2 * Physical memory management
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
16 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "exec/memory.h"
20 #include "qapi/visitor.h"
21 #include "qemu/bitops.h"
22 #include "qemu/error-report.h"
23 #include "qemu/main-loop.h"
24 #include "qemu/qemu-print.h"
25 #include "qom/object.h"
28 #include "exec/memory-internal.h"
29 #include "exec/ram_addr.h"
30 #include "sysemu/kvm.h"
31 #include "sysemu/runstate.h"
32 #include "sysemu/tcg.h"
33 #include "qemu/accel.h"
34 #include "hw/boards.h"
35 #include "migration/vmstate.h"
36 #include "exec/address-spaces.h"
38 //#define DEBUG_UNASSIGNED
40 static unsigned memory_region_transaction_depth
;
41 static bool memory_region_update_pending
;
42 static bool ioeventfd_update_pending
;
43 unsigned int global_dirty_tracking
;
45 static QTAILQ_HEAD(, MemoryListener
) memory_listeners
46 = QTAILQ_HEAD_INITIALIZER(memory_listeners
);
48 static QTAILQ_HEAD(, AddressSpace
) address_spaces
49 = QTAILQ_HEAD_INITIALIZER(address_spaces
);
51 static GHashTable
*flat_views
;
53 typedef struct AddrRange AddrRange
;
56 * Note that signed integers are needed for negative offsetting in aliases
57 * (large MemoryRegion::alias_offset).
64 static AddrRange
addrrange_make(Int128 start
, Int128 size
)
66 return (AddrRange
) { start
, size
};
69 static bool addrrange_equal(AddrRange r1
, AddrRange r2
)
71 return int128_eq(r1
.start
, r2
.start
) && int128_eq(r1
.size
, r2
.size
);
74 static Int128
addrrange_end(AddrRange r
)
76 return int128_add(r
.start
, r
.size
);
79 static AddrRange
addrrange_shift(AddrRange range
, Int128 delta
)
81 int128_addto(&range
.start
, delta
);
85 static bool addrrange_contains(AddrRange range
, Int128 addr
)
87 return int128_ge(addr
, range
.start
)
88 && int128_lt(addr
, addrrange_end(range
));
91 static bool addrrange_intersects(AddrRange r1
, AddrRange r2
)
93 return addrrange_contains(r1
, r2
.start
)
94 || addrrange_contains(r2
, r1
.start
);
97 static AddrRange
addrrange_intersection(AddrRange r1
, AddrRange r2
)
99 Int128 start
= int128_max(r1
.start
, r2
.start
);
100 Int128 end
= int128_min(addrrange_end(r1
), addrrange_end(r2
));
101 return addrrange_make(start
, int128_sub(end
, start
));
104 enum ListenerDirection
{ Forward
, Reverse
};
106 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
108 MemoryListener *_listener; \
110 switch (_direction) { \
112 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
113 if (_listener->_callback) { \
114 _listener->_callback(_listener, ##_args); \
119 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
120 if (_listener->_callback) { \
121 _listener->_callback(_listener, ##_args); \
130 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
132 MemoryListener *_listener; \
134 switch (_direction) { \
136 QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) { \
137 if (_listener->_callback) { \
138 _listener->_callback(_listener, _section, ##_args); \
143 QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
144 if (_listener->_callback) { \
145 _listener->_callback(_listener, _section, ##_args); \
154 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
155 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
157 MemoryRegionSection mrs = section_from_flat_range(fr, \
158 address_space_to_flatview(as)); \
159 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
162 struct CoalescedMemoryRange
{
164 QTAILQ_ENTRY(CoalescedMemoryRange
) link
;
167 struct MemoryRegionIoeventfd
{
174 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd
*a
,
175 MemoryRegionIoeventfd
*b
)
177 if (int128_lt(a
->addr
.start
, b
->addr
.start
)) {
179 } else if (int128_gt(a
->addr
.start
, b
->addr
.start
)) {
181 } else if (int128_lt(a
->addr
.size
, b
->addr
.size
)) {
183 } else if (int128_gt(a
->addr
.size
, b
->addr
.size
)) {
185 } else if (a
->match_data
< b
->match_data
) {
187 } else if (a
->match_data
> b
->match_data
) {
189 } else if (a
->match_data
) {
190 if (a
->data
< b
->data
) {
192 } else if (a
->data
> b
->data
) {
198 } else if (a
->e
> b
->e
) {
204 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd
*a
,
205 MemoryRegionIoeventfd
*b
)
207 if (int128_eq(a
->addr
.start
, b
->addr
.start
) &&
208 (!int128_nz(a
->addr
.size
) || !int128_nz(b
->addr
.size
) ||
209 (int128_eq(a
->addr
.size
, b
->addr
.size
) &&
210 (a
->match_data
== b
->match_data
) &&
211 ((a
->match_data
&& (a
->data
== b
->data
)) || !a
->match_data
) &&
218 /* Range of memory in the global map. Addresses are absolute. */
221 hwaddr offset_in_region
;
223 uint8_t dirty_log_mask
;
230 #define FOR_EACH_FLAT_RANGE(var, view) \
231 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
233 static inline MemoryRegionSection
234 section_from_flat_range(FlatRange
*fr
, FlatView
*fv
)
236 return (MemoryRegionSection
) {
239 .offset_within_region
= fr
->offset_in_region
,
240 .size
= fr
->addr
.size
,
241 .offset_within_address_space
= int128_get64(fr
->addr
.start
),
242 .readonly
= fr
->readonly
,
243 .nonvolatile
= fr
->nonvolatile
,
244 .unmergeable
= fr
->unmergeable
,
248 static bool flatrange_equal(FlatRange
*a
, FlatRange
*b
)
250 return a
->mr
== b
->mr
251 && addrrange_equal(a
->addr
, b
->addr
)
252 && a
->offset_in_region
== b
->offset_in_region
253 && a
->romd_mode
== b
->romd_mode
254 && a
->readonly
== b
->readonly
255 && a
->nonvolatile
== b
->nonvolatile
256 && a
->unmergeable
== b
->unmergeable
;
259 static FlatView
*flatview_new(MemoryRegion
*mr_root
)
263 view
= g_new0(FlatView
, 1);
265 view
->root
= mr_root
;
266 memory_region_ref(mr_root
);
267 trace_flatview_new(view
, mr_root
);
272 /* Insert a range into a given position. Caller is responsible for maintaining
275 static void flatview_insert(FlatView
*view
, unsigned pos
, FlatRange
*range
)
277 if (view
->nr
== view
->nr_allocated
) {
278 view
->nr_allocated
= MAX(2 * view
->nr
, 10);
279 view
->ranges
= g_realloc(view
->ranges
,
280 view
->nr_allocated
* sizeof(*view
->ranges
));
282 memmove(view
->ranges
+ pos
+ 1, view
->ranges
+ pos
,
283 (view
->nr
- pos
) * sizeof(FlatRange
));
284 view
->ranges
[pos
] = *range
;
285 memory_region_ref(range
->mr
);
289 static void flatview_destroy(FlatView
*view
)
293 trace_flatview_destroy(view
, view
->root
);
294 if (view
->dispatch
) {
295 address_space_dispatch_free(view
->dispatch
);
297 for (i
= 0; i
< view
->nr
; i
++) {
298 memory_region_unref(view
->ranges
[i
].mr
);
300 g_free(view
->ranges
);
301 memory_region_unref(view
->root
);
305 static bool flatview_ref(FlatView
*view
)
307 return qatomic_fetch_inc_nonzero(&view
->ref
) > 0;
310 void flatview_unref(FlatView
*view
)
312 if (qatomic_fetch_dec(&view
->ref
) == 1) {
313 trace_flatview_destroy_rcu(view
, view
->root
);
315 call_rcu(view
, flatview_destroy
, rcu
);
319 static bool can_merge(FlatRange
*r1
, FlatRange
*r2
)
321 return int128_eq(addrrange_end(r1
->addr
), r2
->addr
.start
)
323 && int128_eq(int128_add(int128_make64(r1
->offset_in_region
),
325 int128_make64(r2
->offset_in_region
))
326 && r1
->dirty_log_mask
== r2
->dirty_log_mask
327 && r1
->romd_mode
== r2
->romd_mode
328 && r1
->readonly
== r2
->readonly
329 && r1
->nonvolatile
== r2
->nonvolatile
330 && !r1
->unmergeable
&& !r2
->unmergeable
;
333 /* Attempt to simplify a view by merging adjacent ranges */
334 static void flatview_simplify(FlatView
*view
)
339 while (i
< view
->nr
) {
342 && can_merge(&view
->ranges
[j
-1], &view
->ranges
[j
])) {
343 int128_addto(&view
->ranges
[i
].addr
.size
, view
->ranges
[j
].addr
.size
);
347 for (k
= i
; k
< j
; k
++) {
348 memory_region_unref(view
->ranges
[k
].mr
);
350 memmove(&view
->ranges
[i
], &view
->ranges
[j
],
351 (view
->nr
- j
) * sizeof(view
->ranges
[j
]));
356 static bool memory_region_big_endian(MemoryRegion
*mr
)
358 #if TARGET_BIG_ENDIAN
359 return mr
->ops
->endianness
!= DEVICE_LITTLE_ENDIAN
;
361 return mr
->ops
->endianness
== DEVICE_BIG_ENDIAN
;
365 static void adjust_endianness(MemoryRegion
*mr
, uint64_t *data
, MemOp op
)
367 if ((op
& MO_BSWAP
) != devend_memop(mr
->ops
->endianness
)) {
368 switch (op
& MO_SIZE
) {
372 *data
= bswap16(*data
);
375 *data
= bswap32(*data
);
378 *data
= bswap64(*data
);
381 g_assert_not_reached();
386 static inline void memory_region_shift_read_access(uint64_t *value
,
392 *value
|= (tmp
& mask
) << shift
;
394 *value
|= (tmp
& mask
) >> -shift
;
398 static inline uint64_t memory_region_shift_write_access(uint64_t *value
,
405 tmp
= (*value
>> shift
) & mask
;
407 tmp
= (*value
<< -shift
) & mask
;
413 static hwaddr
memory_region_to_absolute_addr(MemoryRegion
*mr
, hwaddr offset
)
416 hwaddr abs_addr
= offset
;
418 abs_addr
+= mr
->addr
;
419 for (root
= mr
; root
->container
; ) {
420 root
= root
->container
;
421 abs_addr
+= root
->addr
;
427 static int get_cpu_index(void)
430 return current_cpu
->cpu_index
;
435 static MemTxResult
memory_region_read_accessor(MemoryRegion
*mr
,
445 tmp
= mr
->ops
->read(mr
->opaque
, addr
, size
);
447 trace_memory_region_subpage_read(get_cpu_index(), mr
, addr
, tmp
, size
);
448 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ
)) {
449 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
450 trace_memory_region_ops_read(get_cpu_index(), mr
, abs_addr
, tmp
, size
,
451 memory_region_name(mr
));
453 memory_region_shift_read_access(value
, shift
, mask
, tmp
);
457 static MemTxResult
memory_region_read_with_attrs_accessor(MemoryRegion
*mr
,
468 r
= mr
->ops
->read_with_attrs(mr
->opaque
, addr
, &tmp
, size
, attrs
);
470 trace_memory_region_subpage_read(get_cpu_index(), mr
, addr
, tmp
, size
);
471 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ
)) {
472 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
473 trace_memory_region_ops_read(get_cpu_index(), mr
, abs_addr
, tmp
, size
,
474 memory_region_name(mr
));
476 memory_region_shift_read_access(value
, shift
, mask
, tmp
);
480 static MemTxResult
memory_region_write_accessor(MemoryRegion
*mr
,
488 uint64_t tmp
= memory_region_shift_write_access(value
, shift
, mask
);
491 trace_memory_region_subpage_write(get_cpu_index(), mr
, addr
, tmp
, size
);
492 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE
)) {
493 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
494 trace_memory_region_ops_write(get_cpu_index(), mr
, abs_addr
, tmp
, size
,
495 memory_region_name(mr
));
497 mr
->ops
->write(mr
->opaque
, addr
, tmp
, size
);
501 static MemTxResult
memory_region_write_with_attrs_accessor(MemoryRegion
*mr
,
509 uint64_t tmp
= memory_region_shift_write_access(value
, shift
, mask
);
512 trace_memory_region_subpage_write(get_cpu_index(), mr
, addr
, tmp
, size
);
513 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE
)) {
514 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
515 trace_memory_region_ops_write(get_cpu_index(), mr
, abs_addr
, tmp
, size
,
516 memory_region_name(mr
));
518 return mr
->ops
->write_with_attrs(mr
->opaque
, addr
, tmp
, size
, attrs
);
521 static MemTxResult
access_with_adjusted_size(hwaddr addr
,
524 unsigned access_size_min
,
525 unsigned access_size_max
,
526 MemTxResult (*access_fn
)
537 uint64_t access_mask
;
538 unsigned access_size
;
540 MemTxResult r
= MEMTX_OK
;
541 bool reentrancy_guard_applied
= false;
543 if (!access_size_min
) {
546 if (!access_size_max
) {
550 /* Do not allow more than one simultaneous access to a device's IO Regions */
551 if (mr
->dev
&& !mr
->disable_reentrancy_guard
&&
552 !mr
->ram_device
&& !mr
->ram
&& !mr
->rom_device
&& !mr
->readonly
) {
553 if (mr
->dev
->mem_reentrancy_guard
.engaged_in_io
) {
554 warn_report_once("Blocked re-entrant IO on MemoryRegion: "
555 "%s at addr: 0x%" HWADDR_PRIX
,
556 memory_region_name(mr
), addr
);
557 return MEMTX_ACCESS_ERROR
;
559 mr
->dev
->mem_reentrancy_guard
.engaged_in_io
= true;
560 reentrancy_guard_applied
= true;
563 /* FIXME: support unaligned access? */
564 access_size
= MAX(MIN(size
, access_size_max
), access_size_min
);
565 access_mask
= MAKE_64BIT_MASK(0, access_size
* 8);
566 if (memory_region_big_endian(mr
)) {
567 for (i
= 0; i
< size
; i
+= access_size
) {
568 r
|= access_fn(mr
, addr
+ i
, value
, access_size
,
569 (size
- access_size
- i
) * 8, access_mask
, attrs
);
572 for (i
= 0; i
< size
; i
+= access_size
) {
573 r
|= access_fn(mr
, addr
+ i
, value
, access_size
, i
* 8,
577 if (mr
->dev
&& reentrancy_guard_applied
) {
578 mr
->dev
->mem_reentrancy_guard
.engaged_in_io
= false;
583 static AddressSpace
*memory_region_to_address_space(MemoryRegion
*mr
)
587 while (mr
->container
) {
590 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
591 if (mr
== as
->root
) {
598 /* Render a memory region into the global view. Ranges in @view obscure
601 static void render_memory_region(FlatView
*view
,
609 MemoryRegion
*subregion
;
611 hwaddr offset_in_region
;
621 int128_addto(&base
, int128_make64(mr
->addr
));
622 readonly
|= mr
->readonly
;
623 nonvolatile
|= mr
->nonvolatile
;
624 unmergeable
|= mr
->unmergeable
;
626 tmp
= addrrange_make(base
, mr
->size
);
628 if (!addrrange_intersects(tmp
, clip
)) {
632 clip
= addrrange_intersection(tmp
, clip
);
635 int128_subfrom(&base
, int128_make64(mr
->alias
->addr
));
636 int128_subfrom(&base
, int128_make64(mr
->alias_offset
));
637 render_memory_region(view
, mr
->alias
, base
, clip
,
638 readonly
, nonvolatile
, unmergeable
);
642 /* Render subregions in priority order. */
643 QTAILQ_FOREACH(subregion
, &mr
->subregions
, subregions_link
) {
644 render_memory_region(view
, subregion
, base
, clip
,
645 readonly
, nonvolatile
, unmergeable
);
648 if (!mr
->terminates
) {
652 offset_in_region
= int128_get64(int128_sub(clip
.start
, base
));
657 fr
.dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
658 fr
.romd_mode
= mr
->romd_mode
;
659 fr
.readonly
= readonly
;
660 fr
.nonvolatile
= nonvolatile
;
661 fr
.unmergeable
= unmergeable
;
663 /* Render the region itself into any gaps left by the current view. */
664 for (i
= 0; i
< view
->nr
&& int128_nz(remain
); ++i
) {
665 if (int128_ge(base
, addrrange_end(view
->ranges
[i
].addr
))) {
668 if (int128_lt(base
, view
->ranges
[i
].addr
.start
)) {
669 now
= int128_min(remain
,
670 int128_sub(view
->ranges
[i
].addr
.start
, base
));
671 fr
.offset_in_region
= offset_in_region
;
672 fr
.addr
= addrrange_make(base
, now
);
673 flatview_insert(view
, i
, &fr
);
675 int128_addto(&base
, now
);
676 offset_in_region
+= int128_get64(now
);
677 int128_subfrom(&remain
, now
);
679 now
= int128_sub(int128_min(int128_add(base
, remain
),
680 addrrange_end(view
->ranges
[i
].addr
)),
682 int128_addto(&base
, now
);
683 offset_in_region
+= int128_get64(now
);
684 int128_subfrom(&remain
, now
);
686 if (int128_nz(remain
)) {
687 fr
.offset_in_region
= offset_in_region
;
688 fr
.addr
= addrrange_make(base
, remain
);
689 flatview_insert(view
, i
, &fr
);
693 void flatview_for_each_range(FlatView
*fv
, flatview_cb cb
, void *opaque
)
700 FOR_EACH_FLAT_RANGE(fr
, fv
) {
701 if (cb(fr
->addr
.start
, fr
->addr
.size
, fr
->mr
,
702 fr
->offset_in_region
, opaque
)) {
708 static MemoryRegion
*memory_region_get_flatview_root(MemoryRegion
*mr
)
710 while (mr
->enabled
) {
712 if (!mr
->alias_offset
&& int128_ge(mr
->size
, mr
->alias
->size
)) {
713 /* The alias is included in its entirety. Use it as
714 * the "real" root, so that we can share more FlatViews.
719 } else if (!mr
->terminates
) {
720 unsigned int found
= 0;
721 MemoryRegion
*child
, *next
= NULL
;
722 QTAILQ_FOREACH(child
, &mr
->subregions
, subregions_link
) {
723 if (child
->enabled
) {
728 if (!child
->addr
&& int128_ge(mr
->size
, child
->size
)) {
729 /* A child is included in its entirety. If it's the only
730 * enabled one, use it in the hope of finding an alias down the
731 * way. This will also let us share FlatViews.
752 /* Render a memory topology into a list of disjoint absolute ranges. */
753 static FlatView
*generate_memory_topology(MemoryRegion
*mr
)
758 view
= flatview_new(mr
);
761 render_memory_region(view
, mr
, int128_zero(),
762 addrrange_make(int128_zero(), int128_2_64()),
763 false, false, false);
765 flatview_simplify(view
);
767 view
->dispatch
= address_space_dispatch_new(view
);
768 for (i
= 0; i
< view
->nr
; i
++) {
769 MemoryRegionSection mrs
=
770 section_from_flat_range(&view
->ranges
[i
], view
);
771 flatview_add_to_dispatch(view
, &mrs
);
773 address_space_dispatch_compact(view
->dispatch
);
774 g_hash_table_replace(flat_views
, mr
, view
);
779 static void address_space_add_del_ioeventfds(AddressSpace
*as
,
780 MemoryRegionIoeventfd
*fds_new
,
782 MemoryRegionIoeventfd
*fds_old
,
786 MemoryRegionIoeventfd
*fd
;
787 MemoryRegionSection section
;
789 /* Generate a symmetric difference of the old and new fd sets, adding
790 * and deleting as necessary.
794 while (iold
< fds_old_nb
|| inew
< fds_new_nb
) {
795 if (iold
< fds_old_nb
796 && (inew
== fds_new_nb
797 || memory_region_ioeventfd_before(&fds_old
[iold
],
800 section
= (MemoryRegionSection
) {
801 .fv
= address_space_to_flatview(as
),
802 .offset_within_address_space
= int128_get64(fd
->addr
.start
),
803 .size
= fd
->addr
.size
,
805 MEMORY_LISTENER_CALL(as
, eventfd_del
, Forward
, §ion
,
806 fd
->match_data
, fd
->data
, fd
->e
);
808 } else if (inew
< fds_new_nb
809 && (iold
== fds_old_nb
810 || memory_region_ioeventfd_before(&fds_new
[inew
],
813 section
= (MemoryRegionSection
) {
814 .fv
= address_space_to_flatview(as
),
815 .offset_within_address_space
= int128_get64(fd
->addr
.start
),
816 .size
= fd
->addr
.size
,
818 MEMORY_LISTENER_CALL(as
, eventfd_add
, Reverse
, §ion
,
819 fd
->match_data
, fd
->data
, fd
->e
);
828 FlatView
*address_space_get_flatview(AddressSpace
*as
)
832 RCU_READ_LOCK_GUARD();
834 view
= address_space_to_flatview(as
);
835 /* If somebody has replaced as->current_map concurrently,
836 * flatview_ref returns false.
838 } while (!flatview_ref(view
));
842 static void address_space_update_ioeventfds(AddressSpace
*as
)
846 unsigned ioeventfd_nb
= 0;
847 unsigned ioeventfd_max
;
848 MemoryRegionIoeventfd
*ioeventfds
;
852 if (!as
->ioeventfd_notifiers
) {
857 * It is likely that the number of ioeventfds hasn't changed much, so use
858 * the previous size as the starting value, with some headroom to avoid
859 * gratuitous reallocations.
861 ioeventfd_max
= QEMU_ALIGN_UP(as
->ioeventfd_nb
, 4);
862 ioeventfds
= g_new(MemoryRegionIoeventfd
, ioeventfd_max
);
864 view
= address_space_get_flatview(as
);
865 FOR_EACH_FLAT_RANGE(fr
, view
) {
866 for (i
= 0; i
< fr
->mr
->ioeventfd_nb
; ++i
) {
867 tmp
= addrrange_shift(fr
->mr
->ioeventfds
[i
].addr
,
868 int128_sub(fr
->addr
.start
,
869 int128_make64(fr
->offset_in_region
)));
870 if (addrrange_intersects(fr
->addr
, tmp
)) {
872 if (ioeventfd_nb
> ioeventfd_max
) {
873 ioeventfd_max
= MAX(ioeventfd_max
* 2, 4);
874 ioeventfds
= g_realloc(ioeventfds
,
875 ioeventfd_max
* sizeof(*ioeventfds
));
877 ioeventfds
[ioeventfd_nb
-1] = fr
->mr
->ioeventfds
[i
];
878 ioeventfds
[ioeventfd_nb
-1].addr
= tmp
;
883 address_space_add_del_ioeventfds(as
, ioeventfds
, ioeventfd_nb
,
884 as
->ioeventfds
, as
->ioeventfd_nb
);
886 g_free(as
->ioeventfds
);
887 as
->ioeventfds
= ioeventfds
;
888 as
->ioeventfd_nb
= ioeventfd_nb
;
889 flatview_unref(view
);
893 * Notify the memory listeners about the coalesced IO change events of
894 * range `cmr'. Only the part that has intersection of the specified
895 * FlatRange will be sent.
897 static void flat_range_coalesced_io_notify(FlatRange
*fr
, AddressSpace
*as
,
898 CoalescedMemoryRange
*cmr
, bool add
)
902 tmp
= addrrange_shift(cmr
->addr
,
903 int128_sub(fr
->addr
.start
,
904 int128_make64(fr
->offset_in_region
)));
905 if (!addrrange_intersects(tmp
, fr
->addr
)) {
908 tmp
= addrrange_intersection(tmp
, fr
->addr
);
911 MEMORY_LISTENER_UPDATE_REGION(fr
, as
, Forward
, coalesced_io_add
,
912 int128_get64(tmp
.start
),
913 int128_get64(tmp
.size
));
915 MEMORY_LISTENER_UPDATE_REGION(fr
, as
, Reverse
, coalesced_io_del
,
916 int128_get64(tmp
.start
),
917 int128_get64(tmp
.size
));
921 static void flat_range_coalesced_io_del(FlatRange
*fr
, AddressSpace
*as
)
923 CoalescedMemoryRange
*cmr
;
925 QTAILQ_FOREACH(cmr
, &fr
->mr
->coalesced
, link
) {
926 flat_range_coalesced_io_notify(fr
, as
, cmr
, false);
930 static void flat_range_coalesced_io_add(FlatRange
*fr
, AddressSpace
*as
)
932 MemoryRegion
*mr
= fr
->mr
;
933 CoalescedMemoryRange
*cmr
;
935 if (QTAILQ_EMPTY(&mr
->coalesced
)) {
939 QTAILQ_FOREACH(cmr
, &mr
->coalesced
, link
) {
940 flat_range_coalesced_io_notify(fr
, as
, cmr
, true);
944 static void address_space_update_topology_pass(AddressSpace
*as
,
945 const FlatView
*old_view
,
946 const FlatView
*new_view
,
950 FlatRange
*frold
, *frnew
;
952 /* Generate a symmetric difference of the old and new memory maps.
953 * Kill ranges in the old map, and instantiate ranges in the new map.
956 while (iold
< old_view
->nr
|| inew
< new_view
->nr
) {
957 if (iold
< old_view
->nr
) {
958 frold
= &old_view
->ranges
[iold
];
962 if (inew
< new_view
->nr
) {
963 frnew
= &new_view
->ranges
[inew
];
970 || int128_lt(frold
->addr
.start
, frnew
->addr
.start
)
971 || (int128_eq(frold
->addr
.start
, frnew
->addr
.start
)
972 && !flatrange_equal(frold
, frnew
)))) {
973 /* In old but not in new, or in both but attributes changed. */
976 flat_range_coalesced_io_del(frold
, as
);
977 MEMORY_LISTENER_UPDATE_REGION(frold
, as
, Reverse
, region_del
);
981 } else if (frold
&& frnew
&& flatrange_equal(frold
, frnew
)) {
982 /* In both and unchanged (except logging may have changed) */
985 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, region_nop
);
986 if (frnew
->dirty_log_mask
& ~frold
->dirty_log_mask
) {
987 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, log_start
,
988 frold
->dirty_log_mask
,
989 frnew
->dirty_log_mask
);
991 if (frold
->dirty_log_mask
& ~frnew
->dirty_log_mask
) {
992 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Reverse
, log_stop
,
993 frold
->dirty_log_mask
,
994 frnew
->dirty_log_mask
);
1004 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, region_add
);
1005 flat_range_coalesced_io_add(frnew
, as
);
1013 static void flatviews_init(void)
1015 static FlatView
*empty_view
;
1021 flat_views
= g_hash_table_new_full(g_direct_hash
, g_direct_equal
, NULL
,
1022 (GDestroyNotify
) flatview_unref
);
1024 empty_view
= generate_memory_topology(NULL
);
1025 /* We keep it alive forever in the global variable. */
1026 flatview_ref(empty_view
);
1028 g_hash_table_replace(flat_views
, NULL
, empty_view
);
1029 flatview_ref(empty_view
);
1033 static void flatviews_reset(void)
1038 g_hash_table_unref(flat_views
);
1043 /* Render unique FVs */
1044 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
1045 MemoryRegion
*physmr
= memory_region_get_flatview_root(as
->root
);
1047 if (g_hash_table_lookup(flat_views
, physmr
)) {
1051 generate_memory_topology(physmr
);
1055 static void address_space_set_flatview(AddressSpace
*as
)
1057 FlatView
*old_view
= address_space_to_flatview(as
);
1058 MemoryRegion
*physmr
= memory_region_get_flatview_root(as
->root
);
1059 FlatView
*new_view
= g_hash_table_lookup(flat_views
, physmr
);
1063 if (old_view
== new_view
) {
1068 flatview_ref(old_view
);
1071 flatview_ref(new_view
);
1073 if (!QTAILQ_EMPTY(&as
->listeners
)) {
1074 FlatView tmpview
= { .nr
= 0 }, *old_view2
= old_view
;
1077 old_view2
= &tmpview
;
1079 address_space_update_topology_pass(as
, old_view2
, new_view
, false);
1080 address_space_update_topology_pass(as
, old_view2
, new_view
, true);
1083 /* Writes are protected by the BQL. */
1084 qatomic_rcu_set(&as
->current_map
, new_view
);
1086 flatview_unref(old_view
);
1089 /* Note that all the old MemoryRegions are still alive up to this
1090 * point. This relieves most MemoryListeners from the need to
1091 * ref/unref the MemoryRegions they get---unless they use them
1092 * outside the iothread mutex, in which case precise reference
1093 * counting is necessary.
1096 flatview_unref(old_view
);
1100 static void address_space_update_topology(AddressSpace
*as
)
1102 MemoryRegion
*physmr
= memory_region_get_flatview_root(as
->root
);
1105 if (!g_hash_table_lookup(flat_views
, physmr
)) {
1106 generate_memory_topology(physmr
);
1108 address_space_set_flatview(as
);
1111 void memory_region_transaction_begin(void)
1113 qemu_flush_coalesced_mmio_buffer();
1114 ++memory_region_transaction_depth
;
1117 void memory_region_transaction_commit(void)
1121 assert(memory_region_transaction_depth
);
1122 assert(bql_locked());
1124 --memory_region_transaction_depth
;
1125 if (!memory_region_transaction_depth
) {
1126 if (memory_region_update_pending
) {
1129 MEMORY_LISTENER_CALL_GLOBAL(begin
, Forward
);
1131 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
1132 address_space_set_flatview(as
);
1133 address_space_update_ioeventfds(as
);
1135 memory_region_update_pending
= false;
1136 ioeventfd_update_pending
= false;
1137 MEMORY_LISTENER_CALL_GLOBAL(commit
, Forward
);
1138 } else if (ioeventfd_update_pending
) {
1139 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
1140 address_space_update_ioeventfds(as
);
1142 ioeventfd_update_pending
= false;
1147 static void memory_region_destructor_none(MemoryRegion
*mr
)
1151 static void memory_region_destructor_ram(MemoryRegion
*mr
)
1153 qemu_ram_free(mr
->ram_block
);
1156 static bool memory_region_need_escape(char c
)
1158 return c
== '/' || c
== '[' || c
== '\\' || c
== ']';
1161 static char *memory_region_escape_name(const char *name
)
1168 for (p
= name
; *p
; p
++) {
1169 bytes
+= memory_region_need_escape(*p
) ? 4 : 1;
1171 if (bytes
== p
- name
) {
1172 return g_memdup(name
, bytes
+ 1);
1175 escaped
= g_malloc(bytes
+ 1);
1176 for (p
= name
, q
= escaped
; *p
; p
++) {
1178 if (unlikely(memory_region_need_escape(c
))) {
1181 *q
++ = "0123456789abcdef"[c
>> 4];
1182 c
= "0123456789abcdef"[c
& 15];
1190 static void memory_region_do_init(MemoryRegion
*mr
,
1195 mr
->size
= int128_make64(size
);
1196 if (size
== UINT64_MAX
) {
1197 mr
->size
= int128_2_64();
1199 mr
->name
= g_strdup(name
);
1201 mr
->dev
= (DeviceState
*) object_dynamic_cast(mr
->owner
, TYPE_DEVICE
);
1202 mr
->ram_block
= NULL
;
1205 char *escaped_name
= memory_region_escape_name(name
);
1206 char *name_array
= g_strdup_printf("%s[*]", escaped_name
);
1209 owner
= container_get(qdev_get_machine(), "/unattached");
1212 object_property_add_child(owner
, name_array
, OBJECT(mr
));
1213 object_unref(OBJECT(mr
));
1215 g_free(escaped_name
);
1219 void memory_region_init(MemoryRegion
*mr
,
1224 object_initialize(mr
, sizeof(*mr
), TYPE_MEMORY_REGION
);
1225 memory_region_do_init(mr
, owner
, name
, size
);
1228 static void memory_region_get_container(Object
*obj
, Visitor
*v
,
1229 const char *name
, void *opaque
,
1232 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1233 char *path
= (char *)"";
1235 if (mr
->container
) {
1236 path
= object_get_canonical_path(OBJECT(mr
->container
));
1238 visit_type_str(v
, name
, &path
, errp
);
1239 if (mr
->container
) {
1244 static Object
*memory_region_resolve_container(Object
*obj
, void *opaque
,
1247 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1249 return OBJECT(mr
->container
);
1252 static void memory_region_get_priority(Object
*obj
, Visitor
*v
,
1253 const char *name
, void *opaque
,
1256 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1257 int32_t value
= mr
->priority
;
1259 visit_type_int32(v
, name
, &value
, errp
);
1262 static void memory_region_get_size(Object
*obj
, Visitor
*v
, const char *name
,
1263 void *opaque
, Error
**errp
)
1265 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1266 uint64_t value
= memory_region_size(mr
);
1268 visit_type_uint64(v
, name
, &value
, errp
);
1271 static void memory_region_initfn(Object
*obj
)
1273 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1276 mr
->ops
= &unassigned_mem_ops
;
1278 mr
->romd_mode
= true;
1279 mr
->destructor
= memory_region_destructor_none
;
1280 QTAILQ_INIT(&mr
->subregions
);
1281 QTAILQ_INIT(&mr
->coalesced
);
1283 op
= object_property_add(OBJECT(mr
), "container",
1284 "link<" TYPE_MEMORY_REGION
">",
1285 memory_region_get_container
,
1286 NULL
, /* memory_region_set_container */
1288 op
->resolve
= memory_region_resolve_container
;
1290 object_property_add_uint64_ptr(OBJECT(mr
), "addr",
1291 &mr
->addr
, OBJ_PROP_FLAG_READ
);
1292 object_property_add(OBJECT(mr
), "priority", "uint32",
1293 memory_region_get_priority
,
1294 NULL
, /* memory_region_set_priority */
1296 object_property_add(OBJECT(mr
), "size", "uint64",
1297 memory_region_get_size
,
1298 NULL
, /* memory_region_set_size, */
1302 static void iommu_memory_region_initfn(Object
*obj
)
1304 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1306 mr
->is_iommu
= true;
1309 static uint64_t unassigned_mem_read(void *opaque
, hwaddr addr
,
1312 #ifdef DEBUG_UNASSIGNED
1313 printf("Unassigned mem read " HWADDR_FMT_plx
"\n", addr
);
1318 static void unassigned_mem_write(void *opaque
, hwaddr addr
,
1319 uint64_t val
, unsigned size
)
1321 #ifdef DEBUG_UNASSIGNED
1322 printf("Unassigned mem write " HWADDR_FMT_plx
" = 0x%"PRIx64
"\n", addr
, val
);
1326 static bool unassigned_mem_accepts(void *opaque
, hwaddr addr
,
1327 unsigned size
, bool is_write
,
1333 const MemoryRegionOps unassigned_mem_ops
= {
1334 .valid
.accepts
= unassigned_mem_accepts
,
1335 .endianness
= DEVICE_NATIVE_ENDIAN
,
1338 static uint64_t memory_region_ram_device_read(void *opaque
,
1339 hwaddr addr
, unsigned size
)
1341 MemoryRegion
*mr
= opaque
;
1342 uint64_t data
= ldn_he_p(mr
->ram_block
->host
+ addr
, size
);
1344 trace_memory_region_ram_device_read(get_cpu_index(), mr
, addr
, data
, size
);
1349 static void memory_region_ram_device_write(void *opaque
, hwaddr addr
,
1350 uint64_t data
, unsigned size
)
1352 MemoryRegion
*mr
= opaque
;
1354 trace_memory_region_ram_device_write(get_cpu_index(), mr
, addr
, data
, size
);
1356 stn_he_p(mr
->ram_block
->host
+ addr
, size
, data
);
1359 static const MemoryRegionOps ram_device_mem_ops
= {
1360 .read
= memory_region_ram_device_read
,
1361 .write
= memory_region_ram_device_write
,
1362 .endianness
= DEVICE_HOST_ENDIAN
,
1364 .min_access_size
= 1,
1365 .max_access_size
= 8,
1369 .min_access_size
= 1,
1370 .max_access_size
= 8,
1375 bool memory_region_access_valid(MemoryRegion
*mr
,
1381 if (mr
->ops
->valid
.accepts
1382 && !mr
->ops
->valid
.accepts(mr
->opaque
, addr
, size
, is_write
, attrs
)) {
1383 qemu_log_mask(LOG_GUEST_ERROR
, "Invalid %s at addr 0x%" HWADDR_PRIX
1384 ", size %u, region '%s', reason: rejected\n",
1385 is_write
? "write" : "read",
1386 addr
, size
, memory_region_name(mr
));
1390 if (!mr
->ops
->valid
.unaligned
&& (addr
& (size
- 1))) {
1391 qemu_log_mask(LOG_GUEST_ERROR
, "Invalid %s at addr 0x%" HWADDR_PRIX
1392 ", size %u, region '%s', reason: unaligned\n",
1393 is_write
? "write" : "read",
1394 addr
, size
, memory_region_name(mr
));
1398 /* Treat zero as compatibility all valid */
1399 if (!mr
->ops
->valid
.max_access_size
) {
1403 if (size
> mr
->ops
->valid
.max_access_size
1404 || size
< mr
->ops
->valid
.min_access_size
) {
1405 qemu_log_mask(LOG_GUEST_ERROR
, "Invalid %s at addr 0x%" HWADDR_PRIX
1406 ", size %u, region '%s', reason: invalid size "
1407 "(min:%u max:%u)\n",
1408 is_write
? "write" : "read",
1409 addr
, size
, memory_region_name(mr
),
1410 mr
->ops
->valid
.min_access_size
,
1411 mr
->ops
->valid
.max_access_size
);
1417 static MemTxResult
memory_region_dispatch_read1(MemoryRegion
*mr
,
1425 if (mr
->ops
->read
) {
1426 return access_with_adjusted_size(addr
, pval
, size
,
1427 mr
->ops
->impl
.min_access_size
,
1428 mr
->ops
->impl
.max_access_size
,
1429 memory_region_read_accessor
,
1432 return access_with_adjusted_size(addr
, pval
, size
,
1433 mr
->ops
->impl
.min_access_size
,
1434 mr
->ops
->impl
.max_access_size
,
1435 memory_region_read_with_attrs_accessor
,
1440 MemTxResult
memory_region_dispatch_read(MemoryRegion
*mr
,
1446 unsigned size
= memop_size(op
);
1450 return memory_region_dispatch_read(mr
->alias
,
1451 mr
->alias_offset
+ addr
,
1454 if (!memory_region_access_valid(mr
, addr
, size
, false, attrs
)) {
1455 *pval
= unassigned_mem_read(mr
, addr
, size
);
1456 return MEMTX_DECODE_ERROR
;
1459 r
= memory_region_dispatch_read1(mr
, addr
, pval
, size
, attrs
);
1460 adjust_endianness(mr
, pval
, op
);
1464 /* Return true if an eventfd was signalled */
1465 static bool memory_region_dispatch_write_eventfds(MemoryRegion
*mr
,
1471 MemoryRegionIoeventfd ioeventfd
= {
1472 .addr
= addrrange_make(int128_make64(addr
), int128_make64(size
)),
1477 for (i
= 0; i
< mr
->ioeventfd_nb
; i
++) {
1478 ioeventfd
.match_data
= mr
->ioeventfds
[i
].match_data
;
1479 ioeventfd
.e
= mr
->ioeventfds
[i
].e
;
1481 if (memory_region_ioeventfd_equal(&ioeventfd
, &mr
->ioeventfds
[i
])) {
1482 event_notifier_set(ioeventfd
.e
);
1490 MemTxResult
memory_region_dispatch_write(MemoryRegion
*mr
,
1496 unsigned size
= memop_size(op
);
1499 return memory_region_dispatch_write(mr
->alias
,
1500 mr
->alias_offset
+ addr
,
1503 if (!memory_region_access_valid(mr
, addr
, size
, true, attrs
)) {
1504 unassigned_mem_write(mr
, addr
, data
, size
);
1505 return MEMTX_DECODE_ERROR
;
1508 adjust_endianness(mr
, &data
, op
);
1511 * FIXME: it's not clear why under KVM the write would be processed
1512 * directly, instead of going through eventfd. This probably should
1513 * test "tcg_enabled() || qtest_enabled()", or should just go away.
1515 if (!kvm_enabled() &&
1516 memory_region_dispatch_write_eventfds(mr
, addr
, data
, size
, attrs
)) {
1520 if (mr
->ops
->write
) {
1521 return access_with_adjusted_size(addr
, &data
, size
,
1522 mr
->ops
->impl
.min_access_size
,
1523 mr
->ops
->impl
.max_access_size
,
1524 memory_region_write_accessor
, mr
,
1528 access_with_adjusted_size(addr
, &data
, size
,
1529 mr
->ops
->impl
.min_access_size
,
1530 mr
->ops
->impl
.max_access_size
,
1531 memory_region_write_with_attrs_accessor
,
1536 void memory_region_init_io(MemoryRegion
*mr
,
1538 const MemoryRegionOps
*ops
,
1543 memory_region_init(mr
, owner
, name
, size
);
1544 mr
->ops
= ops
? ops
: &unassigned_mem_ops
;
1545 mr
->opaque
= opaque
;
1546 mr
->terminates
= true;
1549 bool memory_region_init_ram_nomigrate(MemoryRegion
*mr
,
1555 return memory_region_init_ram_flags_nomigrate(mr
, owner
, name
,
1559 bool memory_region_init_ram_flags_nomigrate(MemoryRegion
*mr
,
1567 memory_region_init(mr
, owner
, name
, size
);
1569 mr
->terminates
= true;
1570 mr
->destructor
= memory_region_destructor_ram
;
1571 mr
->ram_block
= qemu_ram_alloc(size
, ram_flags
, mr
, &err
);
1573 mr
->size
= int128_zero();
1574 object_unparent(OBJECT(mr
));
1575 error_propagate(errp
, err
);
1581 bool memory_region_init_resizeable_ram(MemoryRegion
*mr
,
1586 void (*resized
)(const char*,
1592 memory_region_init(mr
, owner
, name
, size
);
1594 mr
->terminates
= true;
1595 mr
->destructor
= memory_region_destructor_ram
;
1596 mr
->ram_block
= qemu_ram_alloc_resizeable(size
, max_size
, resized
,
1599 mr
->size
= int128_zero();
1600 object_unparent(OBJECT(mr
));
1601 error_propagate(errp
, err
);
1608 bool memory_region_init_ram_from_file(MemoryRegion
*mr
,
1619 memory_region_init(mr
, owner
, name
, size
);
1621 mr
->readonly
= !!(ram_flags
& RAM_READONLY
);
1622 mr
->terminates
= true;
1623 mr
->destructor
= memory_region_destructor_ram
;
1625 mr
->ram_block
= qemu_ram_alloc_from_file(size
, mr
, ram_flags
, path
,
1628 mr
->size
= int128_zero();
1629 object_unparent(OBJECT(mr
));
1630 error_propagate(errp
, err
);
1636 bool memory_region_init_ram_from_fd(MemoryRegion
*mr
,
1646 memory_region_init(mr
, owner
, name
, size
);
1648 mr
->readonly
= !!(ram_flags
& RAM_READONLY
);
1649 mr
->terminates
= true;
1650 mr
->destructor
= memory_region_destructor_ram
;
1651 mr
->ram_block
= qemu_ram_alloc_from_fd(size
, mr
, ram_flags
, fd
, offset
,
1654 mr
->size
= int128_zero();
1655 object_unparent(OBJECT(mr
));
1656 error_propagate(errp
, err
);
1663 void memory_region_init_ram_ptr(MemoryRegion
*mr
,
1669 memory_region_init(mr
, owner
, name
, size
);
1671 mr
->terminates
= true;
1672 mr
->destructor
= memory_region_destructor_ram
;
1674 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1675 assert(ptr
!= NULL
);
1676 mr
->ram_block
= qemu_ram_alloc_from_ptr(size
, ptr
, mr
, &error_abort
);
1679 void memory_region_init_ram_device_ptr(MemoryRegion
*mr
,
1685 memory_region_init(mr
, owner
, name
, size
);
1687 mr
->terminates
= true;
1688 mr
->ram_device
= true;
1689 mr
->ops
= &ram_device_mem_ops
;
1691 mr
->destructor
= memory_region_destructor_ram
;
1693 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1694 assert(ptr
!= NULL
);
1695 mr
->ram_block
= qemu_ram_alloc_from_ptr(size
, ptr
, mr
, &error_abort
);
1698 void memory_region_init_alias(MemoryRegion
*mr
,
1705 memory_region_init(mr
, owner
, name
, size
);
1707 mr
->alias_offset
= offset
;
1710 bool memory_region_init_rom_nomigrate(MemoryRegion
*mr
,
1716 if (!memory_region_init_ram_flags_nomigrate(mr
, owner
, name
,
1720 mr
->readonly
= true;
1725 bool memory_region_init_rom_device_nomigrate(MemoryRegion
*mr
,
1727 const MemoryRegionOps
*ops
,
1735 memory_region_init(mr
, owner
, name
, size
);
1737 mr
->opaque
= opaque
;
1738 mr
->terminates
= true;
1739 mr
->rom_device
= true;
1740 mr
->destructor
= memory_region_destructor_ram
;
1741 mr
->ram_block
= qemu_ram_alloc(size
, 0, mr
, &err
);
1743 mr
->size
= int128_zero();
1744 object_unparent(OBJECT(mr
));
1745 error_propagate(errp
, err
);
1751 void memory_region_init_iommu(void *_iommu_mr
,
1752 size_t instance_size
,
1753 const char *mrtypename
,
1758 struct IOMMUMemoryRegion
*iommu_mr
;
1759 struct MemoryRegion
*mr
;
1761 object_initialize(_iommu_mr
, instance_size
, mrtypename
);
1762 mr
= MEMORY_REGION(_iommu_mr
);
1763 memory_region_do_init(mr
, owner
, name
, size
);
1764 iommu_mr
= IOMMU_MEMORY_REGION(mr
);
1765 mr
->terminates
= true; /* then re-forwards */
1766 QLIST_INIT(&iommu_mr
->iommu_notify
);
1767 iommu_mr
->iommu_notify_flags
= IOMMU_NOTIFIER_NONE
;
1770 static void memory_region_finalize(Object
*obj
)
1772 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1774 assert(!mr
->container
);
1776 /* We know the region is not visible in any address space (it
1777 * does not have a container and cannot be a root either because
1778 * it has no references, so we can blindly clear mr->enabled.
1779 * memory_region_set_enabled instead could trigger a transaction
1780 * and cause an infinite loop.
1782 mr
->enabled
= false;
1783 memory_region_transaction_begin();
1784 while (!QTAILQ_EMPTY(&mr
->subregions
)) {
1785 MemoryRegion
*subregion
= QTAILQ_FIRST(&mr
->subregions
);
1786 memory_region_del_subregion(mr
, subregion
);
1788 memory_region_transaction_commit();
1791 memory_region_clear_coalescing(mr
);
1792 g_free((char *)mr
->name
);
1793 g_free(mr
->ioeventfds
);
1796 Object
*memory_region_owner(MemoryRegion
*mr
)
1798 Object
*obj
= OBJECT(mr
);
1802 void memory_region_ref(MemoryRegion
*mr
)
1804 /* MMIO callbacks most likely will access data that belongs
1805 * to the owner, hence the need to ref/unref the owner whenever
1806 * the memory region is in use.
1808 * The memory region is a child of its owner. As long as the
1809 * owner doesn't call unparent itself on the memory region,
1810 * ref-ing the owner will also keep the memory region alive.
1811 * Memory regions without an owner are supposed to never go away;
1812 * we do not ref/unref them because it slows down DMA sensibly.
1814 if (mr
&& mr
->owner
) {
1815 object_ref(mr
->owner
);
1819 void memory_region_unref(MemoryRegion
*mr
)
1821 if (mr
&& mr
->owner
) {
1822 object_unref(mr
->owner
);
1826 uint64_t memory_region_size(MemoryRegion
*mr
)
1828 if (int128_eq(mr
->size
, int128_2_64())) {
1831 return int128_get64(mr
->size
);
1834 const char *memory_region_name(const MemoryRegion
*mr
)
1837 ((MemoryRegion
*)mr
)->name
=
1838 g_strdup(object_get_canonical_path_component(OBJECT(mr
)));
1843 bool memory_region_is_ram_device(MemoryRegion
*mr
)
1845 return mr
->ram_device
;
1848 bool memory_region_is_protected(MemoryRegion
*mr
)
1850 return mr
->ram
&& (mr
->ram_block
->flags
& RAM_PROTECTED
);
1853 uint8_t memory_region_get_dirty_log_mask(MemoryRegion
*mr
)
1855 uint8_t mask
= mr
->dirty_log_mask
;
1856 RAMBlock
*rb
= mr
->ram_block
;
1858 if (global_dirty_tracking
&& ((rb
&& qemu_ram_is_migratable(rb
)) ||
1859 memory_region_is_iommu(mr
))) {
1860 mask
|= (1 << DIRTY_MEMORY_MIGRATION
);
1863 if (tcg_enabled() && rb
) {
1864 /* TCG only cares about dirty memory logging for RAM, not IOMMU. */
1865 mask
|= (1 << DIRTY_MEMORY_CODE
);
1870 bool memory_region_is_logging(MemoryRegion
*mr
, uint8_t client
)
1872 return memory_region_get_dirty_log_mask(mr
) & (1 << client
);
1875 static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion
*iommu_mr
,
1878 IOMMUNotifierFlag flags
= IOMMU_NOTIFIER_NONE
;
1879 IOMMUNotifier
*iommu_notifier
;
1880 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1883 IOMMU_NOTIFIER_FOREACH(iommu_notifier
, iommu_mr
) {
1884 flags
|= iommu_notifier
->notifier_flags
;
1887 if (flags
!= iommu_mr
->iommu_notify_flags
&& imrc
->notify_flag_changed
) {
1888 ret
= imrc
->notify_flag_changed(iommu_mr
,
1889 iommu_mr
->iommu_notify_flags
,
1894 iommu_mr
->iommu_notify_flags
= flags
;
1899 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion
*iommu_mr
,
1900 uint64_t page_size_mask
,
1903 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1906 if (imrc
->iommu_set_page_size_mask
) {
1907 ret
= imrc
->iommu_set_page_size_mask(iommu_mr
, page_size_mask
, errp
);
1912 int memory_region_iommu_set_iova_ranges(IOMMUMemoryRegion
*iommu_mr
,
1916 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1919 if (imrc
->iommu_set_iova_ranges
) {
1920 ret
= imrc
->iommu_set_iova_ranges(iommu_mr
, iova_ranges
, errp
);
1925 int memory_region_register_iommu_notifier(MemoryRegion
*mr
,
1926 IOMMUNotifier
*n
, Error
**errp
)
1928 IOMMUMemoryRegion
*iommu_mr
;
1932 return memory_region_register_iommu_notifier(mr
->alias
, n
, errp
);
1935 /* We need to register for at least one bitfield */
1936 iommu_mr
= IOMMU_MEMORY_REGION(mr
);
1937 assert(n
->notifier_flags
!= IOMMU_NOTIFIER_NONE
);
1938 assert(n
->start
<= n
->end
);
1939 assert(n
->iommu_idx
>= 0 &&
1940 n
->iommu_idx
< memory_region_iommu_num_indexes(iommu_mr
));
1942 QLIST_INSERT_HEAD(&iommu_mr
->iommu_notify
, n
, node
);
1943 ret
= memory_region_update_iommu_notify_flags(iommu_mr
, errp
);
1945 QLIST_REMOVE(n
, node
);
1950 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion
*iommu_mr
)
1952 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1954 if (imrc
->get_min_page_size
) {
1955 return imrc
->get_min_page_size(iommu_mr
);
1957 return TARGET_PAGE_SIZE
;
1960 void memory_region_iommu_replay(IOMMUMemoryRegion
*iommu_mr
, IOMMUNotifier
*n
)
1962 MemoryRegion
*mr
= MEMORY_REGION(iommu_mr
);
1963 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1964 hwaddr addr
, granularity
;
1965 IOMMUTLBEntry iotlb
;
1967 /* If the IOMMU has its own replay callback, override */
1969 imrc
->replay(iommu_mr
, n
);
1973 granularity
= memory_region_iommu_get_min_page_size(iommu_mr
);
1975 for (addr
= 0; addr
< memory_region_size(mr
); addr
+= granularity
) {
1976 iotlb
= imrc
->translate(iommu_mr
, addr
, IOMMU_NONE
, n
->iommu_idx
);
1977 if (iotlb
.perm
!= IOMMU_NONE
) {
1978 n
->notify(n
, &iotlb
);
1981 /* if (2^64 - MR size) < granularity, it's possible to get an
1982 * infinite loop here. This should catch such a wraparound */
1983 if ((addr
+ granularity
) < addr
) {
1989 void memory_region_unregister_iommu_notifier(MemoryRegion
*mr
,
1992 IOMMUMemoryRegion
*iommu_mr
;
1995 memory_region_unregister_iommu_notifier(mr
->alias
, n
);
1998 QLIST_REMOVE(n
, node
);
1999 iommu_mr
= IOMMU_MEMORY_REGION(mr
);
2000 memory_region_update_iommu_notify_flags(iommu_mr
, NULL
);
2003 void memory_region_notify_iommu_one(IOMMUNotifier
*notifier
,
2004 IOMMUTLBEvent
*event
)
2006 IOMMUTLBEntry
*entry
= &event
->entry
;
2007 hwaddr entry_end
= entry
->iova
+ entry
->addr_mask
;
2008 IOMMUTLBEntry tmp
= *entry
;
2010 if (event
->type
== IOMMU_NOTIFIER_UNMAP
) {
2011 assert(entry
->perm
== IOMMU_NONE
);
2015 * Skip the notification if the notification does not overlap
2016 * with registered range.
2018 if (notifier
->start
> entry_end
|| notifier
->end
< entry
->iova
) {
2022 if (notifier
->notifier_flags
& IOMMU_NOTIFIER_DEVIOTLB_UNMAP
) {
2023 /* Crop (iova, addr_mask) to range */
2024 tmp
.iova
= MAX(tmp
.iova
, notifier
->start
);
2025 tmp
.addr_mask
= MIN(entry_end
, notifier
->end
) - tmp
.iova
;
2027 assert(entry
->iova
>= notifier
->start
&& entry_end
<= notifier
->end
);
2030 if (event
->type
& notifier
->notifier_flags
) {
2031 notifier
->notify(notifier
, &tmp
);
2035 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier
*notifier
)
2037 IOMMUTLBEvent event
;
2039 event
.type
= IOMMU_NOTIFIER_UNMAP
;
2040 event
.entry
.target_as
= &address_space_memory
;
2041 event
.entry
.iova
= notifier
->start
;
2042 event
.entry
.perm
= IOMMU_NONE
;
2043 event
.entry
.addr_mask
= notifier
->end
- notifier
->start
;
2045 memory_region_notify_iommu_one(notifier
, &event
);
2048 void memory_region_notify_iommu(IOMMUMemoryRegion
*iommu_mr
,
2050 IOMMUTLBEvent event
)
2052 IOMMUNotifier
*iommu_notifier
;
2054 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr
)));
2056 IOMMU_NOTIFIER_FOREACH(iommu_notifier
, iommu_mr
) {
2057 if (iommu_notifier
->iommu_idx
== iommu_idx
) {
2058 memory_region_notify_iommu_one(iommu_notifier
, &event
);
2063 int memory_region_iommu_get_attr(IOMMUMemoryRegion
*iommu_mr
,
2064 enum IOMMUMemoryRegionAttr attr
,
2067 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
2069 if (!imrc
->get_attr
) {
2073 return imrc
->get_attr(iommu_mr
, attr
, data
);
2076 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion
*iommu_mr
,
2079 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
2081 if (!imrc
->attrs_to_index
) {
2085 return imrc
->attrs_to_index(iommu_mr
, attrs
);
2088 int memory_region_iommu_num_indexes(IOMMUMemoryRegion
*iommu_mr
)
2090 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
2092 if (!imrc
->num_indexes
) {
2096 return imrc
->num_indexes(iommu_mr
);
2099 RamDiscardManager
*memory_region_get_ram_discard_manager(MemoryRegion
*mr
)
2101 if (!memory_region_is_ram(mr
)) {
2107 void memory_region_set_ram_discard_manager(MemoryRegion
*mr
,
2108 RamDiscardManager
*rdm
)
2110 g_assert(memory_region_is_ram(mr
));
2111 g_assert(!rdm
|| !mr
->rdm
);
2115 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager
*rdm
,
2116 const MemoryRegion
*mr
)
2118 RamDiscardManagerClass
*rdmc
= RAM_DISCARD_MANAGER_GET_CLASS(rdm
);
2120 g_assert(rdmc
->get_min_granularity
);
2121 return rdmc
->get_min_granularity(rdm
, mr
);
2124 bool ram_discard_manager_is_populated(const RamDiscardManager
*rdm
,
2125 const MemoryRegionSection
*section
)
2127 RamDiscardManagerClass
*rdmc
= RAM_DISCARD_MANAGER_GET_CLASS(rdm
);
2129 g_assert(rdmc
->is_populated
);
2130 return rdmc
->is_populated(rdm
, section
);
2133 int ram_discard_manager_replay_populated(const RamDiscardManager
*rdm
,
2134 MemoryRegionSection
*section
,
2135 ReplayRamPopulate replay_fn
,
2138 RamDiscardManagerClass
*rdmc
= RAM_DISCARD_MANAGER_GET_CLASS(rdm
);
2140 g_assert(rdmc
->replay_populated
);
2141 return rdmc
->replay_populated(rdm
, section
, replay_fn
, opaque
);
2144 void ram_discard_manager_replay_discarded(const RamDiscardManager
*rdm
,
2145 MemoryRegionSection
*section
,
2146 ReplayRamDiscard replay_fn
,
2149 RamDiscardManagerClass
*rdmc
= RAM_DISCARD_MANAGER_GET_CLASS(rdm
);
2151 g_assert(rdmc
->replay_discarded
);
2152 rdmc
->replay_discarded(rdm
, section
, replay_fn
, opaque
);
2155 void ram_discard_manager_register_listener(RamDiscardManager
*rdm
,
2156 RamDiscardListener
*rdl
,
2157 MemoryRegionSection
*section
)
2159 RamDiscardManagerClass
*rdmc
= RAM_DISCARD_MANAGER_GET_CLASS(rdm
);
2161 g_assert(rdmc
->register_listener
);
2162 rdmc
->register_listener(rdm
, rdl
, section
);
2165 void ram_discard_manager_unregister_listener(RamDiscardManager
*rdm
,
2166 RamDiscardListener
*rdl
)
2168 RamDiscardManagerClass
*rdmc
= RAM_DISCARD_MANAGER_GET_CLASS(rdm
);
2170 g_assert(rdmc
->unregister_listener
);
2171 rdmc
->unregister_listener(rdm
, rdl
);
2174 /* Called with rcu_read_lock held. */
2175 bool memory_get_xlat_addr(IOMMUTLBEntry
*iotlb
, void **vaddr
,
2176 ram_addr_t
*ram_addr
, bool *read_only
,
2177 bool *mr_has_discard_manager
)
2181 hwaddr len
= iotlb
->addr_mask
+ 1;
2182 bool writable
= iotlb
->perm
& IOMMU_WO
;
2184 if (mr_has_discard_manager
) {
2185 *mr_has_discard_manager
= false;
2188 * The IOMMU TLB entry we have just covers translation through
2189 * this IOMMU to its immediate target. We need to translate
2190 * it the rest of the way through to memory.
2192 mr
= address_space_translate(&address_space_memory
, iotlb
->translated_addr
,
2193 &xlat
, &len
, writable
, MEMTXATTRS_UNSPECIFIED
);
2194 if (!memory_region_is_ram(mr
)) {
2195 error_report("iommu map to non memory area %" HWADDR_PRIx
"", xlat
);
2197 } else if (memory_region_has_ram_discard_manager(mr
)) {
2198 RamDiscardManager
*rdm
= memory_region_get_ram_discard_manager(mr
);
2199 MemoryRegionSection tmp
= {
2201 .offset_within_region
= xlat
,
2202 .size
= int128_make64(len
),
2204 if (mr_has_discard_manager
) {
2205 *mr_has_discard_manager
= true;
2208 * Malicious VMs can map memory into the IOMMU, which is expected
2209 * to remain discarded. vfio will pin all pages, populating memory.
2210 * Disallow that. vmstate priorities make sure any RamDiscardManager
2211 * were already restored before IOMMUs are restored.
2213 if (!ram_discard_manager_is_populated(rdm
, &tmp
)) {
2214 error_report("iommu map to discarded memory (e.g., unplugged via"
2215 " virtio-mem): %" HWADDR_PRIx
"",
2216 iotlb
->translated_addr
);
2222 * Translation truncates length to the IOMMU page size,
2223 * check that it did not truncate too much.
2225 if (len
& iotlb
->addr_mask
) {
2226 error_report("iommu has granularity incompatible with target AS");
2231 *vaddr
= memory_region_get_ram_ptr(mr
) + xlat
;
2235 *ram_addr
= memory_region_get_ram_addr(mr
) + xlat
;
2239 *read_only
= !writable
|| mr
->readonly
;
2245 void memory_region_set_log(MemoryRegion
*mr
, bool log
, unsigned client
)
2247 uint8_t mask
= 1 << client
;
2248 uint8_t old_logging
;
2250 assert(client
== DIRTY_MEMORY_VGA
);
2251 old_logging
= mr
->vga_logging_count
;
2252 mr
->vga_logging_count
+= log
? 1 : -1;
2253 if (!!old_logging
== !!mr
->vga_logging_count
) {
2257 memory_region_transaction_begin();
2258 mr
->dirty_log_mask
= (mr
->dirty_log_mask
& ~mask
) | (log
* mask
);
2259 memory_region_update_pending
|= mr
->enabled
;
2260 memory_region_transaction_commit();
2263 void memory_region_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
2266 assert(mr
->ram_block
);
2267 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr
) + addr
,
2269 memory_region_get_dirty_log_mask(mr
));
2273 * If memory region `mr' is NULL, do global sync. Otherwise, sync
2274 * dirty bitmap for the specified memory region.
2276 static void memory_region_sync_dirty_bitmap(MemoryRegion
*mr
, bool last_stage
)
2278 MemoryListener
*listener
;
2283 /* If the same address space has multiple log_sync listeners, we
2284 * visit that address space's FlatView multiple times. But because
2285 * log_sync listeners are rare, it's still cheaper than walking each
2286 * address space once.
2288 QTAILQ_FOREACH(listener
, &memory_listeners
, link
) {
2289 if (listener
->log_sync
) {
2290 as
= listener
->address_space
;
2291 view
= address_space_get_flatview(as
);
2292 FOR_EACH_FLAT_RANGE(fr
, view
) {
2293 if (fr
->dirty_log_mask
&& (!mr
|| fr
->mr
== mr
)) {
2294 MemoryRegionSection mrs
= section_from_flat_range(fr
, view
);
2295 listener
->log_sync(listener
, &mrs
);
2298 flatview_unref(view
);
2299 trace_memory_region_sync_dirty(mr
? mr
->name
: "(all)", listener
->name
, 0);
2300 } else if (listener
->log_sync_global
) {
2302 * No matter whether MR is specified, what we can do here
2303 * is to do a global sync, because we are not capable to
2304 * sync in a finer granularity.
2306 listener
->log_sync_global(listener
, last_stage
);
2307 trace_memory_region_sync_dirty(mr
? mr
->name
: "(all)", listener
->name
, 1);
2312 void memory_region_clear_dirty_bitmap(MemoryRegion
*mr
, hwaddr start
,
2315 MemoryRegionSection mrs
;
2316 MemoryListener
*listener
;
2320 hwaddr sec_start
, sec_end
, sec_size
;
2322 QTAILQ_FOREACH(listener
, &memory_listeners
, link
) {
2323 if (!listener
->log_clear
) {
2326 as
= listener
->address_space
;
2327 view
= address_space_get_flatview(as
);
2328 FOR_EACH_FLAT_RANGE(fr
, view
) {
2329 if (!fr
->dirty_log_mask
|| fr
->mr
!= mr
) {
2331 * Clear dirty bitmap operation only applies to those
2332 * regions whose dirty logging is at least enabled
2337 mrs
= section_from_flat_range(fr
, view
);
2339 sec_start
= MAX(mrs
.offset_within_region
, start
);
2340 sec_end
= mrs
.offset_within_region
+ int128_get64(mrs
.size
);
2341 sec_end
= MIN(sec_end
, start
+ len
);
2343 if (sec_start
>= sec_end
) {
2345 * If this memory region section has no intersection
2346 * with the requested range, skip.
2351 /* Valid case; shrink the section if needed */
2352 mrs
.offset_within_address_space
+=
2353 sec_start
- mrs
.offset_within_region
;
2354 mrs
.offset_within_region
= sec_start
;
2355 sec_size
= sec_end
- sec_start
;
2356 mrs
.size
= int128_make64(sec_size
);
2357 listener
->log_clear(listener
, &mrs
);
2359 flatview_unref(view
);
2363 DirtyBitmapSnapshot
*memory_region_snapshot_and_clear_dirty(MemoryRegion
*mr
,
2368 DirtyBitmapSnapshot
*snapshot
;
2369 assert(mr
->ram_block
);
2370 memory_region_sync_dirty_bitmap(mr
, false);
2371 snapshot
= cpu_physical_memory_snapshot_and_clear_dirty(mr
, addr
, size
, client
);
2372 memory_global_after_dirty_log_sync();
2376 bool memory_region_snapshot_get_dirty(MemoryRegion
*mr
, DirtyBitmapSnapshot
*snap
,
2377 hwaddr addr
, hwaddr size
)
2379 assert(mr
->ram_block
);
2380 return cpu_physical_memory_snapshot_get_dirty(snap
,
2381 memory_region_get_ram_addr(mr
) + addr
, size
);
2384 void memory_region_set_readonly(MemoryRegion
*mr
, bool readonly
)
2386 if (mr
->readonly
!= readonly
) {
2387 memory_region_transaction_begin();
2388 mr
->readonly
= readonly
;
2389 memory_region_update_pending
|= mr
->enabled
;
2390 memory_region_transaction_commit();
2394 void memory_region_set_nonvolatile(MemoryRegion
*mr
, bool nonvolatile
)
2396 if (mr
->nonvolatile
!= nonvolatile
) {
2397 memory_region_transaction_begin();
2398 mr
->nonvolatile
= nonvolatile
;
2399 memory_region_update_pending
|= mr
->enabled
;
2400 memory_region_transaction_commit();
2404 void memory_region_rom_device_set_romd(MemoryRegion
*mr
, bool romd_mode
)
2406 if (mr
->romd_mode
!= romd_mode
) {
2407 memory_region_transaction_begin();
2408 mr
->romd_mode
= romd_mode
;
2409 memory_region_update_pending
|= mr
->enabled
;
2410 memory_region_transaction_commit();
2414 void memory_region_reset_dirty(MemoryRegion
*mr
, hwaddr addr
,
2415 hwaddr size
, unsigned client
)
2417 assert(mr
->ram_block
);
2418 cpu_physical_memory_test_and_clear_dirty(
2419 memory_region_get_ram_addr(mr
) + addr
, size
, client
);
2422 int memory_region_get_fd(MemoryRegion
*mr
)
2424 RCU_READ_LOCK_GUARD();
2428 return mr
->ram_block
->fd
;
2431 void *memory_region_get_ram_ptr(MemoryRegion
*mr
)
2433 uint64_t offset
= 0;
2435 RCU_READ_LOCK_GUARD();
2437 offset
+= mr
->alias_offset
;
2440 assert(mr
->ram_block
);
2441 return qemu_map_ram_ptr(mr
->ram_block
, offset
);
2444 MemoryRegion
*memory_region_from_host(void *ptr
, ram_addr_t
*offset
)
2448 block
= qemu_ram_block_from_host(ptr
, false, offset
);
2456 ram_addr_t
memory_region_get_ram_addr(MemoryRegion
*mr
)
2458 return mr
->ram_block
? mr
->ram_block
->offset
: RAM_ADDR_INVALID
;
2461 void memory_region_ram_resize(MemoryRegion
*mr
, ram_addr_t newsize
, Error
**errp
)
2463 assert(mr
->ram_block
);
2465 qemu_ram_resize(mr
->ram_block
, newsize
, errp
);
2468 void memory_region_msync(MemoryRegion
*mr
, hwaddr addr
, hwaddr size
)
2470 if (mr
->ram_block
) {
2471 qemu_ram_msync(mr
->ram_block
, addr
, size
);
2475 void memory_region_writeback(MemoryRegion
*mr
, hwaddr addr
, hwaddr size
)
2478 * Might be extended case needed to cover
2479 * different types of memory regions
2481 if (mr
->dirty_log_mask
) {
2482 memory_region_msync(mr
, addr
, size
);
2487 * Call proper memory listeners about the change on the newly
2488 * added/removed CoalescedMemoryRange.
2490 static void memory_region_update_coalesced_range(MemoryRegion
*mr
,
2491 CoalescedMemoryRange
*cmr
,
2498 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
2499 view
= address_space_get_flatview(as
);
2500 FOR_EACH_FLAT_RANGE(fr
, view
) {
2502 flat_range_coalesced_io_notify(fr
, as
, cmr
, add
);
2505 flatview_unref(view
);
2509 void memory_region_set_coalescing(MemoryRegion
*mr
)
2511 memory_region_clear_coalescing(mr
);
2512 memory_region_add_coalescing(mr
, 0, int128_get64(mr
->size
));
2515 void memory_region_add_coalescing(MemoryRegion
*mr
,
2519 CoalescedMemoryRange
*cmr
= g_malloc(sizeof(*cmr
));
2521 cmr
->addr
= addrrange_make(int128_make64(offset
), int128_make64(size
));
2522 QTAILQ_INSERT_TAIL(&mr
->coalesced
, cmr
, link
);
2523 memory_region_update_coalesced_range(mr
, cmr
, true);
2524 memory_region_set_flush_coalesced(mr
);
2527 void memory_region_clear_coalescing(MemoryRegion
*mr
)
2529 CoalescedMemoryRange
*cmr
;
2531 if (QTAILQ_EMPTY(&mr
->coalesced
)) {
2535 qemu_flush_coalesced_mmio_buffer();
2536 mr
->flush_coalesced_mmio
= false;
2538 while (!QTAILQ_EMPTY(&mr
->coalesced
)) {
2539 cmr
= QTAILQ_FIRST(&mr
->coalesced
);
2540 QTAILQ_REMOVE(&mr
->coalesced
, cmr
, link
);
2541 memory_region_update_coalesced_range(mr
, cmr
, false);
2546 void memory_region_set_flush_coalesced(MemoryRegion
*mr
)
2548 mr
->flush_coalesced_mmio
= true;
2551 void memory_region_clear_flush_coalesced(MemoryRegion
*mr
)
2553 qemu_flush_coalesced_mmio_buffer();
2554 if (QTAILQ_EMPTY(&mr
->coalesced
)) {
2555 mr
->flush_coalesced_mmio
= false;
2559 void memory_region_add_eventfd(MemoryRegion
*mr
,
2566 MemoryRegionIoeventfd mrfd
= {
2567 .addr
.start
= int128_make64(addr
),
2568 .addr
.size
= int128_make64(size
),
2569 .match_data
= match_data
,
2576 adjust_endianness(mr
, &mrfd
.data
, size_memop(size
) | MO_TE
);
2578 memory_region_transaction_begin();
2579 for (i
= 0; i
< mr
->ioeventfd_nb
; ++i
) {
2580 if (memory_region_ioeventfd_before(&mrfd
, &mr
->ioeventfds
[i
])) {
2585 mr
->ioeventfds
= g_realloc(mr
->ioeventfds
,
2586 sizeof(*mr
->ioeventfds
) * mr
->ioeventfd_nb
);
2587 memmove(&mr
->ioeventfds
[i
+1], &mr
->ioeventfds
[i
],
2588 sizeof(*mr
->ioeventfds
) * (mr
->ioeventfd_nb
-1 - i
));
2589 mr
->ioeventfds
[i
] = mrfd
;
2590 ioeventfd_update_pending
|= mr
->enabled
;
2591 memory_region_transaction_commit();
2594 void memory_region_del_eventfd(MemoryRegion
*mr
,
2601 MemoryRegionIoeventfd mrfd
= {
2602 .addr
.start
= int128_make64(addr
),
2603 .addr
.size
= int128_make64(size
),
2604 .match_data
= match_data
,
2611 adjust_endianness(mr
, &mrfd
.data
, size_memop(size
) | MO_TE
);
2613 memory_region_transaction_begin();
2614 for (i
= 0; i
< mr
->ioeventfd_nb
; ++i
) {
2615 if (memory_region_ioeventfd_equal(&mrfd
, &mr
->ioeventfds
[i
])) {
2619 assert(i
!= mr
->ioeventfd_nb
);
2620 memmove(&mr
->ioeventfds
[i
], &mr
->ioeventfds
[i
+1],
2621 sizeof(*mr
->ioeventfds
) * (mr
->ioeventfd_nb
- (i
+1)));
2623 mr
->ioeventfds
= g_realloc(mr
->ioeventfds
,
2624 sizeof(*mr
->ioeventfds
)*mr
->ioeventfd_nb
+ 1);
2625 ioeventfd_update_pending
|= mr
->enabled
;
2626 memory_region_transaction_commit();
2629 static void memory_region_update_container_subregions(MemoryRegion
*subregion
)
2631 MemoryRegion
*mr
= subregion
->container
;
2632 MemoryRegion
*other
;
2634 memory_region_transaction_begin();
2636 memory_region_ref(subregion
);
2637 QTAILQ_FOREACH(other
, &mr
->subregions
, subregions_link
) {
2638 if (subregion
->priority
>= other
->priority
) {
2639 QTAILQ_INSERT_BEFORE(other
, subregion
, subregions_link
);
2643 QTAILQ_INSERT_TAIL(&mr
->subregions
, subregion
, subregions_link
);
2645 memory_region_update_pending
|= mr
->enabled
&& subregion
->enabled
;
2646 memory_region_transaction_commit();
2649 static void memory_region_add_subregion_common(MemoryRegion
*mr
,
2651 MemoryRegion
*subregion
)
2653 MemoryRegion
*alias
;
2655 assert(!subregion
->container
);
2656 subregion
->container
= mr
;
2657 for (alias
= subregion
->alias
; alias
; alias
= alias
->alias
) {
2658 alias
->mapped_via_alias
++;
2660 subregion
->addr
= offset
;
2661 memory_region_update_container_subregions(subregion
);
2664 void memory_region_add_subregion(MemoryRegion
*mr
,
2666 MemoryRegion
*subregion
)
2668 subregion
->priority
= 0;
2669 memory_region_add_subregion_common(mr
, offset
, subregion
);
2672 void memory_region_add_subregion_overlap(MemoryRegion
*mr
,
2674 MemoryRegion
*subregion
,
2677 subregion
->priority
= priority
;
2678 memory_region_add_subregion_common(mr
, offset
, subregion
);
2681 void memory_region_del_subregion(MemoryRegion
*mr
,
2682 MemoryRegion
*subregion
)
2684 MemoryRegion
*alias
;
2686 memory_region_transaction_begin();
2687 assert(subregion
->container
== mr
);
2688 subregion
->container
= NULL
;
2689 for (alias
= subregion
->alias
; alias
; alias
= alias
->alias
) {
2690 alias
->mapped_via_alias
--;
2691 assert(alias
->mapped_via_alias
>= 0);
2693 QTAILQ_REMOVE(&mr
->subregions
, subregion
, subregions_link
);
2694 memory_region_unref(subregion
);
2695 memory_region_update_pending
|= mr
->enabled
&& subregion
->enabled
;
2696 memory_region_transaction_commit();
2699 void memory_region_set_enabled(MemoryRegion
*mr
, bool enabled
)
2701 if (enabled
== mr
->enabled
) {
2704 memory_region_transaction_begin();
2705 mr
->enabled
= enabled
;
2706 memory_region_update_pending
= true;
2707 memory_region_transaction_commit();
2710 void memory_region_set_size(MemoryRegion
*mr
, uint64_t size
)
2712 Int128 s
= int128_make64(size
);
2714 if (size
== UINT64_MAX
) {
2717 if (int128_eq(s
, mr
->size
)) {
2720 memory_region_transaction_begin();
2722 memory_region_update_pending
= true;
2723 memory_region_transaction_commit();
2726 static void memory_region_readd_subregion(MemoryRegion
*mr
)
2728 MemoryRegion
*container
= mr
->container
;
2731 memory_region_transaction_begin();
2732 memory_region_ref(mr
);
2733 memory_region_del_subregion(container
, mr
);
2734 memory_region_add_subregion_common(container
, mr
->addr
, mr
);
2735 memory_region_unref(mr
);
2736 memory_region_transaction_commit();
2740 void memory_region_set_address(MemoryRegion
*mr
, hwaddr addr
)
2742 if (addr
!= mr
->addr
) {
2744 memory_region_readd_subregion(mr
);
2748 void memory_region_set_alias_offset(MemoryRegion
*mr
, hwaddr offset
)
2752 if (offset
== mr
->alias_offset
) {
2756 memory_region_transaction_begin();
2757 mr
->alias_offset
= offset
;
2758 memory_region_update_pending
|= mr
->enabled
;
2759 memory_region_transaction_commit();
2762 void memory_region_set_unmergeable(MemoryRegion
*mr
, bool unmergeable
)
2764 if (unmergeable
== mr
->unmergeable
) {
2768 memory_region_transaction_begin();
2769 mr
->unmergeable
= unmergeable
;
2770 memory_region_update_pending
|= mr
->enabled
;
2771 memory_region_transaction_commit();
2774 uint64_t memory_region_get_alignment(const MemoryRegion
*mr
)
2779 static int cmp_flatrange_addr(const void *addr_
, const void *fr_
)
2781 const AddrRange
*addr
= addr_
;
2782 const FlatRange
*fr
= fr_
;
2784 if (int128_le(addrrange_end(*addr
), fr
->addr
.start
)) {
2786 } else if (int128_ge(addr
->start
, addrrange_end(fr
->addr
))) {
2792 static FlatRange
*flatview_lookup(FlatView
*view
, AddrRange addr
)
2794 return bsearch(&addr
, view
->ranges
, view
->nr
,
2795 sizeof(FlatRange
), cmp_flatrange_addr
);
2798 bool memory_region_is_mapped(MemoryRegion
*mr
)
2800 return !!mr
->container
|| mr
->mapped_via_alias
;
2803 /* Same as memory_region_find, but it does not add a reference to the
2804 * returned region. It must be called from an RCU critical section.
2806 static MemoryRegionSection
memory_region_find_rcu(MemoryRegion
*mr
,
2807 hwaddr addr
, uint64_t size
)
2809 MemoryRegionSection ret
= { .mr
= NULL
};
2817 for (root
= mr
; root
->container
; ) {
2818 root
= root
->container
;
2822 as
= memory_region_to_address_space(root
);
2826 range
= addrrange_make(int128_make64(addr
), int128_make64(size
));
2828 view
= address_space_to_flatview(as
);
2829 fr
= flatview_lookup(view
, range
);
2834 while (fr
> view
->ranges
&& addrrange_intersects(fr
[-1].addr
, range
)) {
2840 range
= addrrange_intersection(range
, fr
->addr
);
2841 ret
.offset_within_region
= fr
->offset_in_region
;
2842 ret
.offset_within_region
+= int128_get64(int128_sub(range
.start
,
2844 ret
.size
= range
.size
;
2845 ret
.offset_within_address_space
= int128_get64(range
.start
);
2846 ret
.readonly
= fr
->readonly
;
2847 ret
.nonvolatile
= fr
->nonvolatile
;
2851 MemoryRegionSection
memory_region_find(MemoryRegion
*mr
,
2852 hwaddr addr
, uint64_t size
)
2854 MemoryRegionSection ret
;
2855 RCU_READ_LOCK_GUARD();
2856 ret
= memory_region_find_rcu(mr
, addr
, size
);
2858 memory_region_ref(ret
.mr
);
2863 MemoryRegionSection
*memory_region_section_new_copy(MemoryRegionSection
*s
)
2865 MemoryRegionSection
*tmp
= g_new(MemoryRegionSection
, 1);
2869 memory_region_ref(tmp
->mr
);
2872 bool ret
= flatview_ref(tmp
->fv
);
2879 void memory_region_section_free_copy(MemoryRegionSection
*s
)
2882 flatview_unref(s
->fv
);
2885 memory_region_unref(s
->mr
);
2890 bool memory_region_present(MemoryRegion
*container
, hwaddr addr
)
2894 RCU_READ_LOCK_GUARD();
2895 mr
= memory_region_find_rcu(container
, addr
, 1).mr
;
2896 return mr
&& mr
!= container
;
2899 void memory_global_dirty_log_sync(bool last_stage
)
2901 memory_region_sync_dirty_bitmap(NULL
, last_stage
);
2904 void memory_global_after_dirty_log_sync(void)
2906 MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync
, Forward
);
2910 * Dirty track stop flags that are postponed due to VM being stopped. Should
2911 * only be used within vmstate_change hook.
2913 static unsigned int postponed_stop_flags
;
2914 static VMChangeStateEntry
*vmstate_change
;
2915 static void memory_global_dirty_log_stop_postponed_run(void);
2917 void memory_global_dirty_log_start(unsigned int flags
)
2919 unsigned int old_flags
;
2921 assert(flags
&& !(flags
& (~GLOBAL_DIRTY_MASK
)));
2923 if (vmstate_change
) {
2924 /* If there is postponed stop(), operate on it first */
2925 postponed_stop_flags
&= ~flags
;
2926 memory_global_dirty_log_stop_postponed_run();
2929 flags
&= ~global_dirty_tracking
;
2934 old_flags
= global_dirty_tracking
;
2935 global_dirty_tracking
|= flags
;
2936 trace_global_dirty_changed(global_dirty_tracking
);
2939 MEMORY_LISTENER_CALL_GLOBAL(log_global_start
, Forward
);
2940 memory_region_transaction_begin();
2941 memory_region_update_pending
= true;
2942 memory_region_transaction_commit();
2946 static void memory_global_dirty_log_do_stop(unsigned int flags
)
2948 assert(flags
&& !(flags
& (~GLOBAL_DIRTY_MASK
)));
2949 assert((global_dirty_tracking
& flags
) == flags
);
2950 global_dirty_tracking
&= ~flags
;
2952 trace_global_dirty_changed(global_dirty_tracking
);
2954 if (!global_dirty_tracking
) {
2955 memory_region_transaction_begin();
2956 memory_region_update_pending
= true;
2957 memory_region_transaction_commit();
2958 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop
, Reverse
);
2963 * Execute the postponed dirty log stop operations if there is, then reset
2964 * everything (including the flags and the vmstate change hook).
2966 static void memory_global_dirty_log_stop_postponed_run(void)
2968 /* This must be called with the vmstate handler registered */
2969 assert(vmstate_change
);
2971 /* Note: postponed_stop_flags can be cleared in log start routine */
2972 if (postponed_stop_flags
) {
2973 memory_global_dirty_log_do_stop(postponed_stop_flags
);
2974 postponed_stop_flags
= 0;
2977 qemu_del_vm_change_state_handler(vmstate_change
);
2978 vmstate_change
= NULL
;
2981 static void memory_vm_change_state_handler(void *opaque
, bool running
,
2985 memory_global_dirty_log_stop_postponed_run();
2989 void memory_global_dirty_log_stop(unsigned int flags
)
2991 if (!runstate_is_running()) {
2992 /* Postpone the dirty log stop, e.g., to when VM starts again */
2993 if (vmstate_change
) {
2994 /* Batch with previous postponed flags */
2995 postponed_stop_flags
|= flags
;
2997 postponed_stop_flags
= flags
;
2998 vmstate_change
= qemu_add_vm_change_state_handler(
2999 memory_vm_change_state_handler
, NULL
);
3004 memory_global_dirty_log_do_stop(flags
);
3007 static void listener_add_address_space(MemoryListener
*listener
,
3013 if (listener
->begin
) {
3014 listener
->begin(listener
);
3016 if (global_dirty_tracking
) {
3017 if (listener
->log_global_start
) {
3018 listener
->log_global_start(listener
);
3022 view
= address_space_get_flatview(as
);
3023 FOR_EACH_FLAT_RANGE(fr
, view
) {
3024 MemoryRegionSection section
= section_from_flat_range(fr
, view
);
3026 if (listener
->region_add
) {
3027 listener
->region_add(listener
, §ion
);
3029 if (fr
->dirty_log_mask
&& listener
->log_start
) {
3030 listener
->log_start(listener
, §ion
, 0, fr
->dirty_log_mask
);
3033 if (listener
->commit
) {
3034 listener
->commit(listener
);
3036 flatview_unref(view
);
3039 static void listener_del_address_space(MemoryListener
*listener
,
3045 if (listener
->begin
) {
3046 listener
->begin(listener
);
3048 view
= address_space_get_flatview(as
);
3049 FOR_EACH_FLAT_RANGE(fr
, view
) {
3050 MemoryRegionSection section
= section_from_flat_range(fr
, view
);
3052 if (fr
->dirty_log_mask
&& listener
->log_stop
) {
3053 listener
->log_stop(listener
, §ion
, fr
->dirty_log_mask
, 0);
3055 if (listener
->region_del
) {
3056 listener
->region_del(listener
, §ion
);
3059 if (listener
->commit
) {
3060 listener
->commit(listener
);
3062 flatview_unref(view
);
3065 void memory_listener_register(MemoryListener
*listener
, AddressSpace
*as
)
3067 MemoryListener
*other
= NULL
;
3069 /* Only one of them can be defined for a listener */
3070 assert(!(listener
->log_sync
&& listener
->log_sync_global
));
3072 listener
->address_space
= as
;
3073 if (QTAILQ_EMPTY(&memory_listeners
)
3074 || listener
->priority
>= QTAILQ_LAST(&memory_listeners
)->priority
) {
3075 QTAILQ_INSERT_TAIL(&memory_listeners
, listener
, link
);
3077 QTAILQ_FOREACH(other
, &memory_listeners
, link
) {
3078 if (listener
->priority
< other
->priority
) {
3082 QTAILQ_INSERT_BEFORE(other
, listener
, link
);
3085 if (QTAILQ_EMPTY(&as
->listeners
)
3086 || listener
->priority
>= QTAILQ_LAST(&as
->listeners
)->priority
) {
3087 QTAILQ_INSERT_TAIL(&as
->listeners
, listener
, link_as
);
3089 QTAILQ_FOREACH(other
, &as
->listeners
, link_as
) {
3090 if (listener
->priority
< other
->priority
) {
3094 QTAILQ_INSERT_BEFORE(other
, listener
, link_as
);
3097 listener_add_address_space(listener
, as
);
3099 if (listener
->eventfd_add
|| listener
->eventfd_del
) {
3100 as
->ioeventfd_notifiers
++;
3104 void memory_listener_unregister(MemoryListener
*listener
)
3106 if (!listener
->address_space
) {
3110 if (listener
->eventfd_add
|| listener
->eventfd_del
) {
3111 listener
->address_space
->ioeventfd_notifiers
--;
3114 listener_del_address_space(listener
, listener
->address_space
);
3115 QTAILQ_REMOVE(&memory_listeners
, listener
, link
);
3116 QTAILQ_REMOVE(&listener
->address_space
->listeners
, listener
, link_as
);
3117 listener
->address_space
= NULL
;
3120 void address_space_remove_listeners(AddressSpace
*as
)
3122 while (!QTAILQ_EMPTY(&as
->listeners
)) {
3123 memory_listener_unregister(QTAILQ_FIRST(&as
->listeners
));
3127 void address_space_init(AddressSpace
*as
, MemoryRegion
*root
, const char *name
)
3129 memory_region_ref(root
);
3131 as
->current_map
= NULL
;
3132 as
->ioeventfd_nb
= 0;
3133 as
->ioeventfds
= NULL
;
3134 QTAILQ_INIT(&as
->listeners
);
3135 QTAILQ_INSERT_TAIL(&address_spaces
, as
, address_spaces_link
);
3136 as
->name
= g_strdup(name
? name
: "anonymous");
3137 address_space_update_topology(as
);
3138 address_space_update_ioeventfds(as
);
3141 static void do_address_space_destroy(AddressSpace
*as
)
3143 assert(QTAILQ_EMPTY(&as
->listeners
));
3145 flatview_unref(as
->current_map
);
3147 g_free(as
->ioeventfds
);
3148 memory_region_unref(as
->root
);
3151 void address_space_destroy(AddressSpace
*as
)
3153 MemoryRegion
*root
= as
->root
;
3155 /* Flush out anything from MemoryListeners listening in on this */
3156 memory_region_transaction_begin();
3158 memory_region_transaction_commit();
3159 QTAILQ_REMOVE(&address_spaces
, as
, address_spaces_link
);
3161 /* At this point, as->dispatch and as->current_map are dummy
3162 * entries that the guest should never use. Wait for the old
3163 * values to expire before freeing the data.
3166 call_rcu(as
, do_address_space_destroy
, rcu
);
3169 static const char *memory_region_type(MemoryRegion
*mr
)
3172 return memory_region_type(mr
->alias
);
3174 if (memory_region_is_ram_device(mr
)) {
3176 } else if (memory_region_is_romd(mr
)) {
3178 } else if (memory_region_is_rom(mr
)) {
3180 } else if (memory_region_is_ram(mr
)) {
3187 typedef struct MemoryRegionList MemoryRegionList
;
3189 struct MemoryRegionList
{
3190 const MemoryRegion
*mr
;
3191 QTAILQ_ENTRY(MemoryRegionList
) mrqueue
;
3194 typedef QTAILQ_HEAD(, MemoryRegionList
) MemoryRegionListHead
;
3196 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3197 int128_sub((size), int128_one())) : 0)
3198 #define MTREE_INDENT " "
3200 static void mtree_expand_owner(const char *label
, Object
*obj
)
3202 DeviceState
*dev
= (DeviceState
*) object_dynamic_cast(obj
, TYPE_DEVICE
);
3204 qemu_printf(" %s:{%s", label
, dev
? "dev" : "obj");
3205 if (dev
&& dev
->id
) {
3206 qemu_printf(" id=%s", dev
->id
);
3208 char *canonical_path
= object_get_canonical_path(obj
);
3209 if (canonical_path
) {
3210 qemu_printf(" path=%s", canonical_path
);
3211 g_free(canonical_path
);
3213 qemu_printf(" type=%s", object_get_typename(obj
));
3219 static void mtree_print_mr_owner(const MemoryRegion
*mr
)
3221 Object
*owner
= mr
->owner
;
3222 Object
*parent
= memory_region_owner((MemoryRegion
*)mr
);
3224 if (!owner
&& !parent
) {
3225 qemu_printf(" orphan");
3229 mtree_expand_owner("owner", owner
);
3231 if (parent
&& parent
!= owner
) {
3232 mtree_expand_owner("parent", parent
);
3236 static void mtree_print_mr(const MemoryRegion
*mr
, unsigned int level
,
3238 MemoryRegionListHead
*alias_print_queue
,
3239 bool owner
, bool display_disabled
)
3241 MemoryRegionList
*new_ml
, *ml
, *next_ml
;
3242 MemoryRegionListHead submr_print_queue
;
3243 const MemoryRegion
*submr
;
3245 hwaddr cur_start
, cur_end
;
3251 cur_start
= base
+ mr
->addr
;
3252 cur_end
= cur_start
+ MR_SIZE(mr
->size
);
3255 * Try to detect overflow of memory region. This should never
3256 * happen normally. When it happens, we dump something to warn the
3257 * user who is observing this.
3259 if (cur_start
< base
|| cur_end
< cur_start
) {
3260 qemu_printf("[DETECTED OVERFLOW!] ");
3266 /* check if the alias is already in the queue */
3267 QTAILQ_FOREACH(ml
, alias_print_queue
, mrqueue
) {
3268 if (ml
->mr
== mr
->alias
) {
3274 ml
= g_new(MemoryRegionList
, 1);
3276 QTAILQ_INSERT_TAIL(alias_print_queue
, ml
, mrqueue
);
3278 if (mr
->enabled
|| display_disabled
) {
3279 for (i
= 0; i
< level
; i
++) {
3280 qemu_printf(MTREE_INDENT
);
3282 qemu_printf(HWADDR_FMT_plx
"-" HWADDR_FMT_plx
3283 " (prio %d, %s%s): alias %s @%s " HWADDR_FMT_plx
3284 "-" HWADDR_FMT_plx
"%s",
3287 mr
->nonvolatile
? "nv-" : "",
3288 memory_region_type((MemoryRegion
*)mr
),
3289 memory_region_name(mr
),
3290 memory_region_name(mr
->alias
),
3292 mr
->alias_offset
+ MR_SIZE(mr
->size
),
3293 mr
->enabled
? "" : " [disabled]");
3295 mtree_print_mr_owner(mr
);
3300 if (mr
->enabled
|| display_disabled
) {
3301 for (i
= 0; i
< level
; i
++) {
3302 qemu_printf(MTREE_INDENT
);
3304 qemu_printf(HWADDR_FMT_plx
"-" HWADDR_FMT_plx
3305 " (prio %d, %s%s): %s%s",
3308 mr
->nonvolatile
? "nv-" : "",
3309 memory_region_type((MemoryRegion
*)mr
),
3310 memory_region_name(mr
),
3311 mr
->enabled
? "" : " [disabled]");
3313 mtree_print_mr_owner(mr
);
3319 QTAILQ_INIT(&submr_print_queue
);
3321 QTAILQ_FOREACH(submr
, &mr
->subregions
, subregions_link
) {
3322 new_ml
= g_new(MemoryRegionList
, 1);
3324 QTAILQ_FOREACH(ml
, &submr_print_queue
, mrqueue
) {
3325 if (new_ml
->mr
->addr
< ml
->mr
->addr
||
3326 (new_ml
->mr
->addr
== ml
->mr
->addr
&&
3327 new_ml
->mr
->priority
> ml
->mr
->priority
)) {
3328 QTAILQ_INSERT_BEFORE(ml
, new_ml
, mrqueue
);
3334 QTAILQ_INSERT_TAIL(&submr_print_queue
, new_ml
, mrqueue
);
3338 QTAILQ_FOREACH(ml
, &submr_print_queue
, mrqueue
) {
3339 mtree_print_mr(ml
->mr
, level
+ 1, cur_start
,
3340 alias_print_queue
, owner
, display_disabled
);
3343 QTAILQ_FOREACH_SAFE(ml
, &submr_print_queue
, mrqueue
, next_ml
) {
3348 struct FlatViewInfo
{
3355 static void mtree_print_flatview(gpointer key
, gpointer value
,
3358 FlatView
*view
= key
;
3359 GArray
*fv_address_spaces
= value
;
3360 struct FlatViewInfo
*fvi
= user_data
;
3361 FlatRange
*range
= &view
->ranges
[0];
3367 qemu_printf("FlatView #%d\n", fvi
->counter
);
3370 for (i
= 0; i
< fv_address_spaces
->len
; ++i
) {
3371 as
= g_array_index(fv_address_spaces
, AddressSpace
*, i
);
3372 qemu_printf(" AS \"%s\", root: %s",
3373 as
->name
, memory_region_name(as
->root
));
3374 if (as
->root
->alias
) {
3375 qemu_printf(", alias %s", memory_region_name(as
->root
->alias
));
3380 qemu_printf(" Root memory region: %s\n",
3381 view
->root
? memory_region_name(view
->root
) : "(none)");
3384 qemu_printf(MTREE_INDENT
"No rendered FlatView\n\n");
3390 if (range
->offset_in_region
) {
3391 qemu_printf(MTREE_INDENT HWADDR_FMT_plx
"-" HWADDR_FMT_plx
3392 " (prio %d, %s%s): %s @" HWADDR_FMT_plx
,
3393 int128_get64(range
->addr
.start
),
3394 int128_get64(range
->addr
.start
)
3395 + MR_SIZE(range
->addr
.size
),
3397 range
->nonvolatile
? "nv-" : "",
3398 range
->readonly
? "rom" : memory_region_type(mr
),
3399 memory_region_name(mr
),
3400 range
->offset_in_region
);
3402 qemu_printf(MTREE_INDENT HWADDR_FMT_plx
"-" HWADDR_FMT_plx
3403 " (prio %d, %s%s): %s",
3404 int128_get64(range
->addr
.start
),
3405 int128_get64(range
->addr
.start
)
3406 + MR_SIZE(range
->addr
.size
),
3408 range
->nonvolatile
? "nv-" : "",
3409 range
->readonly
? "rom" : memory_region_type(mr
),
3410 memory_region_name(mr
));
3413 mtree_print_mr_owner(mr
);
3417 for (i
= 0; i
< fv_address_spaces
->len
; ++i
) {
3418 as
= g_array_index(fv_address_spaces
, AddressSpace
*, i
);
3419 if (fvi
->ac
->has_memory(current_machine
, as
,
3420 int128_get64(range
->addr
.start
),
3421 MR_SIZE(range
->addr
.size
) + 1)) {
3422 qemu_printf(" %s", fvi
->ac
->name
);
3430 #if !defined(CONFIG_USER_ONLY)
3431 if (fvi
->dispatch_tree
&& view
->root
) {
3432 mtree_print_dispatch(view
->dispatch
, view
->root
);
3439 static gboolean
mtree_info_flatview_free(gpointer key
, gpointer value
,
3442 FlatView
*view
= key
;
3443 GArray
*fv_address_spaces
= value
;
3445 g_array_unref(fv_address_spaces
);
3446 flatview_unref(view
);
3451 static void mtree_info_flatview(bool dispatch_tree
, bool owner
)
3453 struct FlatViewInfo fvi
= {
3455 .dispatch_tree
= dispatch_tree
,
3460 GArray
*fv_address_spaces
;
3461 GHashTable
*views
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
3462 AccelClass
*ac
= ACCEL_GET_CLASS(current_accel());
3464 if (ac
->has_memory
) {
3468 /* Gather all FVs in one table */
3469 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
3470 view
= address_space_get_flatview(as
);
3472 fv_address_spaces
= g_hash_table_lookup(views
, view
);
3473 if (!fv_address_spaces
) {
3474 fv_address_spaces
= g_array_new(false, false, sizeof(as
));
3475 g_hash_table_insert(views
, view
, fv_address_spaces
);
3478 g_array_append_val(fv_address_spaces
, as
);
3482 g_hash_table_foreach(views
, mtree_print_flatview
, &fvi
);
3485 g_hash_table_foreach_remove(views
, mtree_info_flatview_free
, 0);
3486 g_hash_table_unref(views
);
3489 struct AddressSpaceInfo
{
3490 MemoryRegionListHead
*ml_head
;
3495 /* Returns negative value if a < b; zero if a = b; positive value if a > b. */
3496 static gint
address_space_compare_name(gconstpointer a
, gconstpointer b
)
3498 const AddressSpace
*as_a
= a
;
3499 const AddressSpace
*as_b
= b
;
3501 return g_strcmp0(as_a
->name
, as_b
->name
);
3504 static void mtree_print_as_name(gpointer data
, gpointer user_data
)
3506 AddressSpace
*as
= data
;
3508 qemu_printf("address-space: %s\n", as
->name
);
3511 static void mtree_print_as(gpointer key
, gpointer value
, gpointer user_data
)
3513 MemoryRegion
*mr
= key
;
3514 GSList
*as_same_root_mr_list
= value
;
3515 struct AddressSpaceInfo
*asi
= user_data
;
3517 g_slist_foreach(as_same_root_mr_list
, mtree_print_as_name
, NULL
);
3518 mtree_print_mr(mr
, 1, 0, asi
->ml_head
, asi
->owner
, asi
->disabled
);
3522 static gboolean
mtree_info_as_free(gpointer key
, gpointer value
,
3525 GSList
*as_same_root_mr_list
= value
;
3527 g_slist_free(as_same_root_mr_list
);
3532 static void mtree_info_as(bool dispatch_tree
, bool owner
, bool disabled
)
3534 MemoryRegionListHead ml_head
;
3535 MemoryRegionList
*ml
, *ml2
;
3537 GHashTable
*views
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
3538 GSList
*as_same_root_mr_list
;
3539 struct AddressSpaceInfo asi
= {
3540 .ml_head
= &ml_head
,
3542 .disabled
= disabled
,
3545 QTAILQ_INIT(&ml_head
);
3547 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
3548 /* Create hashtable, key=AS root MR, value = list of AS */
3549 as_same_root_mr_list
= g_hash_table_lookup(views
, as
->root
);
3550 as_same_root_mr_list
= g_slist_insert_sorted(as_same_root_mr_list
, as
,
3551 address_space_compare_name
);
3552 g_hash_table_insert(views
, as
->root
, as_same_root_mr_list
);
3555 /* print address spaces */
3556 g_hash_table_foreach(views
, mtree_print_as
, &asi
);
3557 g_hash_table_foreach_remove(views
, mtree_info_as_free
, 0);
3558 g_hash_table_unref(views
);
3560 /* print aliased regions */
3561 QTAILQ_FOREACH(ml
, &ml_head
, mrqueue
) {
3562 qemu_printf("memory-region: %s\n", memory_region_name(ml
->mr
));
3563 mtree_print_mr(ml
->mr
, 1, 0, &ml_head
, owner
, disabled
);
3567 QTAILQ_FOREACH_SAFE(ml
, &ml_head
, mrqueue
, ml2
) {
3572 void mtree_info(bool flatview
, bool dispatch_tree
, bool owner
, bool disabled
)
3575 mtree_info_flatview(dispatch_tree
, owner
);
3577 mtree_info_as(dispatch_tree
, owner
, disabled
);
3581 bool memory_region_init_ram(MemoryRegion
*mr
,
3587 DeviceState
*owner_dev
;
3589 if (!memory_region_init_ram_nomigrate(mr
, owner
, name
, size
, errp
)) {
3592 /* This will assert if owner is neither NULL nor a DeviceState.
3593 * We only want the owner here for the purposes of defining a
3594 * unique name for migration. TODO: Ideally we should implement
3595 * a naming scheme for Objects which are not DeviceStates, in
3596 * which case we can relax this restriction.
3598 owner_dev
= DEVICE(owner
);
3599 vmstate_register_ram(mr
, owner_dev
);
3604 bool memory_region_init_rom(MemoryRegion
*mr
,
3610 DeviceState
*owner_dev
;
3612 if (!memory_region_init_rom_nomigrate(mr
, owner
, name
, size
, errp
)) {
3615 /* This will assert if owner is neither NULL nor a DeviceState.
3616 * We only want the owner here for the purposes of defining a
3617 * unique name for migration. TODO: Ideally we should implement
3618 * a naming scheme for Objects which are not DeviceStates, in
3619 * which case we can relax this restriction.
3621 owner_dev
= DEVICE(owner
);
3622 vmstate_register_ram(mr
, owner_dev
);
3627 bool memory_region_init_rom_device(MemoryRegion
*mr
,
3629 const MemoryRegionOps
*ops
,
3635 DeviceState
*owner_dev
;
3637 if (!memory_region_init_rom_device_nomigrate(mr
, owner
, ops
, opaque
,
3638 name
, size
, errp
)) {
3641 /* This will assert if owner is neither NULL nor a DeviceState.
3642 * We only want the owner here for the purposes of defining a
3643 * unique name for migration. TODO: Ideally we should implement
3644 * a naming scheme for Objects which are not DeviceStates, in
3645 * which case we can relax this restriction.
3647 owner_dev
= DEVICE(owner
);
3648 vmstate_register_ram(mr
, owner_dev
);
3654 * Support system builds with CONFIG_FUZZ using a weak symbol and a stub for
3655 * the fuzz_dma_read_cb callback
3658 void __attribute__((weak
)) fuzz_dma_read_cb(size_t addr
,
3665 static const TypeInfo memory_region_info
= {
3666 .parent
= TYPE_OBJECT
,
3667 .name
= TYPE_MEMORY_REGION
,
3668 .class_size
= sizeof(MemoryRegionClass
),
3669 .instance_size
= sizeof(MemoryRegion
),
3670 .instance_init
= memory_region_initfn
,
3671 .instance_finalize
= memory_region_finalize
,
3674 static const TypeInfo iommu_memory_region_info
= {
3675 .parent
= TYPE_MEMORY_REGION
,
3676 .name
= TYPE_IOMMU_MEMORY_REGION
,
3677 .class_size
= sizeof(IOMMUMemoryRegionClass
),
3678 .instance_size
= sizeof(IOMMUMemoryRegion
),
3679 .instance_init
= iommu_memory_region_initfn
,
3683 static const TypeInfo ram_discard_manager_info
= {
3684 .parent
= TYPE_INTERFACE
,
3685 .name
= TYPE_RAM_DISCARD_MANAGER
,
3686 .class_size
= sizeof(RamDiscardManagerClass
),
3689 static void memory_register_types(void)
3691 type_register_static(&memory_region_info
);
3692 type_register_static(&iommu_memory_region_info
);
3693 type_register_static(&ram_discard_manager_info
);
3696 type_init(memory_register_types
)