1163 static uint32_t hvf_reg2cp_reg(uint32_t reg)
1165 return ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1166 (reg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK,
1167 (reg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK,
1168 (reg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK,
1169 (reg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK,
1170 (reg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK);
1173 static bool hvf_sysreg_read_cp(CPUState *cpu, uint32_t reg, uint64_t *val)
1175 ARMCPU *arm_cpu = ARM_CPU(cpu);
1176 CPUARMState *env = &arm_cpu->env;
1177 const ARMCPRegInfo *ri;
1179 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));
1180 if (ri) {
1181 if (ri->accessfn) {
1182 if (ri->accessfn(env, ri, true) != CP_ACCESS_OK) {
1183 return false;
1186 if (ri->type & ARM_CP_CONST) {
1187 *val = ri->resetvalue;
1188 } else if (ri->readfn) {
1189 *val = ri->readfn(env, ri);
1190 } else {
1191 *val = CPREG_FIELD64(env, ri);
1193 trace_hvf_vgic_read(ri->name, *val);
1194 return true;
1197 return false;
1200 static int hvf_sysreg_read(CPUState *cpu, uint32_t reg, uint32_t rt)
1202 ARMCPU *arm_cpu = ARM_CPU(cpu);
1203 CPUARMState *env = &arm_cpu->env;
1204 uint64_t val = 0;
1206 switch (reg) {
1207 case SYSREG_CNTPCT_EL0:
1208 val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) /
1209 gt_cntfrq_period_ns(arm_cpu);
1210 break;
1211 case SYSREG_PMCR_EL0:
1212 val = env->cp15.c9_pmcr;
1213 break;
1214 case SYSREG_PMCCNTR_EL0:
1215 pmu_op_start(env);
1216 val = env->cp15.c15_ccnt;
1217 pmu_op_finish(env);
1218 break;
1219 case SYSREG_PMCNTENCLR_EL0:
1220 val = env->cp15.c9_pmcnten;
1221 break;
1222 case SYSREG_PMOVSCLR_EL0:
1223 val = env->cp15.c9_pmovsr;
1224 break;
1225 case SYSREG_PMSELR_EL0:
1226 val = env->cp15.c9_pmselr;
1227 break;
1228 case SYSREG_PMINTENCLR_EL1:
1229 val = env->cp15.c9_pminten;
1230 break;
1231 case SYSREG_PMCCFILTR_EL0:
1232 val = env->cp15.pmccfiltr_el0;
1233 break;
1234 case SYSREG_PMCNTENSET_EL0:
1235 val = env->cp15.c9_pmcnten;
1236 break;
1237 case SYSREG_PMUSERENR_EL0:
1238 val = env->cp15.c9_pmuserenr;
1239 break;
1240 case SYSREG_PMCEID0_EL0:
1241 case SYSREG_PMCEID1_EL0:
1242 /* We can't really count anything yet, declare all events invalid */
1243 val = 0;
1244 break;
1245 case SYSREG_OSLSR_EL1:
1246 val = env->cp15.oslsr_el1;
1247 break;
1248 case SYSREG_OSDLR_EL1:
1249 /* Dummy register */
1250 break;
1251 case SYSREG_ICC_AP0R0_EL1:
1252 case SYSREG_ICC_AP0R1_EL1:
1253 case SYSREG_ICC_AP0R2_EL1:
1254 case SYSREG_ICC_AP0R3_EL1:
1255 case SYSREG_ICC_AP1R0_EL1:
1256 case SYSREG_ICC_AP1R1_EL1:
1257 case SYSREG_ICC_AP1R2_EL1:
1258 case SYSREG_ICC_AP1R3_EL1:
1259 case SYSREG_ICC_ASGI1R_EL1:
1260 case SYSREG_ICC_BPR0_EL1:
1261 case SYSREG_ICC_BPR1_EL1:
1262 case SYSREG_ICC_DIR_EL1:
1263 case SYSREG_ICC_EOIR0_EL1:
1264 case SYSREG_ICC_EOIR1_EL1:
1265 case SYSREG_ICC_HPPIR0_EL1:
1266 case SYSREG_ICC_HPPIR1_EL1:
1267 case SYSREG_ICC_IAR0_EL1:
1268 case SYSREG_ICC_IAR1_EL1:
1269 case SYSREG_ICC_IGRPEN0_EL1:
1270 case SYSREG_ICC_IGRPEN1_EL1:
1271 case SYSREG_ICC_PMR_EL1:
1272 case SYSREG_ICC_SGI0R_EL1:
1273 case SYSREG_ICC_SGI1R_EL1:
1274 case SYSREG_ICC_SRE_EL1:
1275 case SYSREG_ICC_CTLR_EL1:
1276 /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */
1277 if (!hvf_sysreg_read_cp(cpu, reg, &val)) {
1278 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1280 break;
1281 case SYSREG_DBGBVR0_EL1:
1282 case SYSREG_DBGBVR1_EL1:
1283 case SYSREG_DBGBVR2_EL1:
1284 case SYSREG_DBGBVR3_EL1:
1285 case SYSREG_DBGBVR4_EL1:
1286 case SYSREG_DBGBVR5_EL1:
1287 case SYSREG_DBGBVR6_EL1:
1288 case SYSREG_DBGBVR7_EL1:
1289 case SYSREG_DBGBVR8_EL1:
1290 case SYSREG_DBGBVR9_EL1:
1291 case SYSREG_DBGBVR10_EL1:
1292 case SYSREG_DBGBVR11_EL1:
1293 case SYSREG_DBGBVR12_EL1:
1294 case SYSREG_DBGBVR13_EL1:
1295 case SYSREG_DBGBVR14_EL1:
1296 case SYSREG_DBGBVR15_EL1:
1297 val = env->cp15.dbgbvr[SYSREG_CRM(reg)];
1298 break;
1299 case SYSREG_DBGBCR0_EL1:
1300 case SYSREG_DBGBCR1_EL1:
1301 case SYSREG_DBGBCR2_EL1:
1302 case SYSREG_DBGBCR3_EL1:
1303 case SYSREG_DBGBCR4_EL1:
1304 case SYSREG_DBGBCR5_EL1:
1305 case SYSREG_DBGBCR6_EL1:
1306 case SYSREG_DBGBCR7_EL1:
1307 case SYSREG_DBGBCR8_EL1:
1308 case SYSREG_DBGBCR9_EL1:
1309 case SYSREG_DBGBCR10_EL1:
1310 case SYSREG_DBGBCR11_EL1:
1311 case SYSREG_DBGBCR12_EL1:
1312 case SYSREG_DBGBCR13_EL1:
1313 case SYSREG_DBGBCR14_EL1:
1314 case SYSREG_DBGBCR15_EL1:
1315 val = env->cp15.dbgbcr[SYSREG_CRM(reg)];
1316 break;
1317 case SYSREG_DBGWVR0_EL1:
1318 case SYSREG_DBGWVR1_EL1:
1319 case SYSREG_DBGWVR2_EL1:
1320 case SYSREG_DBGWVR3_EL1:
1321 case SYSREG_DBGWVR4_EL1:
1322 case SYSREG_DBGWVR5_EL1:
1323 case SYSREG_DBGWVR6_EL1:
1324 case SYSREG_DBGWVR7_EL1:
1325 case SYSREG_DBGWVR8_EL1:
1326 case SYSREG_DBGWVR9_EL1:
1327 case SYSREG_DBGWVR10_EL1:
1328 case SYSREG_DBGWVR11_EL1:
1329 case SYSREG_DBGWVR12_EL1:
1330 case SYSREG_DBGWVR13_EL1:
1331 case SYSREG_DBGWVR14_EL1:
1332 case SYSREG_DBGWVR15_EL1:
1333 val = env->cp15.dbgwvr[SYSREG_CRM(reg)];
1334 break;
1335 case SYSREG_DBGWCR0_EL1:
1336 case SYSREG_DBGWCR1_EL1:
1337 case SYSREG_DBGWCR2_EL1:
1338 case SYSREG_DBGWCR3_EL1:
1339 case SYSREG_DBGWCR4_EL1:
1340 case SYSREG_DBGWCR5_EL1:
1341 case SYSREG_DBGWCR6_EL1:
1342 case SYSREG_DBGWCR7_EL1:
1343 case SYSREG_DBGWCR8_EL1:
1344 case SYSREG_DBGWCR9_EL1:
1345 case SYSREG_DBGWCR10_EL1:
1346 case SYSREG_DBGWCR11_EL1:
1347 case SYSREG_DBGWCR12_EL1:
1348 case SYSREG_DBGWCR13_EL1:
1349 case SYSREG_DBGWCR14_EL1:
1350 case SYSREG_DBGWCR15_EL1:
1351 val = env->cp15.dbgwcr[SYSREG_CRM(reg)];
1352 break;
1353 default:
1354 if (is_id_sysreg(reg)) {
1355 /* ID system registers read as RES0 */
1356 val = 0;
1357 break;
1359 cpu_synchronize_state(cpu);
1360 trace_hvf_unhandled_sysreg_read(env->pc, reg,
1361 SYSREG_OP0(reg),
1362 SYSREG_OP1(reg),
1363 SYSREG_CRN(reg),
1364 SYSREG_CRM(reg),
1365 SYSREG_OP2(reg));
1366 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1367 return 1;
1370 trace_hvf_sysreg_read(reg,
1371 SYSREG_OP0(reg),
1372 SYSREG_OP1(reg),
1373 SYSREG_CRN(reg),
1374 SYSREG_CRM(reg),
1375 SYSREG_OP2(reg),
1376 val);
1377 hvf_set_reg(cpu, rt, val);
1379 return 0;
1382 static void pmu_update_irq(CPUARMState *env)
1384 ARMCPU *cpu = env_archcpu(env);
1385 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1386 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1389 static bool pmu_event_supported(uint16_t number)
1391 return false;
1394 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1395 * the current EL, security state, and register configuration.
1397 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1399 uint64_t filter;
1400 bool enabled, filtered = true;
1401 int el = arm_current_el(env);
1403 enabled = (env->cp15.c9_pmcr & PMCRE) &&
1404 (env->cp15.c9_pmcnten & (1 << counter));
1406 if (counter == 31) {
1407 filter = env->cp15.pmccfiltr_el0;
1408 } else {
1409 filter = env->cp15.c14_pmevtyper[counter];
1412 if (el == 0) {
1413 filtered = filter & PMXEVTYPER_U;
1414 } else if (el == 1) {
1415 filtered = filter & PMXEVTYPER_P;
1418 if (counter != 31) {
1420 * If not checking PMCCNTR, ensure the counter is setup to an event we
1421 * support
1423 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1424 if (!pmu_event_supported(event)) {
1425 return false;
1429 return enabled && !filtered;
1432 static void pmswinc_write(CPUARMState *env, uint64_t value)
1434 unsigned int i;
1435 for (i = 0; i < pmu_num_counters(env); i++) {
1436 /* Increment a counter's count iff: */
1437 if ((value & (1 << i)) && /* counter's bit is set */
1438 /* counter is enabled and not filtered */
1439 pmu_counter_enabled(env, i) &&
1440 /* counter is SW_INCR */
1441 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1443 * Detect if this write causes an overflow since we can't predict
1444 * PMSWINC overflows like we can for other events
1446 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1448 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1449 env->cp15.c9_pmovsr |= (1 << i);
1450 pmu_update_irq(env);
1453 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1458 static bool hvf_sysreg_write_cp(CPUState *cpu, uint32_t reg, uint64_t val)
1460 ARMCPU *arm_cpu = ARM_CPU(cpu);
1461 CPUARMState *env = &arm_cpu->env;
1462 const ARMCPRegInfo *ri;
1464 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));
1466 if (ri) {
1467 if (ri->accessfn) {
1468 if (ri->accessfn(env, ri, false) != CP_ACCESS_OK) {
1469 return false;
1472 if (ri->writefn) {
1473 ri->writefn(env, ri, val);
1474 } else {
1475 CPREG_FIELD64(env, ri) = val;
1478 trace_hvf_vgic_write(ri->name, val);
1479 return true;
1482 return false;
1485 static int hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val)
1487 ARMCPU *arm_cpu = ARM_CPU(cpu);
1488 CPUARMState *env = &arm_cpu->env;
1490 trace_hvf_sysreg_write(reg,
1491 SYSREG_OP0(reg),
1492 SYSREG_OP1(reg),
1493 SYSREG_CRN(reg),
1494 SYSREG_CRM(reg),
1495 SYSREG_OP2(reg),
1496 val);
1498 switch (reg) {
1499 case SYSREG_PMCCNTR_EL0:
1500 pmu_op_start(env);
1501 env->cp15.c15_ccnt = val;
1502 pmu_op_finish(env);
1503 break;
1504 case SYSREG_PMCR_EL0:
1505 pmu_op_start(env);
1507 if (val & PMCRC) {
1508 /* The counter has been reset */
1509 env->cp15.c15_ccnt = 0;
1512 if (val & PMCRP) {
1513 unsigned int i;
1514 for (i = 0; i < pmu_num_counters(env); i++) {
1515 env->cp15.c14_pmevcntr[i] = 0;
1519 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1520 env->cp15.c9_pmcr |= (val & PMCR_WRITABLE_MASK);
1522 pmu_op_finish(env);
1523 break;
1524 case SYSREG_PMUSERENR_EL0:
1525 env->cp15.c9_pmuserenr = val & 0xf;
1526 break;
1527 case SYSREG_PMCNTENSET_EL0:
1528 env->cp15.c9_pmcnten |= (val & pmu_counter_mask(env));
1529 break;
1530 case SYSREG_PMCNTENCLR_EL0:
1531 env->cp15.c9_pmcnten &= ~(val & pmu_counter_mask(env));
1532 break;
1533 case SYSREG_PMINTENCLR_EL1:
1534 pmu_op_start(env);
1535 env->cp15.c9_pminten |= val;
1536 pmu_op_finish(env);
1537 break;
1538 case SYSREG_PMOVSCLR_EL0:
1539 pmu_op_start(env);
1540 env->cp15.c9_pmovsr &= ~val;
1541 pmu_op_finish(env);
1542 break;
1543 case SYSREG_PMSWINC_EL0:
1544 pmu_op_start(env);
1545 pmswinc_write(env, val);
1546 pmu_op_finish(env);
1547 break;
1548 case SYSREG_PMSELR_EL0:
1549 env->cp15.c9_pmselr = val & 0x1f;
1550 break;
1551 case SYSREG_PMCCFILTR_EL0:
1552 pmu_op_start(env);
1553 env->cp15.pmccfiltr_el0 = val & PMCCFILTR_EL0;
1554 pmu_op_finish(env);
1555 break;
1556 case SYSREG_OSLAR_EL1:
1557 env->cp15.oslsr_el1 = val & 1;
1558 break;
1559 case SYSREG_OSDLR_EL1:
1560 /* Dummy register */
1561 break;
1562 case SYSREG_ICC_AP0R0_EL1:
1563 case SYSREG_ICC_AP0R1_EL1:
1564 case SYSREG_ICC_AP0R2_EL1:
1565 case SYSREG_ICC_AP0R3_EL1:
1566 case SYSREG_ICC_AP1R0_EL1:
1567 case SYSREG_ICC_AP1R1_EL1:
1568 case SYSREG_ICC_AP1R2_EL1:
1569 case SYSREG_ICC_AP1R3_EL1:
1570 case SYSREG_ICC_ASGI1R_EL1:
1571 case SYSREG_ICC_BPR0_EL1:
1572 case SYSREG_ICC_BPR1_EL1:
1573 case SYSREG_ICC_CTLR_EL1:
1574 case SYSREG_ICC_DIR_EL1:
1575 case SYSREG_ICC_EOIR0_EL1:
1576 case SYSREG_ICC_EOIR1_EL1:
1577 case SYSREG_ICC_HPPIR0_EL1:
1578 case SYSREG_ICC_HPPIR1_EL1:
1579 case SYSREG_ICC_IAR0_EL1:
1580 case SYSREG_ICC_IAR1_EL1:
1581 case SYSREG_ICC_IGRPEN0_EL1:
1582 case SYSREG_ICC_IGRPEN1_EL1:
1583 case SYSREG_ICC_PMR_EL1:
1584 case SYSREG_ICC_SGI0R_EL1:
1585 case SYSREG_ICC_SGI1R_EL1:
1586 case SYSREG_ICC_SRE_EL1:
1587 /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */
1588 if (!hvf_sysreg_write_cp(cpu, reg, val)) {
1589 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1591 break;
1592 case SYSREG_MDSCR_EL1:
1593 env->cp15.mdscr_el1 = val;
1594 break;
1595 case SYSREG_DBGBVR0_EL1:
1596 case SYSREG_DBGBVR1_EL1:
1597 case SYSREG_DBGBVR2_EL1:
1598 case SYSREG_DBGBVR3_EL1:
1599 case SYSREG_DBGBVR4_EL1:
1600 case SYSREG_DBGBVR5_EL1:
1601 case SYSREG_DBGBVR6_EL1:
1602 case SYSREG_DBGBVR7_EL1:
1603 case SYSREG_DBGBVR8_EL1:
1604 case SYSREG_DBGBVR9_EL1:
1605 case SYSREG_DBGBVR10_EL1:
1606 case SYSREG_DBGBVR11_EL1:
1607 case SYSREG_DBGBVR12_EL1:
1608 case SYSREG_DBGBVR13_EL1:
1609 case SYSREG_DBGBVR14_EL1:
1610 case SYSREG_DBGBVR15_EL1:
1611 env->cp15.dbgbvr[SYSREG_CRM(reg)] = val;
1612 break;
1613 case SYSREG_DBGBCR0_EL1:
1614 case SYSREG_DBGBCR1_EL1:
1615 case SYSREG_DBGBCR2_EL1:
1616 case SYSREG_DBGBCR3_EL1:
1617 case SYSREG_DBGBCR4_EL1:
1618 case SYSREG_DBGBCR5_EL1:
1619 case SYSREG_DBGBCR6_EL1:
1620 case SYSREG_DBGBCR7_EL1:
1621 case SYSREG_DBGBCR8_EL1:
1622 case SYSREG_DBGBCR9_EL1:
1623 case SYSREG_DBGBCR10_EL1:
1624 case SYSREG_DBGBCR11_EL1:
1625 case SYSREG_DBGBCR12_EL1:
1626 case SYSREG_DBGBCR13_EL1:
1627 case SYSREG_DBGBCR14_EL1:
1628 case SYSREG_DBGBCR15_EL1:
1629 env->cp15.dbgbcr[SYSREG_CRM(reg)] = val;
1630 break;
1631 case SYSREG_DBGWVR0_EL1:
1632 case SYSREG_DBGWVR1_EL1:
1633 case SYSREG_DBGWVR2_EL1:
1634 case SYSREG_DBGWVR3_EL1:
1635 case SYSREG_DBGWVR4_EL1:
1636 case SYSREG_DBGWVR5_EL1:
1637 case SYSREG_DBGWVR6_EL1:
1638 case SYSREG_DBGWVR7_EL1:
1639 case SYSREG_DBGWVR8_EL1:
1640 case SYSREG_DBGWVR9_EL1:
1641 case SYSREG_DBGWVR10_EL1:
1642 case SYSREG_DBGWVR11_EL1:
1643 case SYSREG_DBGWVR12_EL1:
1644 case SYSREG_DBGWVR13_EL1:
1645 case SYSREG_DBGWVR14_EL1:
1646 case SYSREG_DBGWVR15_EL1:
1647 env->cp15.dbgwvr[SYSREG_CRM(reg)] = val;
1648 break;
1649 case SYSREG_DBGWCR0_EL1:
1650 case SYSREG_DBGWCR1_EL1:
1651 case SYSREG_DBGWCR2_EL1:
1652 case SYSREG_DBGWCR3_EL1:
1653 case SYSREG_DBGWCR4_EL1:
1654 case SYSREG_DBGWCR5_EL1:
1655 case SYSREG_DBGWCR6_EL1:
1656 case SYSREG_DBGWCR7_EL1:
1657 case SYSREG_DBGWCR8_EL1:
1658 case SYSREG_DBGWCR9_EL1:
1659 case SYSREG_DBGWCR10_EL1:
1660 case SYSREG_DBGWCR11_EL1:
1661 case SYSREG_DBGWCR12_EL1:
1662 case SYSREG_DBGWCR13_EL1:
1663 case SYSREG_DBGWCR14_EL1:
1664 case SYSREG_DBGWCR15_EL1:
1665 env->cp15.dbgwcr[SYSREG_CRM(reg)] = val;
1666 break;
1667 default:
1668 cpu_synchronize_state(cpu);
1669 trace_hvf_unhandled_sysreg_write(env->pc, reg,
1670 SYSREG_OP0(reg),
1671 SYSREG_OP1(reg),
1672 SYSREG_CRN(reg),
1673 SYSREG_CRM(reg),
1674 SYSREG_OP2(reg));
1675 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1676 return 1;
1679 return 0;
1682 static int hvf_inject_interrupts(CPUState *cpu)
1684 if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) {
1685 trace_hvf_inject_fiq();
1686 hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_FIQ,
1687 true);
1690 if (cpu->interrupt_request & CPU_INTERRUPT_HARD) {
1691 trace_hvf_inject_irq();
1692 hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_IRQ,
1693 true);
1696 return 0;
1699 static uint64_t hvf_vtimer_val_raw(void)
1702 * mach_absolute_time() returns the vtimer value without the VM
1703 * offset that we define. Add our own offset on top.
1705 return mach_absolute_time() - hvf_state->vtimer_offset;
1708 static uint64_t hvf_vtimer_val(void)
1710 if (!runstate_is_running()) {
1711 /* VM is paused, the vtimer value is in vtimer.vtimer_val */
1712 return vtimer.vtimer_val;
1715 return hvf_vtimer_val_raw();
1718 static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts)
1721 * Use pselect to sleep so that other threads can IPI us while we're
1722 * sleeping.
1724 qatomic_set_mb(&cpu->thread_kicked, false);
1725 bql_unlock();
1726 pselect(0, 0, 0, 0, ts, &cpu->accel->unblock_ipi_mask);
1727 bql_lock();
1730 static void hvf_wfi(CPUState *cpu)
1732 ARMCPU *arm_cpu = ARM_CPU(cpu);
1733 struct timespec ts;
1734 hv_return_t r;
1735 uint64_t ctl;
1736 uint64_t cval;
1737 int64_t ticks_to_sleep;
1738 uint64_t seconds;
1739 uint64_t nanos;
1740 uint32_t cntfrq;
1742 if (cpu->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ)) {
1743 /* Interrupt pending, no need to wait */
1744 return;
1747 r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1748 assert_hvf_ok(r);
1750 if (!(ctl & 1) || (ctl & 2)) {
1751 /* Timer disabled or masked, just wait for an IPI. */
1752 hvf_wait_for_ipi(cpu, NULL);
1753 return;
1756 r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval);
1757 assert_hvf_ok(r);
1759 ticks_to_sleep = cval - hvf_vtimer_val();
1760 if (ticks_to_sleep < 0) {
1761 return;
1764 cntfrq = gt_cntfrq_period_ns(arm_cpu);
1765 seconds = muldiv64(ticks_to_sleep, cntfrq, NANOSECONDS_PER_SECOND);
1766 ticks_to_sleep -= muldiv64(seconds, NANOSECONDS_PER_SECOND, cntfrq);
1767 nanos = ticks_to_sleep * cntfrq;
1770 * Don't sleep for less than the time a context switch would take,
1771 * so that we can satisfy fast timer requests on the same CPU.
1772 * Measurements on M1 show the sweet spot to be ~2ms.
1774 if (!seconds && nanos < (2 * SCALE_MS)) {
1775 return;
1778 ts = (struct timespec) { seconds, nanos };
1779 hvf_wait_for_ipi(cpu, &ts);
1782 static void hvf_sync_vtimer(CPUState *cpu)
1784 ARMCPU *arm_cpu = ARM_CPU(cpu);
1785 hv_return_t r;
1786 uint64_t ctl;
1787 bool irq_state;
1789 if (!cpu->accel->vtimer_masked) {
1790 /* We will get notified on vtimer changes by hvf, nothing to do */
1791 return;
1794 r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1795 assert_hvf_ok(r);
1797 irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) ==
1798 (TMR_CTL_ENABLE | TMR_CTL_ISTATUS);
1799 qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], irq_state);
1801 if (!irq_state) {
1802 /* Timer no longer asserting, we can unmask it */
1803 hv_vcpu_set_vtimer_mask(cpu->accel->fd, false);
1804 cpu->accel->vtimer_masked = false;
1808 int hvf_vcpu_exec(CPUState *cpu)
1810 ARMCPU *arm_cpu = ARM_CPU(cpu);
1811 CPUARMState *env = &arm_cpu->env;
1812 int ret;
1813 hv_vcpu_exit_t *hvf_exit = cpu->accel->exit;
1814 hv_return_t r;
1815 bool advance_pc = false;
1817 if (!(cpu->singlestep_enabled & SSTEP_NOIRQ) &&
1818 hvf_inject_interrupts(cpu)) {
1819 return EXCP_INTERRUPT;
1822 if (cpu->halted) {
1823 return EXCP_HLT;
1826 flush_cpu_state(cpu);
1828 bql_unlock();
1829 assert_hvf_ok(hv_vcpu_run(cpu->accel->fd));
1831 /* handle VMEXIT */
1832 uint64_t exit_reason = hvf_exit->reason;
1833 uint64_t syndrome = hvf_exit->exception.syndrome;
1834 uint32_t ec = syn_get_ec(syndrome);
1836 ret = 0;
1837 bql_lock();
1838 switch (exit_reason) {
1839 case HV_EXIT_REASON_EXCEPTION:
1840 /* This is the main one, handle below. */
1841 break;
1842 case HV_EXIT_REASON_VTIMER_ACTIVATED:
1843 qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1);
1844 cpu->accel->vtimer_masked = true;
1845 return 0;
1846 case HV_EXIT_REASON_CANCELED:
1847 /* we got kicked, no exit to process */
1848 return 0;
1849 default:
1850 g_assert_not_reached();
1853 hvf_sync_vtimer(cpu);
1855 switch (ec) {
1856 case EC_SOFTWARESTEP: {
1857 ret = EXCP_DEBUG;
1859 if (!cpu->singlestep_enabled) {
1860 error_report("EC_SOFTWARESTEP but single-stepping not enabled");
1862 break;
1864 case EC_AA64_BKPT: {
1865 ret = EXCP_DEBUG;
1867 cpu_synchronize_state(cpu);
1869 if (!hvf_find_sw_breakpoint(cpu, env->pc)) {
1870 /* Re-inject into the guest */
1871 ret = 0;
1872 hvf_raise_exception(cpu, EXCP_BKPT, syn_aa64_bkpt(0));
1874 break;
1876 case EC_BREAKPOINT: {
1877 ret = EXCP_DEBUG;
1879 cpu_synchronize_state(cpu);
1881 if (!find_hw_breakpoint(cpu, env->pc)) {
1882 error_report("EC_BREAKPOINT but unknown hw breakpoint");
1884 break;
1886 case EC_WATCHPOINT: {
1887 ret = EXCP_DEBUG;
1889 cpu_synchronize_state(cpu);
1891 CPUWatchpoint *wp =
1892 find_hw_watchpoint(cpu, hvf_exit->exception.virtual_address);
1893 if (!wp) {
1894 error_report("EXCP_DEBUG but unknown hw watchpoint");
1896 cpu->watchpoint_hit = wp;
1897 break;
1899 case EC_DATAABORT: {
1900 bool isv = syndrome & ARM_EL_ISV;
1901 bool iswrite = (syndrome >> 6) & 1;
1902 bool s1ptw = (syndrome >> 7) & 1;
1903 uint32_t sas = (syndrome >> 22) & 3;
1904 uint32_t len = 1 << sas;
1905 uint32_t srt = (syndrome >> 16) & 0x1f;
1906 uint32_t cm = (syndrome >> 8) & 0x1;
1907 uint64_t val = 0;
1909 trace_hvf_data_abort(env->pc, hvf_exit->exception.virtual_address,
1910 hvf_exit->exception.physical_address, isv,
1911 iswrite, s1ptw, len, srt);
1913 if (cm) {
1914 /* We don't cache MMIO regions */
1915 advance_pc = true;
1916 break;
1919 assert(isv);
1921 if (iswrite) {
1922 val = hvf_get_reg(cpu, srt);
1923 address_space_write(&address_space_memory,
1924 hvf_exit->exception.physical_address,
1925 MEMTXATTRS_UNSPECIFIED, &val, len);
1926 } else {
1927 address_space_read(&address_space_memory,
1928 hvf_exit->exception.physical_address,
1929 MEMTXATTRS_UNSPECIFIED, &val, len);
1930 hvf_set_reg(cpu, srt, val);
1933 advance_pc = true;
1934 break;
1936 case EC_SYSTEMREGISTERTRAP: {
1937 bool isread = (syndrome >> 0) & 1;
1938 uint32_t rt = (syndrome >> 5) & 0x1f;
1939 uint32_t reg = syndrome & SYSREG_MASK;
1940 uint64_t val;
1941 int sysreg_ret = 0;
1943 if (isread) {
1944 sysreg_ret = hvf_sysreg_read(cpu, reg, rt);
1945 } else {
1946 val = hvf_get_reg(cpu, rt);
1947 sysreg_ret = hvf_sysreg_write(cpu, reg, val);
1950 advance_pc = !sysreg_ret;
1951 break;
1953 case EC_WFX_TRAP:
1954 advance_pc = true;
1955 if (!(syndrome & WFX_IS_WFE)) {
1956 hvf_wfi(cpu);
1958 break;
1959 case EC_AA64_HVC:
1960 cpu_synchronize_state(cpu);
1961 if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_HVC) {
1962 if (!hvf_handle_psci_call(cpu)) {
1963 trace_hvf_unknown_hvc(env->xregs[0]);
1964 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1965 env->xregs[0] = -1;
1967 } else {
1968 trace_hvf_unknown_hvc(env->xregs[0]);
1969 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1971 break;
1972 case EC_AA64_SMC:
1973 cpu_synchronize_state(cpu);
1974 if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_SMC) {
1975 advance_pc = true;
1977 if (!hvf_handle_psci_call(cpu)) {
1978 trace_hvf_unknown_smc(env->xregs[0]);
1979 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1980 env->xregs[0] = -1;
1982 } else {
1983 trace_hvf_unknown_smc(env->xregs[0]);
1984 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1986 break;
1987 default:
1988 cpu_synchronize_state(cpu);
1989 trace_hvf_exit(syndrome, ec, env->pc);
1990 error_report("0x%llx: unhandled exception ec=0x%x", env->pc, ec);
1993 if (advance_pc) {
1994 uint64_t pc;
1996 flush_cpu_state(cpu);
1998 r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_PC, &pc);
1999 assert_hvf_ok(r);
2000 pc += 4;
2001 r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_PC, pc);
2002 assert_hvf_ok(r);
2004 /* Handle single-stepping over instructions which trigger a VM exit */
2005 if (cpu->singlestep_enabled) {
2006 ret = EXCP_DEBUG;
2010 return ret;
2013 static const VMStateDescription vmstate_hvf_vtimer = {
2014 .name = "hvf-vtimer",
2015 .version_id = 1,
2016 .minimum_version_id = 1,
2017 .fields = (const VMStateField[]) {
2018 VMSTATE_UINT64(vtimer_val, HVFVTimer),
2019 VMSTATE_END_OF_LIST()
2023 static void hvf_vm_state_change(void *opaque, bool running, RunState state)
2025 HVFVTimer *s = opaque;
2027 if (running) {
2028 /* Update vtimer offset on all CPUs */
2029 hvf_state->vtimer_offset = mach_absolute_time() - s->vtimer_val;
2030 cpu_synchronize_all_states();
2031 } else {
2032 /* Remember vtimer value on every pause */
2033 s->vtimer_val = hvf_vtimer_val_raw();
2037 int hvf_arch_init(void)
2039 hvf_state->vtimer_offset = mach_absolute_time();
2040 vmstate_register(NULL, 0, &vmstate_hvf_vtimer, &vtimer);
2041 qemu_add_vm_change_state_handler(hvf_vm_state_change, &vtimer);
2043 hvf_arm_init_debug();
2045 return 0;
2048 static const uint32_t brk_insn = 0xd4200000;
2050 int hvf_arch_insert_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
2052 if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
2053 cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
2054 return -EINVAL;
2056 return 0;
2059 int hvf_arch_remove_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
2061 static uint32_t brk;
2063 if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk, 4, 0) ||
2064 brk != brk_insn ||
2065 cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
2066 return -EINVAL;
2068 return 0;
2071 int hvf_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
2073 switch (type) {
2074 case GDB_BREAKPOINT_HW:
2075 return insert_hw_breakpoint(addr);
2076 case GDB_WATCHPOINT_READ:
2077 case GDB_WATCHPOINT_WRITE:
2078 case GDB_WATCHPOINT_ACCESS:
2079 return insert_hw_watchpoint(addr, len, type);
2080 default:
2081 return -ENOSYS;
2085 int hvf_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
2087 switch (type) {
2088 case GDB_BREAKPOINT_HW:
2089 return delete_hw_breakpoint(addr);
2090 case GDB_WATCHPOINT_READ:
2091 case GDB_WATCHPOINT_WRITE:
2092 case GDB_WATCHPOINT_ACCESS:
2093 return delete_hw_watchpoint(addr, len, type);
2094 default:
2095 return -ENOSYS;
2099 void hvf_arch_remove_all_hw_breakpoints(void)
2101 if (cur_hw_wps > 0) {
2102 g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
2104 if (cur_hw_bps > 0) {
2105 g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
2110 * Update the vCPU with the gdbstub's view of debug registers. This view
2111 * consists of all hardware breakpoints and watchpoints inserted so far while
2112 * debugging the guest.
2114 static void hvf_put_gdbstub_debug_registers(CPUState *cpu)
2116 hv_return_t r = HV_SUCCESS;
2117 int i;
2119 for (i = 0; i < cur_hw_bps; i++) {
2120 HWBreakpoint *bp = get_hw_bp(i);
2121 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], bp->bcr);
2122 assert_hvf_ok(r);
2123 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], bp->bvr);
2124 assert_hvf_ok(r);
2126 for (i = cur_hw_bps; i < max_hw_bps; i++) {
2127 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], 0);
2128 assert_hvf_ok(r);
2129 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], 0);
2130 assert_hvf_ok(r);
2133 for (i = 0; i < cur_hw_wps; i++) {
2134 HWWatchpoint *wp = get_hw_wp(i);
2135 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], wp->wcr);
2136 assert_hvf_ok(r);
2137 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], wp->wvr);
2138 assert_hvf_ok(r);
2140 for (i = cur_hw_wps; i < max_hw_wps; i++) {
2141 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], 0);
2142 assert_hvf_ok(r);
2143 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], 0);
2144 assert_hvf_ok(r);
2149 * Update the vCPU with the guest's view of debug registers. This view is kept
2150 * in the environment at all times.
2152 static void hvf_put_guest_debug_registers(CPUState *cpu)
2154 ARMCPU *arm_cpu = ARM_CPU(cpu);
2155 CPUARMState *env = &arm_cpu->env;
2156 hv_return_t r = HV_SUCCESS;
2157 int i;
2159 for (i = 0; i < max_hw_bps; i++) {
2160 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i],
2161 env->cp15.dbgbcr[i]);
2162 assert_hvf_ok(r);
2163 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i],
2164 env->cp15.dbgbvr[i]);
2165 assert_hvf_ok(r);
2168 for (i = 0; i < max_hw_wps; i++) {
2169 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i],
2170 env->cp15.dbgwcr[i]);
2171 assert_hvf_ok(r);
2172 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i],
2173 env->cp15.dbgwvr[i]);
2174 assert_hvf_ok(r);
2178 static inline bool hvf_arm_hw_debug_active(CPUState *cpu)
2180 return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
2183 static void hvf_arch_set_traps(void)
2185 CPUState *cpu;
2186 bool should_enable_traps = false;
2187 hv_return_t r = HV_SUCCESS;
2189 /* Check whether guest debugging is enabled for at least one vCPU; if it
2190 * is, enable exiting the guest on all vCPUs */
2191 CPU_FOREACH(cpu) {
2192 should_enable_traps |= cpu->accel->guest_debug_enabled;
2194 CPU_FOREACH(cpu) {
2195 /* Set whether debug exceptions exit the guest */
2196 r = hv_vcpu_set_trap_debug_exceptions(cpu->accel->fd,
2197 should_enable_traps);
2198 assert_hvf_ok(r);
2200 /* Set whether accesses to debug registers exit the guest */
2201 r = hv_vcpu_set_trap_debug_reg_accesses(cpu->accel->fd,
2202 should_enable_traps);
2203 assert_hvf_ok(r);
2207 void hvf_arch_update_guest_debug(CPUState *cpu)
2209 ARMCPU *arm_cpu = ARM_CPU(cpu);
2210 CPUARMState *env = &arm_cpu->env;
2212 /* Check whether guest debugging is enabled */
2213 cpu->accel->guest_debug_enabled = cpu->singlestep_enabled ||
2214 hvf_sw_breakpoints_active(cpu) ||
2215 hvf_arm_hw_debug_active(cpu);
2217 /* Update debug registers */
2218 if (cpu->accel->guest_debug_enabled) {
2219 hvf_put_gdbstub_debug_registers(cpu);
2220 } else {
2221 hvf_put_guest_debug_registers(cpu);
2224 cpu_synchronize_state(cpu);
2226 /* Enable/disable single-stepping */
2227 if (cpu->singlestep_enabled) {
2228 env->cp15.mdscr_el1 =
2229 deposit64(env->cp15.mdscr_el1, MDSCR_EL1_SS_SHIFT, 1, 1);
2230 pstate_write(env, pstate_read(env) | PSTATE_SS);
2231 } else {
2232 env->cp15.mdscr_el1 =
2233 deposit64(env->cp15.mdscr_el1, MDSCR_EL1_SS_SHIFT, 1, 0);
2236 /* Enable/disable Breakpoint exceptions */
2237 if (hvf_arm_hw_debug_active(cpu)) {
2238 env->cp15.mdscr_el1 =
2239 deposit64(env->cp15.mdscr_el1, MDSCR_EL1_MDE_SHIFT, 1, 1);
2240 } else {
2241 env->cp15.mdscr_el1 =
2242 deposit64(env->cp15.mdscr_el1, MDSCR_EL1_MDE_SHIFT, 1, 0);
2245 hvf_arch_set_traps();
2248 inline bool hvf_arch_supports_guest_debug(void)
2250 return true;