linux-headers: update to v6.5-rc1
[qemu/armbru.git] / linux-headers / linux / vfio.h
blob16db89071eabdea7166cbbe20c4dee3130360be6
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 /*
3 * VFIO API definition
5 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
6 * Author: Alex Williamson <alex.williamson@redhat.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
12 #ifndef VFIO_H
13 #define VFIO_H
15 #include <linux/types.h>
16 #include <linux/ioctl.h>
18 #define VFIO_API_VERSION 0
21 /* Kernel & User level defines for VFIO IOCTLs. */
23 /* Extensions */
25 #define VFIO_TYPE1_IOMMU 1
26 #define VFIO_SPAPR_TCE_IOMMU 2
27 #define VFIO_TYPE1v2_IOMMU 3
29 * IOMMU enforces DMA cache coherence (ex. PCIe NoSnoop stripping). This
30 * capability is subject to change as groups are added or removed.
32 #define VFIO_DMA_CC_IOMMU 4
34 /* Check if EEH is supported */
35 #define VFIO_EEH 5
37 /* Two-stage IOMMU */
38 #define VFIO_TYPE1_NESTING_IOMMU 6 /* Implies v2 */
40 #define VFIO_SPAPR_TCE_v2_IOMMU 7
43 * The No-IOMMU IOMMU offers no translation or isolation for devices and
44 * supports no ioctls outside of VFIO_CHECK_EXTENSION. Use of VFIO's No-IOMMU
45 * code will taint the host kernel and should be used with extreme caution.
47 #define VFIO_NOIOMMU_IOMMU 8
49 /* Supports VFIO_DMA_UNMAP_FLAG_ALL */
50 #define VFIO_UNMAP_ALL 9
53 * Supports the vaddr flag for DMA map and unmap. Not supported for mediated
54 * devices, so this capability is subject to change as groups are added or
55 * removed.
57 #define VFIO_UPDATE_VADDR 10
60 * The IOCTL interface is designed for extensibility by embedding the
61 * structure length (argsz) and flags into structures passed between
62 * kernel and userspace. We therefore use the _IO() macro for these
63 * defines to avoid implicitly embedding a size into the ioctl request.
64 * As structure fields are added, argsz will increase to match and flag
65 * bits will be defined to indicate additional fields with valid data.
66 * It's *always* the caller's responsibility to indicate the size of
67 * the structure passed by setting argsz appropriately.
70 #define VFIO_TYPE (';')
71 #define VFIO_BASE 100
74 * For extension of INFO ioctls, VFIO makes use of a capability chain
75 * designed after PCI/e capabilities. A flag bit indicates whether
76 * this capability chain is supported and a field defined in the fixed
77 * structure defines the offset of the first capability in the chain.
78 * This field is only valid when the corresponding bit in the flags
79 * bitmap is set. This offset field is relative to the start of the
80 * INFO buffer, as is the next field within each capability header.
81 * The id within the header is a shared address space per INFO ioctl,
82 * while the version field is specific to the capability id. The
83 * contents following the header are specific to the capability id.
85 struct vfio_info_cap_header {
86 __u16 id; /* Identifies capability */
87 __u16 version; /* Version specific to the capability ID */
88 __u32 next; /* Offset of next capability */
92 * Callers of INFO ioctls passing insufficiently sized buffers will see
93 * the capability chain flag bit set, a zero value for the first capability
94 * offset (if available within the provided argsz), and argsz will be
95 * updated to report the necessary buffer size. For compatibility, the
96 * INFO ioctl will not report error in this case, but the capability chain
97 * will not be available.
100 /* -------- IOCTLs for VFIO file descriptor (/dev/vfio/vfio) -------- */
103 * VFIO_GET_API_VERSION - _IO(VFIO_TYPE, VFIO_BASE + 0)
105 * Report the version of the VFIO API. This allows us to bump the entire
106 * API version should we later need to add or change features in incompatible
107 * ways.
108 * Return: VFIO_API_VERSION
109 * Availability: Always
111 #define VFIO_GET_API_VERSION _IO(VFIO_TYPE, VFIO_BASE + 0)
114 * VFIO_CHECK_EXTENSION - _IOW(VFIO_TYPE, VFIO_BASE + 1, __u32)
116 * Check whether an extension is supported.
117 * Return: 0 if not supported, 1 (or some other positive integer) if supported.
118 * Availability: Always
120 #define VFIO_CHECK_EXTENSION _IO(VFIO_TYPE, VFIO_BASE + 1)
123 * VFIO_SET_IOMMU - _IOW(VFIO_TYPE, VFIO_BASE + 2, __s32)
125 * Set the iommu to the given type. The type must be supported by an
126 * iommu driver as verified by calling CHECK_EXTENSION using the same
127 * type. A group must be set to this file descriptor before this
128 * ioctl is available. The IOMMU interfaces enabled by this call are
129 * specific to the value set.
130 * Return: 0 on success, -errno on failure
131 * Availability: When VFIO group attached
133 #define VFIO_SET_IOMMU _IO(VFIO_TYPE, VFIO_BASE + 2)
135 /* -------- IOCTLs for GROUP file descriptors (/dev/vfio/$GROUP) -------- */
138 * VFIO_GROUP_GET_STATUS - _IOR(VFIO_TYPE, VFIO_BASE + 3,
139 * struct vfio_group_status)
141 * Retrieve information about the group. Fills in provided
142 * struct vfio_group_info. Caller sets argsz.
143 * Return: 0 on succes, -errno on failure.
144 * Availability: Always
146 struct vfio_group_status {
147 __u32 argsz;
148 __u32 flags;
149 #define VFIO_GROUP_FLAGS_VIABLE (1 << 0)
150 #define VFIO_GROUP_FLAGS_CONTAINER_SET (1 << 1)
152 #define VFIO_GROUP_GET_STATUS _IO(VFIO_TYPE, VFIO_BASE + 3)
155 * VFIO_GROUP_SET_CONTAINER - _IOW(VFIO_TYPE, VFIO_BASE + 4, __s32)
157 * Set the container for the VFIO group to the open VFIO file
158 * descriptor provided. Groups may only belong to a single
159 * container. Containers may, at their discretion, support multiple
160 * groups. Only when a container is set are all of the interfaces
161 * of the VFIO file descriptor and the VFIO group file descriptor
162 * available to the user.
163 * Return: 0 on success, -errno on failure.
164 * Availability: Always
166 #define VFIO_GROUP_SET_CONTAINER _IO(VFIO_TYPE, VFIO_BASE + 4)
169 * VFIO_GROUP_UNSET_CONTAINER - _IO(VFIO_TYPE, VFIO_BASE + 5)
171 * Remove the group from the attached container. This is the
172 * opposite of the SET_CONTAINER call and returns the group to
173 * an initial state. All device file descriptors must be released
174 * prior to calling this interface. When removing the last group
175 * from a container, the IOMMU will be disabled and all state lost,
176 * effectively also returning the VFIO file descriptor to an initial
177 * state.
178 * Return: 0 on success, -errno on failure.
179 * Availability: When attached to container
181 #define VFIO_GROUP_UNSET_CONTAINER _IO(VFIO_TYPE, VFIO_BASE + 5)
184 * VFIO_GROUP_GET_DEVICE_FD - _IOW(VFIO_TYPE, VFIO_BASE + 6, char)
186 * Return a new file descriptor for the device object described by
187 * the provided string. The string should match a device listed in
188 * the devices subdirectory of the IOMMU group sysfs entry. The
189 * group containing the device must already be added to this context.
190 * Return: new file descriptor on success, -errno on failure.
191 * Availability: When attached to container
193 #define VFIO_GROUP_GET_DEVICE_FD _IO(VFIO_TYPE, VFIO_BASE + 6)
195 /* --------------- IOCTLs for DEVICE file descriptors --------------- */
198 * VFIO_DEVICE_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 7,
199 * struct vfio_device_info)
201 * Retrieve information about the device. Fills in provided
202 * struct vfio_device_info. Caller sets argsz.
203 * Return: 0 on success, -errno on failure.
205 struct vfio_device_info {
206 __u32 argsz;
207 __u32 flags;
208 #define VFIO_DEVICE_FLAGS_RESET (1 << 0) /* Device supports reset */
209 #define VFIO_DEVICE_FLAGS_PCI (1 << 1) /* vfio-pci device */
210 #define VFIO_DEVICE_FLAGS_PLATFORM (1 << 2) /* vfio-platform device */
211 #define VFIO_DEVICE_FLAGS_AMBA (1 << 3) /* vfio-amba device */
212 #define VFIO_DEVICE_FLAGS_CCW (1 << 4) /* vfio-ccw device */
213 #define VFIO_DEVICE_FLAGS_AP (1 << 5) /* vfio-ap device */
214 #define VFIO_DEVICE_FLAGS_FSL_MC (1 << 6) /* vfio-fsl-mc device */
215 #define VFIO_DEVICE_FLAGS_CAPS (1 << 7) /* Info supports caps */
216 #define VFIO_DEVICE_FLAGS_CDX (1 << 8) /* vfio-cdx device */
217 __u32 num_regions; /* Max region index + 1 */
218 __u32 num_irqs; /* Max IRQ index + 1 */
219 __u32 cap_offset; /* Offset within info struct of first cap */
221 #define VFIO_DEVICE_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 7)
224 * Vendor driver using Mediated device framework should provide device_api
225 * attribute in supported type attribute groups. Device API string should be one
226 * of the following corresponding to device flags in vfio_device_info structure.
229 #define VFIO_DEVICE_API_PCI_STRING "vfio-pci"
230 #define VFIO_DEVICE_API_PLATFORM_STRING "vfio-platform"
231 #define VFIO_DEVICE_API_AMBA_STRING "vfio-amba"
232 #define VFIO_DEVICE_API_CCW_STRING "vfio-ccw"
233 #define VFIO_DEVICE_API_AP_STRING "vfio-ap"
236 * The following capabilities are unique to s390 zPCI devices. Their contents
237 * are further-defined in vfio_zdev.h
239 #define VFIO_DEVICE_INFO_CAP_ZPCI_BASE 1
240 #define VFIO_DEVICE_INFO_CAP_ZPCI_GROUP 2
241 #define VFIO_DEVICE_INFO_CAP_ZPCI_UTIL 3
242 #define VFIO_DEVICE_INFO_CAP_ZPCI_PFIP 4
245 * The following VFIO_DEVICE_INFO capability reports support for PCIe AtomicOp
246 * completion to the root bus with supported widths provided via flags.
248 #define VFIO_DEVICE_INFO_CAP_PCI_ATOMIC_COMP 5
249 struct vfio_device_info_cap_pci_atomic_comp {
250 struct vfio_info_cap_header header;
251 __u32 flags;
252 #define VFIO_PCI_ATOMIC_COMP32 (1 << 0)
253 #define VFIO_PCI_ATOMIC_COMP64 (1 << 1)
254 #define VFIO_PCI_ATOMIC_COMP128 (1 << 2)
255 __u32 reserved;
259 * VFIO_DEVICE_GET_REGION_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 8,
260 * struct vfio_region_info)
262 * Retrieve information about a device region. Caller provides
263 * struct vfio_region_info with index value set. Caller sets argsz.
264 * Implementation of region mapping is bus driver specific. This is
265 * intended to describe MMIO, I/O port, as well as bus specific
266 * regions (ex. PCI config space). Zero sized regions may be used
267 * to describe unimplemented regions (ex. unimplemented PCI BARs).
268 * Return: 0 on success, -errno on failure.
270 struct vfio_region_info {
271 __u32 argsz;
272 __u32 flags;
273 #define VFIO_REGION_INFO_FLAG_READ (1 << 0) /* Region supports read */
274 #define VFIO_REGION_INFO_FLAG_WRITE (1 << 1) /* Region supports write */
275 #define VFIO_REGION_INFO_FLAG_MMAP (1 << 2) /* Region supports mmap */
276 #define VFIO_REGION_INFO_FLAG_CAPS (1 << 3) /* Info supports caps */
277 __u32 index; /* Region index */
278 __u32 cap_offset; /* Offset within info struct of first cap */
279 __u64 size; /* Region size (bytes) */
280 __u64 offset; /* Region offset from start of device fd */
282 #define VFIO_DEVICE_GET_REGION_INFO _IO(VFIO_TYPE, VFIO_BASE + 8)
285 * The sparse mmap capability allows finer granularity of specifying areas
286 * within a region with mmap support. When specified, the user should only
287 * mmap the offset ranges specified by the areas array. mmaps outside of the
288 * areas specified may fail (such as the range covering a PCI MSI-X table) or
289 * may result in improper device behavior.
291 * The structures below define version 1 of this capability.
293 #define VFIO_REGION_INFO_CAP_SPARSE_MMAP 1
295 struct vfio_region_sparse_mmap_area {
296 __u64 offset; /* Offset of mmap'able area within region */
297 __u64 size; /* Size of mmap'able area */
300 struct vfio_region_info_cap_sparse_mmap {
301 struct vfio_info_cap_header header;
302 __u32 nr_areas;
303 __u32 reserved;
304 struct vfio_region_sparse_mmap_area areas[];
308 * The device specific type capability allows regions unique to a specific
309 * device or class of devices to be exposed. This helps solve the problem for
310 * vfio bus drivers of defining which region indexes correspond to which region
311 * on the device, without needing to resort to static indexes, as done by
312 * vfio-pci. For instance, if we were to go back in time, we might remove
313 * VFIO_PCI_VGA_REGION_INDEX and let vfio-pci simply define that all indexes
314 * greater than or equal to VFIO_PCI_NUM_REGIONS are device specific and we'd
315 * make a "VGA" device specific type to describe the VGA access space. This
316 * means that non-VGA devices wouldn't need to waste this index, and thus the
317 * address space associated with it due to implementation of device file
318 * descriptor offsets in vfio-pci.
320 * The current implementation is now part of the user ABI, so we can't use this
321 * for VGA, but there are other upcoming use cases, such as opregions for Intel
322 * IGD devices and framebuffers for vGPU devices. We missed VGA, but we'll
323 * use this for future additions.
325 * The structure below defines version 1 of this capability.
327 #define VFIO_REGION_INFO_CAP_TYPE 2
329 struct vfio_region_info_cap_type {
330 struct vfio_info_cap_header header;
331 __u32 type; /* global per bus driver */
332 __u32 subtype; /* type specific */
336 * List of region types, global per bus driver.
337 * If you introduce a new type, please add it here.
340 /* PCI region type containing a PCI vendor part */
341 #define VFIO_REGION_TYPE_PCI_VENDOR_TYPE (1 << 31)
342 #define VFIO_REGION_TYPE_PCI_VENDOR_MASK (0xffff)
343 #define VFIO_REGION_TYPE_GFX (1)
344 #define VFIO_REGION_TYPE_CCW (2)
345 #define VFIO_REGION_TYPE_MIGRATION_DEPRECATED (3)
347 /* sub-types for VFIO_REGION_TYPE_PCI_* */
349 /* 8086 vendor PCI sub-types */
350 #define VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION (1)
351 #define VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG (2)
352 #define VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG (3)
354 /* 10de vendor PCI sub-types */
356 * NVIDIA GPU NVlink2 RAM is coherent RAM mapped onto the host address space.
358 * Deprecated, region no longer provided
360 #define VFIO_REGION_SUBTYPE_NVIDIA_NVLINK2_RAM (1)
362 /* 1014 vendor PCI sub-types */
364 * IBM NPU NVlink2 ATSD (Address Translation Shootdown) register of NPU
365 * to do TLB invalidation on a GPU.
367 * Deprecated, region no longer provided
369 #define VFIO_REGION_SUBTYPE_IBM_NVLINK2_ATSD (1)
371 /* sub-types for VFIO_REGION_TYPE_GFX */
372 #define VFIO_REGION_SUBTYPE_GFX_EDID (1)
375 * struct vfio_region_gfx_edid - EDID region layout.
377 * Set display link state and EDID blob.
379 * The EDID blob has monitor information such as brand, name, serial
380 * number, physical size, supported video modes and more.
382 * This special region allows userspace (typically qemu) set a virtual
383 * EDID for the virtual monitor, which allows a flexible display
384 * configuration.
386 * For the edid blob spec look here:
387 * https://en.wikipedia.org/wiki/Extended_Display_Identification_Data
389 * On linux systems you can find the EDID blob in sysfs:
390 * /sys/class/drm/${card}/${connector}/edid
392 * You can use the edid-decode ulility (comes with xorg-x11-utils) to
393 * decode the EDID blob.
395 * @edid_offset: location of the edid blob, relative to the
396 * start of the region (readonly).
397 * @edid_max_size: max size of the edid blob (readonly).
398 * @edid_size: actual edid size (read/write).
399 * @link_state: display link state (read/write).
400 * VFIO_DEVICE_GFX_LINK_STATE_UP: Monitor is turned on.
401 * VFIO_DEVICE_GFX_LINK_STATE_DOWN: Monitor is turned off.
402 * @max_xres: max display width (0 == no limitation, readonly).
403 * @max_yres: max display height (0 == no limitation, readonly).
405 * EDID update protocol:
406 * (1) set link-state to down.
407 * (2) update edid blob and size.
408 * (3) set link-state to up.
410 struct vfio_region_gfx_edid {
411 __u32 edid_offset;
412 __u32 edid_max_size;
413 __u32 edid_size;
414 __u32 max_xres;
415 __u32 max_yres;
416 __u32 link_state;
417 #define VFIO_DEVICE_GFX_LINK_STATE_UP 1
418 #define VFIO_DEVICE_GFX_LINK_STATE_DOWN 2
421 /* sub-types for VFIO_REGION_TYPE_CCW */
422 #define VFIO_REGION_SUBTYPE_CCW_ASYNC_CMD (1)
423 #define VFIO_REGION_SUBTYPE_CCW_SCHIB (2)
424 #define VFIO_REGION_SUBTYPE_CCW_CRW (3)
426 /* sub-types for VFIO_REGION_TYPE_MIGRATION */
427 #define VFIO_REGION_SUBTYPE_MIGRATION_DEPRECATED (1)
429 struct vfio_device_migration_info {
430 __u32 device_state; /* VFIO device state */
431 #define VFIO_DEVICE_STATE_V1_STOP (0)
432 #define VFIO_DEVICE_STATE_V1_RUNNING (1 << 0)
433 #define VFIO_DEVICE_STATE_V1_SAVING (1 << 1)
434 #define VFIO_DEVICE_STATE_V1_RESUMING (1 << 2)
435 #define VFIO_DEVICE_STATE_MASK (VFIO_DEVICE_STATE_V1_RUNNING | \
436 VFIO_DEVICE_STATE_V1_SAVING | \
437 VFIO_DEVICE_STATE_V1_RESUMING)
439 #define VFIO_DEVICE_STATE_VALID(state) \
440 (state & VFIO_DEVICE_STATE_V1_RESUMING ? \
441 (state & VFIO_DEVICE_STATE_MASK) == VFIO_DEVICE_STATE_V1_RESUMING : 1)
443 #define VFIO_DEVICE_STATE_IS_ERROR(state) \
444 ((state & VFIO_DEVICE_STATE_MASK) == (VFIO_DEVICE_STATE_V1_SAVING | \
445 VFIO_DEVICE_STATE_V1_RESUMING))
447 #define VFIO_DEVICE_STATE_SET_ERROR(state) \
448 ((state & ~VFIO_DEVICE_STATE_MASK) | VFIO_DEVICE_STATE_V1_SAVING | \
449 VFIO_DEVICE_STATE_V1_RESUMING)
451 __u32 reserved;
452 __u64 pending_bytes;
453 __u64 data_offset;
454 __u64 data_size;
458 * The MSIX mappable capability informs that MSIX data of a BAR can be mmapped
459 * which allows direct access to non-MSIX registers which happened to be within
460 * the same system page.
462 * Even though the userspace gets direct access to the MSIX data, the existing
463 * VFIO_DEVICE_SET_IRQS interface must still be used for MSIX configuration.
465 #define VFIO_REGION_INFO_CAP_MSIX_MAPPABLE 3
468 * Capability with compressed real address (aka SSA - small system address)
469 * where GPU RAM is mapped on a system bus. Used by a GPU for DMA routing
470 * and by the userspace to associate a NVLink bridge with a GPU.
472 * Deprecated, capability no longer provided
474 #define VFIO_REGION_INFO_CAP_NVLINK2_SSATGT 4
476 struct vfio_region_info_cap_nvlink2_ssatgt {
477 struct vfio_info_cap_header header;
478 __u64 tgt;
482 * Capability with an NVLink link speed. The value is read by
483 * the NVlink2 bridge driver from the bridge's "ibm,nvlink-speed"
484 * property in the device tree. The value is fixed in the hardware
485 * and failing to provide the correct value results in the link
486 * not working with no indication from the driver why.
488 * Deprecated, capability no longer provided
490 #define VFIO_REGION_INFO_CAP_NVLINK2_LNKSPD 5
492 struct vfio_region_info_cap_nvlink2_lnkspd {
493 struct vfio_info_cap_header header;
494 __u32 link_speed;
495 __u32 __pad;
499 * VFIO_DEVICE_GET_IRQ_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 9,
500 * struct vfio_irq_info)
502 * Retrieve information about a device IRQ. Caller provides
503 * struct vfio_irq_info with index value set. Caller sets argsz.
504 * Implementation of IRQ mapping is bus driver specific. Indexes
505 * using multiple IRQs are primarily intended to support MSI-like
506 * interrupt blocks. Zero count irq blocks may be used to describe
507 * unimplemented interrupt types.
509 * The EVENTFD flag indicates the interrupt index supports eventfd based
510 * signaling.
512 * The MASKABLE flags indicates the index supports MASK and UNMASK
513 * actions described below.
515 * AUTOMASKED indicates that after signaling, the interrupt line is
516 * automatically masked by VFIO and the user needs to unmask the line
517 * to receive new interrupts. This is primarily intended to distinguish
518 * level triggered interrupts.
520 * The NORESIZE flag indicates that the interrupt lines within the index
521 * are setup as a set and new subindexes cannot be enabled without first
522 * disabling the entire index. This is used for interrupts like PCI MSI
523 * and MSI-X where the driver may only use a subset of the available
524 * indexes, but VFIO needs to enable a specific number of vectors
525 * upfront. In the case of MSI-X, where the user can enable MSI-X and
526 * then add and unmask vectors, it's up to userspace to make the decision
527 * whether to allocate the maximum supported number of vectors or tear
528 * down setup and incrementally increase the vectors as each is enabled.
529 * Absence of the NORESIZE flag indicates that vectors can be enabled
530 * and disabled dynamically without impacting other vectors within the
531 * index.
533 struct vfio_irq_info {
534 __u32 argsz;
535 __u32 flags;
536 #define VFIO_IRQ_INFO_EVENTFD (1 << 0)
537 #define VFIO_IRQ_INFO_MASKABLE (1 << 1)
538 #define VFIO_IRQ_INFO_AUTOMASKED (1 << 2)
539 #define VFIO_IRQ_INFO_NORESIZE (1 << 3)
540 __u32 index; /* IRQ index */
541 __u32 count; /* Number of IRQs within this index */
543 #define VFIO_DEVICE_GET_IRQ_INFO _IO(VFIO_TYPE, VFIO_BASE + 9)
546 * VFIO_DEVICE_SET_IRQS - _IOW(VFIO_TYPE, VFIO_BASE + 10, struct vfio_irq_set)
548 * Set signaling, masking, and unmasking of interrupts. Caller provides
549 * struct vfio_irq_set with all fields set. 'start' and 'count' indicate
550 * the range of subindexes being specified.
552 * The DATA flags specify the type of data provided. If DATA_NONE, the
553 * operation performs the specified action immediately on the specified
554 * interrupt(s). For example, to unmask AUTOMASKED interrupt [0,0]:
555 * flags = (DATA_NONE|ACTION_UNMASK), index = 0, start = 0, count = 1.
557 * DATA_BOOL allows sparse support for the same on arrays of interrupts.
558 * For example, to mask interrupts [0,1] and [0,3] (but not [0,2]):
559 * flags = (DATA_BOOL|ACTION_MASK), index = 0, start = 1, count = 3,
560 * data = {1,0,1}
562 * DATA_EVENTFD binds the specified ACTION to the provided __s32 eventfd.
563 * A value of -1 can be used to either de-assign interrupts if already
564 * assigned or skip un-assigned interrupts. For example, to set an eventfd
565 * to be trigger for interrupts [0,0] and [0,2]:
566 * flags = (DATA_EVENTFD|ACTION_TRIGGER), index = 0, start = 0, count = 3,
567 * data = {fd1, -1, fd2}
568 * If index [0,1] is previously set, two count = 1 ioctls calls would be
569 * required to set [0,0] and [0,2] without changing [0,1].
571 * Once a signaling mechanism is set, DATA_BOOL or DATA_NONE can be used
572 * with ACTION_TRIGGER to perform kernel level interrupt loopback testing
573 * from userspace (ie. simulate hardware triggering).
575 * Setting of an event triggering mechanism to userspace for ACTION_TRIGGER
576 * enables the interrupt index for the device. Individual subindex interrupts
577 * can be disabled using the -1 value for DATA_EVENTFD or the index can be
578 * disabled as a whole with: flags = (DATA_NONE|ACTION_TRIGGER), count = 0.
580 * Note that ACTION_[UN]MASK specify user->kernel signaling (irqfds) while
581 * ACTION_TRIGGER specifies kernel->user signaling.
583 struct vfio_irq_set {
584 __u32 argsz;
585 __u32 flags;
586 #define VFIO_IRQ_SET_DATA_NONE (1 << 0) /* Data not present */
587 #define VFIO_IRQ_SET_DATA_BOOL (1 << 1) /* Data is bool (u8) */
588 #define VFIO_IRQ_SET_DATA_EVENTFD (1 << 2) /* Data is eventfd (s32) */
589 #define VFIO_IRQ_SET_ACTION_MASK (1 << 3) /* Mask interrupt */
590 #define VFIO_IRQ_SET_ACTION_UNMASK (1 << 4) /* Unmask interrupt */
591 #define VFIO_IRQ_SET_ACTION_TRIGGER (1 << 5) /* Trigger interrupt */
592 __u32 index;
593 __u32 start;
594 __u32 count;
595 __u8 data[];
597 #define VFIO_DEVICE_SET_IRQS _IO(VFIO_TYPE, VFIO_BASE + 10)
599 #define VFIO_IRQ_SET_DATA_TYPE_MASK (VFIO_IRQ_SET_DATA_NONE | \
600 VFIO_IRQ_SET_DATA_BOOL | \
601 VFIO_IRQ_SET_DATA_EVENTFD)
602 #define VFIO_IRQ_SET_ACTION_TYPE_MASK (VFIO_IRQ_SET_ACTION_MASK | \
603 VFIO_IRQ_SET_ACTION_UNMASK | \
604 VFIO_IRQ_SET_ACTION_TRIGGER)
606 * VFIO_DEVICE_RESET - _IO(VFIO_TYPE, VFIO_BASE + 11)
608 * Reset a device.
610 #define VFIO_DEVICE_RESET _IO(VFIO_TYPE, VFIO_BASE + 11)
613 * The VFIO-PCI bus driver makes use of the following fixed region and
614 * IRQ index mapping. Unimplemented regions return a size of zero.
615 * Unimplemented IRQ types return a count of zero.
618 enum {
619 VFIO_PCI_BAR0_REGION_INDEX,
620 VFIO_PCI_BAR1_REGION_INDEX,
621 VFIO_PCI_BAR2_REGION_INDEX,
622 VFIO_PCI_BAR3_REGION_INDEX,
623 VFIO_PCI_BAR4_REGION_INDEX,
624 VFIO_PCI_BAR5_REGION_INDEX,
625 VFIO_PCI_ROM_REGION_INDEX,
626 VFIO_PCI_CONFIG_REGION_INDEX,
628 * Expose VGA regions defined for PCI base class 03, subclass 00.
629 * This includes I/O port ranges 0x3b0 to 0x3bb and 0x3c0 to 0x3df
630 * as well as the MMIO range 0xa0000 to 0xbffff. Each implemented
631 * range is found at it's identity mapped offset from the region
632 * offset, for example 0x3b0 is region_info.offset + 0x3b0. Areas
633 * between described ranges are unimplemented.
635 VFIO_PCI_VGA_REGION_INDEX,
636 VFIO_PCI_NUM_REGIONS = 9 /* Fixed user ABI, region indexes >=9 use */
637 /* device specific cap to define content. */
640 enum {
641 VFIO_PCI_INTX_IRQ_INDEX,
642 VFIO_PCI_MSI_IRQ_INDEX,
643 VFIO_PCI_MSIX_IRQ_INDEX,
644 VFIO_PCI_ERR_IRQ_INDEX,
645 VFIO_PCI_REQ_IRQ_INDEX,
646 VFIO_PCI_NUM_IRQS
650 * The vfio-ccw bus driver makes use of the following fixed region and
651 * IRQ index mapping. Unimplemented regions return a size of zero.
652 * Unimplemented IRQ types return a count of zero.
655 enum {
656 VFIO_CCW_CONFIG_REGION_INDEX,
657 VFIO_CCW_NUM_REGIONS
660 enum {
661 VFIO_CCW_IO_IRQ_INDEX,
662 VFIO_CCW_CRW_IRQ_INDEX,
663 VFIO_CCW_REQ_IRQ_INDEX,
664 VFIO_CCW_NUM_IRQS
668 * The vfio-ap bus driver makes use of the following IRQ index mapping.
669 * Unimplemented IRQ types return a count of zero.
671 enum {
672 VFIO_AP_REQ_IRQ_INDEX,
673 VFIO_AP_NUM_IRQS
677 * VFIO_DEVICE_GET_PCI_HOT_RESET_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 12,
678 * struct vfio_pci_hot_reset_info)
680 * Return: 0 on success, -errno on failure:
681 * -enospc = insufficient buffer, -enodev = unsupported for device.
683 struct vfio_pci_dependent_device {
684 __u32 group_id;
685 __u16 segment;
686 __u8 bus;
687 __u8 devfn; /* Use PCI_SLOT/PCI_FUNC */
690 struct vfio_pci_hot_reset_info {
691 __u32 argsz;
692 __u32 flags;
693 __u32 count;
694 struct vfio_pci_dependent_device devices[];
697 #define VFIO_DEVICE_GET_PCI_HOT_RESET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12)
700 * VFIO_DEVICE_PCI_HOT_RESET - _IOW(VFIO_TYPE, VFIO_BASE + 13,
701 * struct vfio_pci_hot_reset)
703 * Return: 0 on success, -errno on failure.
705 struct vfio_pci_hot_reset {
706 __u32 argsz;
707 __u32 flags;
708 __u32 count;
709 __s32 group_fds[];
712 #define VFIO_DEVICE_PCI_HOT_RESET _IO(VFIO_TYPE, VFIO_BASE + 13)
715 * VFIO_DEVICE_QUERY_GFX_PLANE - _IOW(VFIO_TYPE, VFIO_BASE + 14,
716 * struct vfio_device_query_gfx_plane)
718 * Set the drm_plane_type and flags, then retrieve the gfx plane info.
720 * flags supported:
721 * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_DMABUF are set
722 * to ask if the mdev supports dma-buf. 0 on support, -EINVAL on no
723 * support for dma-buf.
724 * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_REGION are set
725 * to ask if the mdev supports region. 0 on support, -EINVAL on no
726 * support for region.
727 * - VFIO_GFX_PLANE_TYPE_DMABUF or VFIO_GFX_PLANE_TYPE_REGION is set
728 * with each call to query the plane info.
729 * - Others are invalid and return -EINVAL.
731 * Note:
732 * 1. Plane could be disabled by guest. In that case, success will be
733 * returned with zero-initialized drm_format, size, width and height
734 * fields.
735 * 2. x_hot/y_hot is set to 0xFFFFFFFF if no hotspot information available
737 * Return: 0 on success, -errno on other failure.
739 struct vfio_device_gfx_plane_info {
740 __u32 argsz;
741 __u32 flags;
742 #define VFIO_GFX_PLANE_TYPE_PROBE (1 << 0)
743 #define VFIO_GFX_PLANE_TYPE_DMABUF (1 << 1)
744 #define VFIO_GFX_PLANE_TYPE_REGION (1 << 2)
745 /* in */
746 __u32 drm_plane_type; /* type of plane: DRM_PLANE_TYPE_* */
747 /* out */
748 __u32 drm_format; /* drm format of plane */
749 __u64 drm_format_mod; /* tiled mode */
750 __u32 width; /* width of plane */
751 __u32 height; /* height of plane */
752 __u32 stride; /* stride of plane */
753 __u32 size; /* size of plane in bytes, align on page*/
754 __u32 x_pos; /* horizontal position of cursor plane */
755 __u32 y_pos; /* vertical position of cursor plane*/
756 __u32 x_hot; /* horizontal position of cursor hotspot */
757 __u32 y_hot; /* vertical position of cursor hotspot */
758 union {
759 __u32 region_index; /* region index */
760 __u32 dmabuf_id; /* dma-buf id */
764 #define VFIO_DEVICE_QUERY_GFX_PLANE _IO(VFIO_TYPE, VFIO_BASE + 14)
767 * VFIO_DEVICE_GET_GFX_DMABUF - _IOW(VFIO_TYPE, VFIO_BASE + 15, __u32)
769 * Return a new dma-buf file descriptor for an exposed guest framebuffer
770 * described by the provided dmabuf_id. The dmabuf_id is returned from VFIO_
771 * DEVICE_QUERY_GFX_PLANE as a token of the exposed guest framebuffer.
774 #define VFIO_DEVICE_GET_GFX_DMABUF _IO(VFIO_TYPE, VFIO_BASE + 15)
777 * VFIO_DEVICE_IOEVENTFD - _IOW(VFIO_TYPE, VFIO_BASE + 16,
778 * struct vfio_device_ioeventfd)
780 * Perform a write to the device at the specified device fd offset, with
781 * the specified data and width when the provided eventfd is triggered.
782 * vfio bus drivers may not support this for all regions, for all widths,
783 * or at all. vfio-pci currently only enables support for BAR regions,
784 * excluding the MSI-X vector table.
786 * Return: 0 on success, -errno on failure.
788 struct vfio_device_ioeventfd {
789 __u32 argsz;
790 __u32 flags;
791 #define VFIO_DEVICE_IOEVENTFD_8 (1 << 0) /* 1-byte write */
792 #define VFIO_DEVICE_IOEVENTFD_16 (1 << 1) /* 2-byte write */
793 #define VFIO_DEVICE_IOEVENTFD_32 (1 << 2) /* 4-byte write */
794 #define VFIO_DEVICE_IOEVENTFD_64 (1 << 3) /* 8-byte write */
795 #define VFIO_DEVICE_IOEVENTFD_SIZE_MASK (0xf)
796 __u64 offset; /* device fd offset of write */
797 __u64 data; /* data to be written */
798 __s32 fd; /* -1 for de-assignment */
801 #define VFIO_DEVICE_IOEVENTFD _IO(VFIO_TYPE, VFIO_BASE + 16)
804 * VFIO_DEVICE_FEATURE - _IOWR(VFIO_TYPE, VFIO_BASE + 17,
805 * struct vfio_device_feature)
807 * Get, set, or probe feature data of the device. The feature is selected
808 * using the FEATURE_MASK portion of the flags field. Support for a feature
809 * can be probed by setting both the FEATURE_MASK and PROBE bits. A probe
810 * may optionally include the GET and/or SET bits to determine read vs write
811 * access of the feature respectively. Probing a feature will return success
812 * if the feature is supported and all of the optionally indicated GET/SET
813 * methods are supported. The format of the data portion of the structure is
814 * specific to the given feature. The data portion is not required for
815 * probing. GET and SET are mutually exclusive, except for use with PROBE.
817 * Return 0 on success, -errno on failure.
819 struct vfio_device_feature {
820 __u32 argsz;
821 __u32 flags;
822 #define VFIO_DEVICE_FEATURE_MASK (0xffff) /* 16-bit feature index */
823 #define VFIO_DEVICE_FEATURE_GET (1 << 16) /* Get feature into data[] */
824 #define VFIO_DEVICE_FEATURE_SET (1 << 17) /* Set feature from data[] */
825 #define VFIO_DEVICE_FEATURE_PROBE (1 << 18) /* Probe feature support */
826 __u8 data[];
829 #define VFIO_DEVICE_FEATURE _IO(VFIO_TYPE, VFIO_BASE + 17)
832 * Provide support for setting a PCI VF Token, which is used as a shared
833 * secret between PF and VF drivers. This feature may only be set on a
834 * PCI SR-IOV PF when SR-IOV is enabled on the PF and there are no existing
835 * open VFs. Data provided when setting this feature is a 16-byte array
836 * (__u8 b[16]), representing a UUID.
838 #define VFIO_DEVICE_FEATURE_PCI_VF_TOKEN (0)
841 * Indicates the device can support the migration API through
842 * VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE. If this GET succeeds, the RUNNING and
843 * ERROR states are always supported. Support for additional states is
844 * indicated via the flags field; at least VFIO_MIGRATION_STOP_COPY must be
845 * set.
847 * VFIO_MIGRATION_STOP_COPY means that STOP, STOP_COPY and
848 * RESUMING are supported.
850 * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P means that RUNNING_P2P
851 * is supported in addition to the STOP_COPY states.
853 * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_PRE_COPY means that
854 * PRE_COPY is supported in addition to the STOP_COPY states.
856 * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P | VFIO_MIGRATION_PRE_COPY
857 * means that RUNNING_P2P, PRE_COPY and PRE_COPY_P2P are supported
858 * in addition to the STOP_COPY states.
860 * Other combinations of flags have behavior to be defined in the future.
862 struct vfio_device_feature_migration {
863 __aligned_u64 flags;
864 #define VFIO_MIGRATION_STOP_COPY (1 << 0)
865 #define VFIO_MIGRATION_P2P (1 << 1)
866 #define VFIO_MIGRATION_PRE_COPY (1 << 2)
868 #define VFIO_DEVICE_FEATURE_MIGRATION 1
871 * Upon VFIO_DEVICE_FEATURE_SET, execute a migration state change on the VFIO
872 * device. The new state is supplied in device_state, see enum
873 * vfio_device_mig_state for details
875 * The kernel migration driver must fully transition the device to the new state
876 * value before the operation returns to the user.
878 * The kernel migration driver must not generate asynchronous device state
879 * transitions outside of manipulation by the user or the VFIO_DEVICE_RESET
880 * ioctl as described above.
882 * If this function fails then current device_state may be the original
883 * operating state or some other state along the combination transition path.
884 * The user can then decide if it should execute a VFIO_DEVICE_RESET, attempt
885 * to return to the original state, or attempt to return to some other state
886 * such as RUNNING or STOP.
888 * If the new_state starts a new data transfer session then the FD associated
889 * with that session is returned in data_fd. The user is responsible to close
890 * this FD when it is finished. The user must consider the migration data stream
891 * carried over the FD to be opaque and must preserve the byte order of the
892 * stream. The user is not required to preserve buffer segmentation when writing
893 * the data stream during the RESUMING operation.
895 * Upon VFIO_DEVICE_FEATURE_GET, get the current migration state of the VFIO
896 * device, data_fd will be -1.
898 struct vfio_device_feature_mig_state {
899 __u32 device_state; /* From enum vfio_device_mig_state */
900 __s32 data_fd;
902 #define VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE 2
905 * The device migration Finite State Machine is described by the enum
906 * vfio_device_mig_state. Some of the FSM arcs will create a migration data
907 * transfer session by returning a FD, in this case the migration data will
908 * flow over the FD using read() and write() as discussed below.
910 * There are 5 states to support VFIO_MIGRATION_STOP_COPY:
911 * RUNNING - The device is running normally
912 * STOP - The device does not change the internal or external state
913 * STOP_COPY - The device internal state can be read out
914 * RESUMING - The device is stopped and is loading a new internal state
915 * ERROR - The device has failed and must be reset
917 * And optional states to support VFIO_MIGRATION_P2P:
918 * RUNNING_P2P - RUNNING, except the device cannot do peer to peer DMA
919 * And VFIO_MIGRATION_PRE_COPY:
920 * PRE_COPY - The device is running normally but tracking internal state
921 * changes
922 * And VFIO_MIGRATION_P2P | VFIO_MIGRATION_PRE_COPY:
923 * PRE_COPY_P2P - PRE_COPY, except the device cannot do peer to peer DMA
925 * The FSM takes actions on the arcs between FSM states. The driver implements
926 * the following behavior for the FSM arcs:
928 * RUNNING_P2P -> STOP
929 * STOP_COPY -> STOP
930 * While in STOP the device must stop the operation of the device. The device
931 * must not generate interrupts, DMA, or any other change to external state.
932 * It must not change its internal state. When stopped the device and kernel
933 * migration driver must accept and respond to interaction to support external
934 * subsystems in the STOP state, for example PCI MSI-X and PCI config space.
935 * Failure by the user to restrict device access while in STOP must not result
936 * in error conditions outside the user context (ex. host system faults).
938 * The STOP_COPY arc will terminate a data transfer session.
940 * RESUMING -> STOP
941 * Leaving RESUMING terminates a data transfer session and indicates the
942 * device should complete processing of the data delivered by write(). The
943 * kernel migration driver should complete the incorporation of data written
944 * to the data transfer FD into the device internal state and perform
945 * final validity and consistency checking of the new device state. If the
946 * user provided data is found to be incomplete, inconsistent, or otherwise
947 * invalid, the migration driver must fail the SET_STATE ioctl and
948 * optionally go to the ERROR state as described below.
950 * While in STOP the device has the same behavior as other STOP states
951 * described above.
953 * To abort a RESUMING session the device must be reset.
955 * PRE_COPY -> RUNNING
956 * RUNNING_P2P -> RUNNING
957 * While in RUNNING the device is fully operational, the device may generate
958 * interrupts, DMA, respond to MMIO, all vfio device regions are functional,
959 * and the device may advance its internal state.
961 * The PRE_COPY arc will terminate a data transfer session.
963 * PRE_COPY_P2P -> RUNNING_P2P
964 * RUNNING -> RUNNING_P2P
965 * STOP -> RUNNING_P2P
966 * While in RUNNING_P2P the device is partially running in the P2P quiescent
967 * state defined below.
969 * The PRE_COPY_P2P arc will terminate a data transfer session.
971 * RUNNING -> PRE_COPY
972 * RUNNING_P2P -> PRE_COPY_P2P
973 * STOP -> STOP_COPY
974 * PRE_COPY, PRE_COPY_P2P and STOP_COPY form the "saving group" of states
975 * which share a data transfer session. Moving between these states alters
976 * what is streamed in session, but does not terminate or otherwise affect
977 * the associated fd.
979 * These arcs begin the process of saving the device state and will return a
980 * new data_fd. The migration driver may perform actions such as enabling
981 * dirty logging of device state when entering PRE_COPY or PER_COPY_P2P.
983 * Each arc does not change the device operation, the device remains
984 * RUNNING, P2P quiesced or in STOP. The STOP_COPY state is described below
985 * in PRE_COPY_P2P -> STOP_COPY.
987 * PRE_COPY -> PRE_COPY_P2P
988 * Entering PRE_COPY_P2P continues all the behaviors of PRE_COPY above.
989 * However, while in the PRE_COPY_P2P state, the device is partially running
990 * in the P2P quiescent state defined below, like RUNNING_P2P.
992 * PRE_COPY_P2P -> PRE_COPY
993 * This arc allows returning the device to a full RUNNING behavior while
994 * continuing all the behaviors of PRE_COPY.
996 * PRE_COPY_P2P -> STOP_COPY
997 * While in the STOP_COPY state the device has the same behavior as STOP
998 * with the addition that the data transfers session continues to stream the
999 * migration state. End of stream on the FD indicates the entire device
1000 * state has been transferred.
1002 * The user should take steps to restrict access to vfio device regions while
1003 * the device is in STOP_COPY or risk corruption of the device migration data
1004 * stream.
1006 * STOP -> RESUMING
1007 * Entering the RESUMING state starts a process of restoring the device state
1008 * and will return a new data_fd. The data stream fed into the data_fd should
1009 * be taken from the data transfer output of a single FD during saving from
1010 * a compatible device. The migration driver may alter/reset the internal
1011 * device state for this arc if required to prepare the device to receive the
1012 * migration data.
1014 * STOP_COPY -> PRE_COPY
1015 * STOP_COPY -> PRE_COPY_P2P
1016 * These arcs are not permitted and return error if requested. Future
1017 * revisions of this API may define behaviors for these arcs, in this case
1018 * support will be discoverable by a new flag in
1019 * VFIO_DEVICE_FEATURE_MIGRATION.
1021 * any -> ERROR
1022 * ERROR cannot be specified as a device state, however any transition request
1023 * can be failed with an errno return and may then move the device_state into
1024 * ERROR. In this case the device was unable to execute the requested arc and
1025 * was also unable to restore the device to any valid device_state.
1026 * To recover from ERROR VFIO_DEVICE_RESET must be used to return the
1027 * device_state back to RUNNING.
1029 * The optional peer to peer (P2P) quiescent state is intended to be a quiescent
1030 * state for the device for the purposes of managing multiple devices within a
1031 * user context where peer-to-peer DMA between devices may be active. The
1032 * RUNNING_P2P and PRE_COPY_P2P states must prevent the device from initiating
1033 * any new P2P DMA transactions. If the device can identify P2P transactions
1034 * then it can stop only P2P DMA, otherwise it must stop all DMA. The migration
1035 * driver must complete any such outstanding operations prior to completing the
1036 * FSM arc into a P2P state. For the purpose of specification the states
1037 * behave as though the device was fully running if not supported. Like while in
1038 * STOP or STOP_COPY the user must not touch the device, otherwise the state
1039 * can be exited.
1041 * The remaining possible transitions are interpreted as combinations of the
1042 * above FSM arcs. As there are multiple paths through the FSM arcs the path
1043 * should be selected based on the following rules:
1044 * - Select the shortest path.
1045 * - The path cannot have saving group states as interior arcs, only
1046 * starting/end states.
1047 * Refer to vfio_mig_get_next_state() for the result of the algorithm.
1049 * The automatic transit through the FSM arcs that make up the combination
1050 * transition is invisible to the user. When working with combination arcs the
1051 * user may see any step along the path in the device_state if SET_STATE
1052 * fails. When handling these types of errors users should anticipate future
1053 * revisions of this protocol using new states and those states becoming
1054 * visible in this case.
1056 * The optional states cannot be used with SET_STATE if the device does not
1057 * support them. The user can discover if these states are supported by using
1058 * VFIO_DEVICE_FEATURE_MIGRATION. By using combination transitions the user can
1059 * avoid knowing about these optional states if the kernel driver supports them.
1061 * Arcs touching PRE_COPY and PRE_COPY_P2P are removed if support for PRE_COPY
1062 * is not present.
1064 enum vfio_device_mig_state {
1065 VFIO_DEVICE_STATE_ERROR = 0,
1066 VFIO_DEVICE_STATE_STOP = 1,
1067 VFIO_DEVICE_STATE_RUNNING = 2,
1068 VFIO_DEVICE_STATE_STOP_COPY = 3,
1069 VFIO_DEVICE_STATE_RESUMING = 4,
1070 VFIO_DEVICE_STATE_RUNNING_P2P = 5,
1071 VFIO_DEVICE_STATE_PRE_COPY = 6,
1072 VFIO_DEVICE_STATE_PRE_COPY_P2P = 7,
1076 * VFIO_MIG_GET_PRECOPY_INFO - _IO(VFIO_TYPE, VFIO_BASE + 21)
1078 * This ioctl is used on the migration data FD in the precopy phase of the
1079 * migration data transfer. It returns an estimate of the current data sizes
1080 * remaining to be transferred. It allows the user to judge when it is
1081 * appropriate to leave PRE_COPY for STOP_COPY.
1083 * This ioctl is valid only in PRE_COPY states and kernel driver should
1084 * return -EINVAL from any other migration state.
1086 * The vfio_precopy_info data structure returned by this ioctl provides
1087 * estimates of data available from the device during the PRE_COPY states.
1088 * This estimate is split into two categories, initial_bytes and
1089 * dirty_bytes.
1091 * The initial_bytes field indicates the amount of initial precopy
1092 * data available from the device. This field should have a non-zero initial
1093 * value and decrease as migration data is read from the device.
1094 * It is recommended to leave PRE_COPY for STOP_COPY only after this field
1095 * reaches zero. Leaving PRE_COPY earlier might make things slower.
1097 * The dirty_bytes field tracks device state changes relative to data
1098 * previously retrieved. This field starts at zero and may increase as
1099 * the internal device state is modified or decrease as that modified
1100 * state is read from the device.
1102 * Userspace may use the combination of these fields to estimate the
1103 * potential data size available during the PRE_COPY phases, as well as
1104 * trends relative to the rate the device is dirtying its internal
1105 * state, but these fields are not required to have any bearing relative
1106 * to the data size available during the STOP_COPY phase.
1108 * Drivers have a lot of flexibility in when and what they transfer during the
1109 * PRE_COPY phase, and how they report this from VFIO_MIG_GET_PRECOPY_INFO.
1111 * During pre-copy the migration data FD has a temporary "end of stream" that is
1112 * reached when both initial_bytes and dirty_byte are zero. For instance, this
1113 * may indicate that the device is idle and not currently dirtying any internal
1114 * state. When read() is done on this temporary end of stream the kernel driver
1115 * should return ENOMSG from read(). Userspace can wait for more data (which may
1116 * never come) by using poll.
1118 * Once in STOP_COPY the migration data FD has a permanent end of stream
1119 * signaled in the usual way by read() always returning 0 and poll always
1120 * returning readable. ENOMSG may not be returned in STOP_COPY.
1121 * Support for this ioctl is mandatory if a driver claims to support
1122 * VFIO_MIGRATION_PRE_COPY.
1124 * Return: 0 on success, -1 and errno set on failure.
1126 struct vfio_precopy_info {
1127 __u32 argsz;
1128 __u32 flags;
1129 __aligned_u64 initial_bytes;
1130 __aligned_u64 dirty_bytes;
1133 #define VFIO_MIG_GET_PRECOPY_INFO _IO(VFIO_TYPE, VFIO_BASE + 21)
1136 * Upon VFIO_DEVICE_FEATURE_SET, allow the device to be moved into a low power
1137 * state with the platform-based power management. Device use of lower power
1138 * states depends on factors managed by the runtime power management core,
1139 * including system level support and coordinating support among dependent
1140 * devices. Enabling device low power entry does not guarantee lower power
1141 * usage by the device, nor is a mechanism provided through this feature to
1142 * know the current power state of the device. If any device access happens
1143 * (either from the host or through the vfio uAPI) when the device is in the
1144 * low power state, then the host will move the device out of the low power
1145 * state as necessary prior to the access. Once the access is completed, the
1146 * device may re-enter the low power state. For single shot low power support
1147 * with wake-up notification, see
1148 * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP below. Access to mmap'd
1149 * device regions is disabled on LOW_POWER_ENTRY and may only be resumed after
1150 * calling LOW_POWER_EXIT.
1152 #define VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY 3
1155 * This device feature has the same behavior as
1156 * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY with the exception that the user
1157 * provides an eventfd for wake-up notification. When the device moves out of
1158 * the low power state for the wake-up, the host will not allow the device to
1159 * re-enter a low power state without a subsequent user call to one of the low
1160 * power entry device feature IOCTLs. Access to mmap'd device regions is
1161 * disabled on LOW_POWER_ENTRY_WITH_WAKEUP and may only be resumed after the
1162 * low power exit. The low power exit can happen either through LOW_POWER_EXIT
1163 * or through any other access (where the wake-up notification has been
1164 * generated). The access to mmap'd device regions will not trigger low power
1165 * exit.
1167 * The notification through the provided eventfd will be generated only when
1168 * the device has entered and is resumed from a low power state after
1169 * calling this device feature IOCTL. A device that has not entered low power
1170 * state, as managed through the runtime power management core, will not
1171 * generate a notification through the provided eventfd on access. Calling the
1172 * LOW_POWER_EXIT feature is optional in the case where notification has been
1173 * signaled on the provided eventfd that a resume from low power has occurred.
1175 struct vfio_device_low_power_entry_with_wakeup {
1176 __s32 wakeup_eventfd;
1177 __u32 reserved;
1180 #define VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP 4
1183 * Upon VFIO_DEVICE_FEATURE_SET, disallow use of device low power states as
1184 * previously enabled via VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY or
1185 * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP device features.
1186 * This device feature IOCTL may itself generate a wakeup eventfd notification
1187 * in the latter case if the device had previously entered a low power state.
1189 #define VFIO_DEVICE_FEATURE_LOW_POWER_EXIT 5
1192 * Upon VFIO_DEVICE_FEATURE_SET start/stop device DMA logging.
1193 * VFIO_DEVICE_FEATURE_PROBE can be used to detect if the device supports
1194 * DMA logging.
1196 * DMA logging allows a device to internally record what DMAs the device is
1197 * initiating and report them back to userspace. It is part of the VFIO
1198 * migration infrastructure that allows implementing dirty page tracking
1199 * during the pre copy phase of live migration. Only DMA WRITEs are logged,
1200 * and this API is not connected to VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE.
1202 * When DMA logging is started a range of IOVAs to monitor is provided and the
1203 * device can optimize its logging to cover only the IOVA range given. Each
1204 * DMA that the device initiates inside the range will be logged by the device
1205 * for later retrieval.
1207 * page_size is an input that hints what tracking granularity the device
1208 * should try to achieve. If the device cannot do the hinted page size then
1209 * it's the driver choice which page size to pick based on its support.
1210 * On output the device will return the page size it selected.
1212 * ranges is a pointer to an array of
1213 * struct vfio_device_feature_dma_logging_range.
1215 * The core kernel code guarantees to support by minimum num_ranges that fit
1216 * into a single kernel page. User space can try higher values but should give
1217 * up if the above can't be achieved as of some driver limitations.
1219 * A single call to start device DMA logging can be issued and a matching stop
1220 * should follow at the end. Another start is not allowed in the meantime.
1222 struct vfio_device_feature_dma_logging_control {
1223 __aligned_u64 page_size;
1224 __u32 num_ranges;
1225 __u32 __reserved;
1226 __aligned_u64 ranges;
1229 struct vfio_device_feature_dma_logging_range {
1230 __aligned_u64 iova;
1231 __aligned_u64 length;
1234 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_START 6
1237 * Upon VFIO_DEVICE_FEATURE_SET stop device DMA logging that was started
1238 * by VFIO_DEVICE_FEATURE_DMA_LOGGING_START
1240 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_STOP 7
1243 * Upon VFIO_DEVICE_FEATURE_GET read back and clear the device DMA log
1245 * Query the device's DMA log for written pages within the given IOVA range.
1246 * During querying the log is cleared for the IOVA range.
1248 * bitmap is a pointer to an array of u64s that will hold the output bitmap
1249 * with 1 bit reporting a page_size unit of IOVA. The mapping of IOVA to bits
1250 * is given by:
1251 * bitmap[(addr - iova)/page_size] & (1ULL << (addr % 64))
1253 * The input page_size can be any power of two value and does not have to
1254 * match the value given to VFIO_DEVICE_FEATURE_DMA_LOGGING_START. The driver
1255 * will format its internal logging to match the reporting page size, possibly
1256 * by replicating bits if the internal page size is lower than requested.
1258 * The LOGGING_REPORT will only set bits in the bitmap and never clear or
1259 * perform any initialization of the user provided bitmap.
1261 * If any error is returned userspace should assume that the dirty log is
1262 * corrupted. Error recovery is to consider all memory dirty and try to
1263 * restart the dirty tracking, or to abort/restart the whole migration.
1265 * If DMA logging is not enabled, an error will be returned.
1268 struct vfio_device_feature_dma_logging_report {
1269 __aligned_u64 iova;
1270 __aligned_u64 length;
1271 __aligned_u64 page_size;
1272 __aligned_u64 bitmap;
1275 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_REPORT 8
1278 * Upon VFIO_DEVICE_FEATURE_GET read back the estimated data length that will
1279 * be required to complete stop copy.
1281 * Note: Can be called on each device state.
1284 struct vfio_device_feature_mig_data_size {
1285 __aligned_u64 stop_copy_length;
1288 #define VFIO_DEVICE_FEATURE_MIG_DATA_SIZE 9
1290 /* -------- API for Type1 VFIO IOMMU -------- */
1293 * VFIO_IOMMU_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 12, struct vfio_iommu_info)
1295 * Retrieve information about the IOMMU object. Fills in provided
1296 * struct vfio_iommu_info. Caller sets argsz.
1298 * XXX Should we do these by CHECK_EXTENSION too?
1300 struct vfio_iommu_type1_info {
1301 __u32 argsz;
1302 __u32 flags;
1303 #define VFIO_IOMMU_INFO_PGSIZES (1 << 0) /* supported page sizes info */
1304 #define VFIO_IOMMU_INFO_CAPS (1 << 1) /* Info supports caps */
1305 __u64 iova_pgsizes; /* Bitmap of supported page sizes */
1306 __u32 cap_offset; /* Offset within info struct of first cap */
1310 * The IOVA capability allows to report the valid IOVA range(s)
1311 * excluding any non-relaxable reserved regions exposed by
1312 * devices attached to the container. Any DMA map attempt
1313 * outside the valid iova range will return error.
1315 * The structures below define version 1 of this capability.
1317 #define VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE 1
1319 struct vfio_iova_range {
1320 __u64 start;
1321 __u64 end;
1324 struct vfio_iommu_type1_info_cap_iova_range {
1325 struct vfio_info_cap_header header;
1326 __u32 nr_iovas;
1327 __u32 reserved;
1328 struct vfio_iova_range iova_ranges[];
1332 * The migration capability allows to report supported features for migration.
1334 * The structures below define version 1 of this capability.
1336 * The existence of this capability indicates that IOMMU kernel driver supports
1337 * dirty page logging.
1339 * pgsize_bitmap: Kernel driver returns bitmap of supported page sizes for dirty
1340 * page logging.
1341 * max_dirty_bitmap_size: Kernel driver returns maximum supported dirty bitmap
1342 * size in bytes that can be used by user applications when getting the dirty
1343 * bitmap.
1345 #define VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION 2
1347 struct vfio_iommu_type1_info_cap_migration {
1348 struct vfio_info_cap_header header;
1349 __u32 flags;
1350 __u64 pgsize_bitmap;
1351 __u64 max_dirty_bitmap_size; /* in bytes */
1355 * The DMA available capability allows to report the current number of
1356 * simultaneously outstanding DMA mappings that are allowed.
1358 * The structure below defines version 1 of this capability.
1360 * avail: specifies the current number of outstanding DMA mappings allowed.
1362 #define VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL 3
1364 struct vfio_iommu_type1_info_dma_avail {
1365 struct vfio_info_cap_header header;
1366 __u32 avail;
1369 #define VFIO_IOMMU_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12)
1372 * VFIO_IOMMU_MAP_DMA - _IOW(VFIO_TYPE, VFIO_BASE + 13, struct vfio_dma_map)
1374 * Map process virtual addresses to IO virtual addresses using the
1375 * provided struct vfio_dma_map. Caller sets argsz. READ &/ WRITE required.
1377 * If flags & VFIO_DMA_MAP_FLAG_VADDR, update the base vaddr for iova. The vaddr
1378 * must have previously been invalidated with VFIO_DMA_UNMAP_FLAG_VADDR. To
1379 * maintain memory consistency within the user application, the updated vaddr
1380 * must address the same memory object as originally mapped. Failure to do so
1381 * will result in user memory corruption and/or device misbehavior. iova and
1382 * size must match those in the original MAP_DMA call. Protection is not
1383 * changed, and the READ & WRITE flags must be 0.
1385 struct vfio_iommu_type1_dma_map {
1386 __u32 argsz;
1387 __u32 flags;
1388 #define VFIO_DMA_MAP_FLAG_READ (1 << 0) /* readable from device */
1389 #define VFIO_DMA_MAP_FLAG_WRITE (1 << 1) /* writable from device */
1390 #define VFIO_DMA_MAP_FLAG_VADDR (1 << 2)
1391 __u64 vaddr; /* Process virtual address */
1392 __u64 iova; /* IO virtual address */
1393 __u64 size; /* Size of mapping (bytes) */
1396 #define VFIO_IOMMU_MAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 13)
1398 struct vfio_bitmap {
1399 __u64 pgsize; /* page size for bitmap in bytes */
1400 __u64 size; /* in bytes */
1401 __u64 *data; /* one bit per page */
1405 * VFIO_IOMMU_UNMAP_DMA - _IOWR(VFIO_TYPE, VFIO_BASE + 14,
1406 * struct vfio_dma_unmap)
1408 * Unmap IO virtual addresses using the provided struct vfio_dma_unmap.
1409 * Caller sets argsz. The actual unmapped size is returned in the size
1410 * field. No guarantee is made to the user that arbitrary unmaps of iova
1411 * or size different from those used in the original mapping call will
1412 * succeed.
1414 * VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP should be set to get the dirty bitmap
1415 * before unmapping IO virtual addresses. When this flag is set, the user must
1416 * provide a struct vfio_bitmap in data[]. User must provide zero-allocated
1417 * memory via vfio_bitmap.data and its size in the vfio_bitmap.size field.
1418 * A bit in the bitmap represents one page, of user provided page size in
1419 * vfio_bitmap.pgsize field, consecutively starting from iova offset. Bit set
1420 * indicates that the page at that offset from iova is dirty. A Bitmap of the
1421 * pages in the range of unmapped size is returned in the user-provided
1422 * vfio_bitmap.data.
1424 * If flags & VFIO_DMA_UNMAP_FLAG_ALL, unmap all addresses. iova and size
1425 * must be 0. This cannot be combined with the get-dirty-bitmap flag.
1427 * If flags & VFIO_DMA_UNMAP_FLAG_VADDR, do not unmap, but invalidate host
1428 * virtual addresses in the iova range. DMA to already-mapped pages continues.
1429 * Groups may not be added to the container while any addresses are invalid.
1430 * This cannot be combined with the get-dirty-bitmap flag.
1432 struct vfio_iommu_type1_dma_unmap {
1433 __u32 argsz;
1434 __u32 flags;
1435 #define VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP (1 << 0)
1436 #define VFIO_DMA_UNMAP_FLAG_ALL (1 << 1)
1437 #define VFIO_DMA_UNMAP_FLAG_VADDR (1 << 2)
1438 __u64 iova; /* IO virtual address */
1439 __u64 size; /* Size of mapping (bytes) */
1440 __u8 data[];
1443 #define VFIO_IOMMU_UNMAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 14)
1446 * IOCTLs to enable/disable IOMMU container usage.
1447 * No parameters are supported.
1449 #define VFIO_IOMMU_ENABLE _IO(VFIO_TYPE, VFIO_BASE + 15)
1450 #define VFIO_IOMMU_DISABLE _IO(VFIO_TYPE, VFIO_BASE + 16)
1453 * VFIO_IOMMU_DIRTY_PAGES - _IOWR(VFIO_TYPE, VFIO_BASE + 17,
1454 * struct vfio_iommu_type1_dirty_bitmap)
1455 * IOCTL is used for dirty pages logging.
1456 * Caller should set flag depending on which operation to perform, details as
1457 * below:
1459 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_START flag set, instructs
1460 * the IOMMU driver to log pages that are dirtied or potentially dirtied by
1461 * the device; designed to be used when a migration is in progress. Dirty pages
1462 * are logged until logging is disabled by user application by calling the IOCTL
1463 * with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag.
1465 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag set, instructs
1466 * the IOMMU driver to stop logging dirtied pages.
1468 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP flag set
1469 * returns the dirty pages bitmap for IOMMU container for a given IOVA range.
1470 * The user must specify the IOVA range and the pgsize through the structure
1471 * vfio_iommu_type1_dirty_bitmap_get in the data[] portion. This interface
1472 * supports getting a bitmap of the smallest supported pgsize only and can be
1473 * modified in future to get a bitmap of any specified supported pgsize. The
1474 * user must provide a zeroed memory area for the bitmap memory and specify its
1475 * size in bitmap.size. One bit is used to represent one page consecutively
1476 * starting from iova offset. The user should provide page size in bitmap.pgsize
1477 * field. A bit set in the bitmap indicates that the page at that offset from
1478 * iova is dirty. The caller must set argsz to a value including the size of
1479 * structure vfio_iommu_type1_dirty_bitmap_get, but excluding the size of the
1480 * actual bitmap. If dirty pages logging is not enabled, an error will be
1481 * returned.
1483 * Only one of the flags _START, _STOP and _GET may be specified at a time.
1486 struct vfio_iommu_type1_dirty_bitmap {
1487 __u32 argsz;
1488 __u32 flags;
1489 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_START (1 << 0)
1490 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP (1 << 1)
1491 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP (1 << 2)
1492 __u8 data[];
1495 struct vfio_iommu_type1_dirty_bitmap_get {
1496 __u64 iova; /* IO virtual address */
1497 __u64 size; /* Size of iova range */
1498 struct vfio_bitmap bitmap;
1501 #define VFIO_IOMMU_DIRTY_PAGES _IO(VFIO_TYPE, VFIO_BASE + 17)
1503 /* -------- Additional API for SPAPR TCE (Server POWERPC) IOMMU -------- */
1506 * The SPAPR TCE DDW info struct provides the information about
1507 * the details of Dynamic DMA window capability.
1509 * @pgsizes contains a page size bitmask, 4K/64K/16M are supported.
1510 * @max_dynamic_windows_supported tells the maximum number of windows
1511 * which the platform can create.
1512 * @levels tells the maximum number of levels in multi-level IOMMU tables;
1513 * this allows splitting a table into smaller chunks which reduces
1514 * the amount of physically contiguous memory required for the table.
1516 struct vfio_iommu_spapr_tce_ddw_info {
1517 __u64 pgsizes; /* Bitmap of supported page sizes */
1518 __u32 max_dynamic_windows_supported;
1519 __u32 levels;
1523 * The SPAPR TCE info struct provides the information about the PCI bus
1524 * address ranges available for DMA, these values are programmed into
1525 * the hardware so the guest has to know that information.
1527 * The DMA 32 bit window start is an absolute PCI bus address.
1528 * The IOVA address passed via map/unmap ioctls are absolute PCI bus
1529 * addresses too so the window works as a filter rather than an offset
1530 * for IOVA addresses.
1532 * Flags supported:
1533 * - VFIO_IOMMU_SPAPR_INFO_DDW: informs the userspace that dynamic DMA windows
1534 * (DDW) support is present. @ddw is only supported when DDW is present.
1536 struct vfio_iommu_spapr_tce_info {
1537 __u32 argsz;
1538 __u32 flags;
1539 #define VFIO_IOMMU_SPAPR_INFO_DDW (1 << 0) /* DDW supported */
1540 __u32 dma32_window_start; /* 32 bit window start (bytes) */
1541 __u32 dma32_window_size; /* 32 bit window size (bytes) */
1542 struct vfio_iommu_spapr_tce_ddw_info ddw;
1545 #define VFIO_IOMMU_SPAPR_TCE_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12)
1548 * EEH PE operation struct provides ways to:
1549 * - enable/disable EEH functionality;
1550 * - unfreeze IO/DMA for frozen PE;
1551 * - read PE state;
1552 * - reset PE;
1553 * - configure PE;
1554 * - inject EEH error.
1556 struct vfio_eeh_pe_err {
1557 __u32 type;
1558 __u32 func;
1559 __u64 addr;
1560 __u64 mask;
1563 struct vfio_eeh_pe_op {
1564 __u32 argsz;
1565 __u32 flags;
1566 __u32 op;
1567 union {
1568 struct vfio_eeh_pe_err err;
1572 #define VFIO_EEH_PE_DISABLE 0 /* Disable EEH functionality */
1573 #define VFIO_EEH_PE_ENABLE 1 /* Enable EEH functionality */
1574 #define VFIO_EEH_PE_UNFREEZE_IO 2 /* Enable IO for frozen PE */
1575 #define VFIO_EEH_PE_UNFREEZE_DMA 3 /* Enable DMA for frozen PE */
1576 #define VFIO_EEH_PE_GET_STATE 4 /* PE state retrieval */
1577 #define VFIO_EEH_PE_STATE_NORMAL 0 /* PE in functional state */
1578 #define VFIO_EEH_PE_STATE_RESET 1 /* PE reset in progress */
1579 #define VFIO_EEH_PE_STATE_STOPPED 2 /* Stopped DMA and IO */
1580 #define VFIO_EEH_PE_STATE_STOPPED_DMA 4 /* Stopped DMA only */
1581 #define VFIO_EEH_PE_STATE_UNAVAIL 5 /* State unavailable */
1582 #define VFIO_EEH_PE_RESET_DEACTIVATE 5 /* Deassert PE reset */
1583 #define VFIO_EEH_PE_RESET_HOT 6 /* Assert hot reset */
1584 #define VFIO_EEH_PE_RESET_FUNDAMENTAL 7 /* Assert fundamental reset */
1585 #define VFIO_EEH_PE_CONFIGURE 8 /* PE configuration */
1586 #define VFIO_EEH_PE_INJECT_ERR 9 /* Inject EEH error */
1588 #define VFIO_EEH_PE_OP _IO(VFIO_TYPE, VFIO_BASE + 21)
1591 * VFIO_IOMMU_SPAPR_REGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 17, struct vfio_iommu_spapr_register_memory)
1593 * Registers user space memory where DMA is allowed. It pins
1594 * user pages and does the locked memory accounting so
1595 * subsequent VFIO_IOMMU_MAP_DMA/VFIO_IOMMU_UNMAP_DMA calls
1596 * get faster.
1598 struct vfio_iommu_spapr_register_memory {
1599 __u32 argsz;
1600 __u32 flags;
1601 __u64 vaddr; /* Process virtual address */
1602 __u64 size; /* Size of mapping (bytes) */
1604 #define VFIO_IOMMU_SPAPR_REGISTER_MEMORY _IO(VFIO_TYPE, VFIO_BASE + 17)
1607 * VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 18, struct vfio_iommu_spapr_register_memory)
1609 * Unregisters user space memory registered with
1610 * VFIO_IOMMU_SPAPR_REGISTER_MEMORY.
1611 * Uses vfio_iommu_spapr_register_memory for parameters.
1613 #define VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY _IO(VFIO_TYPE, VFIO_BASE + 18)
1616 * VFIO_IOMMU_SPAPR_TCE_CREATE - _IOWR(VFIO_TYPE, VFIO_BASE + 19, struct vfio_iommu_spapr_tce_create)
1618 * Creates an additional TCE table and programs it (sets a new DMA window)
1619 * to every IOMMU group in the container. It receives page shift, window
1620 * size and number of levels in the TCE table being created.
1622 * It allocates and returns an offset on a PCI bus of the new DMA window.
1624 struct vfio_iommu_spapr_tce_create {
1625 __u32 argsz;
1626 __u32 flags;
1627 /* in */
1628 __u32 page_shift;
1629 __u32 __resv1;
1630 __u64 window_size;
1631 __u32 levels;
1632 __u32 __resv2;
1633 /* out */
1634 __u64 start_addr;
1636 #define VFIO_IOMMU_SPAPR_TCE_CREATE _IO(VFIO_TYPE, VFIO_BASE + 19)
1639 * VFIO_IOMMU_SPAPR_TCE_REMOVE - _IOW(VFIO_TYPE, VFIO_BASE + 20, struct vfio_iommu_spapr_tce_remove)
1641 * Unprograms a TCE table from all groups in the container and destroys it.
1642 * It receives a PCI bus offset as a window id.
1644 struct vfio_iommu_spapr_tce_remove {
1645 __u32 argsz;
1646 __u32 flags;
1647 /* in */
1648 __u64 start_addr;
1650 #define VFIO_IOMMU_SPAPR_TCE_REMOVE _IO(VFIO_TYPE, VFIO_BASE + 20)
1652 /* ***************************************************************** */
1654 #endif /* VFIO_H */