tcg: Split out tcg_gen_nonatomic_cmpxchg_i{32,64}
[qemu/armbru.git] / migration / ram.c
blob334309f1c6e54a54aa820accfe4d2c450f863835
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
29 #include "qemu/osdep.h"
30 #include "qemu/cutils.h"
31 #include "qemu/bitops.h"
32 #include "qemu/bitmap.h"
33 #include "qemu/madvise.h"
34 #include "qemu/main-loop.h"
35 #include "io/channel-null.h"
36 #include "xbzrle.h"
37 #include "ram.h"
38 #include "migration.h"
39 #include "migration/register.h"
40 #include "migration/misc.h"
41 #include "qemu-file.h"
42 #include "postcopy-ram.h"
43 #include "page_cache.h"
44 #include "qemu/error-report.h"
45 #include "qapi/error.h"
46 #include "qapi/qapi-types-migration.h"
47 #include "qapi/qapi-events-migration.h"
48 #include "qapi/qmp/qerror.h"
49 #include "trace.h"
50 #include "exec/ram_addr.h"
51 #include "exec/target_page.h"
52 #include "qemu/rcu_queue.h"
53 #include "migration/colo.h"
54 #include "block.h"
55 #include "sysemu/cpu-throttle.h"
56 #include "savevm.h"
57 #include "qemu/iov.h"
58 #include "multifd.h"
59 #include "sysemu/runstate.h"
61 #include "hw/boards.h" /* for machine_dump_guest_core() */
63 #if defined(__linux__)
64 #include "qemu/userfaultfd.h"
65 #endif /* defined(__linux__) */
67 /***********************************************************/
68 /* ram save/restore */
70 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
71 * worked for pages that where filled with the same char. We switched
72 * it to only search for the zero value. And to avoid confusion with
73 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
76 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
77 #define RAM_SAVE_FLAG_ZERO 0x02
78 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
79 #define RAM_SAVE_FLAG_PAGE 0x08
80 #define RAM_SAVE_FLAG_EOS 0x10
81 #define RAM_SAVE_FLAG_CONTINUE 0x20
82 #define RAM_SAVE_FLAG_XBZRLE 0x40
83 /* 0x80 is reserved in migration.h start with 0x100 next */
84 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
86 XBZRLECacheStats xbzrle_counters;
88 /* used by the search for pages to send */
89 struct PageSearchStatus {
90 /* The migration channel used for a specific host page */
91 QEMUFile *pss_channel;
92 /* Last block from where we have sent data */
93 RAMBlock *last_sent_block;
94 /* Current block being searched */
95 RAMBlock *block;
96 /* Current page to search from */
97 unsigned long page;
98 /* Set once we wrap around */
99 bool complete_round;
100 /* Whether we're sending a host page */
101 bool host_page_sending;
102 /* The start/end of current host page. Invalid if host_page_sending==false */
103 unsigned long host_page_start;
104 unsigned long host_page_end;
106 typedef struct PageSearchStatus PageSearchStatus;
108 /* struct contains XBZRLE cache and a static page
109 used by the compression */
110 static struct {
111 /* buffer used for XBZRLE encoding */
112 uint8_t *encoded_buf;
113 /* buffer for storing page content */
114 uint8_t *current_buf;
115 /* Cache for XBZRLE, Protected by lock. */
116 PageCache *cache;
117 QemuMutex lock;
118 /* it will store a page full of zeros */
119 uint8_t *zero_target_page;
120 /* buffer used for XBZRLE decoding */
121 uint8_t *decoded_buf;
122 } XBZRLE;
124 static void XBZRLE_cache_lock(void)
126 if (migrate_use_xbzrle()) {
127 qemu_mutex_lock(&XBZRLE.lock);
131 static void XBZRLE_cache_unlock(void)
133 if (migrate_use_xbzrle()) {
134 qemu_mutex_unlock(&XBZRLE.lock);
139 * xbzrle_cache_resize: resize the xbzrle cache
141 * This function is called from migrate_params_apply in main
142 * thread, possibly while a migration is in progress. A running
143 * migration may be using the cache and might finish during this call,
144 * hence changes to the cache are protected by XBZRLE.lock().
146 * Returns 0 for success or -1 for error
148 * @new_size: new cache size
149 * @errp: set *errp if the check failed, with reason
151 int xbzrle_cache_resize(uint64_t new_size, Error **errp)
153 PageCache *new_cache;
154 int64_t ret = 0;
156 /* Check for truncation */
157 if (new_size != (size_t)new_size) {
158 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
159 "exceeding address space");
160 return -1;
163 if (new_size == migrate_xbzrle_cache_size()) {
164 /* nothing to do */
165 return 0;
168 XBZRLE_cache_lock();
170 if (XBZRLE.cache != NULL) {
171 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
172 if (!new_cache) {
173 ret = -1;
174 goto out;
177 cache_fini(XBZRLE.cache);
178 XBZRLE.cache = new_cache;
180 out:
181 XBZRLE_cache_unlock();
182 return ret;
185 static bool postcopy_preempt_active(void)
187 return migrate_postcopy_preempt() && migration_in_postcopy();
190 bool ramblock_is_ignored(RAMBlock *block)
192 return !qemu_ram_is_migratable(block) ||
193 (migrate_ignore_shared() && qemu_ram_is_shared(block));
196 #undef RAMBLOCK_FOREACH
198 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
200 RAMBlock *block;
201 int ret = 0;
203 RCU_READ_LOCK_GUARD();
205 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
206 ret = func(block, opaque);
207 if (ret) {
208 break;
211 return ret;
214 static void ramblock_recv_map_init(void)
216 RAMBlock *rb;
218 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
219 assert(!rb->receivedmap);
220 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
224 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
226 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
227 rb->receivedmap);
230 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
232 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
235 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
237 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
240 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
241 size_t nr)
243 bitmap_set_atomic(rb->receivedmap,
244 ramblock_recv_bitmap_offset(host_addr, rb),
245 nr);
248 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
251 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
253 * Returns >0 if success with sent bytes, or <0 if error.
255 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
256 const char *block_name)
258 RAMBlock *block = qemu_ram_block_by_name(block_name);
259 unsigned long *le_bitmap, nbits;
260 uint64_t size;
262 if (!block) {
263 error_report("%s: invalid block name: %s", __func__, block_name);
264 return -1;
267 nbits = block->postcopy_length >> TARGET_PAGE_BITS;
270 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
271 * machines we may need 4 more bytes for padding (see below
272 * comment). So extend it a bit before hand.
274 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
277 * Always use little endian when sending the bitmap. This is
278 * required that when source and destination VMs are not using the
279 * same endianness. (Note: big endian won't work.)
281 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
283 /* Size of the bitmap, in bytes */
284 size = DIV_ROUND_UP(nbits, 8);
287 * size is always aligned to 8 bytes for 64bit machines, but it
288 * may not be true for 32bit machines. We need this padding to
289 * make sure the migration can survive even between 32bit and
290 * 64bit machines.
292 size = ROUND_UP(size, 8);
294 qemu_put_be64(file, size);
295 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
297 * Mark as an end, in case the middle part is screwed up due to
298 * some "mysterious" reason.
300 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
301 qemu_fflush(file);
303 g_free(le_bitmap);
305 if (qemu_file_get_error(file)) {
306 return qemu_file_get_error(file);
309 return size + sizeof(size);
313 * An outstanding page request, on the source, having been received
314 * and queued
316 struct RAMSrcPageRequest {
317 RAMBlock *rb;
318 hwaddr offset;
319 hwaddr len;
321 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
324 /* State of RAM for migration */
325 struct RAMState {
327 * PageSearchStatus structures for the channels when send pages.
328 * Protected by the bitmap_mutex.
330 PageSearchStatus pss[RAM_CHANNEL_MAX];
331 /* UFFD file descriptor, used in 'write-tracking' migration */
332 int uffdio_fd;
333 /* Last block that we have visited searching for dirty pages */
334 RAMBlock *last_seen_block;
335 /* Last dirty target page we have sent */
336 ram_addr_t last_page;
337 /* last ram version we have seen */
338 uint32_t last_version;
339 /* How many times we have dirty too many pages */
340 int dirty_rate_high_cnt;
341 /* these variables are used for bitmap sync */
342 /* last time we did a full bitmap_sync */
343 int64_t time_last_bitmap_sync;
344 /* bytes transferred at start_time */
345 uint64_t bytes_xfer_prev;
346 /* number of dirty pages since start_time */
347 uint64_t num_dirty_pages_period;
348 /* xbzrle misses since the beginning of the period */
349 uint64_t xbzrle_cache_miss_prev;
350 /* Amount of xbzrle pages since the beginning of the period */
351 uint64_t xbzrle_pages_prev;
352 /* Amount of xbzrle encoded bytes since the beginning of the period */
353 uint64_t xbzrle_bytes_prev;
354 /* Start using XBZRLE (e.g., after the first round). */
355 bool xbzrle_enabled;
356 /* Are we on the last stage of migration */
357 bool last_stage;
358 /* compression statistics since the beginning of the period */
359 /* amount of count that no free thread to compress data */
360 uint64_t compress_thread_busy_prev;
361 /* amount bytes after compression */
362 uint64_t compressed_size_prev;
363 /* amount of compressed pages */
364 uint64_t compress_pages_prev;
366 /* total handled target pages at the beginning of period */
367 uint64_t target_page_count_prev;
368 /* total handled target pages since start */
369 uint64_t target_page_count;
370 /* number of dirty bits in the bitmap */
371 uint64_t migration_dirty_pages;
373 * Protects:
374 * - dirty/clear bitmap
375 * - migration_dirty_pages
376 * - pss structures
378 QemuMutex bitmap_mutex;
379 /* The RAMBlock used in the last src_page_requests */
380 RAMBlock *last_req_rb;
381 /* Queue of outstanding page requests from the destination */
382 QemuMutex src_page_req_mutex;
383 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
385 typedef struct RAMState RAMState;
387 static RAMState *ram_state;
389 static NotifierWithReturnList precopy_notifier_list;
391 /* Whether postcopy has queued requests? */
392 static bool postcopy_has_request(RAMState *rs)
394 return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests);
397 void precopy_infrastructure_init(void)
399 notifier_with_return_list_init(&precopy_notifier_list);
402 void precopy_add_notifier(NotifierWithReturn *n)
404 notifier_with_return_list_add(&precopy_notifier_list, n);
407 void precopy_remove_notifier(NotifierWithReturn *n)
409 notifier_with_return_remove(n);
412 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
414 PrecopyNotifyData pnd;
415 pnd.reason = reason;
416 pnd.errp = errp;
418 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
421 uint64_t ram_bytes_remaining(void)
423 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
428 * NOTE: not all stats in ram_counters are used in reality. See comments
429 * for struct MigrationAtomicStats. The ultimate result of ram migration
430 * counters will be a merged version with both ram_counters and the atomic
431 * fields in ram_atomic_counters.
433 MigrationStats ram_counters;
434 MigrationAtomicStats ram_atomic_counters;
436 void ram_transferred_add(uint64_t bytes)
438 if (runstate_is_running()) {
439 ram_counters.precopy_bytes += bytes;
440 } else if (migration_in_postcopy()) {
441 stat64_add(&ram_atomic_counters.postcopy_bytes, bytes);
442 } else {
443 ram_counters.downtime_bytes += bytes;
445 stat64_add(&ram_atomic_counters.transferred, bytes);
448 void dirty_sync_missed_zero_copy(void)
450 ram_counters.dirty_sync_missed_zero_copy++;
453 CompressionStats compression_counters;
455 struct CompressParam {
456 bool done;
457 bool quit;
458 bool zero_page;
459 QEMUFile *file;
460 QemuMutex mutex;
461 QemuCond cond;
462 RAMBlock *block;
463 ram_addr_t offset;
465 /* internally used fields */
466 z_stream stream;
467 uint8_t *originbuf;
469 typedef struct CompressParam CompressParam;
471 struct DecompressParam {
472 bool done;
473 bool quit;
474 QemuMutex mutex;
475 QemuCond cond;
476 void *des;
477 uint8_t *compbuf;
478 int len;
479 z_stream stream;
481 typedef struct DecompressParam DecompressParam;
483 static CompressParam *comp_param;
484 static QemuThread *compress_threads;
485 /* comp_done_cond is used to wake up the migration thread when
486 * one of the compression threads has finished the compression.
487 * comp_done_lock is used to co-work with comp_done_cond.
489 static QemuMutex comp_done_lock;
490 static QemuCond comp_done_cond;
492 static QEMUFile *decomp_file;
493 static DecompressParam *decomp_param;
494 static QemuThread *decompress_threads;
495 static QemuMutex decomp_done_lock;
496 static QemuCond decomp_done_cond;
498 static int ram_save_host_page_urgent(PageSearchStatus *pss);
500 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
501 ram_addr_t offset, uint8_t *source_buf);
503 /* NOTE: page is the PFN not real ram_addr_t. */
504 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page)
506 pss->block = rb;
507 pss->page = page;
508 pss->complete_round = false;
512 * Check whether two PSSs are actively sending the same page. Return true
513 * if it is, false otherwise.
515 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2)
517 return pss1->host_page_sending && pss2->host_page_sending &&
518 (pss1->host_page_start == pss2->host_page_start);
521 static void *do_data_compress(void *opaque)
523 CompressParam *param = opaque;
524 RAMBlock *block;
525 ram_addr_t offset;
526 bool zero_page;
528 qemu_mutex_lock(&param->mutex);
529 while (!param->quit) {
530 if (param->block) {
531 block = param->block;
532 offset = param->offset;
533 param->block = NULL;
534 qemu_mutex_unlock(&param->mutex);
536 zero_page = do_compress_ram_page(param->file, &param->stream,
537 block, offset, param->originbuf);
539 qemu_mutex_lock(&comp_done_lock);
540 param->done = true;
541 param->zero_page = zero_page;
542 qemu_cond_signal(&comp_done_cond);
543 qemu_mutex_unlock(&comp_done_lock);
545 qemu_mutex_lock(&param->mutex);
546 } else {
547 qemu_cond_wait(&param->cond, &param->mutex);
550 qemu_mutex_unlock(&param->mutex);
552 return NULL;
555 static void compress_threads_save_cleanup(void)
557 int i, thread_count;
559 if (!migrate_use_compression() || !comp_param) {
560 return;
563 thread_count = migrate_compress_threads();
564 for (i = 0; i < thread_count; i++) {
566 * we use it as a indicator which shows if the thread is
567 * properly init'd or not
569 if (!comp_param[i].file) {
570 break;
573 qemu_mutex_lock(&comp_param[i].mutex);
574 comp_param[i].quit = true;
575 qemu_cond_signal(&comp_param[i].cond);
576 qemu_mutex_unlock(&comp_param[i].mutex);
578 qemu_thread_join(compress_threads + i);
579 qemu_mutex_destroy(&comp_param[i].mutex);
580 qemu_cond_destroy(&comp_param[i].cond);
581 deflateEnd(&comp_param[i].stream);
582 g_free(comp_param[i].originbuf);
583 qemu_fclose(comp_param[i].file);
584 comp_param[i].file = NULL;
586 qemu_mutex_destroy(&comp_done_lock);
587 qemu_cond_destroy(&comp_done_cond);
588 g_free(compress_threads);
589 g_free(comp_param);
590 compress_threads = NULL;
591 comp_param = NULL;
594 static int compress_threads_save_setup(void)
596 int i, thread_count;
598 if (!migrate_use_compression()) {
599 return 0;
601 thread_count = migrate_compress_threads();
602 compress_threads = g_new0(QemuThread, thread_count);
603 comp_param = g_new0(CompressParam, thread_count);
604 qemu_cond_init(&comp_done_cond);
605 qemu_mutex_init(&comp_done_lock);
606 for (i = 0; i < thread_count; i++) {
607 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
608 if (!comp_param[i].originbuf) {
609 goto exit;
612 if (deflateInit(&comp_param[i].stream,
613 migrate_compress_level()) != Z_OK) {
614 g_free(comp_param[i].originbuf);
615 goto exit;
618 /* comp_param[i].file is just used as a dummy buffer to save data,
619 * set its ops to empty.
621 comp_param[i].file = qemu_file_new_output(
622 QIO_CHANNEL(qio_channel_null_new()));
623 comp_param[i].done = true;
624 comp_param[i].quit = false;
625 qemu_mutex_init(&comp_param[i].mutex);
626 qemu_cond_init(&comp_param[i].cond);
627 qemu_thread_create(compress_threads + i, "compress",
628 do_data_compress, comp_param + i,
629 QEMU_THREAD_JOINABLE);
631 return 0;
633 exit:
634 compress_threads_save_cleanup();
635 return -1;
639 * save_page_header: write page header to wire
641 * If this is the 1st block, it also writes the block identification
643 * Returns the number of bytes written
645 * @pss: current PSS channel status
646 * @block: block that contains the page we want to send
647 * @offset: offset inside the block for the page
648 * in the lower bits, it contains flags
650 static size_t save_page_header(PageSearchStatus *pss, RAMBlock *block,
651 ram_addr_t offset)
653 size_t size, len;
654 bool same_block = (block == pss->last_sent_block);
655 QEMUFile *f = pss->pss_channel;
657 if (same_block) {
658 offset |= RAM_SAVE_FLAG_CONTINUE;
660 qemu_put_be64(f, offset);
661 size = 8;
663 if (!same_block) {
664 len = strlen(block->idstr);
665 qemu_put_byte(f, len);
666 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
667 size += 1 + len;
668 pss->last_sent_block = block;
670 return size;
674 * mig_throttle_guest_down: throttle down the guest
676 * Reduce amount of guest cpu execution to hopefully slow down memory
677 * writes. If guest dirty memory rate is reduced below the rate at
678 * which we can transfer pages to the destination then we should be
679 * able to complete migration. Some workloads dirty memory way too
680 * fast and will not effectively converge, even with auto-converge.
682 static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
683 uint64_t bytes_dirty_threshold)
685 MigrationState *s = migrate_get_current();
686 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
687 uint64_t pct_increment = s->parameters.cpu_throttle_increment;
688 bool pct_tailslow = s->parameters.cpu_throttle_tailslow;
689 int pct_max = s->parameters.max_cpu_throttle;
691 uint64_t throttle_now = cpu_throttle_get_percentage();
692 uint64_t cpu_now, cpu_ideal, throttle_inc;
694 /* We have not started throttling yet. Let's start it. */
695 if (!cpu_throttle_active()) {
696 cpu_throttle_set(pct_initial);
697 } else {
698 /* Throttling already on, just increase the rate */
699 if (!pct_tailslow) {
700 throttle_inc = pct_increment;
701 } else {
702 /* Compute the ideal CPU percentage used by Guest, which may
703 * make the dirty rate match the dirty rate threshold. */
704 cpu_now = 100 - throttle_now;
705 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
706 bytes_dirty_period);
707 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
709 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
713 void mig_throttle_counter_reset(void)
715 RAMState *rs = ram_state;
717 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
718 rs->num_dirty_pages_period = 0;
719 rs->bytes_xfer_prev = stat64_get(&ram_atomic_counters.transferred);
723 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
725 * @rs: current RAM state
726 * @current_addr: address for the zero page
728 * Update the xbzrle cache to reflect a page that's been sent as all 0.
729 * The important thing is that a stale (not-yet-0'd) page be replaced
730 * by the new data.
731 * As a bonus, if the page wasn't in the cache it gets added so that
732 * when a small write is made into the 0'd page it gets XBZRLE sent.
734 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
736 /* We don't care if this fails to allocate a new cache page
737 * as long as it updated an old one */
738 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
739 ram_counters.dirty_sync_count);
742 #define ENCODING_FLAG_XBZRLE 0x1
745 * save_xbzrle_page: compress and send current page
747 * Returns: 1 means that we wrote the page
748 * 0 means that page is identical to the one already sent
749 * -1 means that xbzrle would be longer than normal
751 * @rs: current RAM state
752 * @pss: current PSS channel
753 * @current_data: pointer to the address of the page contents
754 * @current_addr: addr of the page
755 * @block: block that contains the page we want to send
756 * @offset: offset inside the block for the page
758 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss,
759 uint8_t **current_data, ram_addr_t current_addr,
760 RAMBlock *block, ram_addr_t offset)
762 int encoded_len = 0, bytes_xbzrle;
763 uint8_t *prev_cached_page;
764 QEMUFile *file = pss->pss_channel;
766 if (!cache_is_cached(XBZRLE.cache, current_addr,
767 ram_counters.dirty_sync_count)) {
768 xbzrle_counters.cache_miss++;
769 if (!rs->last_stage) {
770 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
771 ram_counters.dirty_sync_count) == -1) {
772 return -1;
773 } else {
774 /* update *current_data when the page has been
775 inserted into cache */
776 *current_data = get_cached_data(XBZRLE.cache, current_addr);
779 return -1;
783 * Reaching here means the page has hit the xbzrle cache, no matter what
784 * encoding result it is (normal encoding, overflow or skipping the page),
785 * count the page as encoded. This is used to calculate the encoding rate.
787 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
788 * 2nd page turns out to be skipped (i.e. no new bytes written to the
789 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
790 * skipped page included. In this way, the encoding rate can tell if the
791 * guest page is good for xbzrle encoding.
793 xbzrle_counters.pages++;
794 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
796 /* save current buffer into memory */
797 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
799 /* XBZRLE encoding (if there is no overflow) */
800 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
801 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
802 TARGET_PAGE_SIZE);
805 * Update the cache contents, so that it corresponds to the data
806 * sent, in all cases except where we skip the page.
808 if (!rs->last_stage && encoded_len != 0) {
809 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
811 * In the case where we couldn't compress, ensure that the caller
812 * sends the data from the cache, since the guest might have
813 * changed the RAM since we copied it.
815 *current_data = prev_cached_page;
818 if (encoded_len == 0) {
819 trace_save_xbzrle_page_skipping();
820 return 0;
821 } else if (encoded_len == -1) {
822 trace_save_xbzrle_page_overflow();
823 xbzrle_counters.overflow++;
824 xbzrle_counters.bytes += TARGET_PAGE_SIZE;
825 return -1;
828 /* Send XBZRLE based compressed page */
829 bytes_xbzrle = save_page_header(pss, block,
830 offset | RAM_SAVE_FLAG_XBZRLE);
831 qemu_put_byte(file, ENCODING_FLAG_XBZRLE);
832 qemu_put_be16(file, encoded_len);
833 qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len);
834 bytes_xbzrle += encoded_len + 1 + 2;
836 * Like compressed_size (please see update_compress_thread_counts),
837 * the xbzrle encoded bytes don't count the 8 byte header with
838 * RAM_SAVE_FLAG_CONTINUE.
840 xbzrle_counters.bytes += bytes_xbzrle - 8;
841 ram_transferred_add(bytes_xbzrle);
843 return 1;
847 * pss_find_next_dirty: find the next dirty page of current ramblock
849 * This function updates pss->page to point to the next dirty page index
850 * within the ramblock to migrate, or the end of ramblock when nothing
851 * found. Note that when pss->host_page_sending==true it means we're
852 * during sending a host page, so we won't look for dirty page that is
853 * outside the host page boundary.
855 * @pss: the current page search status
857 static void pss_find_next_dirty(PageSearchStatus *pss)
859 RAMBlock *rb = pss->block;
860 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
861 unsigned long *bitmap = rb->bmap;
863 if (ramblock_is_ignored(rb)) {
864 /* Points directly to the end, so we know no dirty page */
865 pss->page = size;
866 return;
870 * If during sending a host page, only look for dirty pages within the
871 * current host page being send.
873 if (pss->host_page_sending) {
874 assert(pss->host_page_end);
875 size = MIN(size, pss->host_page_end);
878 pss->page = find_next_bit(bitmap, size, pss->page);
881 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb,
882 unsigned long page)
884 uint8_t shift;
885 hwaddr size, start;
887 if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) {
888 return;
891 shift = rb->clear_bmap_shift;
893 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
894 * can make things easier sometimes since then start address
895 * of the small chunk will always be 64 pages aligned so the
896 * bitmap will always be aligned to unsigned long. We should
897 * even be able to remove this restriction but I'm simply
898 * keeping it.
900 assert(shift >= 6);
902 size = 1ULL << (TARGET_PAGE_BITS + shift);
903 start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size);
904 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
905 memory_region_clear_dirty_bitmap(rb->mr, start, size);
908 static void
909 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb,
910 unsigned long start,
911 unsigned long npages)
913 unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift;
914 unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages);
915 unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages);
918 * Clear pages from start to start + npages - 1, so the end boundary is
919 * exclusive.
921 for (i = chunk_start; i < chunk_end; i += chunk_pages) {
922 migration_clear_memory_region_dirty_bitmap(rb, i);
927 * colo_bitmap_find_diry:find contiguous dirty pages from start
929 * Returns the page offset within memory region of the start of the contiguout
930 * dirty page
932 * @rs: current RAM state
933 * @rb: RAMBlock where to search for dirty pages
934 * @start: page where we start the search
935 * @num: the number of contiguous dirty pages
937 static inline
938 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
939 unsigned long start, unsigned long *num)
941 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
942 unsigned long *bitmap = rb->bmap;
943 unsigned long first, next;
945 *num = 0;
947 if (ramblock_is_ignored(rb)) {
948 return size;
951 first = find_next_bit(bitmap, size, start);
952 if (first >= size) {
953 return first;
955 next = find_next_zero_bit(bitmap, size, first + 1);
956 assert(next >= first);
957 *num = next - first;
958 return first;
961 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
962 RAMBlock *rb,
963 unsigned long page)
965 bool ret;
968 * Clear dirty bitmap if needed. This _must_ be called before we
969 * send any of the page in the chunk because we need to make sure
970 * we can capture further page content changes when we sync dirty
971 * log the next time. So as long as we are going to send any of
972 * the page in the chunk we clear the remote dirty bitmap for all.
973 * Clearing it earlier won't be a problem, but too late will.
975 migration_clear_memory_region_dirty_bitmap(rb, page);
977 ret = test_and_clear_bit(page, rb->bmap);
978 if (ret) {
979 rs->migration_dirty_pages--;
982 return ret;
985 static void dirty_bitmap_clear_section(MemoryRegionSection *section,
986 void *opaque)
988 const hwaddr offset = section->offset_within_region;
989 const hwaddr size = int128_get64(section->size);
990 const unsigned long start = offset >> TARGET_PAGE_BITS;
991 const unsigned long npages = size >> TARGET_PAGE_BITS;
992 RAMBlock *rb = section->mr->ram_block;
993 uint64_t *cleared_bits = opaque;
996 * We don't grab ram_state->bitmap_mutex because we expect to run
997 * only when starting migration or during postcopy recovery where
998 * we don't have concurrent access.
1000 if (!migration_in_postcopy() && !migrate_background_snapshot()) {
1001 migration_clear_memory_region_dirty_bitmap_range(rb, start, npages);
1003 *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages);
1004 bitmap_clear(rb->bmap, start, npages);
1008 * Exclude all dirty pages from migration that fall into a discarded range as
1009 * managed by a RamDiscardManager responsible for the mapped memory region of
1010 * the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
1012 * Discarded pages ("logically unplugged") have undefined content and must
1013 * not get migrated, because even reading these pages for migration might
1014 * result in undesired behavior.
1016 * Returns the number of cleared bits in the RAMBlock dirty bitmap.
1018 * Note: The result is only stable while migrating (precopy/postcopy).
1020 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb)
1022 uint64_t cleared_bits = 0;
1024 if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) {
1025 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1026 MemoryRegionSection section = {
1027 .mr = rb->mr,
1028 .offset_within_region = 0,
1029 .size = int128_make64(qemu_ram_get_used_length(rb)),
1032 ram_discard_manager_replay_discarded(rdm, &section,
1033 dirty_bitmap_clear_section,
1034 &cleared_bits);
1036 return cleared_bits;
1040 * Check if a host-page aligned page falls into a discarded range as managed by
1041 * a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
1043 * Note: The result is only stable while migrating (precopy/postcopy).
1045 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start)
1047 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1048 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1049 MemoryRegionSection section = {
1050 .mr = rb->mr,
1051 .offset_within_region = start,
1052 .size = int128_make64(qemu_ram_pagesize(rb)),
1055 return !ram_discard_manager_is_populated(rdm, &section);
1057 return false;
1060 /* Called with RCU critical section */
1061 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
1063 uint64_t new_dirty_pages =
1064 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
1066 rs->migration_dirty_pages += new_dirty_pages;
1067 rs->num_dirty_pages_period += new_dirty_pages;
1071 * ram_pagesize_summary: calculate all the pagesizes of a VM
1073 * Returns a summary bitmap of the page sizes of all RAMBlocks
1075 * For VMs with just normal pages this is equivalent to the host page
1076 * size. If it's got some huge pages then it's the OR of all the
1077 * different page sizes.
1079 uint64_t ram_pagesize_summary(void)
1081 RAMBlock *block;
1082 uint64_t summary = 0;
1084 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1085 summary |= block->page_size;
1088 return summary;
1091 uint64_t ram_get_total_transferred_pages(void)
1093 return stat64_get(&ram_atomic_counters.normal) +
1094 stat64_get(&ram_atomic_counters.duplicate) +
1095 compression_counters.pages + xbzrle_counters.pages;
1098 static void migration_update_rates(RAMState *rs, int64_t end_time)
1100 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
1101 double compressed_size;
1103 /* calculate period counters */
1104 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1105 / (end_time - rs->time_last_bitmap_sync);
1107 if (!page_count) {
1108 return;
1111 if (migrate_use_xbzrle()) {
1112 double encoded_size, unencoded_size;
1114 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
1115 rs->xbzrle_cache_miss_prev) / page_count;
1116 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1117 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
1118 TARGET_PAGE_SIZE;
1119 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
1120 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
1121 xbzrle_counters.encoding_rate = 0;
1122 } else {
1123 xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
1125 rs->xbzrle_pages_prev = xbzrle_counters.pages;
1126 rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
1129 if (migrate_use_compression()) {
1130 compression_counters.busy_rate = (double)(compression_counters.busy -
1131 rs->compress_thread_busy_prev) / page_count;
1132 rs->compress_thread_busy_prev = compression_counters.busy;
1134 compressed_size = compression_counters.compressed_size -
1135 rs->compressed_size_prev;
1136 if (compressed_size) {
1137 double uncompressed_size = (compression_counters.pages -
1138 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
1140 /* Compression-Ratio = Uncompressed-size / Compressed-size */
1141 compression_counters.compression_rate =
1142 uncompressed_size / compressed_size;
1144 rs->compress_pages_prev = compression_counters.pages;
1145 rs->compressed_size_prev = compression_counters.compressed_size;
1150 static void migration_trigger_throttle(RAMState *rs)
1152 MigrationState *s = migrate_get_current();
1153 uint64_t threshold = s->parameters.throttle_trigger_threshold;
1154 uint64_t bytes_xfer_period =
1155 stat64_get(&ram_atomic_counters.transferred) - rs->bytes_xfer_prev;
1156 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
1157 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
1159 /* During block migration the auto-converge logic incorrectly detects
1160 * that ram migration makes no progress. Avoid this by disabling the
1161 * throttling logic during the bulk phase of block migration. */
1162 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
1163 /* The following detection logic can be refined later. For now:
1164 Check to see if the ratio between dirtied bytes and the approx.
1165 amount of bytes that just got transferred since the last time
1166 we were in this routine reaches the threshold. If that happens
1167 twice, start or increase throttling. */
1169 if ((bytes_dirty_period > bytes_dirty_threshold) &&
1170 (++rs->dirty_rate_high_cnt >= 2)) {
1171 trace_migration_throttle();
1172 rs->dirty_rate_high_cnt = 0;
1173 mig_throttle_guest_down(bytes_dirty_period,
1174 bytes_dirty_threshold);
1179 static void migration_bitmap_sync(RAMState *rs)
1181 RAMBlock *block;
1182 int64_t end_time;
1184 ram_counters.dirty_sync_count++;
1186 if (!rs->time_last_bitmap_sync) {
1187 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1190 trace_migration_bitmap_sync_start();
1191 memory_global_dirty_log_sync();
1193 qemu_mutex_lock(&rs->bitmap_mutex);
1194 WITH_RCU_READ_LOCK_GUARD() {
1195 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1196 ramblock_sync_dirty_bitmap(rs, block);
1198 ram_counters.remaining = ram_bytes_remaining();
1200 qemu_mutex_unlock(&rs->bitmap_mutex);
1202 memory_global_after_dirty_log_sync();
1203 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1205 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1207 /* more than 1 second = 1000 millisecons */
1208 if (end_time > rs->time_last_bitmap_sync + 1000) {
1209 migration_trigger_throttle(rs);
1211 migration_update_rates(rs, end_time);
1213 rs->target_page_count_prev = rs->target_page_count;
1215 /* reset period counters */
1216 rs->time_last_bitmap_sync = end_time;
1217 rs->num_dirty_pages_period = 0;
1218 rs->bytes_xfer_prev = stat64_get(&ram_atomic_counters.transferred);
1220 if (migrate_use_events()) {
1221 qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
1225 static void migration_bitmap_sync_precopy(RAMState *rs)
1227 Error *local_err = NULL;
1230 * The current notifier usage is just an optimization to migration, so we
1231 * don't stop the normal migration process in the error case.
1233 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1234 error_report_err(local_err);
1235 local_err = NULL;
1238 migration_bitmap_sync(rs);
1240 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1241 error_report_err(local_err);
1245 void ram_release_page(const char *rbname, uint64_t offset)
1247 if (!migrate_release_ram() || !migration_in_postcopy()) {
1248 return;
1251 ram_discard_range(rbname, offset, TARGET_PAGE_SIZE);
1255 * save_zero_page_to_file: send the zero page to the file
1257 * Returns the size of data written to the file, 0 means the page is not
1258 * a zero page
1260 * @pss: current PSS channel
1261 * @block: block that contains the page we want to send
1262 * @offset: offset inside the block for the page
1264 static int save_zero_page_to_file(PageSearchStatus *pss,
1265 RAMBlock *block, ram_addr_t offset)
1267 uint8_t *p = block->host + offset;
1268 QEMUFile *file = pss->pss_channel;
1269 int len = 0;
1271 if (buffer_is_zero(p, TARGET_PAGE_SIZE)) {
1272 len += save_page_header(pss, block, offset | RAM_SAVE_FLAG_ZERO);
1273 qemu_put_byte(file, 0);
1274 len += 1;
1275 ram_release_page(block->idstr, offset);
1277 return len;
1281 * save_zero_page: send the zero page to the stream
1283 * Returns the number of pages written.
1285 * @pss: current PSS channel
1286 * @block: block that contains the page we want to send
1287 * @offset: offset inside the block for the page
1289 static int save_zero_page(PageSearchStatus *pss, RAMBlock *block,
1290 ram_addr_t offset)
1292 int len = save_zero_page_to_file(pss, block, offset);
1294 if (len) {
1295 stat64_add(&ram_atomic_counters.duplicate, 1);
1296 ram_transferred_add(len);
1297 return 1;
1299 return -1;
1303 * @pages: the number of pages written by the control path,
1304 * < 0 - error
1305 * > 0 - number of pages written
1307 * Return true if the pages has been saved, otherwise false is returned.
1309 static bool control_save_page(PageSearchStatus *pss, RAMBlock *block,
1310 ram_addr_t offset, int *pages)
1312 uint64_t bytes_xmit = 0;
1313 int ret;
1315 *pages = -1;
1316 ret = ram_control_save_page(pss->pss_channel, block->offset, offset,
1317 TARGET_PAGE_SIZE, &bytes_xmit);
1318 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1319 return false;
1322 if (bytes_xmit) {
1323 ram_transferred_add(bytes_xmit);
1324 *pages = 1;
1327 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1328 return true;
1331 if (bytes_xmit > 0) {
1332 stat64_add(&ram_atomic_counters.normal, 1);
1333 } else if (bytes_xmit == 0) {
1334 stat64_add(&ram_atomic_counters.duplicate, 1);
1337 return true;
1341 * directly send the page to the stream
1343 * Returns the number of pages written.
1345 * @pss: current PSS channel
1346 * @block: block that contains the page we want to send
1347 * @offset: offset inside the block for the page
1348 * @buf: the page to be sent
1349 * @async: send to page asyncly
1351 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block,
1352 ram_addr_t offset, uint8_t *buf, bool async)
1354 QEMUFile *file = pss->pss_channel;
1356 ram_transferred_add(save_page_header(pss, block,
1357 offset | RAM_SAVE_FLAG_PAGE));
1358 if (async) {
1359 qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE,
1360 migrate_release_ram() &&
1361 migration_in_postcopy());
1362 } else {
1363 qemu_put_buffer(file, buf, TARGET_PAGE_SIZE);
1365 ram_transferred_add(TARGET_PAGE_SIZE);
1366 stat64_add(&ram_atomic_counters.normal, 1);
1367 return 1;
1371 * ram_save_page: send the given page to the stream
1373 * Returns the number of pages written.
1374 * < 0 - error
1375 * >=0 - Number of pages written - this might legally be 0
1376 * if xbzrle noticed the page was the same.
1378 * @rs: current RAM state
1379 * @block: block that contains the page we want to send
1380 * @offset: offset inside the block for the page
1382 static int ram_save_page(RAMState *rs, PageSearchStatus *pss)
1384 int pages = -1;
1385 uint8_t *p;
1386 bool send_async = true;
1387 RAMBlock *block = pss->block;
1388 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1389 ram_addr_t current_addr = block->offset + offset;
1391 p = block->host + offset;
1392 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1394 XBZRLE_cache_lock();
1395 if (rs->xbzrle_enabled && !migration_in_postcopy()) {
1396 pages = save_xbzrle_page(rs, pss, &p, current_addr,
1397 block, offset);
1398 if (!rs->last_stage) {
1399 /* Can't send this cached data async, since the cache page
1400 * might get updated before it gets to the wire
1402 send_async = false;
1406 /* XBZRLE overflow or normal page */
1407 if (pages == -1) {
1408 pages = save_normal_page(pss, block, offset, p, send_async);
1411 XBZRLE_cache_unlock();
1413 return pages;
1416 static int ram_save_multifd_page(QEMUFile *file, RAMBlock *block,
1417 ram_addr_t offset)
1419 if (multifd_queue_page(file, block, offset) < 0) {
1420 return -1;
1422 stat64_add(&ram_atomic_counters.normal, 1);
1424 return 1;
1427 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
1428 ram_addr_t offset, uint8_t *source_buf)
1430 RAMState *rs = ram_state;
1431 PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY];
1432 uint8_t *p = block->host + offset;
1433 int ret;
1435 if (save_zero_page_to_file(pss, block, offset)) {
1436 return true;
1439 save_page_header(pss, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
1442 * copy it to a internal buffer to avoid it being modified by VM
1443 * so that we can catch up the error during compression and
1444 * decompression
1446 memcpy(source_buf, p, TARGET_PAGE_SIZE);
1447 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
1448 if (ret < 0) {
1449 qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
1450 error_report("compressed data failed!");
1452 return false;
1455 static void
1456 update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
1458 ram_transferred_add(bytes_xmit);
1460 if (param->zero_page) {
1461 stat64_add(&ram_atomic_counters.duplicate, 1);
1462 return;
1465 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
1466 compression_counters.compressed_size += bytes_xmit - 8;
1467 compression_counters.pages++;
1470 static bool save_page_use_compression(RAMState *rs);
1472 static void flush_compressed_data(RAMState *rs)
1474 MigrationState *ms = migrate_get_current();
1475 int idx, len, thread_count;
1477 if (!save_page_use_compression(rs)) {
1478 return;
1480 thread_count = migrate_compress_threads();
1482 qemu_mutex_lock(&comp_done_lock);
1483 for (idx = 0; idx < thread_count; idx++) {
1484 while (!comp_param[idx].done) {
1485 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
1488 qemu_mutex_unlock(&comp_done_lock);
1490 for (idx = 0; idx < thread_count; idx++) {
1491 qemu_mutex_lock(&comp_param[idx].mutex);
1492 if (!comp_param[idx].quit) {
1493 len = qemu_put_qemu_file(ms->to_dst_file, comp_param[idx].file);
1495 * it's safe to fetch zero_page without holding comp_done_lock
1496 * as there is no further request submitted to the thread,
1497 * i.e, the thread should be waiting for a request at this point.
1499 update_compress_thread_counts(&comp_param[idx], len);
1501 qemu_mutex_unlock(&comp_param[idx].mutex);
1505 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
1506 ram_addr_t offset)
1508 param->block = block;
1509 param->offset = offset;
1512 static int compress_page_with_multi_thread(RAMBlock *block, ram_addr_t offset)
1514 int idx, thread_count, bytes_xmit = -1, pages = -1;
1515 bool wait = migrate_compress_wait_thread();
1516 MigrationState *ms = migrate_get_current();
1518 thread_count = migrate_compress_threads();
1519 qemu_mutex_lock(&comp_done_lock);
1520 retry:
1521 for (idx = 0; idx < thread_count; idx++) {
1522 if (comp_param[idx].done) {
1523 comp_param[idx].done = false;
1524 bytes_xmit = qemu_put_qemu_file(ms->to_dst_file,
1525 comp_param[idx].file);
1526 qemu_mutex_lock(&comp_param[idx].mutex);
1527 set_compress_params(&comp_param[idx], block, offset);
1528 qemu_cond_signal(&comp_param[idx].cond);
1529 qemu_mutex_unlock(&comp_param[idx].mutex);
1530 pages = 1;
1531 update_compress_thread_counts(&comp_param[idx], bytes_xmit);
1532 break;
1537 * wait for the free thread if the user specifies 'compress-wait-thread',
1538 * otherwise we will post the page out in the main thread as normal page.
1540 if (pages < 0 && wait) {
1541 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
1542 goto retry;
1544 qemu_mutex_unlock(&comp_done_lock);
1546 return pages;
1550 * find_dirty_block: find the next dirty page and update any state
1551 * associated with the search process.
1553 * Returns true if a page is found
1555 * @rs: current RAM state
1556 * @pss: data about the state of the current dirty page scan
1557 * @again: set to false if the search has scanned the whole of RAM
1559 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
1561 /* Update pss->page for the next dirty bit in ramblock */
1562 pss_find_next_dirty(pss);
1564 if (pss->complete_round && pss->block == rs->last_seen_block &&
1565 pss->page >= rs->last_page) {
1567 * We've been once around the RAM and haven't found anything.
1568 * Give up.
1570 *again = false;
1571 return false;
1573 if (!offset_in_ramblock(pss->block,
1574 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
1575 /* Didn't find anything in this RAM Block */
1576 pss->page = 0;
1577 pss->block = QLIST_NEXT_RCU(pss->block, next);
1578 if (!pss->block) {
1580 * If memory migration starts over, we will meet a dirtied page
1581 * which may still exists in compression threads's ring, so we
1582 * should flush the compressed data to make sure the new page
1583 * is not overwritten by the old one in the destination.
1585 * Also If xbzrle is on, stop using the data compression at this
1586 * point. In theory, xbzrle can do better than compression.
1588 flush_compressed_data(rs);
1590 /* Hit the end of the list */
1591 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1592 /* Flag that we've looped */
1593 pss->complete_round = true;
1594 /* After the first round, enable XBZRLE. */
1595 if (migrate_use_xbzrle()) {
1596 rs->xbzrle_enabled = true;
1599 /* Didn't find anything this time, but try again on the new block */
1600 *again = true;
1601 return false;
1602 } else {
1603 /* Can go around again, but... */
1604 *again = true;
1605 /* We've found something so probably don't need to */
1606 return true;
1611 * unqueue_page: gets a page of the queue
1613 * Helper for 'get_queued_page' - gets a page off the queue
1615 * Returns the block of the page (or NULL if none available)
1617 * @rs: current RAM state
1618 * @offset: used to return the offset within the RAMBlock
1620 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1622 struct RAMSrcPageRequest *entry;
1623 RAMBlock *block = NULL;
1625 if (!postcopy_has_request(rs)) {
1626 return NULL;
1629 QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
1632 * This should _never_ change even after we take the lock, because no one
1633 * should be taking anything off the request list other than us.
1635 assert(postcopy_has_request(rs));
1637 entry = QSIMPLEQ_FIRST(&rs->src_page_requests);
1638 block = entry->rb;
1639 *offset = entry->offset;
1641 if (entry->len > TARGET_PAGE_SIZE) {
1642 entry->len -= TARGET_PAGE_SIZE;
1643 entry->offset += TARGET_PAGE_SIZE;
1644 } else {
1645 memory_region_unref(block->mr);
1646 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1647 g_free(entry);
1648 migration_consume_urgent_request();
1651 return block;
1654 #if defined(__linux__)
1656 * poll_fault_page: try to get next UFFD write fault page and, if pending fault
1657 * is found, return RAM block pointer and page offset
1659 * Returns pointer to the RAMBlock containing faulting page,
1660 * NULL if no write faults are pending
1662 * @rs: current RAM state
1663 * @offset: page offset from the beginning of the block
1665 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1667 struct uffd_msg uffd_msg;
1668 void *page_address;
1669 RAMBlock *block;
1670 int res;
1672 if (!migrate_background_snapshot()) {
1673 return NULL;
1676 res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
1677 if (res <= 0) {
1678 return NULL;
1681 page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
1682 block = qemu_ram_block_from_host(page_address, false, offset);
1683 assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
1684 return block;
1688 * ram_save_release_protection: release UFFD write protection after
1689 * a range of pages has been saved
1691 * @rs: current RAM state
1692 * @pss: page-search-status structure
1693 * @start_page: index of the first page in the range relative to pss->block
1695 * Returns 0 on success, negative value in case of an error
1697 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1698 unsigned long start_page)
1700 int res = 0;
1702 /* Check if page is from UFFD-managed region. */
1703 if (pss->block->flags & RAM_UF_WRITEPROTECT) {
1704 void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
1705 uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS;
1707 /* Flush async buffers before un-protect. */
1708 qemu_fflush(pss->pss_channel);
1709 /* Un-protect memory range. */
1710 res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
1711 false, false);
1714 return res;
1717 /* ram_write_tracking_available: check if kernel supports required UFFD features
1719 * Returns true if supports, false otherwise
1721 bool ram_write_tracking_available(void)
1723 uint64_t uffd_features;
1724 int res;
1726 res = uffd_query_features(&uffd_features);
1727 return (res == 0 &&
1728 (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
1731 /* ram_write_tracking_compatible: check if guest configuration is
1732 * compatible with 'write-tracking'
1734 * Returns true if compatible, false otherwise
1736 bool ram_write_tracking_compatible(void)
1738 const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
1739 int uffd_fd;
1740 RAMBlock *block;
1741 bool ret = false;
1743 /* Open UFFD file descriptor */
1744 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
1745 if (uffd_fd < 0) {
1746 return false;
1749 RCU_READ_LOCK_GUARD();
1751 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1752 uint64_t uffd_ioctls;
1754 /* Nothing to do with read-only and MMIO-writable regions */
1755 if (block->mr->readonly || block->mr->rom_device) {
1756 continue;
1758 /* Try to register block memory via UFFD-IO to track writes */
1759 if (uffd_register_memory(uffd_fd, block->host, block->max_length,
1760 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
1761 goto out;
1763 if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
1764 goto out;
1767 ret = true;
1769 out:
1770 uffd_close_fd(uffd_fd);
1771 return ret;
1774 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset,
1775 ram_addr_t size)
1778 * We read one byte of each page; this will preallocate page tables if
1779 * required and populate the shared zeropage on MAP_PRIVATE anonymous memory
1780 * where no page was populated yet. This might require adaption when
1781 * supporting other mappings, like shmem.
1783 for (; offset < size; offset += block->page_size) {
1784 char tmp = *((char *)block->host + offset);
1786 /* Don't optimize the read out */
1787 asm volatile("" : "+r" (tmp));
1791 static inline int populate_read_section(MemoryRegionSection *section,
1792 void *opaque)
1794 const hwaddr size = int128_get64(section->size);
1795 hwaddr offset = section->offset_within_region;
1796 RAMBlock *block = section->mr->ram_block;
1798 populate_read_range(block, offset, size);
1799 return 0;
1803 * ram_block_populate_read: preallocate page tables and populate pages in the
1804 * RAM block by reading a byte of each page.
1806 * Since it's solely used for userfault_fd WP feature, here we just
1807 * hardcode page size to qemu_real_host_page_size.
1809 * @block: RAM block to populate
1811 static void ram_block_populate_read(RAMBlock *rb)
1814 * Skip populating all pages that fall into a discarded range as managed by
1815 * a RamDiscardManager responsible for the mapped memory region of the
1816 * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
1817 * must not get populated automatically. We don't have to track
1818 * modifications via userfaultfd WP reliably, because these pages will
1819 * not be part of the migration stream either way -- see
1820 * ramblock_dirty_bitmap_exclude_discarded_pages().
1822 * Note: The result is only stable while migrating (precopy/postcopy).
1824 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1825 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1826 MemoryRegionSection section = {
1827 .mr = rb->mr,
1828 .offset_within_region = 0,
1829 .size = rb->mr->size,
1832 ram_discard_manager_replay_populated(rdm, &section,
1833 populate_read_section, NULL);
1834 } else {
1835 populate_read_range(rb, 0, rb->used_length);
1840 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
1842 void ram_write_tracking_prepare(void)
1844 RAMBlock *block;
1846 RCU_READ_LOCK_GUARD();
1848 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1849 /* Nothing to do with read-only and MMIO-writable regions */
1850 if (block->mr->readonly || block->mr->rom_device) {
1851 continue;
1855 * Populate pages of the RAM block before enabling userfault_fd
1856 * write protection.
1858 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
1859 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
1860 * pages with pte_none() entries in page table.
1862 ram_block_populate_read(block);
1867 * ram_write_tracking_start: start UFFD-WP memory tracking
1869 * Returns 0 for success or negative value in case of error
1871 int ram_write_tracking_start(void)
1873 int uffd_fd;
1874 RAMState *rs = ram_state;
1875 RAMBlock *block;
1877 /* Open UFFD file descriptor */
1878 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
1879 if (uffd_fd < 0) {
1880 return uffd_fd;
1882 rs->uffdio_fd = uffd_fd;
1884 RCU_READ_LOCK_GUARD();
1886 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1887 /* Nothing to do with read-only and MMIO-writable regions */
1888 if (block->mr->readonly || block->mr->rom_device) {
1889 continue;
1892 /* Register block memory with UFFD to track writes */
1893 if (uffd_register_memory(rs->uffdio_fd, block->host,
1894 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
1895 goto fail;
1897 /* Apply UFFD write protection to the block memory range */
1898 if (uffd_change_protection(rs->uffdio_fd, block->host,
1899 block->max_length, true, false)) {
1900 goto fail;
1902 block->flags |= RAM_UF_WRITEPROTECT;
1903 memory_region_ref(block->mr);
1905 trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
1906 block->host, block->max_length);
1909 return 0;
1911 fail:
1912 error_report("ram_write_tracking_start() failed: restoring initial memory state");
1914 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1915 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1916 continue;
1919 * In case some memory block failed to be write-protected
1920 * remove protection and unregister all succeeded RAM blocks
1922 uffd_change_protection(rs->uffdio_fd, block->host, block->max_length,
1923 false, false);
1924 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1925 /* Cleanup flags and remove reference */
1926 block->flags &= ~RAM_UF_WRITEPROTECT;
1927 memory_region_unref(block->mr);
1930 uffd_close_fd(uffd_fd);
1931 rs->uffdio_fd = -1;
1932 return -1;
1936 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
1938 void ram_write_tracking_stop(void)
1940 RAMState *rs = ram_state;
1941 RAMBlock *block;
1943 RCU_READ_LOCK_GUARD();
1945 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1946 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1947 continue;
1949 /* Remove protection and unregister all affected RAM blocks */
1950 uffd_change_protection(rs->uffdio_fd, block->host, block->max_length,
1951 false, false);
1952 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1954 trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
1955 block->host, block->max_length);
1957 /* Cleanup flags and remove reference */
1958 block->flags &= ~RAM_UF_WRITEPROTECT;
1959 memory_region_unref(block->mr);
1962 /* Finally close UFFD file descriptor */
1963 uffd_close_fd(rs->uffdio_fd);
1964 rs->uffdio_fd = -1;
1967 #else
1968 /* No target OS support, stubs just fail or ignore */
1970 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1972 (void) rs;
1973 (void) offset;
1975 return NULL;
1978 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1979 unsigned long start_page)
1981 (void) rs;
1982 (void) pss;
1983 (void) start_page;
1985 return 0;
1988 bool ram_write_tracking_available(void)
1990 return false;
1993 bool ram_write_tracking_compatible(void)
1995 assert(0);
1996 return false;
1999 int ram_write_tracking_start(void)
2001 assert(0);
2002 return -1;
2005 void ram_write_tracking_stop(void)
2007 assert(0);
2009 #endif /* defined(__linux__) */
2012 * get_queued_page: unqueue a page from the postcopy requests
2014 * Skips pages that are already sent (!dirty)
2016 * Returns true if a queued page is found
2018 * @rs: current RAM state
2019 * @pss: data about the state of the current dirty page scan
2021 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
2023 RAMBlock *block;
2024 ram_addr_t offset;
2025 bool dirty;
2027 do {
2028 block = unqueue_page(rs, &offset);
2030 * We're sending this page, and since it's postcopy nothing else
2031 * will dirty it, and we must make sure it doesn't get sent again
2032 * even if this queue request was received after the background
2033 * search already sent it.
2035 if (block) {
2036 unsigned long page;
2038 page = offset >> TARGET_PAGE_BITS;
2039 dirty = test_bit(page, block->bmap);
2040 if (!dirty) {
2041 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
2042 page);
2043 } else {
2044 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
2048 } while (block && !dirty);
2050 if (!block) {
2052 * Poll write faults too if background snapshot is enabled; that's
2053 * when we have vcpus got blocked by the write protected pages.
2055 block = poll_fault_page(rs, &offset);
2058 if (block) {
2060 * We want the background search to continue from the queued page
2061 * since the guest is likely to want other pages near to the page
2062 * it just requested.
2064 pss->block = block;
2065 pss->page = offset >> TARGET_PAGE_BITS;
2068 * This unqueued page would break the "one round" check, even is
2069 * really rare.
2071 pss->complete_round = false;
2074 return !!block;
2078 * migration_page_queue_free: drop any remaining pages in the ram
2079 * request queue
2081 * It should be empty at the end anyway, but in error cases there may
2082 * be some left. in case that there is any page left, we drop it.
2085 static void migration_page_queue_free(RAMState *rs)
2087 struct RAMSrcPageRequest *mspr, *next_mspr;
2088 /* This queue generally should be empty - but in the case of a failed
2089 * migration might have some droppings in.
2091 RCU_READ_LOCK_GUARD();
2092 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
2093 memory_region_unref(mspr->rb->mr);
2094 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2095 g_free(mspr);
2100 * ram_save_queue_pages: queue the page for transmission
2102 * A request from postcopy destination for example.
2104 * Returns zero on success or negative on error
2106 * @rbname: Name of the RAMBLock of the request. NULL means the
2107 * same that last one.
2108 * @start: starting address from the start of the RAMBlock
2109 * @len: length (in bytes) to send
2111 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
2113 RAMBlock *ramblock;
2114 RAMState *rs = ram_state;
2116 ram_counters.postcopy_requests++;
2117 RCU_READ_LOCK_GUARD();
2119 if (!rbname) {
2120 /* Reuse last RAMBlock */
2121 ramblock = rs->last_req_rb;
2123 if (!ramblock) {
2125 * Shouldn't happen, we can't reuse the last RAMBlock if
2126 * it's the 1st request.
2128 error_report("ram_save_queue_pages no previous block");
2129 return -1;
2131 } else {
2132 ramblock = qemu_ram_block_by_name(rbname);
2134 if (!ramblock) {
2135 /* We shouldn't be asked for a non-existent RAMBlock */
2136 error_report("ram_save_queue_pages no block '%s'", rbname);
2137 return -1;
2139 rs->last_req_rb = ramblock;
2141 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2142 if (!offset_in_ramblock(ramblock, start + len - 1)) {
2143 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2144 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
2145 __func__, start, len, ramblock->used_length);
2146 return -1;
2150 * When with postcopy preempt, we send back the page directly in the
2151 * rp-return thread.
2153 if (postcopy_preempt_active()) {
2154 ram_addr_t page_start = start >> TARGET_PAGE_BITS;
2155 size_t page_size = qemu_ram_pagesize(ramblock);
2156 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY];
2157 int ret = 0;
2159 qemu_mutex_lock(&rs->bitmap_mutex);
2161 pss_init(pss, ramblock, page_start);
2163 * Always use the preempt channel, and make sure it's there. It's
2164 * safe to access without lock, because when rp-thread is running
2165 * we should be the only one who operates on the qemufile
2167 pss->pss_channel = migrate_get_current()->postcopy_qemufile_src;
2168 assert(pss->pss_channel);
2171 * It must be either one or multiple of host page size. Just
2172 * assert; if something wrong we're mostly split brain anyway.
2174 assert(len % page_size == 0);
2175 while (len) {
2176 if (ram_save_host_page_urgent(pss)) {
2177 error_report("%s: ram_save_host_page_urgent() failed: "
2178 "ramblock=%s, start_addr=0x"RAM_ADDR_FMT,
2179 __func__, ramblock->idstr, start);
2180 ret = -1;
2181 break;
2184 * NOTE: after ram_save_host_page_urgent() succeeded, pss->page
2185 * will automatically be moved and point to the next host page
2186 * we're going to send, so no need to update here.
2188 * Normally QEMU never sends >1 host page in requests, so
2189 * logically we don't even need that as the loop should only
2190 * run once, but just to be consistent.
2192 len -= page_size;
2194 qemu_mutex_unlock(&rs->bitmap_mutex);
2196 return ret;
2199 struct RAMSrcPageRequest *new_entry =
2200 g_new0(struct RAMSrcPageRequest, 1);
2201 new_entry->rb = ramblock;
2202 new_entry->offset = start;
2203 new_entry->len = len;
2205 memory_region_ref(ramblock->mr);
2206 qemu_mutex_lock(&rs->src_page_req_mutex);
2207 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2208 migration_make_urgent_request();
2209 qemu_mutex_unlock(&rs->src_page_req_mutex);
2211 return 0;
2214 static bool save_page_use_compression(RAMState *rs)
2216 if (!migrate_use_compression()) {
2217 return false;
2221 * If xbzrle is enabled (e.g., after first round of migration), stop
2222 * using the data compression. In theory, xbzrle can do better than
2223 * compression.
2225 if (rs->xbzrle_enabled) {
2226 return false;
2229 return true;
2233 * try to compress the page before posting it out, return true if the page
2234 * has been properly handled by compression, otherwise needs other
2235 * paths to handle it
2237 static bool save_compress_page(RAMState *rs, PageSearchStatus *pss,
2238 RAMBlock *block, ram_addr_t offset)
2240 if (!save_page_use_compression(rs)) {
2241 return false;
2245 * When starting the process of a new block, the first page of
2246 * the block should be sent out before other pages in the same
2247 * block, and all the pages in last block should have been sent
2248 * out, keeping this order is important, because the 'cont' flag
2249 * is used to avoid resending the block name.
2251 * We post the fist page as normal page as compression will take
2252 * much CPU resource.
2254 if (block != pss->last_sent_block) {
2255 flush_compressed_data(rs);
2256 return false;
2259 if (compress_page_with_multi_thread(block, offset) > 0) {
2260 return true;
2263 compression_counters.busy++;
2264 return false;
2268 * ram_save_target_page: save one target page
2270 * Returns the number of pages written
2272 * @rs: current RAM state
2273 * @pss: data about the page we want to send
2275 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss)
2277 RAMBlock *block = pss->block;
2278 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2279 int res;
2281 if (control_save_page(pss, block, offset, &res)) {
2282 return res;
2285 if (save_compress_page(rs, pss, block, offset)) {
2286 return 1;
2289 res = save_zero_page(pss, block, offset);
2290 if (res > 0) {
2291 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2292 * page would be stale
2294 if (rs->xbzrle_enabled) {
2295 XBZRLE_cache_lock();
2296 xbzrle_cache_zero_page(rs, block->offset + offset);
2297 XBZRLE_cache_unlock();
2299 return res;
2303 * Do not use multifd in postcopy as one whole host page should be
2304 * placed. Meanwhile postcopy requires atomic update of pages, so even
2305 * if host page size == guest page size the dest guest during run may
2306 * still see partially copied pages which is data corruption.
2308 if (migrate_use_multifd() && !migration_in_postcopy()) {
2309 return ram_save_multifd_page(pss->pss_channel, block, offset);
2312 return ram_save_page(rs, pss);
2315 /* Should be called before sending a host page */
2316 static void pss_host_page_prepare(PageSearchStatus *pss)
2318 /* How many guest pages are there in one host page? */
2319 size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2321 pss->host_page_sending = true;
2322 pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns);
2323 pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns);
2327 * Whether the page pointed by PSS is within the host page being sent.
2328 * Must be called after a previous pss_host_page_prepare().
2330 static bool pss_within_range(PageSearchStatus *pss)
2332 ram_addr_t ram_addr;
2334 assert(pss->host_page_sending);
2336 /* Over host-page boundary? */
2337 if (pss->page >= pss->host_page_end) {
2338 return false;
2341 ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2343 return offset_in_ramblock(pss->block, ram_addr);
2346 static void pss_host_page_finish(PageSearchStatus *pss)
2348 pss->host_page_sending = false;
2349 /* This is not needed, but just to reset it */
2350 pss->host_page_start = pss->host_page_end = 0;
2354 * Send an urgent host page specified by `pss'. Need to be called with
2355 * bitmap_mutex held.
2357 * Returns 0 if save host page succeeded, false otherwise.
2359 static int ram_save_host_page_urgent(PageSearchStatus *pss)
2361 bool page_dirty, sent = false;
2362 RAMState *rs = ram_state;
2363 int ret = 0;
2365 trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page);
2366 pss_host_page_prepare(pss);
2369 * If precopy is sending the same page, let it be done in precopy, or
2370 * we could send the same page in two channels and none of them will
2371 * receive the whole page.
2373 if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) {
2374 trace_postcopy_preempt_hit(pss->block->idstr,
2375 pss->page << TARGET_PAGE_BITS);
2376 return 0;
2379 do {
2380 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2382 if (page_dirty) {
2383 /* Be strict to return code; it must be 1, or what else? */
2384 if (ram_save_target_page(rs, pss) != 1) {
2385 error_report_once("%s: ram_save_target_page failed", __func__);
2386 ret = -1;
2387 goto out;
2389 sent = true;
2391 pss_find_next_dirty(pss);
2392 } while (pss_within_range(pss));
2393 out:
2394 pss_host_page_finish(pss);
2395 /* For urgent requests, flush immediately if sent */
2396 if (sent) {
2397 qemu_fflush(pss->pss_channel);
2399 return ret;
2403 * ram_save_host_page: save a whole host page
2405 * Starting at *offset send pages up to the end of the current host
2406 * page. It's valid for the initial offset to point into the middle of
2407 * a host page in which case the remainder of the hostpage is sent.
2408 * Only dirty target pages are sent. Note that the host page size may
2409 * be a huge page for this block.
2411 * The saving stops at the boundary of the used_length of the block
2412 * if the RAMBlock isn't a multiple of the host page size.
2414 * The caller must be with ram_state.bitmap_mutex held to call this
2415 * function. Note that this function can temporarily release the lock, but
2416 * when the function is returned it'll make sure the lock is still held.
2418 * Returns the number of pages written or negative on error
2420 * @rs: current RAM state
2421 * @pss: data about the page we want to send
2423 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss)
2425 bool page_dirty, preempt_active = postcopy_preempt_active();
2426 int tmppages, pages = 0;
2427 size_t pagesize_bits =
2428 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2429 unsigned long start_page = pss->page;
2430 int res;
2432 if (ramblock_is_ignored(pss->block)) {
2433 error_report("block %s should not be migrated !", pss->block->idstr);
2434 return 0;
2437 /* Update host page boundary information */
2438 pss_host_page_prepare(pss);
2440 do {
2441 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2443 /* Check the pages is dirty and if it is send it */
2444 if (page_dirty) {
2446 * Properly yield the lock only in postcopy preempt mode
2447 * because both migration thread and rp-return thread can
2448 * operate on the bitmaps.
2450 if (preempt_active) {
2451 qemu_mutex_unlock(&rs->bitmap_mutex);
2453 tmppages = ram_save_target_page(rs, pss);
2454 if (tmppages >= 0) {
2455 pages += tmppages;
2457 * Allow rate limiting to happen in the middle of huge pages if
2458 * something is sent in the current iteration.
2460 if (pagesize_bits > 1 && tmppages > 0) {
2461 migration_rate_limit();
2464 if (preempt_active) {
2465 qemu_mutex_lock(&rs->bitmap_mutex);
2467 } else {
2468 tmppages = 0;
2471 if (tmppages < 0) {
2472 pss_host_page_finish(pss);
2473 return tmppages;
2476 pss_find_next_dirty(pss);
2477 } while (pss_within_range(pss));
2479 pss_host_page_finish(pss);
2481 res = ram_save_release_protection(rs, pss, start_page);
2482 return (res < 0 ? res : pages);
2486 * ram_find_and_save_block: finds a dirty page and sends it to f
2488 * Called within an RCU critical section.
2490 * Returns the number of pages written where zero means no dirty pages,
2491 * or negative on error
2493 * @rs: current RAM state
2495 * On systems where host-page-size > target-page-size it will send all the
2496 * pages in a host page that are dirty.
2498 static int ram_find_and_save_block(RAMState *rs)
2500 PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY];
2501 int pages = 0;
2502 bool again, found;
2504 /* No dirty page as there is zero RAM */
2505 if (!ram_bytes_total()) {
2506 return pages;
2510 * Always keep last_seen_block/last_page valid during this procedure,
2511 * because find_dirty_block() relies on these values (e.g., we compare
2512 * last_seen_block with pss.block to see whether we searched all the
2513 * ramblocks) to detect the completion of migration. Having NULL value
2514 * of last_seen_block can conditionally cause below loop to run forever.
2516 if (!rs->last_seen_block) {
2517 rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks);
2518 rs->last_page = 0;
2521 pss_init(pss, rs->last_seen_block, rs->last_page);
2523 do {
2524 again = true;
2525 found = get_queued_page(rs, pss);
2527 if (!found) {
2528 /* priority queue empty, so just search for something dirty */
2529 found = find_dirty_block(rs, pss, &again);
2532 if (found) {
2533 pages = ram_save_host_page(rs, pss);
2535 } while (!pages && again);
2537 rs->last_seen_block = pss->block;
2538 rs->last_page = pss->page;
2540 return pages;
2543 void acct_update_position(QEMUFile *f, size_t size, bool zero)
2545 uint64_t pages = size / TARGET_PAGE_SIZE;
2547 if (zero) {
2548 stat64_add(&ram_atomic_counters.duplicate, pages);
2549 } else {
2550 stat64_add(&ram_atomic_counters.normal, pages);
2551 ram_transferred_add(size);
2552 qemu_file_credit_transfer(f, size);
2556 static uint64_t ram_bytes_total_common(bool count_ignored)
2558 RAMBlock *block;
2559 uint64_t total = 0;
2561 RCU_READ_LOCK_GUARD();
2563 if (count_ignored) {
2564 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2565 total += block->used_length;
2567 } else {
2568 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2569 total += block->used_length;
2572 return total;
2575 uint64_t ram_bytes_total(void)
2577 return ram_bytes_total_common(false);
2580 static void xbzrle_load_setup(void)
2582 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2585 static void xbzrle_load_cleanup(void)
2587 g_free(XBZRLE.decoded_buf);
2588 XBZRLE.decoded_buf = NULL;
2591 static void ram_state_cleanup(RAMState **rsp)
2593 if (*rsp) {
2594 migration_page_queue_free(*rsp);
2595 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2596 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2597 g_free(*rsp);
2598 *rsp = NULL;
2602 static void xbzrle_cleanup(void)
2604 XBZRLE_cache_lock();
2605 if (XBZRLE.cache) {
2606 cache_fini(XBZRLE.cache);
2607 g_free(XBZRLE.encoded_buf);
2608 g_free(XBZRLE.current_buf);
2609 g_free(XBZRLE.zero_target_page);
2610 XBZRLE.cache = NULL;
2611 XBZRLE.encoded_buf = NULL;
2612 XBZRLE.current_buf = NULL;
2613 XBZRLE.zero_target_page = NULL;
2615 XBZRLE_cache_unlock();
2618 static void ram_save_cleanup(void *opaque)
2620 RAMState **rsp = opaque;
2621 RAMBlock *block;
2623 /* We don't use dirty log with background snapshots */
2624 if (!migrate_background_snapshot()) {
2625 /* caller have hold iothread lock or is in a bh, so there is
2626 * no writing race against the migration bitmap
2628 if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) {
2630 * do not stop dirty log without starting it, since
2631 * memory_global_dirty_log_stop will assert that
2632 * memory_global_dirty_log_start/stop used in pairs
2634 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
2638 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2639 g_free(block->clear_bmap);
2640 block->clear_bmap = NULL;
2641 g_free(block->bmap);
2642 block->bmap = NULL;
2645 xbzrle_cleanup();
2646 compress_threads_save_cleanup();
2647 ram_state_cleanup(rsp);
2650 static void ram_state_reset(RAMState *rs)
2652 int i;
2654 for (i = 0; i < RAM_CHANNEL_MAX; i++) {
2655 rs->pss[i].last_sent_block = NULL;
2658 rs->last_seen_block = NULL;
2659 rs->last_page = 0;
2660 rs->last_version = ram_list.version;
2661 rs->xbzrle_enabled = false;
2664 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2666 /* **** functions for postcopy ***** */
2668 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2670 struct RAMBlock *block;
2672 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2673 unsigned long *bitmap = block->bmap;
2674 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2675 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2677 while (run_start < range) {
2678 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2679 ram_discard_range(block->idstr,
2680 ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
2681 ((ram_addr_t)(run_end - run_start))
2682 << TARGET_PAGE_BITS);
2683 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2689 * postcopy_send_discard_bm_ram: discard a RAMBlock
2691 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2693 * @ms: current migration state
2694 * @block: RAMBlock to discard
2696 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2698 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2699 unsigned long current;
2700 unsigned long *bitmap = block->bmap;
2702 for (current = 0; current < end; ) {
2703 unsigned long one = find_next_bit(bitmap, end, current);
2704 unsigned long zero, discard_length;
2706 if (one >= end) {
2707 break;
2710 zero = find_next_zero_bit(bitmap, end, one + 1);
2712 if (zero >= end) {
2713 discard_length = end - one;
2714 } else {
2715 discard_length = zero - one;
2717 postcopy_discard_send_range(ms, one, discard_length);
2718 current = one + discard_length;
2722 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block);
2725 * postcopy_each_ram_send_discard: discard all RAMBlocks
2727 * Utility for the outgoing postcopy code.
2728 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2729 * passing it bitmap indexes and name.
2730 * (qemu_ram_foreach_block ends up passing unscaled lengths
2731 * which would mean postcopy code would have to deal with target page)
2733 * @ms: current migration state
2735 static void postcopy_each_ram_send_discard(MigrationState *ms)
2737 struct RAMBlock *block;
2739 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2740 postcopy_discard_send_init(ms, block->idstr);
2743 * Deal with TPS != HPS and huge pages. It discard any partially sent
2744 * host-page size chunks, mark any partially dirty host-page size
2745 * chunks as all dirty. In this case the host-page is the host-page
2746 * for the particular RAMBlock, i.e. it might be a huge page.
2748 postcopy_chunk_hostpages_pass(ms, block);
2751 * Postcopy sends chunks of bitmap over the wire, but it
2752 * just needs indexes at this point, avoids it having
2753 * target page specific code.
2755 postcopy_send_discard_bm_ram(ms, block);
2756 postcopy_discard_send_finish(ms);
2761 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2763 * Helper for postcopy_chunk_hostpages; it's called twice to
2764 * canonicalize the two bitmaps, that are similar, but one is
2765 * inverted.
2767 * Postcopy requires that all target pages in a hostpage are dirty or
2768 * clean, not a mix. This function canonicalizes the bitmaps.
2770 * @ms: current migration state
2771 * @block: block that contains the page we want to canonicalize
2773 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2775 RAMState *rs = ram_state;
2776 unsigned long *bitmap = block->bmap;
2777 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2778 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2779 unsigned long run_start;
2781 if (block->page_size == TARGET_PAGE_SIZE) {
2782 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2783 return;
2786 /* Find a dirty page */
2787 run_start = find_next_bit(bitmap, pages, 0);
2789 while (run_start < pages) {
2792 * If the start of this run of pages is in the middle of a host
2793 * page, then we need to fixup this host page.
2795 if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2796 /* Find the end of this run */
2797 run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2799 * If the end isn't at the start of a host page, then the
2800 * run doesn't finish at the end of a host page
2801 * and we need to discard.
2805 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2806 unsigned long page;
2807 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2808 host_ratio);
2809 run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2811 /* Clean up the bitmap */
2812 for (page = fixup_start_addr;
2813 page < fixup_start_addr + host_ratio; page++) {
2815 * Remark them as dirty, updating the count for any pages
2816 * that weren't previously dirty.
2818 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2822 /* Find the next dirty page for the next iteration */
2823 run_start = find_next_bit(bitmap, pages, run_start);
2828 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2830 * Transmit the set of pages to be discarded after precopy to the target
2831 * these are pages that:
2832 * a) Have been previously transmitted but are now dirty again
2833 * b) Pages that have never been transmitted, this ensures that
2834 * any pages on the destination that have been mapped by background
2835 * tasks get discarded (transparent huge pages is the specific concern)
2836 * Hopefully this is pretty sparse
2838 * @ms: current migration state
2840 void ram_postcopy_send_discard_bitmap(MigrationState *ms)
2842 RAMState *rs = ram_state;
2844 RCU_READ_LOCK_GUARD();
2846 /* This should be our last sync, the src is now paused */
2847 migration_bitmap_sync(rs);
2849 /* Easiest way to make sure we don't resume in the middle of a host-page */
2850 rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL;
2851 rs->last_seen_block = NULL;
2852 rs->last_page = 0;
2854 postcopy_each_ram_send_discard(ms);
2856 trace_ram_postcopy_send_discard_bitmap();
2860 * ram_discard_range: discard dirtied pages at the beginning of postcopy
2862 * Returns zero on success
2864 * @rbname: name of the RAMBlock of the request. NULL means the
2865 * same that last one.
2866 * @start: RAMBlock starting page
2867 * @length: RAMBlock size
2869 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2871 trace_ram_discard_range(rbname, start, length);
2873 RCU_READ_LOCK_GUARD();
2874 RAMBlock *rb = qemu_ram_block_by_name(rbname);
2876 if (!rb) {
2877 error_report("ram_discard_range: Failed to find block '%s'", rbname);
2878 return -1;
2882 * On source VM, we don't need to update the received bitmap since
2883 * we don't even have one.
2885 if (rb->receivedmap) {
2886 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2887 length >> qemu_target_page_bits());
2890 return ram_block_discard_range(rb, start, length);
2894 * For every allocation, we will try not to crash the VM if the
2895 * allocation failed.
2897 static int xbzrle_init(void)
2899 Error *local_err = NULL;
2901 if (!migrate_use_xbzrle()) {
2902 return 0;
2905 XBZRLE_cache_lock();
2907 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2908 if (!XBZRLE.zero_target_page) {
2909 error_report("%s: Error allocating zero page", __func__);
2910 goto err_out;
2913 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2914 TARGET_PAGE_SIZE, &local_err);
2915 if (!XBZRLE.cache) {
2916 error_report_err(local_err);
2917 goto free_zero_page;
2920 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2921 if (!XBZRLE.encoded_buf) {
2922 error_report("%s: Error allocating encoded_buf", __func__);
2923 goto free_cache;
2926 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2927 if (!XBZRLE.current_buf) {
2928 error_report("%s: Error allocating current_buf", __func__);
2929 goto free_encoded_buf;
2932 /* We are all good */
2933 XBZRLE_cache_unlock();
2934 return 0;
2936 free_encoded_buf:
2937 g_free(XBZRLE.encoded_buf);
2938 XBZRLE.encoded_buf = NULL;
2939 free_cache:
2940 cache_fini(XBZRLE.cache);
2941 XBZRLE.cache = NULL;
2942 free_zero_page:
2943 g_free(XBZRLE.zero_target_page);
2944 XBZRLE.zero_target_page = NULL;
2945 err_out:
2946 XBZRLE_cache_unlock();
2947 return -ENOMEM;
2950 static int ram_state_init(RAMState **rsp)
2952 *rsp = g_try_new0(RAMState, 1);
2954 if (!*rsp) {
2955 error_report("%s: Init ramstate fail", __func__);
2956 return -1;
2959 qemu_mutex_init(&(*rsp)->bitmap_mutex);
2960 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2961 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2964 * Count the total number of pages used by ram blocks not including any
2965 * gaps due to alignment or unplugs.
2966 * This must match with the initial values of dirty bitmap.
2968 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
2969 ram_state_reset(*rsp);
2971 return 0;
2974 static void ram_list_init_bitmaps(void)
2976 MigrationState *ms = migrate_get_current();
2977 RAMBlock *block;
2978 unsigned long pages;
2979 uint8_t shift;
2981 /* Skip setting bitmap if there is no RAM */
2982 if (ram_bytes_total()) {
2983 shift = ms->clear_bitmap_shift;
2984 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
2985 error_report("clear_bitmap_shift (%u) too big, using "
2986 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
2987 shift = CLEAR_BITMAP_SHIFT_MAX;
2988 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
2989 error_report("clear_bitmap_shift (%u) too small, using "
2990 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
2991 shift = CLEAR_BITMAP_SHIFT_MIN;
2994 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2995 pages = block->max_length >> TARGET_PAGE_BITS;
2997 * The initial dirty bitmap for migration must be set with all
2998 * ones to make sure we'll migrate every guest RAM page to
2999 * destination.
3000 * Here we set RAMBlock.bmap all to 1 because when rebegin a
3001 * new migration after a failed migration, ram_list.
3002 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
3003 * guest memory.
3005 block->bmap = bitmap_new(pages);
3006 bitmap_set(block->bmap, 0, pages);
3007 block->clear_bmap_shift = shift;
3008 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
3013 static void migration_bitmap_clear_discarded_pages(RAMState *rs)
3015 unsigned long pages;
3016 RAMBlock *rb;
3018 RCU_READ_LOCK_GUARD();
3020 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3021 pages = ramblock_dirty_bitmap_clear_discarded_pages(rb);
3022 rs->migration_dirty_pages -= pages;
3026 static void ram_init_bitmaps(RAMState *rs)
3028 /* For memory_global_dirty_log_start below. */
3029 qemu_mutex_lock_iothread();
3030 qemu_mutex_lock_ramlist();
3032 WITH_RCU_READ_LOCK_GUARD() {
3033 ram_list_init_bitmaps();
3034 /* We don't use dirty log with background snapshots */
3035 if (!migrate_background_snapshot()) {
3036 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
3037 migration_bitmap_sync_precopy(rs);
3040 qemu_mutex_unlock_ramlist();
3041 qemu_mutex_unlock_iothread();
3044 * After an eventual first bitmap sync, fixup the initial bitmap
3045 * containing all 1s to exclude any discarded pages from migration.
3047 migration_bitmap_clear_discarded_pages(rs);
3050 static int ram_init_all(RAMState **rsp)
3052 if (ram_state_init(rsp)) {
3053 return -1;
3056 if (xbzrle_init()) {
3057 ram_state_cleanup(rsp);
3058 return -1;
3061 ram_init_bitmaps(*rsp);
3063 return 0;
3066 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
3068 RAMBlock *block;
3069 uint64_t pages = 0;
3072 * Postcopy is not using xbzrle/compression, so no need for that.
3073 * Also, since source are already halted, we don't need to care
3074 * about dirty page logging as well.
3077 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3078 pages += bitmap_count_one(block->bmap,
3079 block->used_length >> TARGET_PAGE_BITS);
3082 /* This may not be aligned with current bitmaps. Recalculate. */
3083 rs->migration_dirty_pages = pages;
3085 ram_state_reset(rs);
3087 /* Update RAMState cache of output QEMUFile */
3088 rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out;
3090 trace_ram_state_resume_prepare(pages);
3094 * This function clears bits of the free pages reported by the caller from the
3095 * migration dirty bitmap. @addr is the host address corresponding to the
3096 * start of the continuous guest free pages, and @len is the total bytes of
3097 * those pages.
3099 void qemu_guest_free_page_hint(void *addr, size_t len)
3101 RAMBlock *block;
3102 ram_addr_t offset;
3103 size_t used_len, start, npages;
3104 MigrationState *s = migrate_get_current();
3106 /* This function is currently expected to be used during live migration */
3107 if (!migration_is_setup_or_active(s->state)) {
3108 return;
3111 for (; len > 0; len -= used_len, addr += used_len) {
3112 block = qemu_ram_block_from_host(addr, false, &offset);
3113 if (unlikely(!block || offset >= block->used_length)) {
3115 * The implementation might not support RAMBlock resize during
3116 * live migration, but it could happen in theory with future
3117 * updates. So we add a check here to capture that case.
3119 error_report_once("%s unexpected error", __func__);
3120 return;
3123 if (len <= block->used_length - offset) {
3124 used_len = len;
3125 } else {
3126 used_len = block->used_length - offset;
3129 start = offset >> TARGET_PAGE_BITS;
3130 npages = used_len >> TARGET_PAGE_BITS;
3132 qemu_mutex_lock(&ram_state->bitmap_mutex);
3134 * The skipped free pages are equavalent to be sent from clear_bmap's
3135 * perspective, so clear the bits from the memory region bitmap which
3136 * are initially set. Otherwise those skipped pages will be sent in
3137 * the next round after syncing from the memory region bitmap.
3139 migration_clear_memory_region_dirty_bitmap_range(block, start, npages);
3140 ram_state->migration_dirty_pages -=
3141 bitmap_count_one_with_offset(block->bmap, start, npages);
3142 bitmap_clear(block->bmap, start, npages);
3143 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3148 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3149 * long-running RCU critical section. When rcu-reclaims in the code
3150 * start to become numerous it will be necessary to reduce the
3151 * granularity of these critical sections.
3155 * ram_save_setup: Setup RAM for migration
3157 * Returns zero to indicate success and negative for error
3159 * @f: QEMUFile where to send the data
3160 * @opaque: RAMState pointer
3162 static int ram_save_setup(QEMUFile *f, void *opaque)
3164 RAMState **rsp = opaque;
3165 RAMBlock *block;
3166 int ret;
3168 if (compress_threads_save_setup()) {
3169 return -1;
3172 /* migration has already setup the bitmap, reuse it. */
3173 if (!migration_in_colo_state()) {
3174 if (ram_init_all(rsp) != 0) {
3175 compress_threads_save_cleanup();
3176 return -1;
3179 (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f;
3181 WITH_RCU_READ_LOCK_GUARD() {
3182 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
3184 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3185 qemu_put_byte(f, strlen(block->idstr));
3186 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3187 qemu_put_be64(f, block->used_length);
3188 if (migrate_postcopy_ram() && block->page_size !=
3189 qemu_host_page_size) {
3190 qemu_put_be64(f, block->page_size);
3192 if (migrate_ignore_shared()) {
3193 qemu_put_be64(f, block->mr->addr);
3198 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3199 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3201 ret = multifd_send_sync_main(f);
3202 if (ret < 0) {
3203 return ret;
3206 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3207 qemu_fflush(f);
3209 return 0;
3213 * ram_save_iterate: iterative stage for migration
3215 * Returns zero to indicate success and negative for error
3217 * @f: QEMUFile where to send the data
3218 * @opaque: RAMState pointer
3220 static int ram_save_iterate(QEMUFile *f, void *opaque)
3222 RAMState **temp = opaque;
3223 RAMState *rs = *temp;
3224 int ret = 0;
3225 int i;
3226 int64_t t0;
3227 int done = 0;
3229 if (blk_mig_bulk_active()) {
3230 /* Avoid transferring ram during bulk phase of block migration as
3231 * the bulk phase will usually take a long time and transferring
3232 * ram updates during that time is pointless. */
3233 goto out;
3237 * We'll take this lock a little bit long, but it's okay for two reasons.
3238 * Firstly, the only possible other thread to take it is who calls
3239 * qemu_guest_free_page_hint(), which should be rare; secondly, see
3240 * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
3241 * guarantees that we'll at least released it in a regular basis.
3243 qemu_mutex_lock(&rs->bitmap_mutex);
3244 WITH_RCU_READ_LOCK_GUARD() {
3245 if (ram_list.version != rs->last_version) {
3246 ram_state_reset(rs);
3249 /* Read version before ram_list.blocks */
3250 smp_rmb();
3252 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3254 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3255 i = 0;
3256 while ((ret = qemu_file_rate_limit(f)) == 0 ||
3257 postcopy_has_request(rs)) {
3258 int pages;
3260 if (qemu_file_get_error(f)) {
3261 break;
3264 pages = ram_find_and_save_block(rs);
3265 /* no more pages to sent */
3266 if (pages == 0) {
3267 done = 1;
3268 break;
3271 if (pages < 0) {
3272 qemu_file_set_error(f, pages);
3273 break;
3276 rs->target_page_count += pages;
3279 * During postcopy, it is necessary to make sure one whole host
3280 * page is sent in one chunk.
3282 if (migrate_postcopy_ram()) {
3283 flush_compressed_data(rs);
3287 * we want to check in the 1st loop, just in case it was the 1st
3288 * time and we had to sync the dirty bitmap.
3289 * qemu_clock_get_ns() is a bit expensive, so we only check each
3290 * some iterations
3292 if ((i & 63) == 0) {
3293 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3294 1000000;
3295 if (t1 > MAX_WAIT) {
3296 trace_ram_save_iterate_big_wait(t1, i);
3297 break;
3300 i++;
3303 qemu_mutex_unlock(&rs->bitmap_mutex);
3306 * Must occur before EOS (or any QEMUFile operation)
3307 * because of RDMA protocol.
3309 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3311 out:
3312 if (ret >= 0
3313 && migration_is_setup_or_active(migrate_get_current()->state)) {
3314 ret = multifd_send_sync_main(rs->pss[RAM_CHANNEL_PRECOPY].pss_channel);
3315 if (ret < 0) {
3316 return ret;
3319 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3320 qemu_fflush(f);
3321 ram_transferred_add(8);
3323 ret = qemu_file_get_error(f);
3325 if (ret < 0) {
3326 return ret;
3329 return done;
3333 * ram_save_complete: function called to send the remaining amount of ram
3335 * Returns zero to indicate success or negative on error
3337 * Called with iothread lock
3339 * @f: QEMUFile where to send the data
3340 * @opaque: RAMState pointer
3342 static int ram_save_complete(QEMUFile *f, void *opaque)
3344 RAMState **temp = opaque;
3345 RAMState *rs = *temp;
3346 int ret = 0;
3348 rs->last_stage = !migration_in_colo_state();
3350 WITH_RCU_READ_LOCK_GUARD() {
3351 if (!migration_in_postcopy()) {
3352 migration_bitmap_sync_precopy(rs);
3355 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3357 /* try transferring iterative blocks of memory */
3359 /* flush all remaining blocks regardless of rate limiting */
3360 qemu_mutex_lock(&rs->bitmap_mutex);
3361 while (true) {
3362 int pages;
3364 pages = ram_find_and_save_block(rs);
3365 /* no more blocks to sent */
3366 if (pages == 0) {
3367 break;
3369 if (pages < 0) {
3370 ret = pages;
3371 break;
3374 qemu_mutex_unlock(&rs->bitmap_mutex);
3376 flush_compressed_data(rs);
3377 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
3380 if (ret < 0) {
3381 return ret;
3384 ret = multifd_send_sync_main(rs->pss[RAM_CHANNEL_PRECOPY].pss_channel);
3385 if (ret < 0) {
3386 return ret;
3389 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3390 qemu_fflush(f);
3392 return 0;
3395 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
3396 uint64_t *res_precopy_only,
3397 uint64_t *res_compatible,
3398 uint64_t *res_postcopy_only)
3400 RAMState **temp = opaque;
3401 RAMState *rs = *temp;
3402 uint64_t remaining_size;
3404 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3406 if (!migration_in_postcopy() &&
3407 remaining_size < max_size) {
3408 qemu_mutex_lock_iothread();
3409 WITH_RCU_READ_LOCK_GUARD() {
3410 migration_bitmap_sync_precopy(rs);
3412 qemu_mutex_unlock_iothread();
3413 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3416 if (migrate_postcopy_ram()) {
3417 /* We can do postcopy, and all the data is postcopiable */
3418 *res_compatible += remaining_size;
3419 } else {
3420 *res_precopy_only += remaining_size;
3424 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3426 unsigned int xh_len;
3427 int xh_flags;
3428 uint8_t *loaded_data;
3430 /* extract RLE header */
3431 xh_flags = qemu_get_byte(f);
3432 xh_len = qemu_get_be16(f);
3434 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3435 error_report("Failed to load XBZRLE page - wrong compression!");
3436 return -1;
3439 if (xh_len > TARGET_PAGE_SIZE) {
3440 error_report("Failed to load XBZRLE page - len overflow!");
3441 return -1;
3443 loaded_data = XBZRLE.decoded_buf;
3444 /* load data and decode */
3445 /* it can change loaded_data to point to an internal buffer */
3446 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3448 /* decode RLE */
3449 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3450 TARGET_PAGE_SIZE) == -1) {
3451 error_report("Failed to load XBZRLE page - decode error!");
3452 return -1;
3455 return 0;
3459 * ram_block_from_stream: read a RAMBlock id from the migration stream
3461 * Must be called from within a rcu critical section.
3463 * Returns a pointer from within the RCU-protected ram_list.
3465 * @mis: the migration incoming state pointer
3466 * @f: QEMUFile where to read the data from
3467 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3468 * @channel: the channel we're using
3470 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis,
3471 QEMUFile *f, int flags,
3472 int channel)
3474 RAMBlock *block = mis->last_recv_block[channel];
3475 char id[256];
3476 uint8_t len;
3478 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3479 if (!block) {
3480 error_report("Ack, bad migration stream!");
3481 return NULL;
3483 return block;
3486 len = qemu_get_byte(f);
3487 qemu_get_buffer(f, (uint8_t *)id, len);
3488 id[len] = 0;
3490 block = qemu_ram_block_by_name(id);
3491 if (!block) {
3492 error_report("Can't find block %s", id);
3493 return NULL;
3496 if (ramblock_is_ignored(block)) {
3497 error_report("block %s should not be migrated !", id);
3498 return NULL;
3501 mis->last_recv_block[channel] = block;
3503 return block;
3506 static inline void *host_from_ram_block_offset(RAMBlock *block,
3507 ram_addr_t offset)
3509 if (!offset_in_ramblock(block, offset)) {
3510 return NULL;
3513 return block->host + offset;
3516 static void *host_page_from_ram_block_offset(RAMBlock *block,
3517 ram_addr_t offset)
3519 /* Note: Explicitly no check against offset_in_ramblock(). */
3520 return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
3521 block->page_size);
3524 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
3525 ram_addr_t offset)
3527 return ((uintptr_t)block->host + offset) & (block->page_size - 1);
3530 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3531 ram_addr_t offset, bool record_bitmap)
3533 if (!offset_in_ramblock(block, offset)) {
3534 return NULL;
3536 if (!block->colo_cache) {
3537 error_report("%s: colo_cache is NULL in block :%s",
3538 __func__, block->idstr);
3539 return NULL;
3543 * During colo checkpoint, we need bitmap of these migrated pages.
3544 * It help us to decide which pages in ram cache should be flushed
3545 * into VM's RAM later.
3547 if (record_bitmap &&
3548 !test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
3549 ram_state->migration_dirty_pages++;
3551 return block->colo_cache + offset;
3555 * ram_handle_compressed: handle the zero page case
3557 * If a page (or a whole RDMA chunk) has been
3558 * determined to be zero, then zap it.
3560 * @host: host address for the zero page
3561 * @ch: what the page is filled from. We only support zero
3562 * @size: size of the zero page
3564 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3566 if (ch != 0 || !buffer_is_zero(host, size)) {
3567 memset(host, ch, size);
3571 /* return the size after decompression, or negative value on error */
3572 static int
3573 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3574 const uint8_t *source, size_t source_len)
3576 int err;
3578 err = inflateReset(stream);
3579 if (err != Z_OK) {
3580 return -1;
3583 stream->avail_in = source_len;
3584 stream->next_in = (uint8_t *)source;
3585 stream->avail_out = dest_len;
3586 stream->next_out = dest;
3588 err = inflate(stream, Z_NO_FLUSH);
3589 if (err != Z_STREAM_END) {
3590 return -1;
3593 return stream->total_out;
3596 static void *do_data_decompress(void *opaque)
3598 DecompressParam *param = opaque;
3599 unsigned long pagesize;
3600 uint8_t *des;
3601 int len, ret;
3603 qemu_mutex_lock(&param->mutex);
3604 while (!param->quit) {
3605 if (param->des) {
3606 des = param->des;
3607 len = param->len;
3608 param->des = 0;
3609 qemu_mutex_unlock(&param->mutex);
3611 pagesize = TARGET_PAGE_SIZE;
3613 ret = qemu_uncompress_data(&param->stream, des, pagesize,
3614 param->compbuf, len);
3615 if (ret < 0 && migrate_get_current()->decompress_error_check) {
3616 error_report("decompress data failed");
3617 qemu_file_set_error(decomp_file, ret);
3620 qemu_mutex_lock(&decomp_done_lock);
3621 param->done = true;
3622 qemu_cond_signal(&decomp_done_cond);
3623 qemu_mutex_unlock(&decomp_done_lock);
3625 qemu_mutex_lock(&param->mutex);
3626 } else {
3627 qemu_cond_wait(&param->cond, &param->mutex);
3630 qemu_mutex_unlock(&param->mutex);
3632 return NULL;
3635 static int wait_for_decompress_done(void)
3637 int idx, thread_count;
3639 if (!migrate_use_compression()) {
3640 return 0;
3643 thread_count = migrate_decompress_threads();
3644 qemu_mutex_lock(&decomp_done_lock);
3645 for (idx = 0; idx < thread_count; idx++) {
3646 while (!decomp_param[idx].done) {
3647 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3650 qemu_mutex_unlock(&decomp_done_lock);
3651 return qemu_file_get_error(decomp_file);
3654 static void compress_threads_load_cleanup(void)
3656 int i, thread_count;
3658 if (!migrate_use_compression()) {
3659 return;
3661 thread_count = migrate_decompress_threads();
3662 for (i = 0; i < thread_count; i++) {
3664 * we use it as a indicator which shows if the thread is
3665 * properly init'd or not
3667 if (!decomp_param[i].compbuf) {
3668 break;
3671 qemu_mutex_lock(&decomp_param[i].mutex);
3672 decomp_param[i].quit = true;
3673 qemu_cond_signal(&decomp_param[i].cond);
3674 qemu_mutex_unlock(&decomp_param[i].mutex);
3676 for (i = 0; i < thread_count; i++) {
3677 if (!decomp_param[i].compbuf) {
3678 break;
3681 qemu_thread_join(decompress_threads + i);
3682 qemu_mutex_destroy(&decomp_param[i].mutex);
3683 qemu_cond_destroy(&decomp_param[i].cond);
3684 inflateEnd(&decomp_param[i].stream);
3685 g_free(decomp_param[i].compbuf);
3686 decomp_param[i].compbuf = NULL;
3688 g_free(decompress_threads);
3689 g_free(decomp_param);
3690 decompress_threads = NULL;
3691 decomp_param = NULL;
3692 decomp_file = NULL;
3695 static int compress_threads_load_setup(QEMUFile *f)
3697 int i, thread_count;
3699 if (!migrate_use_compression()) {
3700 return 0;
3703 thread_count = migrate_decompress_threads();
3704 decompress_threads = g_new0(QemuThread, thread_count);
3705 decomp_param = g_new0(DecompressParam, thread_count);
3706 qemu_mutex_init(&decomp_done_lock);
3707 qemu_cond_init(&decomp_done_cond);
3708 decomp_file = f;
3709 for (i = 0; i < thread_count; i++) {
3710 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3711 goto exit;
3714 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3715 qemu_mutex_init(&decomp_param[i].mutex);
3716 qemu_cond_init(&decomp_param[i].cond);
3717 decomp_param[i].done = true;
3718 decomp_param[i].quit = false;
3719 qemu_thread_create(decompress_threads + i, "decompress",
3720 do_data_decompress, decomp_param + i,
3721 QEMU_THREAD_JOINABLE);
3723 return 0;
3724 exit:
3725 compress_threads_load_cleanup();
3726 return -1;
3729 static void decompress_data_with_multi_threads(QEMUFile *f,
3730 void *host, int len)
3732 int idx, thread_count;
3734 thread_count = migrate_decompress_threads();
3735 QEMU_LOCK_GUARD(&decomp_done_lock);
3736 while (true) {
3737 for (idx = 0; idx < thread_count; idx++) {
3738 if (decomp_param[idx].done) {
3739 decomp_param[idx].done = false;
3740 qemu_mutex_lock(&decomp_param[idx].mutex);
3741 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
3742 decomp_param[idx].des = host;
3743 decomp_param[idx].len = len;
3744 qemu_cond_signal(&decomp_param[idx].cond);
3745 qemu_mutex_unlock(&decomp_param[idx].mutex);
3746 break;
3749 if (idx < thread_count) {
3750 break;
3751 } else {
3752 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3757 static void colo_init_ram_state(void)
3759 ram_state_init(&ram_state);
3763 * colo cache: this is for secondary VM, we cache the whole
3764 * memory of the secondary VM, it is need to hold the global lock
3765 * to call this helper.
3767 int colo_init_ram_cache(void)
3769 RAMBlock *block;
3771 WITH_RCU_READ_LOCK_GUARD() {
3772 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3773 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3774 NULL, false, false);
3775 if (!block->colo_cache) {
3776 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3777 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3778 block->used_length);
3779 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3780 if (block->colo_cache) {
3781 qemu_anon_ram_free(block->colo_cache, block->used_length);
3782 block->colo_cache = NULL;
3785 return -errno;
3787 if (!machine_dump_guest_core(current_machine)) {
3788 qemu_madvise(block->colo_cache, block->used_length,
3789 QEMU_MADV_DONTDUMP);
3795 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3796 * with to decide which page in cache should be flushed into SVM's RAM. Here
3797 * we use the same name 'ram_bitmap' as for migration.
3799 if (ram_bytes_total()) {
3800 RAMBlock *block;
3802 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3803 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3804 block->bmap = bitmap_new(pages);
3808 colo_init_ram_state();
3809 return 0;
3812 /* TODO: duplicated with ram_init_bitmaps */
3813 void colo_incoming_start_dirty_log(void)
3815 RAMBlock *block = NULL;
3816 /* For memory_global_dirty_log_start below. */
3817 qemu_mutex_lock_iothread();
3818 qemu_mutex_lock_ramlist();
3820 memory_global_dirty_log_sync();
3821 WITH_RCU_READ_LOCK_GUARD() {
3822 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3823 ramblock_sync_dirty_bitmap(ram_state, block);
3824 /* Discard this dirty bitmap record */
3825 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
3827 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
3829 ram_state->migration_dirty_pages = 0;
3830 qemu_mutex_unlock_ramlist();
3831 qemu_mutex_unlock_iothread();
3834 /* It is need to hold the global lock to call this helper */
3835 void colo_release_ram_cache(void)
3837 RAMBlock *block;
3839 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
3840 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3841 g_free(block->bmap);
3842 block->bmap = NULL;
3845 WITH_RCU_READ_LOCK_GUARD() {
3846 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3847 if (block->colo_cache) {
3848 qemu_anon_ram_free(block->colo_cache, block->used_length);
3849 block->colo_cache = NULL;
3853 ram_state_cleanup(&ram_state);
3857 * ram_load_setup: Setup RAM for migration incoming side
3859 * Returns zero to indicate success and negative for error
3861 * @f: QEMUFile where to receive the data
3862 * @opaque: RAMState pointer
3864 static int ram_load_setup(QEMUFile *f, void *opaque)
3866 if (compress_threads_load_setup(f)) {
3867 return -1;
3870 xbzrle_load_setup();
3871 ramblock_recv_map_init();
3873 return 0;
3876 static int ram_load_cleanup(void *opaque)
3878 RAMBlock *rb;
3880 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3881 qemu_ram_block_writeback(rb);
3884 xbzrle_load_cleanup();
3885 compress_threads_load_cleanup();
3887 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3888 g_free(rb->receivedmap);
3889 rb->receivedmap = NULL;
3892 return 0;
3896 * ram_postcopy_incoming_init: allocate postcopy data structures
3898 * Returns 0 for success and negative if there was one error
3900 * @mis: current migration incoming state
3902 * Allocate data structures etc needed by incoming migration with
3903 * postcopy-ram. postcopy-ram's similarly names
3904 * postcopy_ram_incoming_init does the work.
3906 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3908 return postcopy_ram_incoming_init(mis);
3912 * ram_load_postcopy: load a page in postcopy case
3914 * Returns 0 for success or -errno in case of error
3916 * Called in postcopy mode by ram_load().
3917 * rcu_read_lock is taken prior to this being called.
3919 * @f: QEMUFile where to send the data
3920 * @channel: the channel to use for loading
3922 int ram_load_postcopy(QEMUFile *f, int channel)
3924 int flags = 0, ret = 0;
3925 bool place_needed = false;
3926 bool matches_target_page_size = false;
3927 MigrationIncomingState *mis = migration_incoming_get_current();
3928 PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel];
3930 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3931 ram_addr_t addr;
3932 void *page_buffer = NULL;
3933 void *place_source = NULL;
3934 RAMBlock *block = NULL;
3935 uint8_t ch;
3936 int len;
3938 addr = qemu_get_be64(f);
3941 * If qemu file error, we should stop here, and then "addr"
3942 * may be invalid
3944 ret = qemu_file_get_error(f);
3945 if (ret) {
3946 break;
3949 flags = addr & ~TARGET_PAGE_MASK;
3950 addr &= TARGET_PAGE_MASK;
3952 trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags);
3953 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3954 RAM_SAVE_FLAG_COMPRESS_PAGE)) {
3955 block = ram_block_from_stream(mis, f, flags, channel);
3956 if (!block) {
3957 ret = -EINVAL;
3958 break;
3962 * Relying on used_length is racy and can result in false positives.
3963 * We might place pages beyond used_length in case RAM was shrunk
3964 * while in postcopy, which is fine - trying to place via
3965 * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
3967 if (!block->host || addr >= block->postcopy_length) {
3968 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3969 ret = -EINVAL;
3970 break;
3972 tmp_page->target_pages++;
3973 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
3975 * Postcopy requires that we place whole host pages atomically;
3976 * these may be huge pages for RAMBlocks that are backed by
3977 * hugetlbfs.
3978 * To make it atomic, the data is read into a temporary page
3979 * that's moved into place later.
3980 * The migration protocol uses, possibly smaller, target-pages
3981 * however the source ensures it always sends all the components
3982 * of a host page in one chunk.
3984 page_buffer = tmp_page->tmp_huge_page +
3985 host_page_offset_from_ram_block_offset(block, addr);
3986 /* If all TP are zero then we can optimise the place */
3987 if (tmp_page->target_pages == 1) {
3988 tmp_page->host_addr =
3989 host_page_from_ram_block_offset(block, addr);
3990 } else if (tmp_page->host_addr !=
3991 host_page_from_ram_block_offset(block, addr)) {
3992 /* not the 1st TP within the HP */
3993 error_report("Non-same host page detected on channel %d: "
3994 "Target host page %p, received host page %p "
3995 "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)",
3996 channel, tmp_page->host_addr,
3997 host_page_from_ram_block_offset(block, addr),
3998 block->idstr, addr, tmp_page->target_pages);
3999 ret = -EINVAL;
4000 break;
4004 * If it's the last part of a host page then we place the host
4005 * page
4007 if (tmp_page->target_pages ==
4008 (block->page_size / TARGET_PAGE_SIZE)) {
4009 place_needed = true;
4011 place_source = tmp_page->tmp_huge_page;
4014 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4015 case RAM_SAVE_FLAG_ZERO:
4016 ch = qemu_get_byte(f);
4018 * Can skip to set page_buffer when
4019 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
4021 if (ch || !matches_target_page_size) {
4022 memset(page_buffer, ch, TARGET_PAGE_SIZE);
4024 if (ch) {
4025 tmp_page->all_zero = false;
4027 break;
4029 case RAM_SAVE_FLAG_PAGE:
4030 tmp_page->all_zero = false;
4031 if (!matches_target_page_size) {
4032 /* For huge pages, we always use temporary buffer */
4033 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
4034 } else {
4036 * For small pages that matches target page size, we
4037 * avoid the qemu_file copy. Instead we directly use
4038 * the buffer of QEMUFile to place the page. Note: we
4039 * cannot do any QEMUFile operation before using that
4040 * buffer to make sure the buffer is valid when
4041 * placing the page.
4043 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
4044 TARGET_PAGE_SIZE);
4046 break;
4047 case RAM_SAVE_FLAG_COMPRESS_PAGE:
4048 tmp_page->all_zero = false;
4049 len = qemu_get_be32(f);
4050 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4051 error_report("Invalid compressed data length: %d", len);
4052 ret = -EINVAL;
4053 break;
4055 decompress_data_with_multi_threads(f, page_buffer, len);
4056 break;
4058 case RAM_SAVE_FLAG_EOS:
4059 /* normal exit */
4060 multifd_recv_sync_main();
4061 break;
4062 default:
4063 error_report("Unknown combination of migration flags: 0x%x"
4064 " (postcopy mode)", flags);
4065 ret = -EINVAL;
4066 break;
4069 /* Got the whole host page, wait for decompress before placing. */
4070 if (place_needed) {
4071 ret |= wait_for_decompress_done();
4074 /* Detect for any possible file errors */
4075 if (!ret && qemu_file_get_error(f)) {
4076 ret = qemu_file_get_error(f);
4079 if (!ret && place_needed) {
4080 if (tmp_page->all_zero) {
4081 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block);
4082 } else {
4083 ret = postcopy_place_page(mis, tmp_page->host_addr,
4084 place_source, block);
4086 place_needed = false;
4087 postcopy_temp_page_reset(tmp_page);
4091 return ret;
4094 static bool postcopy_is_advised(void)
4096 PostcopyState ps = postcopy_state_get();
4097 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
4100 static bool postcopy_is_running(void)
4102 PostcopyState ps = postcopy_state_get();
4103 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
4107 * Flush content of RAM cache into SVM's memory.
4108 * Only flush the pages that be dirtied by PVM or SVM or both.
4110 void colo_flush_ram_cache(void)
4112 RAMBlock *block = NULL;
4113 void *dst_host;
4114 void *src_host;
4115 unsigned long offset = 0;
4117 memory_global_dirty_log_sync();
4118 WITH_RCU_READ_LOCK_GUARD() {
4119 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4120 ramblock_sync_dirty_bitmap(ram_state, block);
4124 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
4125 WITH_RCU_READ_LOCK_GUARD() {
4126 block = QLIST_FIRST_RCU(&ram_list.blocks);
4128 while (block) {
4129 unsigned long num = 0;
4131 offset = colo_bitmap_find_dirty(ram_state, block, offset, &num);
4132 if (!offset_in_ramblock(block,
4133 ((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
4134 offset = 0;
4135 num = 0;
4136 block = QLIST_NEXT_RCU(block, next);
4137 } else {
4138 unsigned long i = 0;
4140 for (i = 0; i < num; i++) {
4141 migration_bitmap_clear_dirty(ram_state, block, offset + i);
4143 dst_host = block->host
4144 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
4145 src_host = block->colo_cache
4146 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
4147 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num);
4148 offset += num;
4152 trace_colo_flush_ram_cache_end();
4156 * ram_load_precopy: load pages in precopy case
4158 * Returns 0 for success or -errno in case of error
4160 * Called in precopy mode by ram_load().
4161 * rcu_read_lock is taken prior to this being called.
4163 * @f: QEMUFile where to send the data
4165 static int ram_load_precopy(QEMUFile *f)
4167 MigrationIncomingState *mis = migration_incoming_get_current();
4168 int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0;
4169 /* ADVISE is earlier, it shows the source has the postcopy capability on */
4170 bool postcopy_advised = postcopy_is_advised();
4171 if (!migrate_use_compression()) {
4172 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4175 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4176 ram_addr_t addr, total_ram_bytes;
4177 void *host = NULL, *host_bak = NULL;
4178 uint8_t ch;
4181 * Yield periodically to let main loop run, but an iteration of
4182 * the main loop is expensive, so do it each some iterations
4184 if ((i & 32767) == 0 && qemu_in_coroutine()) {
4185 aio_co_schedule(qemu_get_current_aio_context(),
4186 qemu_coroutine_self());
4187 qemu_coroutine_yield();
4189 i++;
4191 addr = qemu_get_be64(f);
4192 flags = addr & ~TARGET_PAGE_MASK;
4193 addr &= TARGET_PAGE_MASK;
4195 if (flags & invalid_flags) {
4196 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4197 error_report("Received an unexpected compressed page");
4200 ret = -EINVAL;
4201 break;
4204 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4205 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4206 RAMBlock *block = ram_block_from_stream(mis, f, flags,
4207 RAM_CHANNEL_PRECOPY);
4209 host = host_from_ram_block_offset(block, addr);
4211 * After going into COLO stage, we should not load the page
4212 * into SVM's memory directly, we put them into colo_cache firstly.
4213 * NOTE: We need to keep a copy of SVM's ram in colo_cache.
4214 * Previously, we copied all these memory in preparing stage of COLO
4215 * while we need to stop VM, which is a time-consuming process.
4216 * Here we optimize it by a trick, back-up every page while in
4217 * migration process while COLO is enabled, though it affects the
4218 * speed of the migration, but it obviously reduce the downtime of
4219 * back-up all SVM'S memory in COLO preparing stage.
4221 if (migration_incoming_colo_enabled()) {
4222 if (migration_incoming_in_colo_state()) {
4223 /* In COLO stage, put all pages into cache temporarily */
4224 host = colo_cache_from_block_offset(block, addr, true);
4225 } else {
4227 * In migration stage but before COLO stage,
4228 * Put all pages into both cache and SVM's memory.
4230 host_bak = colo_cache_from_block_offset(block, addr, false);
4233 if (!host) {
4234 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4235 ret = -EINVAL;
4236 break;
4238 if (!migration_incoming_in_colo_state()) {
4239 ramblock_recv_bitmap_set(block, host);
4242 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4245 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4246 case RAM_SAVE_FLAG_MEM_SIZE:
4247 /* Synchronize RAM block list */
4248 total_ram_bytes = addr;
4249 while (!ret && total_ram_bytes) {
4250 RAMBlock *block;
4251 char id[256];
4252 ram_addr_t length;
4254 len = qemu_get_byte(f);
4255 qemu_get_buffer(f, (uint8_t *)id, len);
4256 id[len] = 0;
4257 length = qemu_get_be64(f);
4259 block = qemu_ram_block_by_name(id);
4260 if (block && !qemu_ram_is_migratable(block)) {
4261 error_report("block %s should not be migrated !", id);
4262 ret = -EINVAL;
4263 } else if (block) {
4264 if (length != block->used_length) {
4265 Error *local_err = NULL;
4267 ret = qemu_ram_resize(block, length,
4268 &local_err);
4269 if (local_err) {
4270 error_report_err(local_err);
4273 /* For postcopy we need to check hugepage sizes match */
4274 if (postcopy_advised && migrate_postcopy_ram() &&
4275 block->page_size != qemu_host_page_size) {
4276 uint64_t remote_page_size = qemu_get_be64(f);
4277 if (remote_page_size != block->page_size) {
4278 error_report("Mismatched RAM page size %s "
4279 "(local) %zd != %" PRId64,
4280 id, block->page_size,
4281 remote_page_size);
4282 ret = -EINVAL;
4285 if (migrate_ignore_shared()) {
4286 hwaddr addr = qemu_get_be64(f);
4287 if (ramblock_is_ignored(block) &&
4288 block->mr->addr != addr) {
4289 error_report("Mismatched GPAs for block %s "
4290 "%" PRId64 "!= %" PRId64,
4291 id, (uint64_t)addr,
4292 (uint64_t)block->mr->addr);
4293 ret = -EINVAL;
4296 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4297 block->idstr);
4298 } else {
4299 error_report("Unknown ramblock \"%s\", cannot "
4300 "accept migration", id);
4301 ret = -EINVAL;
4304 total_ram_bytes -= length;
4306 break;
4308 case RAM_SAVE_FLAG_ZERO:
4309 ch = qemu_get_byte(f);
4310 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4311 break;
4313 case RAM_SAVE_FLAG_PAGE:
4314 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4315 break;
4317 case RAM_SAVE_FLAG_COMPRESS_PAGE:
4318 len = qemu_get_be32(f);
4319 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4320 error_report("Invalid compressed data length: %d", len);
4321 ret = -EINVAL;
4322 break;
4324 decompress_data_with_multi_threads(f, host, len);
4325 break;
4327 case RAM_SAVE_FLAG_XBZRLE:
4328 if (load_xbzrle(f, addr, host) < 0) {
4329 error_report("Failed to decompress XBZRLE page at "
4330 RAM_ADDR_FMT, addr);
4331 ret = -EINVAL;
4332 break;
4334 break;
4335 case RAM_SAVE_FLAG_EOS:
4336 /* normal exit */
4337 multifd_recv_sync_main();
4338 break;
4339 default:
4340 if (flags & RAM_SAVE_FLAG_HOOK) {
4341 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
4342 } else {
4343 error_report("Unknown combination of migration flags: 0x%x",
4344 flags);
4345 ret = -EINVAL;
4348 if (!ret) {
4349 ret = qemu_file_get_error(f);
4351 if (!ret && host_bak) {
4352 memcpy(host_bak, host, TARGET_PAGE_SIZE);
4356 ret |= wait_for_decompress_done();
4357 return ret;
4360 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4362 int ret = 0;
4363 static uint64_t seq_iter;
4365 * If system is running in postcopy mode, page inserts to host memory must
4366 * be atomic
4368 bool postcopy_running = postcopy_is_running();
4370 seq_iter++;
4372 if (version_id != 4) {
4373 return -EINVAL;
4377 * This RCU critical section can be very long running.
4378 * When RCU reclaims in the code start to become numerous,
4379 * it will be necessary to reduce the granularity of this
4380 * critical section.
4382 WITH_RCU_READ_LOCK_GUARD() {
4383 if (postcopy_running) {
4385 * Note! Here RAM_CHANNEL_PRECOPY is the precopy channel of
4386 * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to
4387 * service fast page faults.
4389 ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY);
4390 } else {
4391 ret = ram_load_precopy(f);
4394 trace_ram_load_complete(ret, seq_iter);
4396 return ret;
4399 static bool ram_has_postcopy(void *opaque)
4401 RAMBlock *rb;
4402 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4403 if (ramblock_is_pmem(rb)) {
4404 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4405 "is not supported now!", rb->idstr, rb->host);
4406 return false;
4410 return migrate_postcopy_ram();
4413 /* Sync all the dirty bitmap with destination VM. */
4414 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4416 RAMBlock *block;
4417 QEMUFile *file = s->to_dst_file;
4418 int ramblock_count = 0;
4420 trace_ram_dirty_bitmap_sync_start();
4422 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4423 qemu_savevm_send_recv_bitmap(file, block->idstr);
4424 trace_ram_dirty_bitmap_request(block->idstr);
4425 ramblock_count++;
4428 trace_ram_dirty_bitmap_sync_wait();
4430 /* Wait until all the ramblocks' dirty bitmap synced */
4431 while (ramblock_count--) {
4432 qemu_sem_wait(&s->rp_state.rp_sem);
4435 trace_ram_dirty_bitmap_sync_complete();
4437 return 0;
4440 static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4442 qemu_sem_post(&s->rp_state.rp_sem);
4446 * Read the received bitmap, revert it as the initial dirty bitmap.
4447 * This is only used when the postcopy migration is paused but wants
4448 * to resume from a middle point.
4450 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4452 int ret = -EINVAL;
4453 /* from_dst_file is always valid because we're within rp_thread */
4454 QEMUFile *file = s->rp_state.from_dst_file;
4455 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
4456 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4457 uint64_t size, end_mark;
4459 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4461 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4462 error_report("%s: incorrect state %s", __func__,
4463 MigrationStatus_str(s->state));
4464 return -EINVAL;
4468 * Note: see comments in ramblock_recv_bitmap_send() on why we
4469 * need the endianness conversion, and the paddings.
4471 local_size = ROUND_UP(local_size, 8);
4473 /* Add paddings */
4474 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4476 size = qemu_get_be64(file);
4478 /* The size of the bitmap should match with our ramblock */
4479 if (size != local_size) {
4480 error_report("%s: ramblock '%s' bitmap size mismatch "
4481 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4482 block->idstr, size, local_size);
4483 ret = -EINVAL;
4484 goto out;
4487 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4488 end_mark = qemu_get_be64(file);
4490 ret = qemu_file_get_error(file);
4491 if (ret || size != local_size) {
4492 error_report("%s: read bitmap failed for ramblock '%s': %d"
4493 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4494 __func__, block->idstr, ret, local_size, size);
4495 ret = -EIO;
4496 goto out;
4499 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4500 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIx64,
4501 __func__, block->idstr, end_mark);
4502 ret = -EINVAL;
4503 goto out;
4507 * Endianness conversion. We are during postcopy (though paused).
4508 * The dirty bitmap won't change. We can directly modify it.
4510 bitmap_from_le(block->bmap, le_bitmap, nbits);
4513 * What we received is "received bitmap". Revert it as the initial
4514 * dirty bitmap for this ramblock.
4516 bitmap_complement(block->bmap, block->bmap, nbits);
4518 /* Clear dirty bits of discarded ranges that we don't want to migrate. */
4519 ramblock_dirty_bitmap_clear_discarded_pages(block);
4521 /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
4522 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4525 * We succeeded to sync bitmap for current ramblock. If this is
4526 * the last one to sync, we need to notify the main send thread.
4528 ram_dirty_bitmap_reload_notify(s);
4530 ret = 0;
4531 out:
4532 g_free(le_bitmap);
4533 return ret;
4536 static int ram_resume_prepare(MigrationState *s, void *opaque)
4538 RAMState *rs = *(RAMState **)opaque;
4539 int ret;
4541 ret = ram_dirty_bitmap_sync_all(s, rs);
4542 if (ret) {
4543 return ret;
4546 ram_state_resume_prepare(rs, s->to_dst_file);
4548 return 0;
4551 void postcopy_preempt_shutdown_file(MigrationState *s)
4553 qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS);
4554 qemu_fflush(s->postcopy_qemufile_src);
4557 static SaveVMHandlers savevm_ram_handlers = {
4558 .save_setup = ram_save_setup,
4559 .save_live_iterate = ram_save_iterate,
4560 .save_live_complete_postcopy = ram_save_complete,
4561 .save_live_complete_precopy = ram_save_complete,
4562 .has_postcopy = ram_has_postcopy,
4563 .save_live_pending = ram_save_pending,
4564 .load_state = ram_load,
4565 .save_cleanup = ram_save_cleanup,
4566 .load_setup = ram_load_setup,
4567 .load_cleanup = ram_load_cleanup,
4568 .resume_prepare = ram_resume_prepare,
4571 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
4572 size_t old_size, size_t new_size)
4574 PostcopyState ps = postcopy_state_get();
4575 ram_addr_t offset;
4576 RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
4577 Error *err = NULL;
4579 if (ramblock_is_ignored(rb)) {
4580 return;
4583 if (!migration_is_idle()) {
4585 * Precopy code on the source cannot deal with the size of RAM blocks
4586 * changing at random points in time - especially after sending the
4587 * RAM block sizes in the migration stream, they must no longer change.
4588 * Abort and indicate a proper reason.
4590 error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
4591 migration_cancel(err);
4592 error_free(err);
4595 switch (ps) {
4596 case POSTCOPY_INCOMING_ADVISE:
4598 * Update what ram_postcopy_incoming_init()->init_range() does at the
4599 * time postcopy was advised. Syncing RAM blocks with the source will
4600 * result in RAM resizes.
4602 if (old_size < new_size) {
4603 if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
4604 error_report("RAM block '%s' discard of resized RAM failed",
4605 rb->idstr);
4608 rb->postcopy_length = new_size;
4609 break;
4610 case POSTCOPY_INCOMING_NONE:
4611 case POSTCOPY_INCOMING_RUNNING:
4612 case POSTCOPY_INCOMING_END:
4614 * Once our guest is running, postcopy does no longer care about
4615 * resizes. When growing, the new memory was not available on the
4616 * source, no handler needed.
4618 break;
4619 default:
4620 error_report("RAM block '%s' resized during postcopy state: %d",
4621 rb->idstr, ps);
4622 exit(-1);
4626 static RAMBlockNotifier ram_mig_ram_notifier = {
4627 .ram_block_resized = ram_mig_ram_block_resized,
4630 void ram_mig_init(void)
4632 qemu_mutex_init(&XBZRLE.lock);
4633 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
4634 ram_block_notifier_add(&ram_mig_ram_notifier);