target/i386/WHPX: Fix error message when fail to set ProcessorCount
[qemu/armbru.git] / hw / i386 / intel_iommu.c
blobdcc334060cd65d16f2a657def094206867e5bc65
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qapi/error.h"
26 #include "hw/sysbus.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/i386/pc.h"
32 #include "hw/i386/apic-msidef.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "sysemu/dma.h"
37 #include "sysemu/sysemu.h"
38 #include "hw/i386/apic_internal.h"
39 #include "kvm/kvm_i386.h"
40 #include "migration/vmstate.h"
41 #include "trace.h"
43 /* context entry operations */
44 #define VTD_CE_GET_RID2PASID(ce) \
45 ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
46 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
47 ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
49 /* pe operations */
50 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
51 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
54 * PCI bus number (or SID) is not reliable since the device is usaully
55 * initalized before guest can configure the PCI bridge
56 * (SECONDARY_BUS_NUMBER).
58 struct vtd_as_key {
59 PCIBus *bus;
60 uint8_t devfn;
61 uint32_t pasid;
64 struct vtd_iotlb_key {
65 uint64_t gfn;
66 uint32_t pasid;
67 uint16_t sid;
68 uint8_t level;
71 static void vtd_address_space_refresh_all(IntelIOMMUState *s);
72 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
74 static void vtd_panic_require_caching_mode(void)
76 error_report("We need to set caching-mode=on for intel-iommu to enable "
77 "device assignment with IOMMU protection.");
78 exit(1);
81 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
82 uint64_t wmask, uint64_t w1cmask)
84 stq_le_p(&s->csr[addr], val);
85 stq_le_p(&s->wmask[addr], wmask);
86 stq_le_p(&s->w1cmask[addr], w1cmask);
89 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
91 stq_le_p(&s->womask[addr], mask);
94 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
95 uint32_t wmask, uint32_t w1cmask)
97 stl_le_p(&s->csr[addr], val);
98 stl_le_p(&s->wmask[addr], wmask);
99 stl_le_p(&s->w1cmask[addr], w1cmask);
102 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
104 stl_le_p(&s->womask[addr], mask);
107 /* "External" get/set operations */
108 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
110 uint64_t oldval = ldq_le_p(&s->csr[addr]);
111 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
112 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
113 stq_le_p(&s->csr[addr],
114 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
117 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
119 uint32_t oldval = ldl_le_p(&s->csr[addr]);
120 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
121 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
122 stl_le_p(&s->csr[addr],
123 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
126 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
128 uint64_t val = ldq_le_p(&s->csr[addr]);
129 uint64_t womask = ldq_le_p(&s->womask[addr]);
130 return val & ~womask;
133 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
135 uint32_t val = ldl_le_p(&s->csr[addr]);
136 uint32_t womask = ldl_le_p(&s->womask[addr]);
137 return val & ~womask;
140 /* "Internal" get/set operations */
141 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
143 return ldq_le_p(&s->csr[addr]);
146 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
148 return ldl_le_p(&s->csr[addr]);
151 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
153 stq_le_p(&s->csr[addr], val);
156 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
157 uint32_t clear, uint32_t mask)
159 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
160 stl_le_p(&s->csr[addr], new_val);
161 return new_val;
164 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
165 uint64_t clear, uint64_t mask)
167 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
168 stq_le_p(&s->csr[addr], new_val);
169 return new_val;
172 static inline void vtd_iommu_lock(IntelIOMMUState *s)
174 qemu_mutex_lock(&s->iommu_lock);
177 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
179 qemu_mutex_unlock(&s->iommu_lock);
182 static void vtd_update_scalable_state(IntelIOMMUState *s)
184 uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
186 if (s->scalable_mode) {
187 s->root_scalable = val & VTD_RTADDR_SMT;
191 static void vtd_update_iq_dw(IntelIOMMUState *s)
193 uint64_t val = vtd_get_quad_raw(s, DMAR_IQA_REG);
195 if (s->ecap & VTD_ECAP_SMTS &&
196 val & VTD_IQA_DW_MASK) {
197 s->iq_dw = true;
198 } else {
199 s->iq_dw = false;
203 /* Whether the address space needs to notify new mappings */
204 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
206 return as->notifier_flags & IOMMU_NOTIFIER_MAP;
209 /* GHashTable functions */
210 static gboolean vtd_iotlb_equal(gconstpointer v1, gconstpointer v2)
212 const struct vtd_iotlb_key *key1 = v1;
213 const struct vtd_iotlb_key *key2 = v2;
215 return key1->sid == key2->sid &&
216 key1->pasid == key2->pasid &&
217 key1->level == key2->level &&
218 key1->gfn == key2->gfn;
221 static guint vtd_iotlb_hash(gconstpointer v)
223 const struct vtd_iotlb_key *key = v;
224 uint64_t hash64 = key->gfn | ((uint64_t)(key->sid) << VTD_IOTLB_SID_SHIFT) |
225 (uint64_t)(key->level - 1) << VTD_IOTLB_LVL_SHIFT |
226 (uint64_t)(key->pasid) << VTD_IOTLB_PASID_SHIFT;
228 return (guint)((hash64 >> 32) ^ (hash64 & 0xffffffffU));
231 static gboolean vtd_as_equal(gconstpointer v1, gconstpointer v2)
233 const struct vtd_as_key *key1 = v1;
234 const struct vtd_as_key *key2 = v2;
236 return (key1->bus == key2->bus) && (key1->devfn == key2->devfn) &&
237 (key1->pasid == key2->pasid);
241 * Note that we use pointer to PCIBus as the key, so hashing/shifting
242 * based on the pointer value is intended. Note that we deal with
243 * collisions through vtd_as_equal().
245 static guint vtd_as_hash(gconstpointer v)
247 const struct vtd_as_key *key = v;
248 guint value = (guint)(uintptr_t)key->bus;
250 return (guint)(value << 8 | key->devfn);
253 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
254 gpointer user_data)
256 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
257 uint16_t domain_id = *(uint16_t *)user_data;
258 return entry->domain_id == domain_id;
261 /* The shift of an addr for a certain level of paging structure */
262 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
264 assert(level != 0);
265 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
268 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
270 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
273 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
274 gpointer user_data)
276 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
277 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
278 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
279 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
280 return (entry->domain_id == info->domain_id) &&
281 (((entry->gfn & info->mask) == gfn) ||
282 (entry->gfn == gfn_tlb));
285 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
286 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
288 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
290 VTDAddressSpace *vtd_as;
291 GHashTableIter as_it;
293 trace_vtd_context_cache_reset();
295 g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
297 while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
298 vtd_as->context_cache_entry.context_cache_gen = 0;
300 s->context_cache_gen = 1;
303 /* Must be called with IOMMU lock held. */
304 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
306 assert(s->iotlb);
307 g_hash_table_remove_all(s->iotlb);
310 static void vtd_reset_iotlb(IntelIOMMUState *s)
312 vtd_iommu_lock(s);
313 vtd_reset_iotlb_locked(s);
314 vtd_iommu_unlock(s);
317 static void vtd_reset_caches(IntelIOMMUState *s)
319 vtd_iommu_lock(s);
320 vtd_reset_iotlb_locked(s);
321 vtd_reset_context_cache_locked(s);
322 vtd_iommu_unlock(s);
325 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
327 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
330 /* Must be called with IOMMU lock held */
331 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
332 uint32_t pasid, hwaddr addr)
334 struct vtd_iotlb_key key;
335 VTDIOTLBEntry *entry;
336 int level;
338 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
339 key.gfn = vtd_get_iotlb_gfn(addr, level);
340 key.level = level;
341 key.sid = source_id;
342 key.pasid = pasid;
343 entry = g_hash_table_lookup(s->iotlb, &key);
344 if (entry) {
345 goto out;
349 out:
350 return entry;
353 /* Must be with IOMMU lock held */
354 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
355 uint16_t domain_id, hwaddr addr, uint64_t slpte,
356 uint8_t access_flags, uint32_t level,
357 uint32_t pasid)
359 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
360 struct vtd_iotlb_key *key = g_malloc(sizeof(*key));
361 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
363 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
364 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
365 trace_vtd_iotlb_reset("iotlb exceeds size limit");
366 vtd_reset_iotlb_locked(s);
369 entry->gfn = gfn;
370 entry->domain_id = domain_id;
371 entry->slpte = slpte;
372 entry->access_flags = access_flags;
373 entry->mask = vtd_slpt_level_page_mask(level);
374 entry->pasid = pasid;
376 key->gfn = gfn;
377 key->sid = source_id;
378 key->level = level;
379 key->pasid = pasid;
381 g_hash_table_replace(s->iotlb, key, entry);
384 /* Given the reg addr of both the message data and address, generate an
385 * interrupt via MSI.
387 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
388 hwaddr mesg_data_reg)
390 MSIMessage msi;
392 assert(mesg_data_reg < DMAR_REG_SIZE);
393 assert(mesg_addr_reg < DMAR_REG_SIZE);
395 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
396 msi.data = vtd_get_long_raw(s, mesg_data_reg);
398 trace_vtd_irq_generate(msi.address, msi.data);
400 apic_get_class(NULL)->send_msi(&msi);
403 /* Generate a fault event to software via MSI if conditions are met.
404 * Notice that the value of FSTS_REG being passed to it should be the one
405 * before any update.
407 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
409 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
410 pre_fsts & VTD_FSTS_IQE) {
411 error_report_once("There are previous interrupt conditions "
412 "to be serviced by software, fault event "
413 "is not generated");
414 return;
416 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
417 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
418 error_report_once("Interrupt Mask set, irq is not generated");
419 } else {
420 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
421 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
425 /* Check if the Fault (F) field of the Fault Recording Register referenced by
426 * @index is Set.
428 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
430 /* Each reg is 128-bit */
431 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
432 addr += 8; /* Access the high 64-bit half */
434 assert(index < DMAR_FRCD_REG_NR);
436 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
439 /* Update the PPF field of Fault Status Register.
440 * Should be called whenever change the F field of any fault recording
441 * registers.
443 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
445 uint32_t i;
446 uint32_t ppf_mask = 0;
448 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
449 if (vtd_is_frcd_set(s, i)) {
450 ppf_mask = VTD_FSTS_PPF;
451 break;
454 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
455 trace_vtd_fsts_ppf(!!ppf_mask);
458 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
460 /* Each reg is 128-bit */
461 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
462 addr += 8; /* Access the high 64-bit half */
464 assert(index < DMAR_FRCD_REG_NR);
466 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
467 vtd_update_fsts_ppf(s);
470 /* Must not update F field now, should be done later */
471 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
472 uint16_t source_id, hwaddr addr,
473 VTDFaultReason fault, bool is_write,
474 bool is_pasid, uint32_t pasid)
476 uint64_t hi = 0, lo;
477 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
479 assert(index < DMAR_FRCD_REG_NR);
481 lo = VTD_FRCD_FI(addr);
482 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault) |
483 VTD_FRCD_PV(pasid) | VTD_FRCD_PP(is_pasid);
484 if (!is_write) {
485 hi |= VTD_FRCD_T;
487 vtd_set_quad_raw(s, frcd_reg_addr, lo);
488 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
490 trace_vtd_frr_new(index, hi, lo);
493 /* Try to collapse multiple pending faults from the same requester */
494 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
496 uint32_t i;
497 uint64_t frcd_reg;
498 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
500 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
501 frcd_reg = vtd_get_quad_raw(s, addr);
502 if ((frcd_reg & VTD_FRCD_F) &&
503 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
504 return true;
506 addr += 16; /* 128-bit for each */
508 return false;
511 /* Log and report an DMAR (address translation) fault to software */
512 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
513 hwaddr addr, VTDFaultReason fault,
514 bool is_write, bool is_pasid,
515 uint32_t pasid)
517 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
519 assert(fault < VTD_FR_MAX);
521 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
523 if (fsts_reg & VTD_FSTS_PFO) {
524 error_report_once("New fault is not recorded due to "
525 "Primary Fault Overflow");
526 return;
529 if (vtd_try_collapse_fault(s, source_id)) {
530 error_report_once("New fault is not recorded due to "
531 "compression of faults");
532 return;
535 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
536 error_report_once("Next Fault Recording Reg is used, "
537 "new fault is not recorded, set PFO field");
538 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
539 return;
542 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault,
543 is_write, is_pasid, pasid);
545 if (fsts_reg & VTD_FSTS_PPF) {
546 error_report_once("There are pending faults already, "
547 "fault event is not generated");
548 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
549 s->next_frcd_reg++;
550 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
551 s->next_frcd_reg = 0;
553 } else {
554 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
555 VTD_FSTS_FRI(s->next_frcd_reg));
556 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
557 s->next_frcd_reg++;
558 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
559 s->next_frcd_reg = 0;
561 /* This case actually cause the PPF to be Set.
562 * So generate fault event (interrupt).
564 vtd_generate_fault_event(s, fsts_reg);
568 /* Handle Invalidation Queue Errors of queued invalidation interface error
569 * conditions.
571 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
573 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
575 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
576 vtd_generate_fault_event(s, fsts_reg);
579 /* Set the IWC field and try to generate an invalidation completion interrupt */
580 static void vtd_generate_completion_event(IntelIOMMUState *s)
582 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
583 trace_vtd_inv_desc_wait_irq("One pending, skip current");
584 return;
586 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
587 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
588 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
589 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
590 "new event not generated");
591 return;
592 } else {
593 /* Generate the interrupt event */
594 trace_vtd_inv_desc_wait_irq("Generating complete event");
595 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
596 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
600 static inline bool vtd_root_entry_present(IntelIOMMUState *s,
601 VTDRootEntry *re,
602 uint8_t devfn)
604 if (s->root_scalable && devfn > UINT8_MAX / 2) {
605 return re->hi & VTD_ROOT_ENTRY_P;
608 return re->lo & VTD_ROOT_ENTRY_P;
611 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
612 VTDRootEntry *re)
614 dma_addr_t addr;
616 addr = s->root + index * sizeof(*re);
617 if (dma_memory_read(&address_space_memory, addr,
618 re, sizeof(*re), MEMTXATTRS_UNSPECIFIED)) {
619 re->lo = 0;
620 return -VTD_FR_ROOT_TABLE_INV;
622 re->lo = le64_to_cpu(re->lo);
623 re->hi = le64_to_cpu(re->hi);
624 return 0;
627 static inline bool vtd_ce_present(VTDContextEntry *context)
629 return context->lo & VTD_CONTEXT_ENTRY_P;
632 static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
633 VTDRootEntry *re,
634 uint8_t index,
635 VTDContextEntry *ce)
637 dma_addr_t addr, ce_size;
639 /* we have checked that root entry is present */
640 ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
641 VTD_CTX_ENTRY_LEGACY_SIZE;
643 if (s->root_scalable && index > UINT8_MAX / 2) {
644 index = index & (~VTD_DEVFN_CHECK_MASK);
645 addr = re->hi & VTD_ROOT_ENTRY_CTP;
646 } else {
647 addr = re->lo & VTD_ROOT_ENTRY_CTP;
650 addr = addr + index * ce_size;
651 if (dma_memory_read(&address_space_memory, addr,
652 ce, ce_size, MEMTXATTRS_UNSPECIFIED)) {
653 return -VTD_FR_CONTEXT_TABLE_INV;
656 ce->lo = le64_to_cpu(ce->lo);
657 ce->hi = le64_to_cpu(ce->hi);
658 if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
659 ce->val[2] = le64_to_cpu(ce->val[2]);
660 ce->val[3] = le64_to_cpu(ce->val[3]);
662 return 0;
665 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
667 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
670 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
672 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
675 /* Whether the pte indicates the address of the page frame */
676 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
678 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
681 /* Get the content of a spte located in @base_addr[@index] */
682 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
684 uint64_t slpte;
686 assert(index < VTD_SL_PT_ENTRY_NR);
688 if (dma_memory_read(&address_space_memory,
689 base_addr + index * sizeof(slpte),
690 &slpte, sizeof(slpte), MEMTXATTRS_UNSPECIFIED)) {
691 slpte = (uint64_t)-1;
692 return slpte;
694 slpte = le64_to_cpu(slpte);
695 return slpte;
698 /* Given an iova and the level of paging structure, return the offset
699 * of current level.
701 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
703 return (iova >> vtd_slpt_level_shift(level)) &
704 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
707 /* Check Capability Register to see if the @level of page-table is supported */
708 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
710 return VTD_CAP_SAGAW_MASK & s->cap &
711 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
714 /* Return true if check passed, otherwise false */
715 static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
716 VTDPASIDEntry *pe)
718 switch (VTD_PE_GET_TYPE(pe)) {
719 case VTD_SM_PASID_ENTRY_FLT:
720 case VTD_SM_PASID_ENTRY_SLT:
721 case VTD_SM_PASID_ENTRY_NESTED:
722 break;
723 case VTD_SM_PASID_ENTRY_PT:
724 if (!x86_iommu->pt_supported) {
725 return false;
727 break;
728 default:
729 /* Unknown type */
730 return false;
732 return true;
735 static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire)
737 return pdire->val & 1;
741 * Caller of this function should check present bit if wants
742 * to use pdir entry for further usage except for fpd bit check.
744 static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,
745 uint32_t pasid,
746 VTDPASIDDirEntry *pdire)
748 uint32_t index;
749 dma_addr_t addr, entry_size;
751 index = VTD_PASID_DIR_INDEX(pasid);
752 entry_size = VTD_PASID_DIR_ENTRY_SIZE;
753 addr = pasid_dir_base + index * entry_size;
754 if (dma_memory_read(&address_space_memory, addr,
755 pdire, entry_size, MEMTXATTRS_UNSPECIFIED)) {
756 return -VTD_FR_PASID_TABLE_INV;
759 return 0;
762 static inline bool vtd_pe_present(VTDPASIDEntry *pe)
764 return pe->val[0] & VTD_PASID_ENTRY_P;
767 static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s,
768 uint32_t pasid,
769 dma_addr_t addr,
770 VTDPASIDEntry *pe)
772 uint32_t index;
773 dma_addr_t entry_size;
774 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
776 index = VTD_PASID_TABLE_INDEX(pasid);
777 entry_size = VTD_PASID_ENTRY_SIZE;
778 addr = addr + index * entry_size;
779 if (dma_memory_read(&address_space_memory, addr,
780 pe, entry_size, MEMTXATTRS_UNSPECIFIED)) {
781 return -VTD_FR_PASID_TABLE_INV;
784 /* Do translation type check */
785 if (!vtd_pe_type_check(x86_iommu, pe)) {
786 return -VTD_FR_PASID_TABLE_INV;
789 if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
790 return -VTD_FR_PASID_TABLE_INV;
793 return 0;
797 * Caller of this function should check present bit if wants
798 * to use pasid entry for further usage except for fpd bit check.
800 static int vtd_get_pe_from_pdire(IntelIOMMUState *s,
801 uint32_t pasid,
802 VTDPASIDDirEntry *pdire,
803 VTDPASIDEntry *pe)
805 dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
807 return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe);
811 * This function gets a pasid entry from a specified pasid
812 * table (includes dir and leaf table) with a specified pasid.
813 * Sanity check should be done to ensure return a present
814 * pasid entry to caller.
816 static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s,
817 dma_addr_t pasid_dir_base,
818 uint32_t pasid,
819 VTDPASIDEntry *pe)
821 int ret;
822 VTDPASIDDirEntry pdire;
824 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base,
825 pasid, &pdire);
826 if (ret) {
827 return ret;
830 if (!vtd_pdire_present(&pdire)) {
831 return -VTD_FR_PASID_TABLE_INV;
834 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe);
835 if (ret) {
836 return ret;
839 if (!vtd_pe_present(pe)) {
840 return -VTD_FR_PASID_TABLE_INV;
843 return 0;
846 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
847 VTDContextEntry *ce,
848 VTDPASIDEntry *pe,
849 uint32_t pasid)
851 dma_addr_t pasid_dir_base;
852 int ret = 0;
854 if (pasid == PCI_NO_PASID) {
855 pasid = VTD_CE_GET_RID2PASID(ce);
857 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
858 ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe);
860 return ret;
863 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
864 VTDContextEntry *ce,
865 bool *pe_fpd_set,
866 uint32_t pasid)
868 int ret;
869 dma_addr_t pasid_dir_base;
870 VTDPASIDDirEntry pdire;
871 VTDPASIDEntry pe;
873 if (pasid == PCI_NO_PASID) {
874 pasid = VTD_CE_GET_RID2PASID(ce);
876 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
879 * No present bit check since fpd is meaningful even
880 * if the present bit is clear.
882 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire);
883 if (ret) {
884 return ret;
887 if (pdire.val & VTD_PASID_DIR_FPD) {
888 *pe_fpd_set = true;
889 return 0;
892 if (!vtd_pdire_present(&pdire)) {
893 return -VTD_FR_PASID_TABLE_INV;
897 * No present bit check since fpd is meaningful even
898 * if the present bit is clear.
900 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe);
901 if (ret) {
902 return ret;
905 if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
906 *pe_fpd_set = true;
909 return 0;
912 /* Get the page-table level that hardware should use for the second-level
913 * page-table walk from the Address Width field of context-entry.
915 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
917 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
920 static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
921 VTDContextEntry *ce,
922 uint32_t pasid)
924 VTDPASIDEntry pe;
926 if (s->root_scalable) {
927 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
928 return VTD_PE_GET_LEVEL(&pe);
931 return vtd_ce_get_level(ce);
934 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
936 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
939 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
940 VTDContextEntry *ce,
941 uint32_t pasid)
943 VTDPASIDEntry pe;
945 if (s->root_scalable) {
946 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
947 return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
950 return vtd_ce_get_agaw(ce);
953 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
955 return ce->lo & VTD_CONTEXT_ENTRY_TT;
958 /* Only for Legacy Mode. Return true if check passed, otherwise false */
959 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
960 VTDContextEntry *ce)
962 switch (vtd_ce_get_type(ce)) {
963 case VTD_CONTEXT_TT_MULTI_LEVEL:
964 /* Always supported */
965 break;
966 case VTD_CONTEXT_TT_DEV_IOTLB:
967 if (!x86_iommu->dt_supported) {
968 error_report_once("%s: DT specified but not supported", __func__);
969 return false;
971 break;
972 case VTD_CONTEXT_TT_PASS_THROUGH:
973 if (!x86_iommu->pt_supported) {
974 error_report_once("%s: PT specified but not supported", __func__);
975 return false;
977 break;
978 default:
979 /* Unknown type */
980 error_report_once("%s: unknown ce type: %"PRIu32, __func__,
981 vtd_ce_get_type(ce));
982 return false;
984 return true;
987 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
988 VTDContextEntry *ce, uint8_t aw,
989 uint32_t pasid)
991 uint32_t ce_agaw = vtd_get_iova_agaw(s, ce, pasid);
992 return 1ULL << MIN(ce_agaw, aw);
995 /* Return true if IOVA passes range check, otherwise false. */
996 static inline bool vtd_iova_range_check(IntelIOMMUState *s,
997 uint64_t iova, VTDContextEntry *ce,
998 uint8_t aw, uint32_t pasid)
1001 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
1002 * in CAP_REG and AW in context-entry.
1004 return !(iova & ~(vtd_iova_limit(s, ce, aw, pasid) - 1));
1007 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
1008 VTDContextEntry *ce,
1009 uint32_t pasid)
1011 VTDPASIDEntry pe;
1013 if (s->root_scalable) {
1014 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1015 return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
1018 return vtd_ce_get_slpt_base(ce);
1022 * Rsvd field masks for spte:
1023 * vtd_spte_rsvd 4k pages
1024 * vtd_spte_rsvd_large large pages
1026 static uint64_t vtd_spte_rsvd[5];
1027 static uint64_t vtd_spte_rsvd_large[5];
1029 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
1031 uint64_t rsvd_mask = vtd_spte_rsvd[level];
1033 if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) &&
1034 (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) {
1035 /* large page */
1036 rsvd_mask = vtd_spte_rsvd_large[level];
1039 return slpte & rsvd_mask;
1042 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1043 * of the translation, can be used for deciding the size of large page.
1045 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
1046 uint64_t iova, bool is_write,
1047 uint64_t *slptep, uint32_t *slpte_level,
1048 bool *reads, bool *writes, uint8_t aw_bits,
1049 uint32_t pasid)
1051 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1052 uint32_t level = vtd_get_iova_level(s, ce, pasid);
1053 uint32_t offset;
1054 uint64_t slpte;
1055 uint64_t access_right_check;
1056 uint64_t xlat, size;
1058 if (!vtd_iova_range_check(s, iova, ce, aw_bits, pasid)) {
1059 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ","
1060 "pasid=0x%" PRIx32 ")", __func__, iova, pasid);
1061 return -VTD_FR_ADDR_BEYOND_MGAW;
1064 /* FIXME: what is the Atomics request here? */
1065 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
1067 while (true) {
1068 offset = vtd_iova_level_offset(iova, level);
1069 slpte = vtd_get_slpte(addr, offset);
1071 if (slpte == (uint64_t)-1) {
1072 error_report_once("%s: detected read error on DMAR slpte "
1073 "(iova=0x%" PRIx64 ", pasid=0x%" PRIx32 ")",
1074 __func__, iova, pasid);
1075 if (level == vtd_get_iova_level(s, ce, pasid)) {
1076 /* Invalid programming of context-entry */
1077 return -VTD_FR_CONTEXT_ENTRY_INV;
1078 } else {
1079 return -VTD_FR_PAGING_ENTRY_INV;
1082 *reads = (*reads) && (slpte & VTD_SL_R);
1083 *writes = (*writes) && (slpte & VTD_SL_W);
1084 if (!(slpte & access_right_check)) {
1085 error_report_once("%s: detected slpte permission error "
1086 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1087 "slpte=0x%" PRIx64 ", write=%d, pasid=0x%"
1088 PRIx32 ")", __func__, iova, level,
1089 slpte, is_write, pasid);
1090 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
1092 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1093 error_report_once("%s: detected splte reserve non-zero "
1094 "iova=0x%" PRIx64 ", level=0x%" PRIx32
1095 "slpte=0x%" PRIx64 ", pasid=0x%" PRIX32 ")",
1096 __func__, iova, level, slpte, pasid);
1097 return -VTD_FR_PAGING_ENTRY_RSVD;
1100 if (vtd_is_last_slpte(slpte, level)) {
1101 *slptep = slpte;
1102 *slpte_level = level;
1103 break;
1105 addr = vtd_get_slpte_addr(slpte, aw_bits);
1106 level--;
1109 xlat = vtd_get_slpte_addr(*slptep, aw_bits);
1110 size = ~vtd_slpt_level_page_mask(level) + 1;
1113 * From VT-d spec 3.14: Untranslated requests and translation
1114 * requests that result in an address in the interrupt range will be
1115 * blocked with condition code LGN.4 or SGN.8.
1117 if ((xlat > VTD_INTERRUPT_ADDR_LAST ||
1118 xlat + size - 1 < VTD_INTERRUPT_ADDR_FIRST)) {
1119 return 0;
1120 } else {
1121 error_report_once("%s: xlat address is in interrupt range "
1122 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1123 "slpte=0x%" PRIx64 ", write=%d, "
1124 "xlat=0x%" PRIx64 ", size=0x%" PRIx64 ", "
1125 "pasid=0x%" PRIx32 ")",
1126 __func__, iova, level, slpte, is_write,
1127 xlat, size, pasid);
1128 return s->scalable_mode ? -VTD_FR_SM_INTERRUPT_ADDR :
1129 -VTD_FR_INTERRUPT_ADDR;
1133 typedef int (*vtd_page_walk_hook)(IOMMUTLBEvent *event, void *private);
1136 * Constant information used during page walking
1138 * @hook_fn: hook func to be called when detected page
1139 * @private: private data to be passed into hook func
1140 * @notify_unmap: whether we should notify invalid entries
1141 * @as: VT-d address space of the device
1142 * @aw: maximum address width
1143 * @domain: domain ID of the page walk
1145 typedef struct {
1146 VTDAddressSpace *as;
1147 vtd_page_walk_hook hook_fn;
1148 void *private;
1149 bool notify_unmap;
1150 uint8_t aw;
1151 uint16_t domain_id;
1152 } vtd_page_walk_info;
1154 static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info)
1156 VTDAddressSpace *as = info->as;
1157 vtd_page_walk_hook hook_fn = info->hook_fn;
1158 void *private = info->private;
1159 IOMMUTLBEntry *entry = &event->entry;
1160 DMAMap target = {
1161 .iova = entry->iova,
1162 .size = entry->addr_mask,
1163 .translated_addr = entry->translated_addr,
1164 .perm = entry->perm,
1166 const DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1168 if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) {
1169 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1170 return 0;
1173 assert(hook_fn);
1175 /* Update local IOVA mapped ranges */
1176 if (event->type == IOMMU_NOTIFIER_MAP) {
1177 if (mapped) {
1178 /* If it's exactly the same translation, skip */
1179 if (!memcmp(mapped, &target, sizeof(target))) {
1180 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1181 entry->translated_addr);
1182 return 0;
1183 } else {
1185 * Translation changed. Normally this should not
1186 * happen, but it can happen when with buggy guest
1187 * OSes. Note that there will be a small window that
1188 * we don't have map at all. But that's the best
1189 * effort we can do. The ideal way to emulate this is
1190 * atomically modify the PTE to follow what has
1191 * changed, but we can't. One example is that vfio
1192 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1193 * interface to modify a mapping (meanwhile it seems
1194 * meaningless to even provide one). Anyway, let's
1195 * mark this as a TODO in case one day we'll have
1196 * a better solution.
1198 IOMMUAccessFlags cache_perm = entry->perm;
1199 int ret;
1201 /* Emulate an UNMAP */
1202 event->type = IOMMU_NOTIFIER_UNMAP;
1203 entry->perm = IOMMU_NONE;
1204 trace_vtd_page_walk_one(info->domain_id,
1205 entry->iova,
1206 entry->translated_addr,
1207 entry->addr_mask,
1208 entry->perm);
1209 ret = hook_fn(event, private);
1210 if (ret) {
1211 return ret;
1213 /* Drop any existing mapping */
1214 iova_tree_remove(as->iova_tree, target);
1215 /* Recover the correct type */
1216 event->type = IOMMU_NOTIFIER_MAP;
1217 entry->perm = cache_perm;
1220 iova_tree_insert(as->iova_tree, &target);
1221 } else {
1222 if (!mapped) {
1223 /* Skip since we didn't map this range at all */
1224 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1225 return 0;
1227 iova_tree_remove(as->iova_tree, target);
1230 trace_vtd_page_walk_one(info->domain_id, entry->iova,
1231 entry->translated_addr, entry->addr_mask,
1232 entry->perm);
1233 return hook_fn(event, private);
1237 * vtd_page_walk_level - walk over specific level for IOVA range
1239 * @addr: base GPA addr to start the walk
1240 * @start: IOVA range start address
1241 * @end: IOVA range end address (start <= addr < end)
1242 * @read: whether parent level has read permission
1243 * @write: whether parent level has write permission
1244 * @info: constant information for the page walk
1246 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1247 uint64_t end, uint32_t level, bool read,
1248 bool write, vtd_page_walk_info *info)
1250 bool read_cur, write_cur, entry_valid;
1251 uint32_t offset;
1252 uint64_t slpte;
1253 uint64_t subpage_size, subpage_mask;
1254 IOMMUTLBEvent event;
1255 uint64_t iova = start;
1256 uint64_t iova_next;
1257 int ret = 0;
1259 trace_vtd_page_walk_level(addr, level, start, end);
1261 subpage_size = 1ULL << vtd_slpt_level_shift(level);
1262 subpage_mask = vtd_slpt_level_page_mask(level);
1264 while (iova < end) {
1265 iova_next = (iova & subpage_mask) + subpage_size;
1267 offset = vtd_iova_level_offset(iova, level);
1268 slpte = vtd_get_slpte(addr, offset);
1270 if (slpte == (uint64_t)-1) {
1271 trace_vtd_page_walk_skip_read(iova, iova_next);
1272 goto next;
1275 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1276 trace_vtd_page_walk_skip_reserve(iova, iova_next);
1277 goto next;
1280 /* Permissions are stacked with parents' */
1281 read_cur = read && (slpte & VTD_SL_R);
1282 write_cur = write && (slpte & VTD_SL_W);
1285 * As long as we have either read/write permission, this is a
1286 * valid entry. The rule works for both page entries and page
1287 * table entries.
1289 entry_valid = read_cur | write_cur;
1291 if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1293 * This is a valid PDE (or even bigger than PDE). We need
1294 * to walk one further level.
1296 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1297 iova, MIN(iova_next, end), level - 1,
1298 read_cur, write_cur, info);
1299 } else {
1301 * This means we are either:
1303 * (1) the real page entry (either 4K page, or huge page)
1304 * (2) the whole range is invalid
1306 * In either case, we send an IOTLB notification down.
1308 event.entry.target_as = &address_space_memory;
1309 event.entry.iova = iova & subpage_mask;
1310 event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1311 event.entry.addr_mask = ~subpage_mask;
1312 /* NOTE: this is only meaningful if entry_valid == true */
1313 event.entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1314 event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP :
1315 IOMMU_NOTIFIER_UNMAP;
1316 ret = vtd_page_walk_one(&event, info);
1319 if (ret < 0) {
1320 return ret;
1323 next:
1324 iova = iova_next;
1327 return 0;
1331 * vtd_page_walk - walk specific IOVA range, and call the hook
1333 * @s: intel iommu state
1334 * @ce: context entry to walk upon
1335 * @start: IOVA address to start the walk
1336 * @end: IOVA range end address (start <= addr < end)
1337 * @info: page walking information struct
1339 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1340 uint64_t start, uint64_t end,
1341 vtd_page_walk_info *info,
1342 uint32_t pasid)
1344 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1345 uint32_t level = vtd_get_iova_level(s, ce, pasid);
1347 if (!vtd_iova_range_check(s, start, ce, info->aw, pasid)) {
1348 return -VTD_FR_ADDR_BEYOND_MGAW;
1351 if (!vtd_iova_range_check(s, end, ce, info->aw, pasid)) {
1352 /* Fix end so that it reaches the maximum */
1353 end = vtd_iova_limit(s, ce, info->aw, pasid);
1356 return vtd_page_walk_level(addr, start, end, level, true, true, info);
1359 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1360 VTDRootEntry *re)
1362 /* Legacy Mode reserved bits check */
1363 if (!s->root_scalable &&
1364 (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1365 goto rsvd_err;
1367 /* Scalable Mode reserved bits check */
1368 if (s->root_scalable &&
1369 ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1370 (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1371 goto rsvd_err;
1373 return 0;
1375 rsvd_err:
1376 error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1377 ", lo=0x%"PRIx64,
1378 __func__, re->hi, re->lo);
1379 return -VTD_FR_ROOT_ENTRY_RSVD;
1382 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1383 VTDContextEntry *ce)
1385 if (!s->root_scalable &&
1386 (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1387 ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1388 error_report_once("%s: invalid context entry: hi=%"PRIx64
1389 ", lo=%"PRIx64" (reserved nonzero)",
1390 __func__, ce->hi, ce->lo);
1391 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1394 if (s->root_scalable &&
1395 (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1396 ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1397 ce->val[2] ||
1398 ce->val[3])) {
1399 error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1400 ", val[2]=%"PRIx64
1401 ", val[1]=%"PRIx64
1402 ", val[0]=%"PRIx64" (reserved nonzero)",
1403 __func__, ce->val[3], ce->val[2],
1404 ce->val[1], ce->val[0]);
1405 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1408 return 0;
1411 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1412 VTDContextEntry *ce)
1414 VTDPASIDEntry pe;
1417 * Make sure in Scalable Mode, a present context entry
1418 * has valid rid2pasid setting, which includes valid
1419 * rid2pasid field and corresponding pasid entry setting
1421 return vtd_ce_get_rid2pasid_entry(s, ce, &pe, PCI_NO_PASID);
1424 /* Map a device to its corresponding domain (context-entry) */
1425 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1426 uint8_t devfn, VTDContextEntry *ce)
1428 VTDRootEntry re;
1429 int ret_fr;
1430 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1432 ret_fr = vtd_get_root_entry(s, bus_num, &re);
1433 if (ret_fr) {
1434 return ret_fr;
1437 if (!vtd_root_entry_present(s, &re, devfn)) {
1438 /* Not error - it's okay we don't have root entry. */
1439 trace_vtd_re_not_present(bus_num);
1440 return -VTD_FR_ROOT_ENTRY_P;
1443 ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1444 if (ret_fr) {
1445 return ret_fr;
1448 ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1449 if (ret_fr) {
1450 return ret_fr;
1453 if (!vtd_ce_present(ce)) {
1454 /* Not error - it's okay we don't have context entry. */
1455 trace_vtd_ce_not_present(bus_num, devfn);
1456 return -VTD_FR_CONTEXT_ENTRY_P;
1459 ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1460 if (ret_fr) {
1461 return ret_fr;
1464 /* Check if the programming of context-entry is valid */
1465 if (!s->root_scalable &&
1466 !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1467 error_report_once("%s: invalid context entry: hi=%"PRIx64
1468 ", lo=%"PRIx64" (level %d not supported)",
1469 __func__, ce->hi, ce->lo,
1470 vtd_ce_get_level(ce));
1471 return -VTD_FR_CONTEXT_ENTRY_INV;
1474 if (!s->root_scalable) {
1475 /* Do translation type check */
1476 if (!vtd_ce_type_check(x86_iommu, ce)) {
1477 /* Errors dumped in vtd_ce_type_check() */
1478 return -VTD_FR_CONTEXT_ENTRY_INV;
1480 } else {
1482 * Check if the programming of context-entry.rid2pasid
1483 * and corresponding pasid setting is valid, and thus
1484 * avoids to check pasid entry fetching result in future
1485 * helper function calling.
1487 ret_fr = vtd_ce_rid2pasid_check(s, ce);
1488 if (ret_fr) {
1489 return ret_fr;
1493 return 0;
1496 static int vtd_sync_shadow_page_hook(IOMMUTLBEvent *event,
1497 void *private)
1499 memory_region_notify_iommu(private, 0, *event);
1500 return 0;
1503 static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1504 VTDContextEntry *ce,
1505 uint32_t pasid)
1507 VTDPASIDEntry pe;
1509 if (s->root_scalable) {
1510 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1511 return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1514 return VTD_CONTEXT_ENTRY_DID(ce->hi);
1517 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1518 VTDContextEntry *ce,
1519 hwaddr addr, hwaddr size)
1521 IntelIOMMUState *s = vtd_as->iommu_state;
1522 vtd_page_walk_info info = {
1523 .hook_fn = vtd_sync_shadow_page_hook,
1524 .private = (void *)&vtd_as->iommu,
1525 .notify_unmap = true,
1526 .aw = s->aw_bits,
1527 .as = vtd_as,
1528 .domain_id = vtd_get_domain_id(s, ce, vtd_as->pasid),
1531 return vtd_page_walk(s, ce, addr, addr + size, &info, vtd_as->pasid);
1534 static int vtd_address_space_sync(VTDAddressSpace *vtd_as)
1536 int ret;
1537 VTDContextEntry ce;
1538 IOMMUNotifier *n;
1540 /* If no MAP notifier registered, we simply invalidate all the cache */
1541 if (!vtd_as_has_map_notifier(vtd_as)) {
1542 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1543 memory_region_unmap_iommu_notifier_range(n);
1545 return 0;
1548 ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1549 pci_bus_num(vtd_as->bus),
1550 vtd_as->devfn, &ce);
1551 if (ret) {
1552 if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1554 * It's a valid scenario to have a context entry that is
1555 * not present. For example, when a device is removed
1556 * from an existing domain then the context entry will be
1557 * zeroed by the guest before it was put into another
1558 * domain. When this happens, instead of synchronizing
1559 * the shadow pages we should invalidate all existing
1560 * mappings and notify the backends.
1562 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1563 vtd_address_space_unmap(vtd_as, n);
1565 ret = 0;
1567 return ret;
1570 return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1574 * Check if specific device is configured to bypass address
1575 * translation for DMA requests. In Scalable Mode, bypass
1576 * 1st-level translation or 2nd-level translation, it depends
1577 * on PGTT setting.
1579 static bool vtd_dev_pt_enabled(IntelIOMMUState *s, VTDContextEntry *ce,
1580 uint32_t pasid)
1582 VTDPASIDEntry pe;
1583 int ret;
1585 if (s->root_scalable) {
1586 ret = vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1587 if (ret) {
1589 * This error is guest triggerable. We should assumt PT
1590 * not enabled for safety.
1592 return false;
1594 return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1597 return (vtd_ce_get_type(ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1601 static bool vtd_as_pt_enabled(VTDAddressSpace *as)
1603 IntelIOMMUState *s;
1604 VTDContextEntry ce;
1606 assert(as);
1608 s = as->iommu_state;
1609 if (vtd_dev_to_context_entry(s, pci_bus_num(as->bus), as->devfn,
1610 &ce)) {
1612 * Possibly failed to parse the context entry for some reason
1613 * (e.g., during init, or any guest configuration errors on
1614 * context entries). We should assume PT not enabled for
1615 * safety.
1617 return false;
1620 return vtd_dev_pt_enabled(s, &ce, as->pasid);
1623 /* Return whether the device is using IOMMU translation. */
1624 static bool vtd_switch_address_space(VTDAddressSpace *as)
1626 bool use_iommu, pt;
1627 /* Whether we need to take the BQL on our own */
1628 bool take_bql = !qemu_mutex_iothread_locked();
1630 assert(as);
1632 use_iommu = as->iommu_state->dmar_enabled && !vtd_as_pt_enabled(as);
1633 pt = as->iommu_state->dmar_enabled && vtd_as_pt_enabled(as);
1635 trace_vtd_switch_address_space(pci_bus_num(as->bus),
1636 VTD_PCI_SLOT(as->devfn),
1637 VTD_PCI_FUNC(as->devfn),
1638 use_iommu);
1641 * It's possible that we reach here without BQL, e.g., when called
1642 * from vtd_pt_enable_fast_path(). However the memory APIs need
1643 * it. We'd better make sure we have had it already, or, take it.
1645 if (take_bql) {
1646 qemu_mutex_lock_iothread();
1649 /* Turn off first then on the other */
1650 if (use_iommu) {
1651 memory_region_set_enabled(&as->nodmar, false);
1652 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1654 * vt-d spec v3.4 3.14:
1656 * """
1657 * Requests-with-PASID with input address in range 0xFEEx_xxxx
1658 * are translated normally like any other request-with-PASID
1659 * through DMA-remapping hardware.
1660 * """
1662 * Need to disable ir for as with PASID.
1664 if (as->pasid != PCI_NO_PASID) {
1665 memory_region_set_enabled(&as->iommu_ir, false);
1666 } else {
1667 memory_region_set_enabled(&as->iommu_ir, true);
1669 } else {
1670 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1671 memory_region_set_enabled(&as->nodmar, true);
1675 * vtd-spec v3.4 3.14:
1677 * """
1678 * Requests-with-PASID with input address in range 0xFEEx_xxxx are
1679 * translated normally like any other request-with-PASID through
1680 * DMA-remapping hardware. However, if such a request is processed
1681 * using pass-through translation, it will be blocked as described
1682 * in the paragraph below.
1684 * Software must not program paging-structure entries to remap any
1685 * address to the interrupt address range. Untranslated requests
1686 * and translation requests that result in an address in the
1687 * interrupt range will be blocked with condition code LGN.4 or
1688 * SGN.8.
1689 * """
1691 * We enable per as memory region (iommu_ir_fault) for catching
1692 * the tranlsation for interrupt range through PASID + PT.
1694 if (pt && as->pasid != PCI_NO_PASID) {
1695 memory_region_set_enabled(&as->iommu_ir_fault, true);
1696 } else {
1697 memory_region_set_enabled(&as->iommu_ir_fault, false);
1700 if (take_bql) {
1701 qemu_mutex_unlock_iothread();
1704 return use_iommu;
1707 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1709 VTDAddressSpace *vtd_as;
1710 GHashTableIter iter;
1712 g_hash_table_iter_init(&iter, s->vtd_address_spaces);
1713 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_as)) {
1714 vtd_switch_address_space(vtd_as);
1718 static const bool vtd_qualified_faults[] = {
1719 [VTD_FR_RESERVED] = false,
1720 [VTD_FR_ROOT_ENTRY_P] = false,
1721 [VTD_FR_CONTEXT_ENTRY_P] = true,
1722 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1723 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1724 [VTD_FR_WRITE] = true,
1725 [VTD_FR_READ] = true,
1726 [VTD_FR_PAGING_ENTRY_INV] = true,
1727 [VTD_FR_ROOT_TABLE_INV] = false,
1728 [VTD_FR_CONTEXT_TABLE_INV] = false,
1729 [VTD_FR_INTERRUPT_ADDR] = true,
1730 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1731 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1732 [VTD_FR_CONTEXT_ENTRY_TT] = true,
1733 [VTD_FR_PASID_TABLE_INV] = false,
1734 [VTD_FR_SM_INTERRUPT_ADDR] = true,
1735 [VTD_FR_MAX] = false,
1738 /* To see if a fault condition is "qualified", which is reported to software
1739 * only if the FPD field in the context-entry used to process the faulting
1740 * request is 0.
1742 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1744 return vtd_qualified_faults[fault];
1747 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1749 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1752 static gboolean vtd_find_as_by_sid(gpointer key, gpointer value,
1753 gpointer user_data)
1755 struct vtd_as_key *as_key = (struct vtd_as_key *)key;
1756 uint16_t target_sid = *(uint16_t *)user_data;
1757 uint16_t sid = PCI_BUILD_BDF(pci_bus_num(as_key->bus), as_key->devfn);
1758 return sid == target_sid;
1761 static VTDAddressSpace *vtd_get_as_by_sid(IntelIOMMUState *s, uint16_t sid)
1763 uint8_t bus_num = PCI_BUS_NUM(sid);
1764 VTDAddressSpace *vtd_as = s->vtd_as_cache[bus_num];
1766 if (vtd_as &&
1767 (sid == PCI_BUILD_BDF(pci_bus_num(vtd_as->bus), vtd_as->devfn))) {
1768 return vtd_as;
1771 vtd_as = g_hash_table_find(s->vtd_address_spaces, vtd_find_as_by_sid, &sid);
1772 s->vtd_as_cache[bus_num] = vtd_as;
1774 return vtd_as;
1777 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1779 VTDAddressSpace *vtd_as;
1780 bool success = false;
1782 vtd_as = vtd_get_as_by_sid(s, source_id);
1783 if (!vtd_as) {
1784 goto out;
1787 if (vtd_switch_address_space(vtd_as) == false) {
1788 /* We switched off IOMMU region successfully. */
1789 success = true;
1792 out:
1793 trace_vtd_pt_enable_fast_path(source_id, success);
1796 static void vtd_report_fault(IntelIOMMUState *s,
1797 int err, bool is_fpd_set,
1798 uint16_t source_id,
1799 hwaddr addr,
1800 bool is_write,
1801 bool is_pasid,
1802 uint32_t pasid)
1804 if (is_fpd_set && vtd_is_qualified_fault(err)) {
1805 trace_vtd_fault_disabled();
1806 } else {
1807 vtd_report_dmar_fault(s, source_id, addr, err, is_write,
1808 is_pasid, pasid);
1812 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1813 * translation.
1815 * Called from RCU critical section.
1817 * @bus_num: The bus number
1818 * @devfn: The devfn, which is the combined of device and function number
1819 * @is_write: The access is a write operation
1820 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1822 * Returns true if translation is successful, otherwise false.
1824 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1825 uint8_t devfn, hwaddr addr, bool is_write,
1826 IOMMUTLBEntry *entry)
1828 IntelIOMMUState *s = vtd_as->iommu_state;
1829 VTDContextEntry ce;
1830 uint8_t bus_num = pci_bus_num(bus);
1831 VTDContextCacheEntry *cc_entry;
1832 uint64_t slpte, page_mask;
1833 uint32_t level, pasid = vtd_as->pasid;
1834 uint16_t source_id = PCI_BUILD_BDF(bus_num, devfn);
1835 int ret_fr;
1836 bool is_fpd_set = false;
1837 bool reads = true;
1838 bool writes = true;
1839 uint8_t access_flags;
1840 bool rid2pasid = (pasid == PCI_NO_PASID) && s->root_scalable;
1841 VTDIOTLBEntry *iotlb_entry;
1844 * We have standalone memory region for interrupt addresses, we
1845 * should never receive translation requests in this region.
1847 assert(!vtd_is_interrupt_addr(addr));
1849 vtd_iommu_lock(s);
1851 cc_entry = &vtd_as->context_cache_entry;
1853 /* Try to fetch slpte form IOTLB, we don't need RID2PASID logic */
1854 if (!rid2pasid) {
1855 iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
1856 if (iotlb_entry) {
1857 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1858 iotlb_entry->domain_id);
1859 slpte = iotlb_entry->slpte;
1860 access_flags = iotlb_entry->access_flags;
1861 page_mask = iotlb_entry->mask;
1862 goto out;
1866 /* Try to fetch context-entry from cache first */
1867 if (cc_entry->context_cache_gen == s->context_cache_gen) {
1868 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1869 cc_entry->context_entry.lo,
1870 cc_entry->context_cache_gen);
1871 ce = cc_entry->context_entry;
1872 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1873 if (!is_fpd_set && s->root_scalable) {
1874 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
1875 if (ret_fr) {
1876 vtd_report_fault(s, -ret_fr, is_fpd_set,
1877 source_id, addr, is_write,
1878 false, 0);
1879 goto error;
1882 } else {
1883 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1884 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1885 if (!ret_fr && !is_fpd_set && s->root_scalable) {
1886 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
1888 if (ret_fr) {
1889 vtd_report_fault(s, -ret_fr, is_fpd_set,
1890 source_id, addr, is_write,
1891 false, 0);
1892 goto error;
1894 /* Update context-cache */
1895 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1896 cc_entry->context_cache_gen,
1897 s->context_cache_gen);
1898 cc_entry->context_entry = ce;
1899 cc_entry->context_cache_gen = s->context_cache_gen;
1902 if (rid2pasid) {
1903 pasid = VTD_CE_GET_RID2PASID(&ce);
1907 * We don't need to translate for pass-through context entries.
1908 * Also, let's ignore IOTLB caching as well for PT devices.
1910 if (vtd_dev_pt_enabled(s, &ce, pasid)) {
1911 entry->iova = addr & VTD_PAGE_MASK_4K;
1912 entry->translated_addr = entry->iova;
1913 entry->addr_mask = ~VTD_PAGE_MASK_4K;
1914 entry->perm = IOMMU_RW;
1915 trace_vtd_translate_pt(source_id, entry->iova);
1918 * When this happens, it means firstly caching-mode is not
1919 * enabled, and this is the first passthrough translation for
1920 * the device. Let's enable the fast path for passthrough.
1922 * When passthrough is disabled again for the device, we can
1923 * capture it via the context entry invalidation, then the
1924 * IOMMU region can be swapped back.
1926 vtd_pt_enable_fast_path(s, source_id);
1927 vtd_iommu_unlock(s);
1928 return true;
1931 /* Try to fetch slpte form IOTLB for RID2PASID slow path */
1932 if (rid2pasid) {
1933 iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
1934 if (iotlb_entry) {
1935 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1936 iotlb_entry->domain_id);
1937 slpte = iotlb_entry->slpte;
1938 access_flags = iotlb_entry->access_flags;
1939 page_mask = iotlb_entry->mask;
1940 goto out;
1944 ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
1945 &reads, &writes, s->aw_bits, pasid);
1946 if (ret_fr) {
1947 vtd_report_fault(s, -ret_fr, is_fpd_set, source_id,
1948 addr, is_write, pasid != PCI_NO_PASID, pasid);
1949 goto error;
1952 page_mask = vtd_slpt_level_page_mask(level);
1953 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1954 vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce, pasid),
1955 addr, slpte, access_flags, level, pasid);
1956 out:
1957 vtd_iommu_unlock(s);
1958 entry->iova = addr & page_mask;
1959 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1960 entry->addr_mask = ~page_mask;
1961 entry->perm = access_flags;
1962 return true;
1964 error:
1965 vtd_iommu_unlock(s);
1966 entry->iova = 0;
1967 entry->translated_addr = 0;
1968 entry->addr_mask = 0;
1969 entry->perm = IOMMU_NONE;
1970 return false;
1973 static void vtd_root_table_setup(IntelIOMMUState *s)
1975 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1976 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1978 vtd_update_scalable_state(s);
1980 trace_vtd_reg_dmar_root(s->root, s->root_scalable);
1983 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1984 uint32_t index, uint32_t mask)
1986 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1989 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1991 uint64_t value = 0;
1992 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1993 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1994 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1995 s->intr_eime = value & VTD_IRTA_EIME;
1997 /* Notify global invalidation */
1998 vtd_iec_notify_all(s, true, 0, 0);
2000 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
2003 static void vtd_iommu_replay_all(IntelIOMMUState *s)
2005 VTDAddressSpace *vtd_as;
2007 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2008 vtd_address_space_sync(vtd_as);
2012 static void vtd_context_global_invalidate(IntelIOMMUState *s)
2014 trace_vtd_inv_desc_cc_global();
2015 /* Protects context cache */
2016 vtd_iommu_lock(s);
2017 s->context_cache_gen++;
2018 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
2019 vtd_reset_context_cache_locked(s);
2021 vtd_iommu_unlock(s);
2022 vtd_address_space_refresh_all(s);
2024 * From VT-d spec 6.5.2.1, a global context entry invalidation
2025 * should be followed by a IOTLB global invalidation, so we should
2026 * be safe even without this. Hoewever, let's replay the region as
2027 * well to be safer, and go back here when we need finer tunes for
2028 * VT-d emulation codes.
2030 vtd_iommu_replay_all(s);
2033 /* Do a context-cache device-selective invalidation.
2034 * @func_mask: FM field after shifting
2036 static void vtd_context_device_invalidate(IntelIOMMUState *s,
2037 uint16_t source_id,
2038 uint16_t func_mask)
2040 GHashTableIter as_it;
2041 uint16_t mask;
2042 VTDAddressSpace *vtd_as;
2043 uint8_t bus_n, devfn;
2045 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
2047 switch (func_mask & 3) {
2048 case 0:
2049 mask = 0; /* No bits in the SID field masked */
2050 break;
2051 case 1:
2052 mask = 4; /* Mask bit 2 in the SID field */
2053 break;
2054 case 2:
2055 mask = 6; /* Mask bit 2:1 in the SID field */
2056 break;
2057 case 3:
2058 mask = 7; /* Mask bit 2:0 in the SID field */
2059 break;
2060 default:
2061 g_assert_not_reached();
2063 mask = ~mask;
2065 bus_n = VTD_SID_TO_BUS(source_id);
2066 devfn = VTD_SID_TO_DEVFN(source_id);
2068 g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
2069 while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
2070 if ((pci_bus_num(vtd_as->bus) == bus_n) &&
2071 (vtd_as->devfn & mask) == (devfn & mask)) {
2072 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(vtd_as->devfn),
2073 VTD_PCI_FUNC(vtd_as->devfn));
2074 vtd_iommu_lock(s);
2075 vtd_as->context_cache_entry.context_cache_gen = 0;
2076 vtd_iommu_unlock(s);
2078 * Do switch address space when needed, in case if the
2079 * device passthrough bit is switched.
2081 vtd_switch_address_space(vtd_as);
2083 * So a device is moving out of (or moving into) a
2084 * domain, resync the shadow page table.
2085 * This won't bring bad even if we have no such
2086 * notifier registered - the IOMMU notification
2087 * framework will skip MAP notifications if that
2088 * happened.
2090 vtd_address_space_sync(vtd_as);
2095 /* Context-cache invalidation
2096 * Returns the Context Actual Invalidation Granularity.
2097 * @val: the content of the CCMD_REG
2099 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
2101 uint64_t caig;
2102 uint64_t type = val & VTD_CCMD_CIRG_MASK;
2104 switch (type) {
2105 case VTD_CCMD_DOMAIN_INVL:
2106 /* Fall through */
2107 case VTD_CCMD_GLOBAL_INVL:
2108 caig = VTD_CCMD_GLOBAL_INVL_A;
2109 vtd_context_global_invalidate(s);
2110 break;
2112 case VTD_CCMD_DEVICE_INVL:
2113 caig = VTD_CCMD_DEVICE_INVL_A;
2114 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
2115 break;
2117 default:
2118 error_report_once("%s: invalid context: 0x%" PRIx64,
2119 __func__, val);
2120 caig = 0;
2122 return caig;
2125 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
2127 trace_vtd_inv_desc_iotlb_global();
2128 vtd_reset_iotlb(s);
2129 vtd_iommu_replay_all(s);
2132 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
2134 VTDContextEntry ce;
2135 VTDAddressSpace *vtd_as;
2137 trace_vtd_inv_desc_iotlb_domain(domain_id);
2139 vtd_iommu_lock(s);
2140 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
2141 &domain_id);
2142 vtd_iommu_unlock(s);
2144 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2145 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2146 vtd_as->devfn, &ce) &&
2147 domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2148 vtd_address_space_sync(vtd_as);
2153 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
2154 uint16_t domain_id, hwaddr addr,
2155 uint8_t am, uint32_t pasid)
2157 VTDAddressSpace *vtd_as;
2158 VTDContextEntry ce;
2159 int ret;
2160 hwaddr size = (1 << am) * VTD_PAGE_SIZE;
2162 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
2163 if (pasid != PCI_NO_PASID && pasid != vtd_as->pasid) {
2164 continue;
2166 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2167 vtd_as->devfn, &ce);
2168 if (!ret && domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2169 if (vtd_as_has_map_notifier(vtd_as)) {
2171 * As long as we have MAP notifications registered in
2172 * any of our IOMMU notifiers, we need to sync the
2173 * shadow page table.
2175 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
2176 } else {
2178 * For UNMAP-only notifiers, we don't need to walk the
2179 * page tables. We just deliver the PSI down to
2180 * invalidate caches.
2182 IOMMUTLBEvent event = {
2183 .type = IOMMU_NOTIFIER_UNMAP,
2184 .entry = {
2185 .target_as = &address_space_memory,
2186 .iova = addr,
2187 .translated_addr = 0,
2188 .addr_mask = size - 1,
2189 .perm = IOMMU_NONE,
2192 memory_region_notify_iommu(&vtd_as->iommu, 0, event);
2198 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
2199 hwaddr addr, uint8_t am)
2201 VTDIOTLBPageInvInfo info;
2203 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
2205 assert(am <= VTD_MAMV);
2206 info.domain_id = domain_id;
2207 info.addr = addr;
2208 info.mask = ~((1 << am) - 1);
2209 vtd_iommu_lock(s);
2210 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
2211 vtd_iommu_unlock(s);
2212 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am, PCI_NO_PASID);
2215 /* Flush IOTLB
2216 * Returns the IOTLB Actual Invalidation Granularity.
2217 * @val: the content of the IOTLB_REG
2219 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
2221 uint64_t iaig;
2222 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
2223 uint16_t domain_id;
2224 hwaddr addr;
2225 uint8_t am;
2227 switch (type) {
2228 case VTD_TLB_GLOBAL_FLUSH:
2229 iaig = VTD_TLB_GLOBAL_FLUSH_A;
2230 vtd_iotlb_global_invalidate(s);
2231 break;
2233 case VTD_TLB_DSI_FLUSH:
2234 domain_id = VTD_TLB_DID(val);
2235 iaig = VTD_TLB_DSI_FLUSH_A;
2236 vtd_iotlb_domain_invalidate(s, domain_id);
2237 break;
2239 case VTD_TLB_PSI_FLUSH:
2240 domain_id = VTD_TLB_DID(val);
2241 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
2242 am = VTD_IVA_AM(addr);
2243 addr = VTD_IVA_ADDR(addr);
2244 if (am > VTD_MAMV) {
2245 error_report_once("%s: address mask overflow: 0x%" PRIx64,
2246 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
2247 iaig = 0;
2248 break;
2250 iaig = VTD_TLB_PSI_FLUSH_A;
2251 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2252 break;
2254 default:
2255 error_report_once("%s: invalid granularity: 0x%" PRIx64,
2256 __func__, val);
2257 iaig = 0;
2259 return iaig;
2262 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2264 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2266 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2267 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2270 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2272 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2274 trace_vtd_inv_qi_enable(en);
2276 if (en) {
2277 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2278 /* 2^(x+8) entries */
2279 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2280 s->qi_enabled = true;
2281 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2282 /* Ok - report back to driver */
2283 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2285 if (s->iq_tail != 0) {
2287 * This is a spec violation but Windows guests are known to set up
2288 * Queued Invalidation this way so we allow the write and process
2289 * Invalidation Descriptors right away.
2291 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2292 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2293 vtd_fetch_inv_desc(s);
2296 } else {
2297 if (vtd_queued_inv_disable_check(s)) {
2298 /* disable Queued Invalidation */
2299 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2300 s->iq_head = 0;
2301 s->qi_enabled = false;
2302 /* Ok - report back to driver */
2303 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2304 } else {
2305 error_report_once("%s: detected improper state when disable QI "
2306 "(head=0x%x, tail=0x%x, last_type=%d)",
2307 __func__,
2308 s->iq_head, s->iq_tail, s->iq_last_desc_type);
2313 /* Set Root Table Pointer */
2314 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2316 vtd_root_table_setup(s);
2317 /* Ok - report back to driver */
2318 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2319 vtd_reset_caches(s);
2320 vtd_address_space_refresh_all(s);
2323 /* Set Interrupt Remap Table Pointer */
2324 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2326 vtd_interrupt_remap_table_setup(s);
2327 /* Ok - report back to driver */
2328 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2331 /* Handle Translation Enable/Disable */
2332 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2334 if (s->dmar_enabled == en) {
2335 return;
2338 trace_vtd_dmar_enable(en);
2340 if (en) {
2341 s->dmar_enabled = true;
2342 /* Ok - report back to driver */
2343 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2344 } else {
2345 s->dmar_enabled = false;
2347 /* Clear the index of Fault Recording Register */
2348 s->next_frcd_reg = 0;
2349 /* Ok - report back to driver */
2350 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2353 vtd_reset_caches(s);
2354 vtd_address_space_refresh_all(s);
2357 /* Handle Interrupt Remap Enable/Disable */
2358 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2360 trace_vtd_ir_enable(en);
2362 if (en) {
2363 s->intr_enabled = true;
2364 /* Ok - report back to driver */
2365 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2366 } else {
2367 s->intr_enabled = false;
2368 /* Ok - report back to driver */
2369 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2373 /* Handle write to Global Command Register */
2374 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2376 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2377 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2378 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2379 uint32_t changed = status ^ val;
2381 trace_vtd_reg_write_gcmd(status, val);
2382 if ((changed & VTD_GCMD_TE) && s->dma_translation) {
2383 /* Translation enable/disable */
2384 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2386 if (val & VTD_GCMD_SRTP) {
2387 /* Set/update the root-table pointer */
2388 vtd_handle_gcmd_srtp(s);
2390 if (changed & VTD_GCMD_QIE) {
2391 /* Queued Invalidation Enable */
2392 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2394 if (val & VTD_GCMD_SIRTP) {
2395 /* Set/update the interrupt remapping root-table pointer */
2396 vtd_handle_gcmd_sirtp(s);
2398 if ((changed & VTD_GCMD_IRE) &&
2399 x86_iommu_ir_supported(x86_iommu)) {
2400 /* Interrupt remap enable/disable */
2401 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2405 /* Handle write to Context Command Register */
2406 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2408 uint64_t ret;
2409 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2411 /* Context-cache invalidation request */
2412 if (val & VTD_CCMD_ICC) {
2413 if (s->qi_enabled) {
2414 error_report_once("Queued Invalidation enabled, "
2415 "should not use register-based invalidation");
2416 return;
2418 ret = vtd_context_cache_invalidate(s, val);
2419 /* Invalidation completed. Change something to show */
2420 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2421 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2422 ret);
2426 /* Handle write to IOTLB Invalidation Register */
2427 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2429 uint64_t ret;
2430 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2432 /* IOTLB invalidation request */
2433 if (val & VTD_TLB_IVT) {
2434 if (s->qi_enabled) {
2435 error_report_once("Queued Invalidation enabled, "
2436 "should not use register-based invalidation");
2437 return;
2439 ret = vtd_iotlb_flush(s, val);
2440 /* Invalidation completed. Change something to show */
2441 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2442 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2443 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2447 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
2448 static bool vtd_get_inv_desc(IntelIOMMUState *s,
2449 VTDInvDesc *inv_desc)
2451 dma_addr_t base_addr = s->iq;
2452 uint32_t offset = s->iq_head;
2453 uint32_t dw = s->iq_dw ? 32 : 16;
2454 dma_addr_t addr = base_addr + offset * dw;
2456 if (dma_memory_read(&address_space_memory, addr,
2457 inv_desc, dw, MEMTXATTRS_UNSPECIFIED)) {
2458 error_report_once("Read INV DESC failed.");
2459 return false;
2461 inv_desc->lo = le64_to_cpu(inv_desc->lo);
2462 inv_desc->hi = le64_to_cpu(inv_desc->hi);
2463 if (dw == 32) {
2464 inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2465 inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2467 return true;
2470 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2472 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
2473 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
2474 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2475 " (reserved nonzero)", __func__, inv_desc->hi,
2476 inv_desc->lo);
2477 return false;
2479 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2480 /* Status Write */
2481 uint32_t status_data = (uint32_t)(inv_desc->lo >>
2482 VTD_INV_DESC_WAIT_DATA_SHIFT);
2484 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2486 /* FIXME: need to be masked with HAW? */
2487 dma_addr_t status_addr = inv_desc->hi;
2488 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2489 status_data = cpu_to_le32(status_data);
2490 if (dma_memory_write(&address_space_memory, status_addr,
2491 &status_data, sizeof(status_data),
2492 MEMTXATTRS_UNSPECIFIED)) {
2493 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2494 return false;
2496 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2497 /* Interrupt flag */
2498 vtd_generate_completion_event(s);
2499 } else {
2500 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2501 " (unknown type)", __func__, inv_desc->hi,
2502 inv_desc->lo);
2503 return false;
2505 return true;
2508 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2509 VTDInvDesc *inv_desc)
2511 uint16_t sid, fmask;
2513 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
2514 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2515 " (reserved nonzero)", __func__, inv_desc->hi,
2516 inv_desc->lo);
2517 return false;
2519 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2520 case VTD_INV_DESC_CC_DOMAIN:
2521 trace_vtd_inv_desc_cc_domain(
2522 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2523 /* Fall through */
2524 case VTD_INV_DESC_CC_GLOBAL:
2525 vtd_context_global_invalidate(s);
2526 break;
2528 case VTD_INV_DESC_CC_DEVICE:
2529 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2530 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2531 vtd_context_device_invalidate(s, sid, fmask);
2532 break;
2534 default:
2535 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2536 " (invalid type)", __func__, inv_desc->hi,
2537 inv_desc->lo);
2538 return false;
2540 return true;
2543 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2545 uint16_t domain_id;
2546 uint8_t am;
2547 hwaddr addr;
2549 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
2550 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
2551 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2552 ", lo=0x%"PRIx64" (reserved bits unzero)",
2553 __func__, inv_desc->hi, inv_desc->lo);
2554 return false;
2557 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2558 case VTD_INV_DESC_IOTLB_GLOBAL:
2559 vtd_iotlb_global_invalidate(s);
2560 break;
2562 case VTD_INV_DESC_IOTLB_DOMAIN:
2563 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2564 vtd_iotlb_domain_invalidate(s, domain_id);
2565 break;
2567 case VTD_INV_DESC_IOTLB_PAGE:
2568 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2569 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2570 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2571 if (am > VTD_MAMV) {
2572 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2573 ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)",
2574 __func__, inv_desc->hi, inv_desc->lo,
2575 am, (unsigned)VTD_MAMV);
2576 return false;
2578 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2579 break;
2581 default:
2582 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2583 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)",
2584 __func__, inv_desc->hi, inv_desc->lo,
2585 inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2586 return false;
2588 return true;
2591 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2592 VTDInvDesc *inv_desc)
2594 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2595 inv_desc->iec.index,
2596 inv_desc->iec.index_mask);
2598 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2599 inv_desc->iec.index,
2600 inv_desc->iec.index_mask);
2601 return true;
2604 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2605 VTDInvDesc *inv_desc)
2607 VTDAddressSpace *vtd_dev_as;
2608 IOMMUTLBEvent event;
2609 hwaddr addr;
2610 uint64_t sz;
2611 uint16_t sid;
2612 bool size;
2614 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2615 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2616 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2618 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2619 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2620 error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2621 ", lo=%"PRIx64" (reserved nonzero)", __func__,
2622 inv_desc->hi, inv_desc->lo);
2623 return false;
2627 * Using sid is OK since the guest should have finished the
2628 * initialization of both the bus and device.
2630 vtd_dev_as = vtd_get_as_by_sid(s, sid);
2631 if (!vtd_dev_as) {
2632 goto done;
2635 /* According to ATS spec table 2.4:
2636 * S = 0, bits 15:12 = xxxx range size: 4K
2637 * S = 1, bits 15:12 = xxx0 range size: 8K
2638 * S = 1, bits 15:12 = xx01 range size: 16K
2639 * S = 1, bits 15:12 = x011 range size: 32K
2640 * S = 1, bits 15:12 = 0111 range size: 64K
2641 * ...
2643 if (size) {
2644 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2645 addr &= ~(sz - 1);
2646 } else {
2647 sz = VTD_PAGE_SIZE;
2650 event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP;
2651 event.entry.target_as = &vtd_dev_as->as;
2652 event.entry.addr_mask = sz - 1;
2653 event.entry.iova = addr;
2654 event.entry.perm = IOMMU_NONE;
2655 event.entry.translated_addr = 0;
2656 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event);
2658 done:
2659 return true;
2662 static bool vtd_process_inv_desc(IntelIOMMUState *s)
2664 VTDInvDesc inv_desc;
2665 uint8_t desc_type;
2667 trace_vtd_inv_qi_head(s->iq_head);
2668 if (!vtd_get_inv_desc(s, &inv_desc)) {
2669 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2670 return false;
2673 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2674 /* FIXME: should update at first or at last? */
2675 s->iq_last_desc_type = desc_type;
2677 switch (desc_type) {
2678 case VTD_INV_DESC_CC:
2679 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2680 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2681 return false;
2683 break;
2685 case VTD_INV_DESC_IOTLB:
2686 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2687 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2688 return false;
2690 break;
2693 * TODO: the entity of below two cases will be implemented in future series.
2694 * To make guest (which integrates scalable mode support patch set in
2695 * iommu driver) work, just return true is enough so far.
2697 case VTD_INV_DESC_PC:
2698 break;
2700 case VTD_INV_DESC_PIOTLB:
2701 break;
2703 case VTD_INV_DESC_WAIT:
2704 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2705 if (!vtd_process_wait_desc(s, &inv_desc)) {
2706 return false;
2708 break;
2710 case VTD_INV_DESC_IEC:
2711 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2712 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2713 return false;
2715 break;
2717 case VTD_INV_DESC_DEVICE:
2718 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2719 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2720 return false;
2722 break;
2724 default:
2725 error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2726 " (unknown type)", __func__, inv_desc.hi,
2727 inv_desc.lo);
2728 return false;
2730 s->iq_head++;
2731 if (s->iq_head == s->iq_size) {
2732 s->iq_head = 0;
2734 return true;
2737 /* Try to fetch and process more Invalidation Descriptors */
2738 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2740 int qi_shift;
2742 /* Refer to 10.4.23 of VT-d spec 3.0 */
2743 qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4;
2745 trace_vtd_inv_qi_fetch();
2747 if (s->iq_tail >= s->iq_size) {
2748 /* Detects an invalid Tail pointer */
2749 error_report_once("%s: detected invalid QI tail "
2750 "(tail=0x%x, size=0x%x)",
2751 __func__, s->iq_tail, s->iq_size);
2752 vtd_handle_inv_queue_error(s);
2753 return;
2755 while (s->iq_head != s->iq_tail) {
2756 if (!vtd_process_inv_desc(s)) {
2757 /* Invalidation Queue Errors */
2758 vtd_handle_inv_queue_error(s);
2759 break;
2761 /* Must update the IQH_REG in time */
2762 vtd_set_quad_raw(s, DMAR_IQH_REG,
2763 (((uint64_t)(s->iq_head)) << qi_shift) &
2764 VTD_IQH_QH_MASK);
2768 /* Handle write to Invalidation Queue Tail Register */
2769 static void vtd_handle_iqt_write(IntelIOMMUState *s)
2771 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2773 if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2774 error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2775 __func__, val);
2776 return;
2778 s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
2779 trace_vtd_inv_qi_tail(s->iq_tail);
2781 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2782 /* Process Invalidation Queue here */
2783 vtd_fetch_inv_desc(s);
2787 static void vtd_handle_fsts_write(IntelIOMMUState *s)
2789 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2790 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2791 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2793 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2794 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2795 trace_vtd_fsts_clear_ip();
2797 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2798 * Descriptors if there are any when Queued Invalidation is enabled?
2802 static void vtd_handle_fectl_write(IntelIOMMUState *s)
2804 uint32_t fectl_reg;
2805 /* FIXME: when software clears the IM field, check the IP field. But do we
2806 * need to compare the old value and the new value to conclude that
2807 * software clears the IM field? Or just check if the IM field is zero?
2809 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2811 trace_vtd_reg_write_fectl(fectl_reg);
2813 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2814 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2815 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2819 static void vtd_handle_ics_write(IntelIOMMUState *s)
2821 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2822 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2824 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2825 trace_vtd_reg_ics_clear_ip();
2826 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2830 static void vtd_handle_iectl_write(IntelIOMMUState *s)
2832 uint32_t iectl_reg;
2833 /* FIXME: when software clears the IM field, check the IP field. But do we
2834 * need to compare the old value and the new value to conclude that
2835 * software clears the IM field? Or just check if the IM field is zero?
2837 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2839 trace_vtd_reg_write_iectl(iectl_reg);
2841 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2842 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2843 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2847 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2849 IntelIOMMUState *s = opaque;
2850 uint64_t val;
2852 trace_vtd_reg_read(addr, size);
2854 if (addr + size > DMAR_REG_SIZE) {
2855 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2856 " size=0x%x", __func__, addr, size);
2857 return (uint64_t)-1;
2860 switch (addr) {
2861 /* Root Table Address Register, 64-bit */
2862 case DMAR_RTADDR_REG:
2863 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
2864 if (size == 4) {
2865 val = val & ((1ULL << 32) - 1);
2867 break;
2869 case DMAR_RTADDR_REG_HI:
2870 assert(size == 4);
2871 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32;
2872 break;
2874 /* Invalidation Queue Address Register, 64-bit */
2875 case DMAR_IQA_REG:
2876 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2877 if (size == 4) {
2878 val = val & ((1ULL << 32) - 1);
2880 break;
2882 case DMAR_IQA_REG_HI:
2883 assert(size == 4);
2884 val = s->iq >> 32;
2885 break;
2887 default:
2888 if (size == 4) {
2889 val = vtd_get_long(s, addr);
2890 } else {
2891 val = vtd_get_quad(s, addr);
2895 return val;
2898 static void vtd_mem_write(void *opaque, hwaddr addr,
2899 uint64_t val, unsigned size)
2901 IntelIOMMUState *s = opaque;
2903 trace_vtd_reg_write(addr, size, val);
2905 if (addr + size > DMAR_REG_SIZE) {
2906 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2907 " size=0x%x", __func__, addr, size);
2908 return;
2911 switch (addr) {
2912 /* Global Command Register, 32-bit */
2913 case DMAR_GCMD_REG:
2914 vtd_set_long(s, addr, val);
2915 vtd_handle_gcmd_write(s);
2916 break;
2918 /* Context Command Register, 64-bit */
2919 case DMAR_CCMD_REG:
2920 if (size == 4) {
2921 vtd_set_long(s, addr, val);
2922 } else {
2923 vtd_set_quad(s, addr, val);
2924 vtd_handle_ccmd_write(s);
2926 break;
2928 case DMAR_CCMD_REG_HI:
2929 assert(size == 4);
2930 vtd_set_long(s, addr, val);
2931 vtd_handle_ccmd_write(s);
2932 break;
2934 /* IOTLB Invalidation Register, 64-bit */
2935 case DMAR_IOTLB_REG:
2936 if (size == 4) {
2937 vtd_set_long(s, addr, val);
2938 } else {
2939 vtd_set_quad(s, addr, val);
2940 vtd_handle_iotlb_write(s);
2942 break;
2944 case DMAR_IOTLB_REG_HI:
2945 assert(size == 4);
2946 vtd_set_long(s, addr, val);
2947 vtd_handle_iotlb_write(s);
2948 break;
2950 /* Invalidate Address Register, 64-bit */
2951 case DMAR_IVA_REG:
2952 if (size == 4) {
2953 vtd_set_long(s, addr, val);
2954 } else {
2955 vtd_set_quad(s, addr, val);
2957 break;
2959 case DMAR_IVA_REG_HI:
2960 assert(size == 4);
2961 vtd_set_long(s, addr, val);
2962 break;
2964 /* Fault Status Register, 32-bit */
2965 case DMAR_FSTS_REG:
2966 assert(size == 4);
2967 vtd_set_long(s, addr, val);
2968 vtd_handle_fsts_write(s);
2969 break;
2971 /* Fault Event Control Register, 32-bit */
2972 case DMAR_FECTL_REG:
2973 assert(size == 4);
2974 vtd_set_long(s, addr, val);
2975 vtd_handle_fectl_write(s);
2976 break;
2978 /* Fault Event Data Register, 32-bit */
2979 case DMAR_FEDATA_REG:
2980 assert(size == 4);
2981 vtd_set_long(s, addr, val);
2982 break;
2984 /* Fault Event Address Register, 32-bit */
2985 case DMAR_FEADDR_REG:
2986 if (size == 4) {
2987 vtd_set_long(s, addr, val);
2988 } else {
2990 * While the register is 32-bit only, some guests (Xen...) write to
2991 * it with 64-bit.
2993 vtd_set_quad(s, addr, val);
2995 break;
2997 /* Fault Event Upper Address Register, 32-bit */
2998 case DMAR_FEUADDR_REG:
2999 assert(size == 4);
3000 vtd_set_long(s, addr, val);
3001 break;
3003 /* Protected Memory Enable Register, 32-bit */
3004 case DMAR_PMEN_REG:
3005 assert(size == 4);
3006 vtd_set_long(s, addr, val);
3007 break;
3009 /* Root Table Address Register, 64-bit */
3010 case DMAR_RTADDR_REG:
3011 if (size == 4) {
3012 vtd_set_long(s, addr, val);
3013 } else {
3014 vtd_set_quad(s, addr, val);
3016 break;
3018 case DMAR_RTADDR_REG_HI:
3019 assert(size == 4);
3020 vtd_set_long(s, addr, val);
3021 break;
3023 /* Invalidation Queue Tail Register, 64-bit */
3024 case DMAR_IQT_REG:
3025 if (size == 4) {
3026 vtd_set_long(s, addr, val);
3027 } else {
3028 vtd_set_quad(s, addr, val);
3030 vtd_handle_iqt_write(s);
3031 break;
3033 case DMAR_IQT_REG_HI:
3034 assert(size == 4);
3035 vtd_set_long(s, addr, val);
3036 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
3037 break;
3039 /* Invalidation Queue Address Register, 64-bit */
3040 case DMAR_IQA_REG:
3041 if (size == 4) {
3042 vtd_set_long(s, addr, val);
3043 } else {
3044 vtd_set_quad(s, addr, val);
3046 vtd_update_iq_dw(s);
3047 break;
3049 case DMAR_IQA_REG_HI:
3050 assert(size == 4);
3051 vtd_set_long(s, addr, val);
3052 break;
3054 /* Invalidation Completion Status Register, 32-bit */
3055 case DMAR_ICS_REG:
3056 assert(size == 4);
3057 vtd_set_long(s, addr, val);
3058 vtd_handle_ics_write(s);
3059 break;
3061 /* Invalidation Event Control Register, 32-bit */
3062 case DMAR_IECTL_REG:
3063 assert(size == 4);
3064 vtd_set_long(s, addr, val);
3065 vtd_handle_iectl_write(s);
3066 break;
3068 /* Invalidation Event Data Register, 32-bit */
3069 case DMAR_IEDATA_REG:
3070 assert(size == 4);
3071 vtd_set_long(s, addr, val);
3072 break;
3074 /* Invalidation Event Address Register, 32-bit */
3075 case DMAR_IEADDR_REG:
3076 assert(size == 4);
3077 vtd_set_long(s, addr, val);
3078 break;
3080 /* Invalidation Event Upper Address Register, 32-bit */
3081 case DMAR_IEUADDR_REG:
3082 assert(size == 4);
3083 vtd_set_long(s, addr, val);
3084 break;
3086 /* Fault Recording Registers, 128-bit */
3087 case DMAR_FRCD_REG_0_0:
3088 if (size == 4) {
3089 vtd_set_long(s, addr, val);
3090 } else {
3091 vtd_set_quad(s, addr, val);
3093 break;
3095 case DMAR_FRCD_REG_0_1:
3096 assert(size == 4);
3097 vtd_set_long(s, addr, val);
3098 break;
3100 case DMAR_FRCD_REG_0_2:
3101 if (size == 4) {
3102 vtd_set_long(s, addr, val);
3103 } else {
3104 vtd_set_quad(s, addr, val);
3105 /* May clear bit 127 (Fault), update PPF */
3106 vtd_update_fsts_ppf(s);
3108 break;
3110 case DMAR_FRCD_REG_0_3:
3111 assert(size == 4);
3112 vtd_set_long(s, addr, val);
3113 /* May clear bit 127 (Fault), update PPF */
3114 vtd_update_fsts_ppf(s);
3115 break;
3117 case DMAR_IRTA_REG:
3118 if (size == 4) {
3119 vtd_set_long(s, addr, val);
3120 } else {
3121 vtd_set_quad(s, addr, val);
3123 break;
3125 case DMAR_IRTA_REG_HI:
3126 assert(size == 4);
3127 vtd_set_long(s, addr, val);
3128 break;
3130 default:
3131 if (size == 4) {
3132 vtd_set_long(s, addr, val);
3133 } else {
3134 vtd_set_quad(s, addr, val);
3139 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
3140 IOMMUAccessFlags flag, int iommu_idx)
3142 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3143 IntelIOMMUState *s = vtd_as->iommu_state;
3144 IOMMUTLBEntry iotlb = {
3145 /* We'll fill in the rest later. */
3146 .target_as = &address_space_memory,
3148 bool success;
3150 if (likely(s->dmar_enabled)) {
3151 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
3152 addr, flag & IOMMU_WO, &iotlb);
3153 } else {
3154 /* DMAR disabled, passthrough, use 4k-page*/
3155 iotlb.iova = addr & VTD_PAGE_MASK_4K;
3156 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
3157 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
3158 iotlb.perm = IOMMU_RW;
3159 success = true;
3162 if (likely(success)) {
3163 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
3164 VTD_PCI_SLOT(vtd_as->devfn),
3165 VTD_PCI_FUNC(vtd_as->devfn),
3166 iotlb.iova, iotlb.translated_addr,
3167 iotlb.addr_mask);
3168 } else {
3169 error_report_once("%s: detected translation failure "
3170 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
3171 __func__, pci_bus_num(vtd_as->bus),
3172 VTD_PCI_SLOT(vtd_as->devfn),
3173 VTD_PCI_FUNC(vtd_as->devfn),
3174 addr);
3177 return iotlb;
3180 static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
3181 IOMMUNotifierFlag old,
3182 IOMMUNotifierFlag new,
3183 Error **errp)
3185 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3186 IntelIOMMUState *s = vtd_as->iommu_state;
3187 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3189 /* TODO: add support for VFIO and vhost users */
3190 if (s->snoop_control) {
3191 error_setg_errno(errp, ENOTSUP,
3192 "Snoop Control with vhost or VFIO is not supported");
3193 return -ENOTSUP;
3195 if (!s->caching_mode && (new & IOMMU_NOTIFIER_MAP)) {
3196 error_setg_errno(errp, ENOTSUP,
3197 "device %02x.%02x.%x requires caching mode",
3198 pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn),
3199 PCI_FUNC(vtd_as->devfn));
3200 return -ENOTSUP;
3202 if (!x86_iommu->dt_supported && (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP)) {
3203 error_setg_errno(errp, ENOTSUP,
3204 "device %02x.%02x.%x requires device IOTLB mode",
3205 pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn),
3206 PCI_FUNC(vtd_as->devfn));
3207 return -ENOTSUP;
3210 /* Update per-address-space notifier flags */
3211 vtd_as->notifier_flags = new;
3213 if (old == IOMMU_NOTIFIER_NONE) {
3214 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
3215 } else if (new == IOMMU_NOTIFIER_NONE) {
3216 QLIST_REMOVE(vtd_as, next);
3218 return 0;
3221 static int vtd_post_load(void *opaque, int version_id)
3223 IntelIOMMUState *iommu = opaque;
3226 * We don't need to migrate the root_scalable because we can
3227 * simply do the calculation after the loading is complete. We
3228 * can actually do similar things with root, dmar_enabled, etc.
3229 * however since we've had them already so we'd better keep them
3230 * for compatibility of migration.
3232 vtd_update_scalable_state(iommu);
3234 vtd_update_iq_dw(iommu);
3237 * Memory regions are dynamically turned on/off depending on
3238 * context entry configurations from the guest. After migration,
3239 * we need to make sure the memory regions are still correct.
3241 vtd_switch_address_space_all(iommu);
3243 return 0;
3246 static const VMStateDescription vtd_vmstate = {
3247 .name = "iommu-intel",
3248 .version_id = 1,
3249 .minimum_version_id = 1,
3250 .priority = MIG_PRI_IOMMU,
3251 .post_load = vtd_post_load,
3252 .fields = (VMStateField[]) {
3253 VMSTATE_UINT64(root, IntelIOMMUState),
3254 VMSTATE_UINT64(intr_root, IntelIOMMUState),
3255 VMSTATE_UINT64(iq, IntelIOMMUState),
3256 VMSTATE_UINT32(intr_size, IntelIOMMUState),
3257 VMSTATE_UINT16(iq_head, IntelIOMMUState),
3258 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
3259 VMSTATE_UINT16(iq_size, IntelIOMMUState),
3260 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
3261 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
3262 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
3263 VMSTATE_UNUSED(1), /* bool root_extended is obsolete by VT-d */
3264 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
3265 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
3266 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
3267 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
3268 VMSTATE_END_OF_LIST()
3272 static const MemoryRegionOps vtd_mem_ops = {
3273 .read = vtd_mem_read,
3274 .write = vtd_mem_write,
3275 .endianness = DEVICE_LITTLE_ENDIAN,
3276 .impl = {
3277 .min_access_size = 4,
3278 .max_access_size = 8,
3280 .valid = {
3281 .min_access_size = 4,
3282 .max_access_size = 8,
3286 static Property vtd_properties[] = {
3287 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3288 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3289 ON_OFF_AUTO_AUTO),
3290 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3291 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3292 VTD_HOST_ADDRESS_WIDTH),
3293 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3294 DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3295 DEFINE_PROP_BOOL("snoop-control", IntelIOMMUState, snoop_control, false),
3296 DEFINE_PROP_BOOL("x-pasid-mode", IntelIOMMUState, pasid, false),
3297 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3298 DEFINE_PROP_BOOL("dma-translation", IntelIOMMUState, dma_translation, true),
3299 DEFINE_PROP_END_OF_LIST(),
3302 /* Read IRTE entry with specific index */
3303 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3304 VTD_IR_TableEntry *entry, uint16_t sid)
3306 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3307 {0xffff, 0xfffb, 0xfff9, 0xfff8};
3308 dma_addr_t addr = 0x00;
3309 uint16_t mask, source_id;
3310 uint8_t bus, bus_max, bus_min;
3312 if (index >= iommu->intr_size) {
3313 error_report_once("%s: index too large: ind=0x%x",
3314 __func__, index);
3315 return -VTD_FR_IR_INDEX_OVER;
3318 addr = iommu->intr_root + index * sizeof(*entry);
3319 if (dma_memory_read(&address_space_memory, addr,
3320 entry, sizeof(*entry), MEMTXATTRS_UNSPECIFIED)) {
3321 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3322 __func__, index, addr);
3323 return -VTD_FR_IR_ROOT_INVAL;
3326 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
3327 le64_to_cpu(entry->data[0]));
3329 if (!entry->irte.present) {
3330 error_report_once("%s: detected non-present IRTE "
3331 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3332 __func__, index, le64_to_cpu(entry->data[1]),
3333 le64_to_cpu(entry->data[0]));
3334 return -VTD_FR_IR_ENTRY_P;
3337 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3338 entry->irte.__reserved_2) {
3339 error_report_once("%s: detected non-zero reserved IRTE "
3340 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3341 __func__, index, le64_to_cpu(entry->data[1]),
3342 le64_to_cpu(entry->data[0]));
3343 return -VTD_FR_IR_IRTE_RSVD;
3346 if (sid != X86_IOMMU_SID_INVALID) {
3347 /* Validate IRTE SID */
3348 source_id = le32_to_cpu(entry->irte.source_id);
3349 switch (entry->irte.sid_vtype) {
3350 case VTD_SVT_NONE:
3351 break;
3353 case VTD_SVT_ALL:
3354 mask = vtd_svt_mask[entry->irte.sid_q];
3355 if ((source_id & mask) != (sid & mask)) {
3356 error_report_once("%s: invalid IRTE SID "
3357 "(index=%u, sid=%u, source_id=%u)",
3358 __func__, index, sid, source_id);
3359 return -VTD_FR_IR_SID_ERR;
3361 break;
3363 case VTD_SVT_BUS:
3364 bus_max = source_id >> 8;
3365 bus_min = source_id & 0xff;
3366 bus = sid >> 8;
3367 if (bus > bus_max || bus < bus_min) {
3368 error_report_once("%s: invalid SVT_BUS "
3369 "(index=%u, bus=%u, min=%u, max=%u)",
3370 __func__, index, bus, bus_min, bus_max);
3371 return -VTD_FR_IR_SID_ERR;
3373 break;
3375 default:
3376 error_report_once("%s: detected invalid IRTE SVT "
3377 "(index=%u, type=%d)", __func__,
3378 index, entry->irte.sid_vtype);
3379 /* Take this as verification failure. */
3380 return -VTD_FR_IR_SID_ERR;
3384 return 0;
3387 /* Fetch IRQ information of specific IR index */
3388 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3389 X86IOMMUIrq *irq, uint16_t sid)
3391 VTD_IR_TableEntry irte = {};
3392 int ret = 0;
3394 ret = vtd_irte_get(iommu, index, &irte, sid);
3395 if (ret) {
3396 return ret;
3399 irq->trigger_mode = irte.irte.trigger_mode;
3400 irq->vector = irte.irte.vector;
3401 irq->delivery_mode = irte.irte.delivery_mode;
3402 irq->dest = le32_to_cpu(irte.irte.dest_id);
3403 if (!iommu->intr_eime) {
3404 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
3405 #define VTD_IR_APIC_DEST_SHIFT (8)
3406 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3407 VTD_IR_APIC_DEST_SHIFT;
3409 irq->dest_mode = irte.irte.dest_mode;
3410 irq->redir_hint = irte.irte.redir_hint;
3412 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3413 irq->delivery_mode, irq->dest, irq->dest_mode);
3415 return 0;
3418 /* Interrupt remapping for MSI/MSI-X entry */
3419 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3420 MSIMessage *origin,
3421 MSIMessage *translated,
3422 uint16_t sid)
3424 int ret = 0;
3425 VTD_IR_MSIAddress addr;
3426 uint16_t index;
3427 X86IOMMUIrq irq = {};
3429 assert(origin && translated);
3431 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3433 if (!iommu || !iommu->intr_enabled) {
3434 memcpy(translated, origin, sizeof(*origin));
3435 goto out;
3438 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
3439 error_report_once("%s: MSI address high 32 bits non-zero detected: "
3440 "address=0x%" PRIx64, __func__, origin->address);
3441 return -VTD_FR_IR_REQ_RSVD;
3444 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
3445 if (addr.addr.__head != 0xfee) {
3446 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3447 __func__, addr.data);
3448 return -VTD_FR_IR_REQ_RSVD;
3451 /* This is compatible mode. */
3452 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
3453 memcpy(translated, origin, sizeof(*origin));
3454 goto out;
3457 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
3459 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
3460 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
3462 if (addr.addr.sub_valid) {
3463 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3464 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3467 ret = vtd_remap_irq_get(iommu, index, &irq, sid);
3468 if (ret) {
3469 return ret;
3472 if (addr.addr.sub_valid) {
3473 trace_vtd_ir_remap_type("MSI");
3474 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
3475 error_report_once("%s: invalid IR MSI "
3476 "(sid=%u, address=0x%" PRIx64
3477 ", data=0x%" PRIx32 ")",
3478 __func__, sid, origin->address, origin->data);
3479 return -VTD_FR_IR_REQ_RSVD;
3481 } else {
3482 uint8_t vector = origin->data & 0xff;
3483 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3485 trace_vtd_ir_remap_type("IOAPIC");
3486 /* IOAPIC entry vector should be aligned with IRTE vector
3487 * (see vt-d spec 5.1.5.1). */
3488 if (vector != irq.vector) {
3489 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
3492 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3493 * (see vt-d spec 5.1.5.1). */
3494 if (trigger_mode != irq.trigger_mode) {
3495 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3496 irq.trigger_mode);
3501 * We'd better keep the last two bits, assuming that guest OS
3502 * might modify it. Keep it does not hurt after all.
3504 irq.msi_addr_last_bits = addr.addr.__not_care;
3506 /* Translate X86IOMMUIrq to MSI message */
3507 x86_iommu_irq_to_msi_message(&irq, translated);
3509 out:
3510 trace_vtd_ir_remap_msi(origin->address, origin->data,
3511 translated->address, translated->data);
3512 return 0;
3515 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3516 MSIMessage *dst, uint16_t sid)
3518 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3519 src, dst, sid);
3522 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3523 uint64_t *data, unsigned size,
3524 MemTxAttrs attrs)
3526 return MEMTX_OK;
3529 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3530 uint64_t value, unsigned size,
3531 MemTxAttrs attrs)
3533 int ret = 0;
3534 MSIMessage from = {}, to = {};
3535 uint16_t sid = X86_IOMMU_SID_INVALID;
3537 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3538 from.data = (uint32_t) value;
3540 if (!attrs.unspecified) {
3541 /* We have explicit Source ID */
3542 sid = attrs.requester_id;
3545 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
3546 if (ret) {
3547 /* TODO: report error */
3548 /* Drop this interrupt */
3549 return MEMTX_ERROR;
3552 apic_get_class(NULL)->send_msi(&to);
3554 return MEMTX_OK;
3557 static const MemoryRegionOps vtd_mem_ir_ops = {
3558 .read_with_attrs = vtd_mem_ir_read,
3559 .write_with_attrs = vtd_mem_ir_write,
3560 .endianness = DEVICE_LITTLE_ENDIAN,
3561 .impl = {
3562 .min_access_size = 4,
3563 .max_access_size = 4,
3565 .valid = {
3566 .min_access_size = 4,
3567 .max_access_size = 4,
3571 static void vtd_report_ir_illegal_access(VTDAddressSpace *vtd_as,
3572 hwaddr addr, bool is_write)
3574 IntelIOMMUState *s = vtd_as->iommu_state;
3575 uint8_t bus_n = pci_bus_num(vtd_as->bus);
3576 uint16_t sid = PCI_BUILD_BDF(bus_n, vtd_as->devfn);
3577 bool is_fpd_set = false;
3578 VTDContextEntry ce;
3580 assert(vtd_as->pasid != PCI_NO_PASID);
3582 /* Try out best to fetch FPD, we can't do anything more */
3583 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3584 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
3585 if (!is_fpd_set && s->root_scalable) {
3586 vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, vtd_as->pasid);
3590 vtd_report_fault(s, VTD_FR_SM_INTERRUPT_ADDR,
3591 is_fpd_set, sid, addr, is_write,
3592 true, vtd_as->pasid);
3595 static MemTxResult vtd_mem_ir_fault_read(void *opaque, hwaddr addr,
3596 uint64_t *data, unsigned size,
3597 MemTxAttrs attrs)
3599 vtd_report_ir_illegal_access(opaque, addr, false);
3601 return MEMTX_ERROR;
3604 static MemTxResult vtd_mem_ir_fault_write(void *opaque, hwaddr addr,
3605 uint64_t value, unsigned size,
3606 MemTxAttrs attrs)
3608 vtd_report_ir_illegal_access(opaque, addr, true);
3610 return MEMTX_ERROR;
3613 static const MemoryRegionOps vtd_mem_ir_fault_ops = {
3614 .read_with_attrs = vtd_mem_ir_fault_read,
3615 .write_with_attrs = vtd_mem_ir_fault_write,
3616 .endianness = DEVICE_LITTLE_ENDIAN,
3617 .impl = {
3618 .min_access_size = 1,
3619 .max_access_size = 8,
3621 .valid = {
3622 .min_access_size = 1,
3623 .max_access_size = 8,
3627 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus,
3628 int devfn, unsigned int pasid)
3631 * We can't simply use sid here since the bus number might not be
3632 * initialized by the guest.
3634 struct vtd_as_key key = {
3635 .bus = bus,
3636 .devfn = devfn,
3637 .pasid = pasid,
3639 VTDAddressSpace *vtd_dev_as;
3640 char name[128];
3642 vtd_dev_as = g_hash_table_lookup(s->vtd_address_spaces, &key);
3643 if (!vtd_dev_as) {
3644 struct vtd_as_key *new_key = g_malloc(sizeof(*new_key));
3646 new_key->bus = bus;
3647 new_key->devfn = devfn;
3648 new_key->pasid = pasid;
3650 if (pasid == PCI_NO_PASID) {
3651 snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
3652 PCI_FUNC(devfn));
3653 } else {
3654 snprintf(name, sizeof(name), "vtd-%02x.%x-pasid-%x", PCI_SLOT(devfn),
3655 PCI_FUNC(devfn), pasid);
3658 vtd_dev_as = g_new0(VTDAddressSpace, 1);
3660 vtd_dev_as->bus = bus;
3661 vtd_dev_as->devfn = (uint8_t)devfn;
3662 vtd_dev_as->pasid = pasid;
3663 vtd_dev_as->iommu_state = s;
3664 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
3665 vtd_dev_as->iova_tree = iova_tree_new();
3667 memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
3668 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
3671 * Build the DMAR-disabled container with aliases to the
3672 * shared MRs. Note that aliasing to a shared memory region
3673 * could help the memory API to detect same FlatViews so we
3674 * can have devices to share the same FlatView when DMAR is
3675 * disabled (either by not providing "intel_iommu=on" or with
3676 * "iommu=pt"). It will greatly reduce the total number of
3677 * FlatViews of the system hence VM runs faster.
3679 memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
3680 "vtd-nodmar", &s->mr_nodmar, 0,
3681 memory_region_size(&s->mr_nodmar));
3684 * Build the per-device DMAR-enabled container.
3686 * TODO: currently we have per-device IOMMU memory region only
3687 * because we have per-device IOMMU notifiers for devices. If
3688 * one day we can abstract the IOMMU notifiers out of the
3689 * memory regions then we can also share the same memory
3690 * region here just like what we've done above with the nodmar
3691 * region.
3693 strcat(name, "-dmar");
3694 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3695 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
3696 name, UINT64_MAX);
3697 memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
3698 &s->mr_ir, 0, memory_region_size(&s->mr_ir));
3699 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
3700 VTD_INTERRUPT_ADDR_FIRST,
3701 &vtd_dev_as->iommu_ir, 1);
3704 * This region is used for catching fault to access interrupt
3705 * range via passthrough + PASID. See also
3706 * vtd_switch_address_space(). We can't use alias since we
3707 * need to know the sid which is valid for MSI who uses
3708 * bus_master_as (see msi_send_message()).
3710 memory_region_init_io(&vtd_dev_as->iommu_ir_fault, OBJECT(s),
3711 &vtd_mem_ir_fault_ops, vtd_dev_as, "vtd-no-ir",
3712 VTD_INTERRUPT_ADDR_SIZE);
3714 * Hook to root since when PT is enabled vtd_dev_as->iommu
3715 * will be disabled.
3717 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->root),
3718 VTD_INTERRUPT_ADDR_FIRST,
3719 &vtd_dev_as->iommu_ir_fault, 2);
3722 * Hook both the containers under the root container, we
3723 * switch between DMAR & noDMAR by enable/disable
3724 * corresponding sub-containers
3726 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3727 MEMORY_REGION(&vtd_dev_as->iommu),
3729 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3730 &vtd_dev_as->nodmar, 0);
3732 vtd_switch_address_space(vtd_dev_as);
3734 g_hash_table_insert(s->vtd_address_spaces, new_key, vtd_dev_as);
3736 return vtd_dev_as;
3739 /* Unmap the whole range in the notifier's scope. */
3740 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3742 hwaddr size, remain;
3743 hwaddr start = n->start;
3744 hwaddr end = n->end;
3745 IntelIOMMUState *s = as->iommu_state;
3746 DMAMap map;
3749 * Note: all the codes in this function has a assumption that IOVA
3750 * bits are no more than VTD_MGAW bits (which is restricted by
3751 * VT-d spec), otherwise we need to consider overflow of 64 bits.
3754 if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
3756 * Don't need to unmap regions that is bigger than the whole
3757 * VT-d supported address space size
3759 end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
3762 assert(start <= end);
3763 size = remain = end - start + 1;
3765 while (remain >= VTD_PAGE_SIZE) {
3766 IOMMUTLBEvent event;
3767 uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits);
3768 uint64_t size = mask + 1;
3770 assert(size);
3772 event.type = IOMMU_NOTIFIER_UNMAP;
3773 event.entry.iova = start;
3774 event.entry.addr_mask = mask;
3775 event.entry.target_as = &address_space_memory;
3776 event.entry.perm = IOMMU_NONE;
3777 /* This field is meaningless for unmap */
3778 event.entry.translated_addr = 0;
3780 memory_region_notify_iommu_one(n, &event);
3782 start += size;
3783 remain -= size;
3786 assert(!remain);
3788 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3789 VTD_PCI_SLOT(as->devfn),
3790 VTD_PCI_FUNC(as->devfn),
3791 n->start, size);
3793 map.iova = n->start;
3794 map.size = size - 1; /* Inclusive */
3795 iova_tree_remove(as->iova_tree, map);
3798 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3800 VTDAddressSpace *vtd_as;
3801 IOMMUNotifier *n;
3803 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3804 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3805 vtd_address_space_unmap(vtd_as, n);
3810 static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3812 vtd_address_space_unmap_all(s);
3813 vtd_switch_address_space_all(s);
3816 static int vtd_replay_hook(IOMMUTLBEvent *event, void *private)
3818 memory_region_notify_iommu_one(private, event);
3819 return 0;
3822 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3824 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3825 IntelIOMMUState *s = vtd_as->iommu_state;
3826 uint8_t bus_n = pci_bus_num(vtd_as->bus);
3827 VTDContextEntry ce;
3828 DMAMap map = { .iova = 0, .size = HWADDR_MAX };
3830 /* replay is protected by BQL, page walk will re-setup it safely */
3831 iova_tree_remove(vtd_as->iova_tree, map);
3833 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3834 trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
3835 "legacy mode",
3836 bus_n, PCI_SLOT(vtd_as->devfn),
3837 PCI_FUNC(vtd_as->devfn),
3838 vtd_get_domain_id(s, &ce, vtd_as->pasid),
3839 ce.hi, ce.lo);
3840 if (n->notifier_flags & IOMMU_NOTIFIER_MAP) {
3841 /* This is required only for MAP typed notifiers */
3842 vtd_page_walk_info info = {
3843 .hook_fn = vtd_replay_hook,
3844 .private = (void *)n,
3845 .notify_unmap = false,
3846 .aw = s->aw_bits,
3847 .as = vtd_as,
3848 .domain_id = vtd_get_domain_id(s, &ce, vtd_as->pasid),
3851 vtd_page_walk(s, &ce, 0, ~0ULL, &info, vtd_as->pasid);
3853 } else {
3854 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3855 PCI_FUNC(vtd_as->devfn));
3858 return;
3861 /* Do the initialization. It will also be called when reset, so pay
3862 * attention when adding new initialization stuff.
3864 static void vtd_init(IntelIOMMUState *s)
3866 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3868 memset(s->csr, 0, DMAR_REG_SIZE);
3869 memset(s->wmask, 0, DMAR_REG_SIZE);
3870 memset(s->w1cmask, 0, DMAR_REG_SIZE);
3871 memset(s->womask, 0, DMAR_REG_SIZE);
3873 s->root = 0;
3874 s->root_scalable = false;
3875 s->dmar_enabled = false;
3876 s->intr_enabled = false;
3877 s->iq_head = 0;
3878 s->iq_tail = 0;
3879 s->iq = 0;
3880 s->iq_size = 0;
3881 s->qi_enabled = false;
3882 s->iq_last_desc_type = VTD_INV_DESC_NONE;
3883 s->iq_dw = false;
3884 s->next_frcd_reg = 0;
3885 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3886 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3887 VTD_CAP_MGAW(s->aw_bits);
3888 if (s->dma_drain) {
3889 s->cap |= VTD_CAP_DRAIN;
3891 if (s->dma_translation) {
3892 if (s->aw_bits >= VTD_HOST_AW_39BIT) {
3893 s->cap |= VTD_CAP_SAGAW_39bit;
3895 if (s->aw_bits >= VTD_HOST_AW_48BIT) {
3896 s->cap |= VTD_CAP_SAGAW_48bit;
3899 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3902 * Rsvd field masks for spte
3904 vtd_spte_rsvd[0] = ~0ULL;
3905 vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
3906 x86_iommu->dt_supported);
3907 vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3908 vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3909 vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3911 vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
3912 x86_iommu->dt_supported);
3913 vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
3914 x86_iommu->dt_supported);
3916 if (s->scalable_mode || s->snoop_control) {
3917 vtd_spte_rsvd[1] &= ~VTD_SPTE_SNP;
3918 vtd_spte_rsvd_large[2] &= ~VTD_SPTE_SNP;
3919 vtd_spte_rsvd_large[3] &= ~VTD_SPTE_SNP;
3922 if (x86_iommu_ir_supported(x86_iommu)) {
3923 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3924 if (s->intr_eim == ON_OFF_AUTO_ON) {
3925 s->ecap |= VTD_ECAP_EIM;
3927 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3930 if (x86_iommu->dt_supported) {
3931 s->ecap |= VTD_ECAP_DT;
3934 if (x86_iommu->pt_supported) {
3935 s->ecap |= VTD_ECAP_PT;
3938 if (s->caching_mode) {
3939 s->cap |= VTD_CAP_CM;
3942 /* TODO: read cap/ecap from host to decide which cap to be exposed. */
3943 if (s->scalable_mode) {
3944 s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
3947 if (s->snoop_control) {
3948 s->ecap |= VTD_ECAP_SC;
3951 if (s->pasid) {
3952 s->ecap |= VTD_ECAP_PASID;
3955 vtd_reset_caches(s);
3957 /* Define registers with default values and bit semantics */
3958 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3959 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3960 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3961 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3962 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3963 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3964 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
3965 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3966 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3968 /* Advanced Fault Logging not supported */
3969 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3970 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3971 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3972 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3974 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3975 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3977 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3979 /* Treated as RO for implementations that PLMR and PHMR fields reported
3980 * as Clear in the CAP_REG.
3981 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3983 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3985 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3986 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3987 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
3988 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3989 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3990 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3991 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3992 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3993 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3995 /* IOTLB registers */
3996 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3997 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3998 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
4000 /* Fault Recording Registers, 128-bit */
4001 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
4002 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
4005 * Interrupt remapping registers.
4007 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
4010 /* Should not reset address_spaces when reset because devices will still use
4011 * the address space they got at first (won't ask the bus again).
4013 static void vtd_reset(DeviceState *dev)
4015 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
4017 vtd_init(s);
4018 vtd_address_space_refresh_all(s);
4021 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
4023 IntelIOMMUState *s = opaque;
4024 VTDAddressSpace *vtd_as;
4026 assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
4028 vtd_as = vtd_find_add_as(s, bus, devfn, PCI_NO_PASID);
4029 return &vtd_as->as;
4032 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
4034 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4036 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
4037 error_setg(errp, "eim=on cannot be selected without intremap=on");
4038 return false;
4041 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
4042 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
4043 && x86_iommu_ir_supported(x86_iommu) ?
4044 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
4046 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
4047 if (!kvm_irqchip_is_split()) {
4048 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
4049 return false;
4051 if (!kvm_enable_x2apic()) {
4052 error_setg(errp, "eim=on requires support on the KVM side"
4053 "(X2APIC_API, first shipped in v4.7)");
4054 return false;
4058 /* Currently only address widths supported are 39 and 48 bits */
4059 if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
4060 (s->aw_bits != VTD_HOST_AW_48BIT)) {
4061 error_setg(errp, "Supported values for aw-bits are: %d, %d",
4062 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
4063 return false;
4066 if (s->scalable_mode && !s->dma_drain) {
4067 error_setg(errp, "Need to set dma_drain for scalable mode");
4068 return false;
4071 if (s->pasid && !s->scalable_mode) {
4072 error_setg(errp, "Need to set scalable mode for PASID");
4073 return false;
4076 return true;
4079 static int vtd_machine_done_notify_one(Object *child, void *unused)
4081 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
4084 * We hard-coded here because vfio-pci is the only special case
4085 * here. Let's be more elegant in the future when we can, but so
4086 * far there seems to be no better way.
4088 if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
4089 vtd_panic_require_caching_mode();
4092 return 0;
4095 static void vtd_machine_done_hook(Notifier *notifier, void *unused)
4097 object_child_foreach_recursive(object_get_root(),
4098 vtd_machine_done_notify_one, NULL);
4101 static Notifier vtd_machine_done_notify = {
4102 .notify = vtd_machine_done_hook,
4105 static void vtd_realize(DeviceState *dev, Error **errp)
4107 MachineState *ms = MACHINE(qdev_get_machine());
4108 PCMachineState *pcms = PC_MACHINE(ms);
4109 X86MachineState *x86ms = X86_MACHINE(ms);
4110 PCIBus *bus = pcms->bus;
4111 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
4112 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4114 if (s->pasid && x86_iommu->dt_supported) {
4116 * PASID-based-Device-TLB Invalidate Descriptor is not
4117 * implemented and it requires support from vhost layer which
4118 * needs to be implemented in the future.
4120 error_setg(errp, "PASID based device IOTLB is not supported");
4121 return;
4124 if (!vtd_decide_config(s, errp)) {
4125 return;
4128 QLIST_INIT(&s->vtd_as_with_notifiers);
4129 qemu_mutex_init(&s->iommu_lock);
4130 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
4131 "intel_iommu", DMAR_REG_SIZE);
4133 /* Create the shared memory regions by all devices */
4134 memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
4135 UINT64_MAX);
4136 memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
4137 s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
4138 memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
4139 "vtd-sys-alias", get_system_memory(), 0,
4140 memory_region_size(get_system_memory()));
4141 memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
4142 &s->mr_sys_alias, 0);
4143 memory_region_add_subregion_overlap(&s->mr_nodmar,
4144 VTD_INTERRUPT_ADDR_FIRST,
4145 &s->mr_ir, 1);
4147 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
4148 /* No corresponding destroy */
4149 s->iotlb = g_hash_table_new_full(vtd_iotlb_hash, vtd_iotlb_equal,
4150 g_free, g_free);
4151 s->vtd_address_spaces = g_hash_table_new_full(vtd_as_hash, vtd_as_equal,
4152 g_free, g_free);
4153 vtd_init(s);
4154 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
4155 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
4156 /* Pseudo address space under root PCI bus. */
4157 x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
4158 qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
4161 static void vtd_class_init(ObjectClass *klass, void *data)
4163 DeviceClass *dc = DEVICE_CLASS(klass);
4164 X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass);
4166 dc->reset = vtd_reset;
4167 dc->vmsd = &vtd_vmstate;
4168 device_class_set_props(dc, vtd_properties);
4169 dc->hotpluggable = false;
4170 x86_class->realize = vtd_realize;
4171 x86_class->int_remap = vtd_int_remap;
4172 /* Supported by the pc-q35-* machine types */
4173 dc->user_creatable = true;
4174 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
4175 dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
4178 static const TypeInfo vtd_info = {
4179 .name = TYPE_INTEL_IOMMU_DEVICE,
4180 .parent = TYPE_X86_IOMMU_DEVICE,
4181 .instance_size = sizeof(IntelIOMMUState),
4182 .class_init = vtd_class_init,
4185 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
4186 void *data)
4188 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
4190 imrc->translate = vtd_iommu_translate;
4191 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
4192 imrc->replay = vtd_iommu_replay;
4195 static const TypeInfo vtd_iommu_memory_region_info = {
4196 .parent = TYPE_IOMMU_MEMORY_REGION,
4197 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
4198 .class_init = vtd_iommu_memory_region_class_init,
4201 static void vtd_register_types(void)
4203 type_register_static(&vtd_info);
4204 type_register_static(&vtd_iommu_memory_region_info);
4207 type_init(vtd_register_types)