1 #include "qemu/osdep.h"
2 #include "qemu/cutils.h"
3 #include "qapi/error.h"
4 #include "sysemu/hw_accel.h"
5 #include "sysemu/runstate.h"
7 #include "qemu/main-loop.h"
8 #include "qemu/module.h"
9 #include "qemu/error-report.h"
10 #include "exec/exec-all.h"
11 #include "exec/tb-flush.h"
12 #include "helper_regs.h"
13 #include "hw/ppc/ppc.h"
14 #include "hw/ppc/spapr.h"
15 #include "hw/ppc/spapr_cpu_core.h"
16 #include "hw/ppc/spapr_nested.h"
17 #include "mmu-hash64.h"
18 #include "cpu-models.h"
21 #include "hw/ppc/fdt.h"
22 #include "hw/ppc/spapr_ovec.h"
23 #include "hw/ppc/spapr_numa.h"
24 #include "mmu-book3s-v3.h"
25 #include "hw/mem/memory-device.h"
27 bool is_ram_address(SpaprMachineState
*spapr
, hwaddr addr
)
29 MachineState
*machine
= MACHINE(spapr
);
30 DeviceMemoryState
*dms
= machine
->device_memory
;
32 if (addr
< machine
->ram_size
) {
35 if ((addr
>= dms
->base
)
36 && ((addr
- dms
->base
) < memory_region_size(&dms
->mr
))) {
43 /* Convert a return code from the KVM ioctl()s implementing resize HPT
44 * into a PAPR hypercall return code */
45 static target_ulong
resize_hpt_convert_rc(int ret
)
48 return H_LONG_BUSY_ORDER_100_SEC
;
49 } else if (ret
>= 10000) {
50 return H_LONG_BUSY_ORDER_10_SEC
;
51 } else if (ret
>= 1000) {
52 return H_LONG_BUSY_ORDER_1_SEC
;
53 } else if (ret
>= 100) {
54 return H_LONG_BUSY_ORDER_100_MSEC
;
55 } else if (ret
>= 10) {
56 return H_LONG_BUSY_ORDER_10_MSEC
;
58 return H_LONG_BUSY_ORDER_1_MSEC
;
81 static target_ulong
h_resize_hpt_prepare(PowerPCCPU
*cpu
,
82 SpaprMachineState
*spapr
,
86 target_ulong flags
= args
[0];
88 uint64_t current_ram_size
;
91 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DISABLED
) {
95 if (!spapr
->htab_shift
) {
96 /* Radix guest, no HPT */
97 return H_NOT_AVAILABLE
;
100 trace_spapr_h_resize_hpt_prepare(flags
, shift
);
106 if (shift
&& ((shift
< 18) || (shift
> 46))) {
110 current_ram_size
= MACHINE(spapr
)->ram_size
+ get_plugged_memory_size();
112 /* We only allow the guest to allocate an HPT one order above what
113 * we'd normally give them (to stop a small guest claiming a huge
114 * chunk of resources in the HPT */
115 if (shift
> (spapr_hpt_shift_for_ramsize(current_ram_size
) + 1)) {
119 rc
= kvmppc_resize_hpt_prepare(cpu
, flags
, shift
);
121 return resize_hpt_convert_rc(rc
);
128 return softmmu_resize_hpt_prepare(cpu
, spapr
, shift
);
131 static void do_push_sregs_to_kvm_pr(CPUState
*cs
, run_on_cpu_data data
)
135 cpu_synchronize_state(cs
);
137 ret
= kvmppc_put_books_sregs(POWERPC_CPU(cs
));
139 error_report("failed to push sregs to KVM: %s", strerror(-ret
));
144 void push_sregs_to_kvm_pr(SpaprMachineState
*spapr
)
149 * This is a hack for the benefit of KVM PR - it abuses the SDR1
150 * slot in kvm_sregs to communicate the userspace address of the
153 if (!kvm_enabled() || !spapr
->htab
) {
158 run_on_cpu(cs
, do_push_sregs_to_kvm_pr
, RUN_ON_CPU_NULL
);
162 static target_ulong
h_resize_hpt_commit(PowerPCCPU
*cpu
,
163 SpaprMachineState
*spapr
,
167 target_ulong flags
= args
[0];
168 target_ulong shift
= args
[1];
171 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DISABLED
) {
175 if (!spapr
->htab_shift
) {
176 /* Radix guest, no HPT */
177 return H_NOT_AVAILABLE
;
180 trace_spapr_h_resize_hpt_commit(flags
, shift
);
182 rc
= kvmppc_resize_hpt_commit(cpu
, flags
, shift
);
184 rc
= resize_hpt_convert_rc(rc
);
185 if (rc
== H_SUCCESS
) {
186 /* Need to set the new htab_shift in the machine state */
187 spapr
->htab_shift
= shift
;
196 return softmmu_resize_hpt_commit(cpu
, spapr
, flags
, shift
);
201 static target_ulong
h_set_sprg0(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
202 target_ulong opcode
, target_ulong
*args
)
204 cpu_synchronize_state(CPU(cpu
));
205 cpu
->env
.spr
[SPR_SPRG0
] = args
[0];
210 static target_ulong
h_set_dabr(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
211 target_ulong opcode
, target_ulong
*args
)
213 if (!ppc_has_spr(cpu
, SPR_DABR
)) {
214 return H_HARDWARE
; /* DABR register not available */
216 cpu_synchronize_state(CPU(cpu
));
218 if (ppc_has_spr(cpu
, SPR_DABRX
)) {
219 cpu
->env
.spr
[SPR_DABRX
] = 0x3; /* Use Problem and Privileged state */
220 } else if (!(args
[0] & 0x4)) { /* Breakpoint Translation set? */
221 return H_RESERVED_DABR
;
224 cpu
->env
.spr
[SPR_DABR
] = args
[0];
228 static target_ulong
h_set_xdabr(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
229 target_ulong opcode
, target_ulong
*args
)
231 target_ulong dabrx
= args
[1];
233 if (!ppc_has_spr(cpu
, SPR_DABR
) || !ppc_has_spr(cpu
, SPR_DABRX
)) {
237 if ((dabrx
& ~0xfULL
) != 0 || (dabrx
& H_DABRX_HYPERVISOR
) != 0
238 || (dabrx
& (H_DABRX_KERNEL
| H_DABRX_USER
)) == 0) {
242 cpu_synchronize_state(CPU(cpu
));
243 cpu
->env
.spr
[SPR_DABRX
] = dabrx
;
244 cpu
->env
.spr
[SPR_DABR
] = args
[0];
249 static target_ulong
h_page_init(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
250 target_ulong opcode
, target_ulong
*args
)
252 target_ulong flags
= args
[0];
253 hwaddr dst
= args
[1];
254 hwaddr src
= args
[2];
255 hwaddr len
= TARGET_PAGE_SIZE
;
256 uint8_t *pdst
, *psrc
;
257 target_long ret
= H_SUCCESS
;
259 if (flags
& ~(H_ICACHE_SYNCHRONIZE
| H_ICACHE_INVALIDATE
260 | H_COPY_PAGE
| H_ZERO_PAGE
)) {
261 qemu_log_mask(LOG_UNIMP
, "h_page_init: Bad flags (" TARGET_FMT_lx
"\n",
266 /* Map-in destination */
267 if (!is_ram_address(spapr
, dst
) || (dst
& ~TARGET_PAGE_MASK
) != 0) {
270 pdst
= cpu_physical_memory_map(dst
, &len
, true);
271 if (!pdst
|| len
!= TARGET_PAGE_SIZE
) {
275 if (flags
& H_COPY_PAGE
) {
276 /* Map-in source, copy to destination, and unmap source again */
277 if (!is_ram_address(spapr
, src
) || (src
& ~TARGET_PAGE_MASK
) != 0) {
281 psrc
= cpu_physical_memory_map(src
, &len
, false);
282 if (!psrc
|| len
!= TARGET_PAGE_SIZE
) {
286 memcpy(pdst
, psrc
, len
);
287 cpu_physical_memory_unmap(psrc
, len
, 0, len
);
288 } else if (flags
& H_ZERO_PAGE
) {
289 memset(pdst
, 0, len
); /* Just clear the destination page */
292 if (kvm_enabled() && (flags
& H_ICACHE_SYNCHRONIZE
) != 0) {
293 kvmppc_dcbst_range(cpu
, pdst
, len
);
295 if (flags
& (H_ICACHE_SYNCHRONIZE
| H_ICACHE_INVALIDATE
)) {
297 kvmppc_icbi_range(cpu
, pdst
, len
);
304 cpu_physical_memory_unmap(pdst
, TARGET_PAGE_SIZE
, 1, len
);
308 #define FLAGS_REGISTER_VPA 0x0000200000000000ULL
309 #define FLAGS_REGISTER_DTL 0x0000400000000000ULL
310 #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL
311 #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL
312 #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL
313 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
315 static target_ulong
register_vpa(PowerPCCPU
*cpu
, target_ulong vpa
)
317 CPUState
*cs
= CPU(cpu
);
318 CPUPPCState
*env
= &cpu
->env
;
319 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
324 hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
328 if (vpa
% env
->dcache_line_size
) {
331 /* FIXME: bounds check the address */
333 size
= lduw_be_phys(cs
->as
, vpa
+ 0x4);
335 if (size
< VPA_MIN_SIZE
) {
339 /* VPA is not allowed to cross a page boundary */
340 if ((vpa
/ 4096) != ((vpa
+ size
- 1) / 4096)) {
344 spapr_cpu
->vpa_addr
= vpa
;
346 tmp
= ldub_phys(cs
->as
, spapr_cpu
->vpa_addr
+ VPA_SHARED_PROC_OFFSET
);
347 tmp
|= VPA_SHARED_PROC_VAL
;
348 stb_phys(cs
->as
, spapr_cpu
->vpa_addr
+ VPA_SHARED_PROC_OFFSET
, tmp
);
353 static target_ulong
deregister_vpa(PowerPCCPU
*cpu
, target_ulong vpa
)
355 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
357 if (spapr_cpu
->slb_shadow_addr
) {
361 if (spapr_cpu
->dtl_addr
) {
365 spapr_cpu
->vpa_addr
= 0;
369 static target_ulong
register_slb_shadow(PowerPCCPU
*cpu
, target_ulong addr
)
371 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
375 hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
379 size
= ldl_be_phys(CPU(cpu
)->as
, addr
+ 0x4);
384 if ((addr
/ 4096) != ((addr
+ size
- 1) / 4096)) {
388 if (!spapr_cpu
->vpa_addr
) {
392 spapr_cpu
->slb_shadow_addr
= addr
;
393 spapr_cpu
->slb_shadow_size
= size
;
398 static target_ulong
deregister_slb_shadow(PowerPCCPU
*cpu
, target_ulong addr
)
400 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
402 spapr_cpu
->slb_shadow_addr
= 0;
403 spapr_cpu
->slb_shadow_size
= 0;
407 static target_ulong
register_dtl(PowerPCCPU
*cpu
, target_ulong addr
)
409 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
413 hcall_dprintf("Can't cope with DTL at logical 0\n");
417 size
= ldl_be_phys(CPU(cpu
)->as
, addr
+ 0x4);
423 if (!spapr_cpu
->vpa_addr
) {
427 spapr_cpu
->dtl_addr
= addr
;
428 spapr_cpu
->dtl_size
= size
;
433 static target_ulong
deregister_dtl(PowerPCCPU
*cpu
, target_ulong addr
)
435 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
437 spapr_cpu
->dtl_addr
= 0;
438 spapr_cpu
->dtl_size
= 0;
443 static target_ulong
h_register_vpa(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
444 target_ulong opcode
, target_ulong
*args
)
446 target_ulong flags
= args
[0];
447 target_ulong procno
= args
[1];
448 target_ulong vpa
= args
[2];
449 target_ulong ret
= H_PARAMETER
;
452 tcpu
= spapr_find_cpu(procno
);
458 case FLAGS_REGISTER_VPA
:
459 ret
= register_vpa(tcpu
, vpa
);
462 case FLAGS_DEREGISTER_VPA
:
463 ret
= deregister_vpa(tcpu
, vpa
);
466 case FLAGS_REGISTER_SLBSHADOW
:
467 ret
= register_slb_shadow(tcpu
, vpa
);
470 case FLAGS_DEREGISTER_SLBSHADOW
:
471 ret
= deregister_slb_shadow(tcpu
, vpa
);
474 case FLAGS_REGISTER_DTL
:
475 ret
= register_dtl(tcpu
, vpa
);
478 case FLAGS_DEREGISTER_DTL
:
479 ret
= deregister_dtl(tcpu
, vpa
);
486 static target_ulong
h_cede(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
487 target_ulong opcode
, target_ulong
*args
)
489 CPUPPCState
*env
= &cpu
->env
;
490 CPUState
*cs
= CPU(cpu
);
491 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
493 env
->msr
|= (1ULL << MSR_EE
);
494 hreg_compute_hflags(env
);
495 ppc_maybe_interrupt(env
);
497 if (spapr_cpu
->prod
) {
498 spapr_cpu
->prod
= false;
502 if (!cpu_has_work(cs
)) {
504 cs
->exception_index
= EXCP_HLT
;
505 cs
->exit_request
= 1;
506 ppc_maybe_interrupt(env
);
513 * Confer to self, aka join. Cede could use the same pattern as well, if
514 * EXCP_HLT can be changed to ECXP_HALTED.
516 static target_ulong
h_confer_self(PowerPCCPU
*cpu
)
518 CPUState
*cs
= CPU(cpu
);
519 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
521 if (spapr_cpu
->prod
) {
522 spapr_cpu
->prod
= false;
526 cs
->exception_index
= EXCP_HALTED
;
527 cs
->exit_request
= 1;
528 ppc_maybe_interrupt(&cpu
->env
);
533 static target_ulong
h_join(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
534 target_ulong opcode
, target_ulong
*args
)
536 CPUPPCState
*env
= &cpu
->env
;
538 bool last_unjoined
= true;
540 if (env
->msr
& (1ULL << MSR_EE
)) {
545 * Must not join the last CPU running. Interestingly, no such restriction
546 * for H_CONFER-to-self, but that is probably not intended to be used
547 * when H_JOIN is available.
550 PowerPCCPU
*c
= POWERPC_CPU(cs
);
551 CPUPPCState
*e
= &c
->env
;
556 /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */
557 if (!cs
->halted
|| (e
->msr
& (1ULL << MSR_EE
))) {
558 last_unjoined
= false;
566 return h_confer_self(cpu
);
569 static target_ulong
h_confer(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
570 target_ulong opcode
, target_ulong
*args
)
572 target_long target
= args
[0];
573 uint32_t dispatch
= args
[1];
574 CPUState
*cs
= CPU(cpu
);
575 SpaprCpuState
*spapr_cpu
;
578 * -1 means confer to all other CPUs without dispatch counter check,
579 * otherwise it's a targeted confer.
582 PowerPCCPU
*target_cpu
= spapr_find_cpu(target
);
583 uint32_t target_dispatch
;
590 * target == self is a special case, we wait until prodded, without
591 * dispatch counter check.
593 if (cpu
== target_cpu
) {
594 return h_confer_self(cpu
);
597 spapr_cpu
= spapr_cpu_state(target_cpu
);
598 if (!spapr_cpu
->vpa_addr
|| ((dispatch
& 1) == 0)) {
602 target_dispatch
= ldl_be_phys(cs
->as
,
603 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
);
604 if (target_dispatch
!= dispatch
) {
609 * The targeted confer does not do anything special beyond yielding
610 * the current vCPU, but even this should be better than nothing.
611 * At least for single-threaded tcg, it gives the target a chance to
612 * run before we run again. Multi-threaded tcg does not really do
613 * anything with EXCP_YIELD yet.
617 cs
->exception_index
= EXCP_YIELD
;
618 cs
->exit_request
= 1;
624 static target_ulong
h_prod(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
625 target_ulong opcode
, target_ulong
*args
)
627 target_long target
= args
[0];
630 SpaprCpuState
*spapr_cpu
;
632 tcpu
= spapr_find_cpu(target
);
638 spapr_cpu
= spapr_cpu_state(tcpu
);
639 spapr_cpu
->prod
= true;
641 ppc_maybe_interrupt(&cpu
->env
);
647 static target_ulong
h_rtas(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
648 target_ulong opcode
, target_ulong
*args
)
650 target_ulong rtas_r3
= args
[0];
651 uint32_t token
= rtas_ld(rtas_r3
, 0);
652 uint32_t nargs
= rtas_ld(rtas_r3
, 1);
653 uint32_t nret
= rtas_ld(rtas_r3
, 2);
655 return spapr_rtas_call(cpu
, spapr
, token
, nargs
, rtas_r3
+ 12,
656 nret
, rtas_r3
+ 12 + 4*nargs
);
659 static target_ulong
h_logical_load(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
660 target_ulong opcode
, target_ulong
*args
)
662 CPUState
*cs
= CPU(cpu
);
663 target_ulong size
= args
[0];
664 target_ulong addr
= args
[1];
668 args
[0] = ldub_phys(cs
->as
, addr
);
671 args
[0] = lduw_phys(cs
->as
, addr
);
674 args
[0] = ldl_phys(cs
->as
, addr
);
677 args
[0] = ldq_phys(cs
->as
, addr
);
683 static target_ulong
h_logical_store(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
684 target_ulong opcode
, target_ulong
*args
)
686 CPUState
*cs
= CPU(cpu
);
688 target_ulong size
= args
[0];
689 target_ulong addr
= args
[1];
690 target_ulong val
= args
[2];
694 stb_phys(cs
->as
, addr
, val
);
697 stw_phys(cs
->as
, addr
, val
);
700 stl_phys(cs
->as
, addr
, val
);
703 stq_phys(cs
->as
, addr
, val
);
709 static target_ulong
h_logical_memop(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
710 target_ulong opcode
, target_ulong
*args
)
712 CPUState
*cs
= CPU(cpu
);
714 target_ulong dst
= args
[0]; /* Destination address */
715 target_ulong src
= args
[1]; /* Source address */
716 target_ulong esize
= args
[2]; /* Element size (0=1,1=2,2=4,3=8) */
717 target_ulong count
= args
[3]; /* Element count */
718 target_ulong op
= args
[4]; /* 0 = copy, 1 = invert */
720 unsigned int mask
= (1 << esize
) - 1;
721 int step
= 1 << esize
;
723 if (count
> 0x80000000) {
727 if ((dst
& mask
) || (src
& mask
) || (op
> 1)) {
731 if (dst
>= src
&& dst
< (src
+ (count
<< esize
))) {
732 dst
= dst
+ ((count
- 1) << esize
);
733 src
= src
+ ((count
- 1) << esize
);
740 tmp
= ldub_phys(cs
->as
, src
);
743 tmp
= lduw_phys(cs
->as
, src
);
746 tmp
= ldl_phys(cs
->as
, src
);
749 tmp
= ldq_phys(cs
->as
, src
);
759 stb_phys(cs
->as
, dst
, tmp
);
762 stw_phys(cs
->as
, dst
, tmp
);
765 stl_phys(cs
->as
, dst
, tmp
);
768 stq_phys(cs
->as
, dst
, tmp
);
778 static target_ulong
h_logical_icbi(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
779 target_ulong opcode
, target_ulong
*args
)
781 /* Nothing to do on emulation, KVM will trap this in the kernel */
785 static target_ulong
h_logical_dcbf(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
786 target_ulong opcode
, target_ulong
*args
)
788 /* Nothing to do on emulation, KVM will trap this in the kernel */
792 static target_ulong
h_set_mode_resource_le(PowerPCCPU
*cpu
,
793 SpaprMachineState
*spapr
,
806 case H_SET_MODE_ENDIAN_BIG
:
807 spapr_set_all_lpcrs(0, LPCR_ILE
);
808 spapr_pci_switch_vga(spapr
, true);
811 case H_SET_MODE_ENDIAN_LITTLE
:
812 spapr_set_all_lpcrs(LPCR_ILE
, LPCR_ILE
);
813 spapr_pci_switch_vga(spapr
, false);
817 return H_UNSUPPORTED_FLAG
;
820 static target_ulong
h_set_mode_resource_addr_trans_mode(PowerPCCPU
*cpu
,
821 SpaprMachineState
*spapr
,
835 * AIL-1 is not architected, and AIL-2 is not supported by QEMU spapr.
836 * It is supported for faithful emulation of bare metal systems, but for
837 * compatibility concerns we leave it out of the pseries machine.
839 if (mflags
!= 0 && mflags
!= 3) {
840 return H_UNSUPPORTED_FLAG
;
844 if (!spapr_get_cap(spapr
, SPAPR_CAP_AIL_MODE_3
)) {
845 return H_UNSUPPORTED_FLAG
;
849 spapr_set_all_lpcrs(mflags
<< LPCR_AIL_SHIFT
, LPCR_AIL
);
854 static target_ulong
h_set_mode(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
855 target_ulong opcode
, target_ulong
*args
)
857 target_ulong resource
= args
[1];
858 target_ulong ret
= H_P2
;
861 case H_SET_MODE_RESOURCE_LE
:
862 ret
= h_set_mode_resource_le(cpu
, spapr
, args
[0], args
[2], args
[3]);
864 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE
:
865 ret
= h_set_mode_resource_addr_trans_mode(cpu
, spapr
, args
[0],
873 static target_ulong
h_clean_slb(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
874 target_ulong opcode
, target_ulong
*args
)
876 qemu_log_mask(LOG_UNIMP
, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx
"%s\n",
877 opcode
, " (H_CLEAN_SLB)");
881 static target_ulong
h_invalidate_pid(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
882 target_ulong opcode
, target_ulong
*args
)
884 qemu_log_mask(LOG_UNIMP
, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx
"%s\n",
885 opcode
, " (H_INVALIDATE_PID)");
889 static void spapr_check_setup_free_hpt(SpaprMachineState
*spapr
,
890 uint64_t patbe_old
, uint64_t patbe_new
)
894 * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
895 * HASH->RADIX : Free HPT
896 * RADIX->HASH : Allocate HPT
897 * NOTHING->HASH : Allocate HPT
898 * Note: NOTHING implies the case where we said the guest could choose
899 * later and so assumed radix and now it's called H_REG_PROC_TBL
902 if ((patbe_old
& PATE1_GR
) == (patbe_new
& PATE1_GR
)) {
903 /* We assume RADIX, so this catches all the "Do Nothing" cases */
904 } else if (!(patbe_old
& PATE1_GR
)) {
905 /* HASH->RADIX : Free HPT */
906 spapr_free_hpt(spapr
);
907 } else if (!(patbe_new
& PATE1_GR
)) {
908 /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
909 spapr_setup_hpt(spapr
);
914 #define FLAGS_MASK 0x01FULL
915 #define FLAG_MODIFY 0x10
916 #define FLAG_REGISTER 0x08
917 #define FLAG_RADIX 0x04
918 #define FLAG_HASH_PROC_TBL 0x02
919 #define FLAG_GTSE 0x01
921 static target_ulong
h_register_process_table(PowerPCCPU
*cpu
,
922 SpaprMachineState
*spapr
,
926 target_ulong flags
= args
[0];
927 target_ulong proc_tbl
= args
[1];
928 target_ulong page_size
= args
[2];
929 target_ulong table_size
= args
[3];
930 target_ulong update_lpcr
= 0;
931 target_ulong table_byte_size
;
934 if (flags
& ~FLAGS_MASK
) { /* Check no reserved bits are set */
937 if (flags
& FLAG_MODIFY
) {
938 if (flags
& FLAG_REGISTER
) {
939 /* Check process table alignment */
940 table_byte_size
= 1ULL << (table_size
+ 12);
941 if (proc_tbl
& (table_byte_size
- 1)) {
942 qemu_log_mask(LOG_GUEST_ERROR
,
943 "%s: process table not properly aligned: proc_tbl 0x"
944 TARGET_FMT_lx
" proc_tbl_size 0x"TARGET_FMT_lx
"\n",
945 __func__
, proc_tbl
, table_byte_size
);
947 if (flags
& FLAG_RADIX
) { /* Register new RADIX process table */
948 if (proc_tbl
& 0xfff || proc_tbl
>> 60) {
950 } else if (page_size
) {
952 } else if (table_size
> 24) {
955 cproc
= PATE1_GR
| proc_tbl
| table_size
;
956 } else { /* Register new HPT process table */
957 if (flags
& FLAG_HASH_PROC_TBL
) { /* Hash with Segment Tables */
958 /* TODO - Not Supported */
959 /* Technically caused by flag bits => H_PARAMETER */
961 } else { /* Hash with SLB */
962 if (proc_tbl
>> 38) {
964 } else if (page_size
& ~0x7) {
966 } else if (table_size
> 24) {
970 cproc
= (proc_tbl
<< 25) | page_size
<< 5 | table_size
;
973 } else { /* Deregister current process table */
975 * Set to benign value: (current GR) | 0. This allows
976 * deregistration in KVM to succeed even if the radix bit
977 * in flags doesn't match the radix bit in the old PATE.
979 cproc
= spapr
->patb_entry
& PATE1_GR
;
981 } else { /* Maintain current registration */
982 if (!(flags
& FLAG_RADIX
) != !(spapr
->patb_entry
& PATE1_GR
)) {
983 /* Technically caused by flag bits => H_PARAMETER */
984 return H_PARAMETER
; /* Existing Process Table Mismatch */
986 cproc
= spapr
->patb_entry
;
989 /* Check if we need to setup OR free the hpt */
990 spapr_check_setup_free_hpt(spapr
, spapr
->patb_entry
, cproc
);
992 spapr
->patb_entry
= cproc
; /* Save new process table */
994 /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
995 if (flags
& FLAG_RADIX
) /* Radix must use process tables, also set HR */
996 update_lpcr
|= (LPCR_UPRT
| LPCR_HR
);
997 else if (flags
& FLAG_HASH_PROC_TBL
) /* Hash with process tables */
998 update_lpcr
|= LPCR_UPRT
;
999 if (flags
& FLAG_GTSE
) /* Guest translation shootdown enable */
1000 update_lpcr
|= LPCR_GTSE
;
1002 spapr_set_all_lpcrs(update_lpcr
, LPCR_UPRT
| LPCR_HR
| LPCR_GTSE
);
1004 if (kvm_enabled()) {
1005 return kvmppc_configure_v3_mmu(cpu
, flags
& FLAG_RADIX
,
1006 flags
& FLAG_GTSE
, cproc
);
1011 #define H_SIGNAL_SYS_RESET_ALL -1
1012 #define H_SIGNAL_SYS_RESET_ALLBUTSELF -2
1014 static target_ulong
h_signal_sys_reset(PowerPCCPU
*cpu
,
1015 SpaprMachineState
*spapr
,
1016 target_ulong opcode
, target_ulong
*args
)
1018 target_long target
= args
[0];
1023 if (target
< H_SIGNAL_SYS_RESET_ALLBUTSELF
) {
1028 PowerPCCPU
*c
= POWERPC_CPU(cs
);
1030 if (target
== H_SIGNAL_SYS_RESET_ALLBUTSELF
) {
1035 run_on_cpu(cs
, spapr_do_system_reset_on_cpu
, RUN_ON_CPU_NULL
);
1041 cs
= CPU(spapr_find_cpu(target
));
1043 run_on_cpu(cs
, spapr_do_system_reset_on_cpu
, RUN_ON_CPU_NULL
);
1050 /* Returns either a logical PVR or zero if none was found */
1051 static uint32_t cas_check_pvr(PowerPCCPU
*cpu
, uint32_t max_compat
,
1052 target_ulong
*addr
, bool *raw_mode_supported
)
1054 bool explicit_match
= false; /* Matched the CPU's real PVR */
1055 uint32_t best_compat
= 0;
1059 * We scan the supplied table of PVRs looking for two things
1060 * 1. Is our real CPU PVR in the list?
1061 * 2. What's the "best" listed logical PVR
1063 for (i
= 0; i
< 512; ++i
) {
1064 uint32_t pvr
, pvr_mask
;
1066 pvr_mask
= ldl_be_phys(&address_space_memory
, *addr
);
1067 pvr
= ldl_be_phys(&address_space_memory
, *addr
+ 4);
1070 if (~pvr_mask
& pvr
) {
1071 break; /* Terminator record */
1074 if ((cpu
->env
.spr
[SPR_PVR
] & pvr_mask
) == (pvr
& pvr_mask
)) {
1075 explicit_match
= true;
1077 if (ppc_check_compat(cpu
, pvr
, best_compat
, max_compat
)) {
1083 *raw_mode_supported
= explicit_match
;
1085 /* Parsing finished */
1086 trace_spapr_cas_pvr(cpu
->compat_pvr
, explicit_match
, best_compat
);
1092 target_ulong
do_client_architecture_support(PowerPCCPU
*cpu
,
1093 SpaprMachineState
*spapr
,
1095 target_ulong fdt_bufsize
)
1097 target_ulong ov_table
; /* Working address in data buffer */
1099 SpaprOptionVector
*ov1_guest
, *ov5_guest
;
1101 bool raw_mode_supported
= false;
1105 uint32_t max_compat
= spapr
->max_compat_pvr
;
1107 /* CAS is supposed to be called early when only the boot vCPU is active. */
1109 if (cs
== CPU(cpu
)) {
1113 warn_report("guest has multiple active vCPUs at CAS, which is not allowed");
1114 return H_MULTI_THREADS_ACTIVE
;
1118 cas_pvr
= cas_check_pvr(cpu
, max_compat
, &vec
, &raw_mode_supported
);
1119 if (!cas_pvr
&& (!raw_mode_supported
|| max_compat
)) {
1121 * We couldn't find a suitable compatibility mode, and either
1122 * the guest doesn't support "raw" mode for this CPU, or "raw"
1123 * mode is disabled because a maximum compat mode is set.
1125 error_report("Couldn't negotiate a suitable PVR during CAS");
1130 if (cpu
->compat_pvr
!= cas_pvr
) {
1131 Error
*local_err
= NULL
;
1133 if (ppc_set_compat_all(cas_pvr
, &local_err
) < 0) {
1134 /* We fail to set compat mode (likely because running with KVM PR),
1135 * but maybe we can fallback to raw mode if the guest supports it.
1137 if (!raw_mode_supported
) {
1138 error_report_err(local_err
);
1141 error_free(local_err
);
1145 /* For the future use: here @ov_table points to the first option vector */
1148 ov1_guest
= spapr_ovec_parse_vector(ov_table
, 1);
1150 warn_report("guest didn't provide option vector 1");
1153 ov5_guest
= spapr_ovec_parse_vector(ov_table
, 5);
1155 spapr_ovec_cleanup(ov1_guest
);
1156 warn_report("guest didn't provide option vector 5");
1159 if (spapr_ovec_test(ov5_guest
, OV5_MMU_BOTH
)) {
1160 error_report("guest requested hash and radix MMU, which is invalid.");
1163 if (spapr_ovec_test(ov5_guest
, OV5_XIVE_BOTH
)) {
1164 error_report("guest requested an invalid interrupt mode");
1168 guest_radix
= spapr_ovec_test(ov5_guest
, OV5_MMU_RADIX_300
);
1170 guest_xive
= spapr_ovec_test(ov5_guest
, OV5_XIVE_EXPLOIT
);
1173 * HPT resizing is a bit of a special case, because when enabled
1174 * we assume an HPT guest will support it until it says it
1175 * doesn't, instead of assuming it won't support it until it says
1176 * it does. Strictly speaking that approach could break for
1177 * guests which don't make a CAS call, but those are so old we
1178 * don't care about them. Without that assumption we'd have to
1179 * make at least a temporary allocation of an HPT sized for max
1180 * memory, which could be impossibly difficult under KVM HV if
1183 if (!guest_radix
&& !spapr_ovec_test(ov5_guest
, OV5_HPT_RESIZE
)) {
1184 int maxshift
= spapr_hpt_shift_for_ramsize(MACHINE(spapr
)->maxram_size
);
1186 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_REQUIRED
) {
1188 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1192 if (spapr
->htab_shift
< maxshift
) {
1193 /* Guest doesn't know about HPT resizing, so we
1194 * pre-emptively resize for the maximum permitted RAM. At
1195 * the point this is called, nothing should have been
1196 * entered into the existing HPT */
1197 spapr_reallocate_hpt(spapr
, maxshift
, &error_fatal
);
1198 push_sregs_to_kvm_pr(spapr
);
1202 /* NOTE: there are actually a number of ov5 bits where input from the
1203 * guest is always zero, and the platform/QEMU enables them independently
1204 * of guest input. To model these properly we'd want some sort of mask,
1205 * but since they only currently apply to memory migration as defined
1206 * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1207 * to worry about this for now.
1210 /* full range of negotiated ov5 capabilities */
1211 spapr_ovec_intersect(spapr
->ov5_cas
, spapr
->ov5
, ov5_guest
);
1212 spapr_ovec_cleanup(ov5_guest
);
1214 spapr_check_mmu_mode(guest_radix
);
1216 spapr
->cas_pre_isa3_guest
= !spapr_ovec_test(ov1_guest
, OV1_PPC_3_00
);
1217 spapr_ovec_cleanup(ov1_guest
);
1220 * Check for NUMA affinity conditions now that we know which NUMA
1221 * affinity the guest will use.
1223 spapr_numa_associativity_check(spapr
);
1226 * Ensure the guest asks for an interrupt mode we support;
1227 * otherwise terminate the boot.
1230 if (!spapr
->irq
->xive
) {
1232 "Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property");
1236 if (!spapr
->irq
->xics
) {
1238 "Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual");
1243 spapr_irq_update_active_intc(spapr
);
1246 * Process all pending hot-plug/unplug requests now. An updated full
1247 * rendered FDT will be returned to the guest.
1249 spapr_drc_reset_all(spapr
);
1250 spapr_clear_pending_hotplug_events(spapr
);
1253 * If spapr_machine_reset() did not set up a HPT but one is necessary
1254 * (because the guest isn't going to use radix) then set it up here.
1256 if ((spapr
->patb_entry
& PATE1_GR
) && !guest_radix
) {
1257 /* legacy hash or new hash: */
1258 spapr_setup_hpt(spapr
);
1261 fdt
= spapr_build_fdt(spapr
, spapr
->vof
!= NULL
, fdt_bufsize
);
1262 g_free(spapr
->fdt_blob
);
1263 spapr
->fdt_size
= fdt_totalsize(fdt
);
1264 spapr
->fdt_initial_size
= spapr
->fdt_size
;
1265 spapr
->fdt_blob
= fdt
;
1268 * Set the machine->fdt pointer again since we just freed
1269 * it above (by freeing spapr->fdt_blob). We set this
1270 * pointer to enable support for the 'dumpdtb' QMP/HMP
1273 MACHINE(spapr
)->fdt
= fdt
;
1278 static target_ulong
h_client_architecture_support(PowerPCCPU
*cpu
,
1279 SpaprMachineState
*spapr
,
1280 target_ulong opcode
,
1283 target_ulong vec
= ppc64_phys_to_real(args
[0]);
1284 target_ulong fdt_buf
= args
[1];
1285 target_ulong fdt_bufsize
= args
[2];
1287 SpaprDeviceTreeUpdateHeader hdr
= { .version_id
= 1 };
1289 if (fdt_bufsize
< sizeof(hdr
)) {
1290 error_report("SLOF provided insufficient CAS buffer "
1291 TARGET_FMT_lu
" (min: %zu)", fdt_bufsize
, sizeof(hdr
));
1295 fdt_bufsize
-= sizeof(hdr
);
1297 ret
= do_client_architecture_support(cpu
, spapr
, vec
, fdt_bufsize
);
1298 if (ret
== H_SUCCESS
) {
1299 _FDT((fdt_pack(spapr
->fdt_blob
)));
1300 spapr
->fdt_size
= fdt_totalsize(spapr
->fdt_blob
);
1301 spapr
->fdt_initial_size
= spapr
->fdt_size
;
1303 cpu_physical_memory_write(fdt_buf
, &hdr
, sizeof(hdr
));
1304 cpu_physical_memory_write(fdt_buf
+ sizeof(hdr
), spapr
->fdt_blob
,
1306 trace_spapr_cas_continue(spapr
->fdt_size
+ sizeof(hdr
));
1312 target_ulong
spapr_vof_client_architecture_support(MachineState
*ms
,
1314 target_ulong ovec_addr
)
1316 SpaprMachineState
*spapr
= SPAPR_MACHINE(ms
);
1318 target_ulong ret
= do_client_architecture_support(POWERPC_CPU(cs
), spapr
,
1319 ovec_addr
, FDT_MAX_SIZE
);
1322 * This adds stdout and generates phandles for boottime and CAS FDTs.
1323 * It is alright to update the FDT here as do_client_architecture_support()
1326 spapr_vof_client_dt_finalize(spapr
, spapr
->fdt_blob
);
1331 static target_ulong
h_get_cpu_characteristics(PowerPCCPU
*cpu
,
1332 SpaprMachineState
*spapr
,
1333 target_ulong opcode
,
1336 uint64_t characteristics
= H_CPU_CHAR_HON_BRANCH_HINTS
&
1337 ~H_CPU_CHAR_THR_RECONF_TRIG
;
1338 uint64_t behaviour
= H_CPU_BEHAV_FAVOUR_SECURITY
;
1339 uint8_t safe_cache
= spapr_get_cap(spapr
, SPAPR_CAP_CFPC
);
1340 uint8_t safe_bounds_check
= spapr_get_cap(spapr
, SPAPR_CAP_SBBC
);
1341 uint8_t safe_indirect_branch
= spapr_get_cap(spapr
, SPAPR_CAP_IBS
);
1342 uint8_t count_cache_flush_assist
= spapr_get_cap(spapr
,
1343 SPAPR_CAP_CCF_ASSIST
);
1345 switch (safe_cache
) {
1346 case SPAPR_CAP_WORKAROUND
:
1347 characteristics
|= H_CPU_CHAR_L1D_FLUSH_ORI30
;
1348 characteristics
|= H_CPU_CHAR_L1D_FLUSH_TRIG2
;
1349 characteristics
|= H_CPU_CHAR_L1D_THREAD_PRIV
;
1350 behaviour
|= H_CPU_BEHAV_L1D_FLUSH_PR
;
1352 case SPAPR_CAP_FIXED
:
1353 behaviour
|= H_CPU_BEHAV_NO_L1D_FLUSH_ENTRY
;
1354 behaviour
|= H_CPU_BEHAV_NO_L1D_FLUSH_UACCESS
;
1356 default: /* broken */
1357 assert(safe_cache
== SPAPR_CAP_BROKEN
);
1358 behaviour
|= H_CPU_BEHAV_L1D_FLUSH_PR
;
1362 switch (safe_bounds_check
) {
1363 case SPAPR_CAP_WORKAROUND
:
1364 characteristics
|= H_CPU_CHAR_SPEC_BAR_ORI31
;
1365 behaviour
|= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR
;
1367 case SPAPR_CAP_FIXED
:
1369 default: /* broken */
1370 assert(safe_bounds_check
== SPAPR_CAP_BROKEN
);
1371 behaviour
|= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR
;
1375 switch (safe_indirect_branch
) {
1376 case SPAPR_CAP_FIXED_NA
:
1378 case SPAPR_CAP_FIXED_CCD
:
1379 characteristics
|= H_CPU_CHAR_CACHE_COUNT_DIS
;
1381 case SPAPR_CAP_FIXED_IBS
:
1382 characteristics
|= H_CPU_CHAR_BCCTRL_SERIALISED
;
1384 case SPAPR_CAP_WORKAROUND
:
1385 behaviour
|= H_CPU_BEHAV_FLUSH_COUNT_CACHE
;
1386 if (count_cache_flush_assist
) {
1387 characteristics
|= H_CPU_CHAR_BCCTR_FLUSH_ASSIST
;
1390 default: /* broken */
1391 assert(safe_indirect_branch
== SPAPR_CAP_BROKEN
);
1395 args
[0] = characteristics
;
1396 args
[1] = behaviour
;
1400 static target_ulong
h_update_dt(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
1401 target_ulong opcode
, target_ulong
*args
)
1403 target_ulong dt
= ppc64_phys_to_real(args
[0]);
1404 struct fdt_header hdr
= { 0 };
1406 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
1409 cpu_physical_memory_read(dt
, &hdr
, sizeof(hdr
));
1410 cb
= fdt32_to_cpu(hdr
.totalsize
);
1412 if (!smc
->update_dt_enabled
) {
1416 /* Check that the fdt did not grow out of proportion */
1417 if (cb
> spapr
->fdt_initial_size
* 2) {
1418 trace_spapr_update_dt_failed_size(spapr
->fdt_initial_size
, cb
,
1419 fdt32_to_cpu(hdr
.magic
));
1423 fdt
= g_malloc0(cb
);
1424 cpu_physical_memory_read(dt
, fdt
, cb
);
1426 /* Check the fdt consistency */
1427 if (fdt_check_full(fdt
, cb
)) {
1428 trace_spapr_update_dt_failed_check(spapr
->fdt_initial_size
, cb
,
1429 fdt32_to_cpu(hdr
.magic
));
1433 g_free(spapr
->fdt_blob
);
1434 spapr
->fdt_size
= cb
;
1435 spapr
->fdt_blob
= fdt
;
1436 trace_spapr_update_dt(cb
);
1441 static spapr_hcall_fn papr_hypercall_table
[(MAX_HCALL_OPCODE
/ 4) + 1];
1442 static spapr_hcall_fn kvmppc_hypercall_table
[KVMPPC_HCALL_MAX
- KVMPPC_HCALL_BASE
+ 1];
1443 static spapr_hcall_fn svm_hypercall_table
[(SVM_HCALL_MAX
- SVM_HCALL_BASE
) / 4 + 1];
1445 void spapr_register_hypercall(target_ulong opcode
, spapr_hcall_fn fn
)
1447 spapr_hcall_fn
*slot
;
1449 if (opcode
<= MAX_HCALL_OPCODE
) {
1450 assert((opcode
& 0x3) == 0);
1452 slot
= &papr_hypercall_table
[opcode
/ 4];
1453 } else if (opcode
>= SVM_HCALL_BASE
&& opcode
<= SVM_HCALL_MAX
) {
1454 /* we only have SVM-related hcall numbers assigned in multiples of 4 */
1455 assert((opcode
& 0x3) == 0);
1457 slot
= &svm_hypercall_table
[(opcode
- SVM_HCALL_BASE
) / 4];
1459 assert((opcode
>= KVMPPC_HCALL_BASE
) && (opcode
<= KVMPPC_HCALL_MAX
));
1461 slot
= &kvmppc_hypercall_table
[opcode
- KVMPPC_HCALL_BASE
];
1468 target_ulong
spapr_hypercall(PowerPCCPU
*cpu
, target_ulong opcode
,
1471 SpaprMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
1473 if ((opcode
<= MAX_HCALL_OPCODE
)
1474 && ((opcode
& 0x3) == 0)) {
1475 spapr_hcall_fn fn
= papr_hypercall_table
[opcode
/ 4];
1478 return fn(cpu
, spapr
, opcode
, args
);
1480 } else if ((opcode
>= SVM_HCALL_BASE
) &&
1481 (opcode
<= SVM_HCALL_MAX
)) {
1482 spapr_hcall_fn fn
= svm_hypercall_table
[(opcode
- SVM_HCALL_BASE
) / 4];
1485 return fn(cpu
, spapr
, opcode
, args
);
1487 } else if ((opcode
>= KVMPPC_HCALL_BASE
) &&
1488 (opcode
<= KVMPPC_HCALL_MAX
)) {
1489 spapr_hcall_fn fn
= kvmppc_hypercall_table
[opcode
- KVMPPC_HCALL_BASE
];
1492 return fn(cpu
, spapr
, opcode
, args
);
1496 qemu_log_mask(LOG_UNIMP
, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx
"\n",
1502 static void hypercall_register_softmmu(void)
1507 static target_ulong
h_softmmu(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
1508 target_ulong opcode
, target_ulong
*args
)
1510 g_assert_not_reached();
1513 static void hypercall_register_softmmu(void)
1516 spapr_register_hypercall(H_ENTER
, h_softmmu
);
1517 spapr_register_hypercall(H_REMOVE
, h_softmmu
);
1518 spapr_register_hypercall(H_PROTECT
, h_softmmu
);
1519 spapr_register_hypercall(H_READ
, h_softmmu
);
1522 spapr_register_hypercall(H_BULK_REMOVE
, h_softmmu
);
1526 static void hypercall_register_types(void)
1528 hypercall_register_softmmu();
1530 /* hcall-hpt-resize */
1531 spapr_register_hypercall(H_RESIZE_HPT_PREPARE
, h_resize_hpt_prepare
);
1532 spapr_register_hypercall(H_RESIZE_HPT_COMMIT
, h_resize_hpt_commit
);
1535 spapr_register_hypercall(H_REGISTER_VPA
, h_register_vpa
);
1536 spapr_register_hypercall(H_CEDE
, h_cede
);
1537 spapr_register_hypercall(H_CONFER
, h_confer
);
1538 spapr_register_hypercall(H_PROD
, h_prod
);
1541 spapr_register_hypercall(H_JOIN
, h_join
);
1543 spapr_register_hypercall(H_SIGNAL_SYS_RESET
, h_signal_sys_reset
);
1545 /* processor register resource access h-calls */
1546 spapr_register_hypercall(H_SET_SPRG0
, h_set_sprg0
);
1547 spapr_register_hypercall(H_SET_DABR
, h_set_dabr
);
1548 spapr_register_hypercall(H_SET_XDABR
, h_set_xdabr
);
1549 spapr_register_hypercall(H_PAGE_INIT
, h_page_init
);
1550 spapr_register_hypercall(H_SET_MODE
, h_set_mode
);
1552 /* In Memory Table MMU h-calls */
1553 spapr_register_hypercall(H_CLEAN_SLB
, h_clean_slb
);
1554 spapr_register_hypercall(H_INVALIDATE_PID
, h_invalidate_pid
);
1555 spapr_register_hypercall(H_REGISTER_PROC_TBL
, h_register_process_table
);
1557 /* hcall-get-cpu-characteristics */
1558 spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS
,
1559 h_get_cpu_characteristics
);
1561 /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1562 * here between the "CI" and the "CACHE" variants, they will use whatever
1563 * mapping attributes qemu is using. When using KVM, the kernel will
1564 * enforce the attributes more strongly
1566 spapr_register_hypercall(H_LOGICAL_CI_LOAD
, h_logical_load
);
1567 spapr_register_hypercall(H_LOGICAL_CI_STORE
, h_logical_store
);
1568 spapr_register_hypercall(H_LOGICAL_CACHE_LOAD
, h_logical_load
);
1569 spapr_register_hypercall(H_LOGICAL_CACHE_STORE
, h_logical_store
);
1570 spapr_register_hypercall(H_LOGICAL_ICBI
, h_logical_icbi
);
1571 spapr_register_hypercall(H_LOGICAL_DCBF
, h_logical_dcbf
);
1572 spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP
, h_logical_memop
);
1574 /* qemu/KVM-PPC specific hcalls */
1575 spapr_register_hypercall(KVMPPC_H_RTAS
, h_rtas
);
1577 /* ibm,client-architecture-support support */
1578 spapr_register_hypercall(KVMPPC_H_CAS
, h_client_architecture_support
);
1580 spapr_register_hypercall(KVMPPC_H_UPDATE_DT
, h_update_dt
);
1582 spapr_register_nested();
1585 type_init(hypercall_register_types
)