hw/sd/sdcard: Implement eMMC sleep state (CMD5)
[qemu/armbru.git] / block / nvme.c
blob3b588b139f69a347c497a42feb72e827880bcc65
1 /*
2 * NVMe block driver based on vfio
4 * Copyright 2016 - 2018 Red Hat, Inc.
6 * Authors:
7 * Fam Zheng <famz@redhat.com>
8 * Paolo Bonzini <pbonzini@redhat.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/defer-call.h"
20 #include "qemu/error-report.h"
21 #include "qemu/main-loop.h"
22 #include "qemu/module.h"
23 #include "qemu/cutils.h"
24 #include "qemu/option.h"
25 #include "qemu/memalign.h"
26 #include "qemu/vfio-helpers.h"
27 #include "block/block-io.h"
28 #include "block/block_int.h"
29 #include "sysemu/block-backend.h"
30 #include "sysemu/replay.h"
31 #include "trace.h"
33 #include "block/nvme.h"
35 #define NVME_SQ_ENTRY_BYTES 64
36 #define NVME_CQ_ENTRY_BYTES 16
37 #define NVME_QUEUE_SIZE 128
38 #define NVME_DOORBELL_SIZE 4096
41 * We have to leave one slot empty as that is the full queue case where
42 * head == tail + 1.
44 #define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1)
46 typedef struct BDRVNVMeState BDRVNVMeState;
48 /* Same index is used for queues and IRQs */
49 #define INDEX_ADMIN 0
50 #define INDEX_IO(n) (1 + n)
52 /* This driver shares a single MSIX IRQ for the admin and I/O queues */
53 enum {
54 MSIX_SHARED_IRQ_IDX = 0,
55 MSIX_IRQ_COUNT = 1
58 typedef struct {
59 int32_t head, tail;
60 uint8_t *queue;
61 uint64_t iova;
62 /* Hardware MMIO register */
63 volatile uint32_t *doorbell;
64 } NVMeQueue;
66 typedef struct {
67 BlockCompletionFunc *cb;
68 void *opaque;
69 int cid;
70 void *prp_list_page;
71 uint64_t prp_list_iova;
72 int free_req_next; /* q->reqs[] index of next free req */
73 } NVMeRequest;
75 typedef struct {
76 QemuMutex lock;
78 /* Read from I/O code path, initialized under BQL */
79 BDRVNVMeState *s;
80 int index;
82 /* Fields protected by BQL */
83 uint8_t *prp_list_pages;
85 /* Fields protected by @lock */
86 CoQueue free_req_queue;
87 NVMeQueue sq, cq;
88 int cq_phase;
89 int free_req_head;
90 NVMeRequest reqs[NVME_NUM_REQS];
91 int need_kick;
92 int inflight;
94 /* Thread-safe, no lock necessary */
95 QEMUBH *completion_bh;
96 } NVMeQueuePair;
98 struct BDRVNVMeState {
99 AioContext *aio_context;
100 QEMUVFIOState *vfio;
101 void *bar0_wo_map;
102 /* Memory mapped registers */
103 volatile struct {
104 uint32_t sq_tail;
105 uint32_t cq_head;
106 } *doorbells;
107 /* The submission/completion queue pairs.
108 * [0]: admin queue.
109 * [1..]: io queues.
111 NVMeQueuePair **queues;
112 unsigned queue_count;
113 size_t page_size;
114 /* How many uint32_t elements does each doorbell entry take. */
115 size_t doorbell_scale;
116 bool write_cache_supported;
117 EventNotifier irq_notifier[MSIX_IRQ_COUNT];
119 uint64_t nsze; /* Namespace size reported by identify command */
120 int nsid; /* The namespace id to read/write data. */
121 int blkshift;
123 uint64_t max_transfer;
125 bool supports_write_zeroes;
126 bool supports_discard;
128 CoMutex dma_map_lock;
129 CoQueue dma_flush_queue;
131 /* Total size of mapped qiov, accessed under dma_map_lock */
132 int dma_map_count;
134 /* PCI address (required for nvme_refresh_filename()) */
135 char *device;
137 struct {
138 uint64_t completion_errors;
139 uint64_t aligned_accesses;
140 uint64_t unaligned_accesses;
141 } stats;
144 #define NVME_BLOCK_OPT_DEVICE "device"
145 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
147 static void nvme_process_completion_bh(void *opaque);
149 static QemuOptsList runtime_opts = {
150 .name = "nvme",
151 .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
152 .desc = {
154 .name = NVME_BLOCK_OPT_DEVICE,
155 .type = QEMU_OPT_STRING,
156 .help = "NVMe PCI device address",
159 .name = NVME_BLOCK_OPT_NAMESPACE,
160 .type = QEMU_OPT_NUMBER,
161 .help = "NVMe namespace",
163 { /* end of list */ }
167 /* Returns true on success, false on failure. */
168 static bool nvme_init_queue(BDRVNVMeState *s, NVMeQueue *q,
169 unsigned nentries, size_t entry_bytes, Error **errp)
171 ERRP_GUARD();
172 size_t bytes;
173 int r;
175 bytes = ROUND_UP(nentries * entry_bytes, qemu_real_host_page_size());
176 q->head = q->tail = 0;
177 q->queue = qemu_try_memalign(qemu_real_host_page_size(), bytes);
178 if (!q->queue) {
179 error_setg(errp, "Cannot allocate queue");
180 return false;
182 memset(q->queue, 0, bytes);
183 r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova, errp);
184 if (r) {
185 error_prepend(errp, "Cannot map queue: ");
187 return r == 0;
190 static void nvme_free_queue(NVMeQueue *q)
192 qemu_vfree(q->queue);
195 static void nvme_free_queue_pair(NVMeQueuePair *q)
197 trace_nvme_free_queue_pair(q->index, q, &q->cq, &q->sq);
198 if (q->completion_bh) {
199 qemu_bh_delete(q->completion_bh);
201 nvme_free_queue(&q->sq);
202 nvme_free_queue(&q->cq);
203 qemu_vfree(q->prp_list_pages);
204 qemu_mutex_destroy(&q->lock);
205 g_free(q);
208 static void nvme_free_req_queue_cb(void *opaque)
210 NVMeQueuePair *q = opaque;
212 qemu_mutex_lock(&q->lock);
213 while (q->free_req_head != -1 &&
214 qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
215 /* Retry waiting requests */
217 qemu_mutex_unlock(&q->lock);
220 static NVMeQueuePair *nvme_create_queue_pair(BDRVNVMeState *s,
221 AioContext *aio_context,
222 unsigned idx, size_t size,
223 Error **errp)
225 ERRP_GUARD();
226 int i, r;
227 NVMeQueuePair *q;
228 uint64_t prp_list_iova;
229 size_t bytes;
231 q = g_try_new0(NVMeQueuePair, 1);
232 if (!q) {
233 error_setg(errp, "Cannot allocate queue pair");
234 return NULL;
236 trace_nvme_create_queue_pair(idx, q, size, aio_context,
237 event_notifier_get_fd(s->irq_notifier));
238 bytes = QEMU_ALIGN_UP(s->page_size * NVME_NUM_REQS,
239 qemu_real_host_page_size());
240 q->prp_list_pages = qemu_try_memalign(qemu_real_host_page_size(), bytes);
241 if (!q->prp_list_pages) {
242 error_setg(errp, "Cannot allocate PRP page list");
243 goto fail;
245 memset(q->prp_list_pages, 0, bytes);
246 qemu_mutex_init(&q->lock);
247 q->s = s;
248 q->index = idx;
249 qemu_co_queue_init(&q->free_req_queue);
250 q->completion_bh = aio_bh_new(aio_context, nvme_process_completion_bh, q);
251 r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, bytes,
252 false, &prp_list_iova, errp);
253 if (r) {
254 error_prepend(errp, "Cannot map buffer for DMA: ");
255 goto fail;
257 q->free_req_head = -1;
258 for (i = 0; i < NVME_NUM_REQS; i++) {
259 NVMeRequest *req = &q->reqs[i];
260 req->cid = i + 1;
261 req->free_req_next = q->free_req_head;
262 q->free_req_head = i;
263 req->prp_list_page = q->prp_list_pages + i * s->page_size;
264 req->prp_list_iova = prp_list_iova + i * s->page_size;
267 if (!nvme_init_queue(s, &q->sq, size, NVME_SQ_ENTRY_BYTES, errp)) {
268 goto fail;
270 q->sq.doorbell = &s->doorbells[idx * s->doorbell_scale].sq_tail;
272 if (!nvme_init_queue(s, &q->cq, size, NVME_CQ_ENTRY_BYTES, errp)) {
273 goto fail;
275 q->cq.doorbell = &s->doorbells[idx * s->doorbell_scale].cq_head;
277 return q;
278 fail:
279 nvme_free_queue_pair(q);
280 return NULL;
283 /* With q->lock */
284 static void nvme_kick(NVMeQueuePair *q)
286 BDRVNVMeState *s = q->s;
288 if (!q->need_kick) {
289 return;
291 trace_nvme_kick(s, q->index);
292 assert(!(q->sq.tail & 0xFF00));
293 /* Fence the write to submission queue entry before notifying the device. */
294 smp_wmb();
295 *q->sq.doorbell = cpu_to_le32(q->sq.tail);
296 q->inflight += q->need_kick;
297 q->need_kick = 0;
300 static NVMeRequest *nvme_get_free_req_nofail_locked(NVMeQueuePair *q)
302 NVMeRequest *req;
304 req = &q->reqs[q->free_req_head];
305 q->free_req_head = req->free_req_next;
306 req->free_req_next = -1;
307 return req;
310 /* Return a free request element if any, otherwise return NULL. */
311 static NVMeRequest *nvme_get_free_req_nowait(NVMeQueuePair *q)
313 QEMU_LOCK_GUARD(&q->lock);
314 if (q->free_req_head == -1) {
315 return NULL;
317 return nvme_get_free_req_nofail_locked(q);
321 * Wait for a free request to become available if necessary, then
322 * return it.
324 static coroutine_fn NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
326 QEMU_LOCK_GUARD(&q->lock);
328 while (q->free_req_head == -1) {
329 trace_nvme_free_req_queue_wait(q->s, q->index);
330 qemu_co_queue_wait(&q->free_req_queue, &q->lock);
333 return nvme_get_free_req_nofail_locked(q);
336 /* With q->lock */
337 static void nvme_put_free_req_locked(NVMeQueuePair *q, NVMeRequest *req)
339 req->free_req_next = q->free_req_head;
340 q->free_req_head = req - q->reqs;
343 /* With q->lock */
344 static void nvme_wake_free_req_locked(NVMeQueuePair *q)
346 if (!qemu_co_queue_empty(&q->free_req_queue)) {
347 replay_bh_schedule_oneshot_event(q->s->aio_context,
348 nvme_free_req_queue_cb, q);
352 /* Insert a request in the freelist and wake waiters */
353 static void nvme_put_free_req_and_wake(NVMeQueuePair *q, NVMeRequest *req)
355 qemu_mutex_lock(&q->lock);
356 nvme_put_free_req_locked(q, req);
357 nvme_wake_free_req_locked(q);
358 qemu_mutex_unlock(&q->lock);
361 static inline int nvme_translate_error(const NvmeCqe *c)
363 uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
364 if (status) {
365 trace_nvme_error(le32_to_cpu(c->result),
366 le16_to_cpu(c->sq_head),
367 le16_to_cpu(c->sq_id),
368 le16_to_cpu(c->cid),
369 le16_to_cpu(status));
371 switch (status) {
372 case 0:
373 return 0;
374 case 1:
375 return -ENOSYS;
376 case 2:
377 return -EINVAL;
378 default:
379 return -EIO;
383 /* With q->lock */
384 static bool nvme_process_completion(NVMeQueuePair *q)
386 BDRVNVMeState *s = q->s;
387 bool progress = false;
388 NVMeRequest *preq;
389 NVMeRequest req;
390 NvmeCqe *c;
392 trace_nvme_process_completion(s, q->index, q->inflight);
395 * Support re-entrancy when a request cb() function invokes aio_poll().
396 * Pending completions must be visible to aio_poll() so that a cb()
397 * function can wait for the completion of another request.
399 * The aio_poll() loop will execute our BH and we'll resume completion
400 * processing there.
402 qemu_bh_schedule(q->completion_bh);
404 assert(q->inflight >= 0);
405 while (q->inflight) {
406 int ret;
407 int16_t cid;
409 c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
410 if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
411 break;
413 ret = nvme_translate_error(c);
414 if (ret) {
415 s->stats.completion_errors++;
417 q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
418 if (!q->cq.head) {
419 q->cq_phase = !q->cq_phase;
421 cid = le16_to_cpu(c->cid);
422 if (cid == 0 || cid > NVME_NUM_REQS) {
423 warn_report("NVMe: Unexpected CID in completion queue: %" PRIu32
424 ", should be within: 1..%u inclusively", cid,
425 NVME_NUM_REQS);
426 continue;
428 trace_nvme_complete_command(s, q->index, cid);
429 preq = &q->reqs[cid - 1];
430 req = *preq;
431 assert(req.cid == cid);
432 assert(req.cb);
433 nvme_put_free_req_locked(q, preq);
434 preq->cb = preq->opaque = NULL;
435 q->inflight--;
436 qemu_mutex_unlock(&q->lock);
437 req.cb(req.opaque, ret);
438 qemu_mutex_lock(&q->lock);
439 progress = true;
441 if (progress) {
442 /* Notify the device so it can post more completions. */
443 smp_mb_release();
444 *q->cq.doorbell = cpu_to_le32(q->cq.head);
445 nvme_wake_free_req_locked(q);
448 qemu_bh_cancel(q->completion_bh);
450 return progress;
453 static void nvme_process_completion_bh(void *opaque)
455 NVMeQueuePair *q = opaque;
458 * We're being invoked because a nvme_process_completion() cb() function
459 * called aio_poll(). The callback may be waiting for further completions
460 * so notify the device that it has space to fill in more completions now.
462 smp_mb_release();
463 *q->cq.doorbell = cpu_to_le32(q->cq.head);
464 nvme_wake_free_req_locked(q);
466 nvme_process_completion(q);
469 static void nvme_trace_command(const NvmeCmd *cmd)
471 int i;
473 if (!trace_event_get_state_backends(TRACE_NVME_SUBMIT_COMMAND_RAW)) {
474 return;
476 for (i = 0; i < 8; ++i) {
477 uint8_t *cmdp = (uint8_t *)cmd + i * 8;
478 trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
479 cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
483 static void nvme_deferred_fn(void *opaque)
485 NVMeQueuePair *q = opaque;
487 QEMU_LOCK_GUARD(&q->lock);
488 nvme_kick(q);
489 nvme_process_completion(q);
492 static void nvme_submit_command(NVMeQueuePair *q, NVMeRequest *req,
493 NvmeCmd *cmd, BlockCompletionFunc cb,
494 void *opaque)
496 assert(!req->cb);
497 req->cb = cb;
498 req->opaque = opaque;
499 cmd->cid = cpu_to_le16(req->cid);
501 trace_nvme_submit_command(q->s, q->index, req->cid);
502 nvme_trace_command(cmd);
503 qemu_mutex_lock(&q->lock);
504 memcpy((uint8_t *)q->sq.queue +
505 q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
506 q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
507 q->need_kick++;
508 qemu_mutex_unlock(&q->lock);
510 defer_call(nvme_deferred_fn, q);
513 static void nvme_admin_cmd_sync_cb(void *opaque, int ret)
515 int *pret = opaque;
516 *pret = ret;
517 aio_wait_kick();
520 static int nvme_admin_cmd_sync(BlockDriverState *bs, NvmeCmd *cmd)
522 BDRVNVMeState *s = bs->opaque;
523 NVMeQueuePair *q = s->queues[INDEX_ADMIN];
524 AioContext *aio_context = bdrv_get_aio_context(bs);
525 NVMeRequest *req;
526 int ret = -EINPROGRESS;
527 req = nvme_get_free_req_nowait(q);
528 if (!req) {
529 return -EBUSY;
531 nvme_submit_command(q, req, cmd, nvme_admin_cmd_sync_cb, &ret);
533 AIO_WAIT_WHILE(aio_context, ret == -EINPROGRESS);
534 return ret;
537 /* Returns true on success, false on failure. */
538 static bool nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
540 ERRP_GUARD();
541 BDRVNVMeState *s = bs->opaque;
542 bool ret = false;
543 QEMU_AUTO_VFREE union {
544 NvmeIdCtrl ctrl;
545 NvmeIdNs ns;
546 } *id = NULL;
547 NvmeLBAF *lbaf;
548 uint16_t oncs;
549 int r;
550 uint64_t iova;
551 NvmeCmd cmd = {
552 .opcode = NVME_ADM_CMD_IDENTIFY,
553 .cdw10 = cpu_to_le32(0x1),
555 size_t id_size = QEMU_ALIGN_UP(sizeof(*id), qemu_real_host_page_size());
557 id = qemu_try_memalign(qemu_real_host_page_size(), id_size);
558 if (!id) {
559 error_setg(errp, "Cannot allocate buffer for identify response");
560 goto out;
562 r = qemu_vfio_dma_map(s->vfio, id, id_size, true, &iova, errp);
563 if (r) {
564 error_prepend(errp, "Cannot map buffer for DMA: ");
565 goto out;
568 memset(id, 0, id_size);
569 cmd.dptr.prp1 = cpu_to_le64(iova);
570 if (nvme_admin_cmd_sync(bs, &cmd)) {
571 error_setg(errp, "Failed to identify controller");
572 goto out;
575 if (le32_to_cpu(id->ctrl.nn) < namespace) {
576 error_setg(errp, "Invalid namespace");
577 goto out;
579 s->write_cache_supported = le32_to_cpu(id->ctrl.vwc) & 0x1;
580 s->max_transfer = (id->ctrl.mdts ? 1 << id->ctrl.mdts : 0) * s->page_size;
581 /* For now the page list buffer per command is one page, to hold at most
582 * s->page_size / sizeof(uint64_t) entries. */
583 s->max_transfer = MIN_NON_ZERO(s->max_transfer,
584 s->page_size / sizeof(uint64_t) * s->page_size);
586 oncs = le16_to_cpu(id->ctrl.oncs);
587 s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROES);
588 s->supports_discard = !!(oncs & NVME_ONCS_DSM);
590 memset(id, 0, id_size);
591 cmd.cdw10 = 0;
592 cmd.nsid = cpu_to_le32(namespace);
593 if (nvme_admin_cmd_sync(bs, &cmd)) {
594 error_setg(errp, "Failed to identify namespace");
595 goto out;
598 s->nsze = le64_to_cpu(id->ns.nsze);
599 lbaf = &id->ns.lbaf[NVME_ID_NS_FLBAS_INDEX(id->ns.flbas)];
601 if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(id->ns.dlfeat) &&
602 NVME_ID_NS_DLFEAT_READ_BEHAVIOR(id->ns.dlfeat) ==
603 NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) {
604 bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP;
607 if (lbaf->ms) {
608 error_setg(errp, "Namespaces with metadata are not yet supported");
609 goto out;
612 if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
613 (1 << lbaf->ds) > s->page_size)
615 error_setg(errp, "Namespace has unsupported block size (2^%d)",
616 lbaf->ds);
617 goto out;
620 ret = true;
621 s->blkshift = lbaf->ds;
622 out:
623 qemu_vfio_dma_unmap(s->vfio, id);
625 return ret;
628 static void nvme_poll_queue(NVMeQueuePair *q)
630 const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
631 NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
633 trace_nvme_poll_queue(q->s, q->index);
635 * Do an early check for completions. q->lock isn't needed because
636 * nvme_process_completion() only runs in the event loop thread and
637 * cannot race with itself.
639 if ((le16_to_cpu(cqe->status) & 0x1) == q->cq_phase) {
640 return;
643 qemu_mutex_lock(&q->lock);
644 while (nvme_process_completion(q)) {
645 /* Keep polling */
647 qemu_mutex_unlock(&q->lock);
650 static void nvme_poll_queues(BDRVNVMeState *s)
652 int i;
654 for (i = 0; i < s->queue_count; i++) {
655 nvme_poll_queue(s->queues[i]);
659 static void nvme_handle_event(EventNotifier *n)
661 BDRVNVMeState *s = container_of(n, BDRVNVMeState,
662 irq_notifier[MSIX_SHARED_IRQ_IDX]);
664 trace_nvme_handle_event(s);
665 event_notifier_test_and_clear(n);
666 nvme_poll_queues(s);
669 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
671 BDRVNVMeState *s = bs->opaque;
672 unsigned n = s->queue_count;
673 NVMeQueuePair *q;
674 NvmeCmd cmd;
675 unsigned queue_size = NVME_QUEUE_SIZE;
677 assert(n <= UINT16_MAX);
678 q = nvme_create_queue_pair(s, bdrv_get_aio_context(bs),
679 n, queue_size, errp);
680 if (!q) {
681 return false;
683 cmd = (NvmeCmd) {
684 .opcode = NVME_ADM_CMD_CREATE_CQ,
685 .dptr.prp1 = cpu_to_le64(q->cq.iova),
686 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
687 .cdw11 = cpu_to_le32(NVME_CQ_IEN | NVME_CQ_PC),
689 if (nvme_admin_cmd_sync(bs, &cmd)) {
690 error_setg(errp, "Failed to create CQ io queue [%u]", n);
691 goto out_error;
693 cmd = (NvmeCmd) {
694 .opcode = NVME_ADM_CMD_CREATE_SQ,
695 .dptr.prp1 = cpu_to_le64(q->sq.iova),
696 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
697 .cdw11 = cpu_to_le32(NVME_SQ_PC | (n << 16)),
699 if (nvme_admin_cmd_sync(bs, &cmd)) {
700 error_setg(errp, "Failed to create SQ io queue [%u]", n);
701 goto out_error;
703 s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
704 s->queues[n] = q;
705 s->queue_count++;
706 return true;
707 out_error:
708 nvme_free_queue_pair(q);
709 return false;
712 static bool nvme_poll_cb(void *opaque)
714 EventNotifier *e = opaque;
715 BDRVNVMeState *s = container_of(e, BDRVNVMeState,
716 irq_notifier[MSIX_SHARED_IRQ_IDX]);
717 int i;
719 for (i = 0; i < s->queue_count; i++) {
720 NVMeQueuePair *q = s->queues[i];
721 const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
722 NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
725 * q->lock isn't needed because nvme_process_completion() only runs in
726 * the event loop thread and cannot race with itself.
728 if ((le16_to_cpu(cqe->status) & 0x1) != q->cq_phase) {
729 return true;
732 return false;
735 static void nvme_poll_ready(EventNotifier *e)
737 BDRVNVMeState *s = container_of(e, BDRVNVMeState,
738 irq_notifier[MSIX_SHARED_IRQ_IDX]);
740 nvme_poll_queues(s);
743 static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
744 Error **errp)
746 BDRVNVMeState *s = bs->opaque;
747 NVMeQueuePair *q;
748 AioContext *aio_context = bdrv_get_aio_context(bs);
749 int ret;
750 uint64_t cap;
751 uint32_t ver;
752 uint64_t timeout_ms;
753 uint64_t deadline, now;
754 volatile NvmeBar *regs = NULL;
756 qemu_co_mutex_init(&s->dma_map_lock);
757 qemu_co_queue_init(&s->dma_flush_queue);
758 s->device = g_strdup(device);
759 s->nsid = namespace;
760 s->aio_context = bdrv_get_aio_context(bs);
761 ret = event_notifier_init(&s->irq_notifier[MSIX_SHARED_IRQ_IDX], 0);
762 if (ret) {
763 error_setg(errp, "Failed to init event notifier");
764 return ret;
767 s->vfio = qemu_vfio_open_pci(device, errp);
768 if (!s->vfio) {
769 ret = -EINVAL;
770 goto out;
773 regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, sizeof(NvmeBar),
774 PROT_READ | PROT_WRITE, errp);
775 if (!regs) {
776 ret = -EINVAL;
777 goto out;
779 /* Perform initialize sequence as described in NVMe spec "7.6.1
780 * Initialization". */
782 cap = le64_to_cpu(regs->cap);
783 trace_nvme_controller_capability_raw(cap);
784 trace_nvme_controller_capability("Maximum Queue Entries Supported",
785 1 + NVME_CAP_MQES(cap));
786 trace_nvme_controller_capability("Contiguous Queues Required",
787 NVME_CAP_CQR(cap));
788 trace_nvme_controller_capability("Doorbell Stride",
789 1 << (2 + NVME_CAP_DSTRD(cap)));
790 trace_nvme_controller_capability("Subsystem Reset Supported",
791 NVME_CAP_NSSRS(cap));
792 trace_nvme_controller_capability("Memory Page Size Minimum",
793 1 << (12 + NVME_CAP_MPSMIN(cap)));
794 trace_nvme_controller_capability("Memory Page Size Maximum",
795 1 << (12 + NVME_CAP_MPSMAX(cap)));
796 if (!NVME_CAP_CSS(cap)) {
797 error_setg(errp, "Device doesn't support NVMe command set");
798 ret = -EINVAL;
799 goto out;
802 s->page_size = 1u << (12 + NVME_CAP_MPSMIN(cap));
803 s->doorbell_scale = (4 << NVME_CAP_DSTRD(cap)) / sizeof(uint32_t);
804 bs->bl.opt_mem_alignment = s->page_size;
805 bs->bl.request_alignment = s->page_size;
806 timeout_ms = MIN(500 * NVME_CAP_TO(cap), 30000);
808 ver = le32_to_cpu(regs->vs);
809 trace_nvme_controller_spec_version(extract32(ver, 16, 16),
810 extract32(ver, 8, 8),
811 extract32(ver, 0, 8));
813 /* Reset device to get a clean state. */
814 regs->cc = cpu_to_le32(le32_to_cpu(regs->cc) & 0xFE);
815 /* Wait for CSTS.RDY = 0. */
816 deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * SCALE_MS;
817 while (NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
818 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
819 error_setg(errp, "Timeout while waiting for device to reset (%"
820 PRId64 " ms)",
821 timeout_ms);
822 ret = -ETIMEDOUT;
823 goto out;
827 s->bar0_wo_map = qemu_vfio_pci_map_bar(s->vfio, 0, 0,
828 sizeof(NvmeBar) + NVME_DOORBELL_SIZE,
829 PROT_WRITE, errp);
830 s->doorbells = (void *)((uintptr_t)s->bar0_wo_map + sizeof(NvmeBar));
831 if (!s->doorbells) {
832 ret = -EINVAL;
833 goto out;
836 /* Set up admin queue. */
837 s->queues = g_new(NVMeQueuePair *, 1);
838 q = nvme_create_queue_pair(s, aio_context, 0, NVME_QUEUE_SIZE, errp);
839 if (!q) {
840 ret = -EINVAL;
841 goto out;
843 s->queues[INDEX_ADMIN] = q;
844 s->queue_count = 1;
845 QEMU_BUILD_BUG_ON((NVME_QUEUE_SIZE - 1) & 0xF000);
846 regs->aqa = cpu_to_le32(((NVME_QUEUE_SIZE - 1) << AQA_ACQS_SHIFT) |
847 ((NVME_QUEUE_SIZE - 1) << AQA_ASQS_SHIFT));
848 regs->asq = cpu_to_le64(q->sq.iova);
849 regs->acq = cpu_to_le64(q->cq.iova);
851 /* After setting up all control registers we can enable device now. */
852 regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << CC_IOCQES_SHIFT) |
853 (ctz32(NVME_SQ_ENTRY_BYTES) << CC_IOSQES_SHIFT) |
854 CC_EN_MASK);
855 /* Wait for CSTS.RDY = 1. */
856 now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
857 deadline = now + timeout_ms * SCALE_MS;
858 while (!NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
859 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
860 error_setg(errp, "Timeout while waiting for device to start (%"
861 PRId64 " ms)",
862 timeout_ms);
863 ret = -ETIMEDOUT;
864 goto out;
868 ret = qemu_vfio_pci_init_irq(s->vfio, s->irq_notifier,
869 VFIO_PCI_MSIX_IRQ_INDEX, errp);
870 if (ret) {
871 goto out;
873 aio_set_event_notifier(bdrv_get_aio_context(bs),
874 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
875 nvme_handle_event, nvme_poll_cb,
876 nvme_poll_ready);
878 if (!nvme_identify(bs, namespace, errp)) {
879 ret = -EIO;
880 goto out;
883 /* Set up command queues. */
884 if (!nvme_add_io_queue(bs, errp)) {
885 ret = -EIO;
887 out:
888 if (regs) {
889 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)regs, 0, sizeof(NvmeBar));
892 /* Cleaning up is done in nvme_open() upon error. */
893 return ret;
896 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
898 * nvme://0000:44:00.0/1
900 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
901 * is the PCI address, and the last part is the namespace number starting from
902 * 1 according to the NVMe spec. */
903 static void nvme_parse_filename(const char *filename, QDict *options,
904 Error **errp)
906 int pref = strlen("nvme://");
908 if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
909 const char *tmp = filename + pref;
910 char *device;
911 const char *namespace;
912 unsigned long ns;
913 const char *slash = strchr(tmp, '/');
914 if (!slash) {
915 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
916 return;
918 device = g_strndup(tmp, slash - tmp);
919 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
920 g_free(device);
921 namespace = slash + 1;
922 if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
923 error_setg(errp, "Invalid namespace '%s', positive number expected",
924 namespace);
925 return;
927 qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
928 *namespace ? namespace : "1");
932 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
933 Error **errp)
935 int ret;
936 BDRVNVMeState *s = bs->opaque;
937 NvmeCmd cmd = {
938 .opcode = NVME_ADM_CMD_SET_FEATURES,
939 .nsid = cpu_to_le32(s->nsid),
940 .cdw10 = cpu_to_le32(0x06),
941 .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
944 ret = nvme_admin_cmd_sync(bs, &cmd);
945 if (ret) {
946 error_setg(errp, "Failed to configure NVMe write cache");
948 return ret;
951 static void nvme_close(BlockDriverState *bs)
953 BDRVNVMeState *s = bs->opaque;
955 for (unsigned i = 0; i < s->queue_count; ++i) {
956 nvme_free_queue_pair(s->queues[i]);
958 g_free(s->queues);
959 aio_set_event_notifier(bdrv_get_aio_context(bs),
960 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
961 NULL, NULL, NULL);
962 event_notifier_cleanup(&s->irq_notifier[MSIX_SHARED_IRQ_IDX]);
963 qemu_vfio_pci_unmap_bar(s->vfio, 0, s->bar0_wo_map,
964 0, sizeof(NvmeBar) + NVME_DOORBELL_SIZE);
965 qemu_vfio_close(s->vfio);
967 g_free(s->device);
970 static int nvme_open(BlockDriverState *bs, QDict *options, int flags,
971 Error **errp)
973 const char *device;
974 QemuOpts *opts;
975 int namespace;
976 int ret;
977 BDRVNVMeState *s = bs->opaque;
979 bs->supported_write_flags = BDRV_REQ_FUA;
981 opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
982 qemu_opts_absorb_qdict(opts, options, &error_abort);
983 device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
984 if (!device) {
985 error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
986 qemu_opts_del(opts);
987 return -EINVAL;
990 namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
991 ret = nvme_init(bs, device, namespace, errp);
992 qemu_opts_del(opts);
993 if (ret) {
994 goto fail;
996 if (flags & BDRV_O_NOCACHE) {
997 if (!s->write_cache_supported) {
998 error_setg(errp,
999 "NVMe controller doesn't support write cache configuration");
1000 ret = -EINVAL;
1001 } else {
1002 ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
1003 errp);
1005 if (ret) {
1006 goto fail;
1009 return 0;
1010 fail:
1011 nvme_close(bs);
1012 return ret;
1015 static int64_t coroutine_fn nvme_co_getlength(BlockDriverState *bs)
1017 BDRVNVMeState *s = bs->opaque;
1018 return s->nsze << s->blkshift;
1021 static uint32_t nvme_get_blocksize(BlockDriverState *bs)
1023 BDRVNVMeState *s = bs->opaque;
1024 assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
1025 return UINT32_C(1) << s->blkshift;
1028 static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
1030 uint32_t blocksize = nvme_get_blocksize(bs);
1031 bsz->phys = blocksize;
1032 bsz->log = blocksize;
1033 return 0;
1036 /* Called with s->dma_map_lock */
1037 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
1038 QEMUIOVector *qiov)
1040 int r = 0;
1041 BDRVNVMeState *s = bs->opaque;
1043 s->dma_map_count -= qiov->size;
1044 if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
1045 r = qemu_vfio_dma_reset_temporary(s->vfio);
1046 if (!r) {
1047 qemu_co_queue_restart_all(&s->dma_flush_queue);
1050 return r;
1053 /* Called with s->dma_map_lock */
1054 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
1055 NVMeRequest *req, QEMUIOVector *qiov)
1057 BDRVNVMeState *s = bs->opaque;
1058 uint64_t *pagelist = req->prp_list_page;
1059 int i, j, r;
1060 int entries = 0;
1061 Error *local_err = NULL, **errp = NULL;
1063 assert(qiov->size);
1064 assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
1065 assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
1066 for (i = 0; i < qiov->niov; ++i) {
1067 bool retry = true;
1068 uint64_t iova;
1069 size_t len = QEMU_ALIGN_UP(qiov->iov[i].iov_len,
1070 qemu_real_host_page_size());
1071 try_map:
1072 r = qemu_vfio_dma_map(s->vfio,
1073 qiov->iov[i].iov_base,
1074 len, true, &iova, errp);
1075 if (r == -ENOSPC) {
1077 * In addition to the -ENOMEM error, the VFIO_IOMMU_MAP_DMA
1078 * ioctl returns -ENOSPC to signal the user exhausted the DMA
1079 * mappings available for a container since Linux kernel commit
1080 * 492855939bdb ("vfio/type1: Limit DMA mappings per container",
1081 * April 2019, see CVE-2019-3882).
1083 * This block driver already handles this error path by checking
1084 * for the -ENOMEM error, so we directly replace -ENOSPC by
1085 * -ENOMEM. Beside, -ENOSPC has a specific meaning for blockdev
1086 * coroutines: it triggers BLOCKDEV_ON_ERROR_ENOSPC and
1087 * BLOCK_ERROR_ACTION_STOP which stops the VM, asking the operator
1088 * to add more storage to the blockdev. Not something we can do
1089 * easily with an IOMMU :)
1091 r = -ENOMEM;
1093 if (r == -ENOMEM && retry) {
1095 * We exhausted the DMA mappings available for our container:
1096 * recycle the volatile IOVA mappings.
1098 retry = false;
1099 trace_nvme_dma_flush_queue_wait(s);
1100 if (s->dma_map_count) {
1101 trace_nvme_dma_map_flush(s);
1102 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
1103 } else {
1104 r = qemu_vfio_dma_reset_temporary(s->vfio);
1105 if (r) {
1106 goto fail;
1109 errp = &local_err;
1111 goto try_map;
1113 if (r) {
1114 goto fail;
1117 for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
1118 pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
1120 trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
1121 qiov->iov[i].iov_len / s->page_size);
1124 s->dma_map_count += qiov->size;
1126 assert(entries <= s->page_size / sizeof(uint64_t));
1127 switch (entries) {
1128 case 0:
1129 abort();
1130 case 1:
1131 cmd->dptr.prp1 = pagelist[0];
1132 cmd->dptr.prp2 = 0;
1133 break;
1134 case 2:
1135 cmd->dptr.prp1 = pagelist[0];
1136 cmd->dptr.prp2 = pagelist[1];
1137 break;
1138 default:
1139 cmd->dptr.prp1 = pagelist[0];
1140 cmd->dptr.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
1141 break;
1143 trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
1144 for (i = 0; i < entries; ++i) {
1145 trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
1147 return 0;
1148 fail:
1149 /* No need to unmap [0 - i) iovs even if we've failed, since we don't
1150 * increment s->dma_map_count. This is okay for fixed mapping memory areas
1151 * because they are already mapped before calling this function; for
1152 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
1153 * calling qemu_vfio_dma_reset_temporary when necessary. */
1154 if (local_err) {
1155 error_reportf_err(local_err, "Cannot map buffer for DMA: ");
1157 return r;
1160 typedef struct {
1161 Coroutine *co;
1162 int ret;
1163 AioContext *ctx;
1164 } NVMeCoData;
1166 static void nvme_rw_cb_bh(void *opaque)
1168 NVMeCoData *data = opaque;
1169 qemu_coroutine_enter(data->co);
1172 static void nvme_rw_cb(void *opaque, int ret)
1174 NVMeCoData *data = opaque;
1175 data->ret = ret;
1176 if (!data->co) {
1177 /* The rw coroutine hasn't yielded, don't try to enter. */
1178 return;
1180 replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data);
1183 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
1184 uint64_t offset, uint64_t bytes,
1185 QEMUIOVector *qiov,
1186 bool is_write,
1187 int flags)
1189 int r;
1190 BDRVNVMeState *s = bs->opaque;
1191 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1192 NVMeRequest *req;
1194 uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
1195 (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
1196 NvmeCmd cmd = {
1197 .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
1198 .nsid = cpu_to_le32(s->nsid),
1199 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1200 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1201 .cdw12 = cpu_to_le32(cdw12),
1203 NVMeCoData data = {
1204 .ctx = bdrv_get_aio_context(bs),
1205 .ret = -EINPROGRESS,
1208 trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
1209 assert(s->queue_count > 1);
1210 req = nvme_get_free_req(ioq);
1211 assert(req);
1213 qemu_co_mutex_lock(&s->dma_map_lock);
1214 r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
1215 qemu_co_mutex_unlock(&s->dma_map_lock);
1216 if (r) {
1217 nvme_put_free_req_and_wake(ioq, req);
1218 return r;
1220 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1222 data.co = qemu_coroutine_self();
1223 while (data.ret == -EINPROGRESS) {
1224 qemu_coroutine_yield();
1227 qemu_co_mutex_lock(&s->dma_map_lock);
1228 r = nvme_cmd_unmap_qiov(bs, qiov);
1229 qemu_co_mutex_unlock(&s->dma_map_lock);
1230 if (r) {
1231 return r;
1234 trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
1235 return data.ret;
1238 static inline bool nvme_qiov_aligned(BlockDriverState *bs,
1239 const QEMUIOVector *qiov)
1241 int i;
1242 BDRVNVMeState *s = bs->opaque;
1244 for (i = 0; i < qiov->niov; ++i) {
1245 if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base,
1246 qemu_real_host_page_size()) ||
1247 !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, qemu_real_host_page_size())) {
1248 trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
1249 qiov->iov[i].iov_len, s->page_size);
1250 return false;
1253 return true;
1256 static coroutine_fn int nvme_co_prw(BlockDriverState *bs,
1257 uint64_t offset, uint64_t bytes,
1258 QEMUIOVector *qiov, bool is_write,
1259 int flags)
1261 BDRVNVMeState *s = bs->opaque;
1262 int r;
1263 QEMU_AUTO_VFREE uint8_t *buf = NULL;
1264 QEMUIOVector local_qiov;
1265 size_t len = QEMU_ALIGN_UP(bytes, qemu_real_host_page_size());
1266 assert(QEMU_IS_ALIGNED(offset, s->page_size));
1267 assert(QEMU_IS_ALIGNED(bytes, s->page_size));
1268 assert(bytes <= s->max_transfer);
1269 if (nvme_qiov_aligned(bs, qiov)) {
1270 s->stats.aligned_accesses++;
1271 return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1273 s->stats.unaligned_accesses++;
1274 trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1275 buf = qemu_try_memalign(qemu_real_host_page_size(), len);
1277 if (!buf) {
1278 return -ENOMEM;
1280 qemu_iovec_init(&local_qiov, 1);
1281 if (is_write) {
1282 qemu_iovec_to_buf(qiov, 0, buf, bytes);
1284 qemu_iovec_add(&local_qiov, buf, bytes);
1285 r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1286 qemu_iovec_destroy(&local_qiov);
1287 if (!r && !is_write) {
1288 qemu_iovec_from_buf(qiov, 0, buf, bytes);
1290 return r;
1293 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1294 int64_t offset, int64_t bytes,
1295 QEMUIOVector *qiov,
1296 BdrvRequestFlags flags)
1298 return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1301 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1302 int64_t offset, int64_t bytes,
1303 QEMUIOVector *qiov,
1304 BdrvRequestFlags flags)
1306 return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1309 static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1311 BDRVNVMeState *s = bs->opaque;
1312 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1313 NVMeRequest *req;
1314 NvmeCmd cmd = {
1315 .opcode = NVME_CMD_FLUSH,
1316 .nsid = cpu_to_le32(s->nsid),
1318 NVMeCoData data = {
1319 .ctx = bdrv_get_aio_context(bs),
1320 .ret = -EINPROGRESS,
1323 assert(s->queue_count > 1);
1324 req = nvme_get_free_req(ioq);
1325 assert(req);
1326 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1328 data.co = qemu_coroutine_self();
1329 if (data.ret == -EINPROGRESS) {
1330 qemu_coroutine_yield();
1333 return data.ret;
1337 static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs,
1338 int64_t offset,
1339 int64_t bytes,
1340 BdrvRequestFlags flags)
1342 BDRVNVMeState *s = bs->opaque;
1343 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1344 NVMeRequest *req;
1345 uint32_t cdw12;
1347 if (!s->supports_write_zeroes) {
1348 return -ENOTSUP;
1351 if (bytes == 0) {
1352 return 0;
1355 cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF;
1357 * We should not lose information. pwrite_zeroes_alignment and
1358 * max_pwrite_zeroes guarantees it.
1360 assert(((cdw12 + 1) << s->blkshift) == bytes);
1362 NvmeCmd cmd = {
1363 .opcode = NVME_CMD_WRITE_ZEROES,
1364 .nsid = cpu_to_le32(s->nsid),
1365 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1366 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1369 NVMeCoData data = {
1370 .ctx = bdrv_get_aio_context(bs),
1371 .ret = -EINPROGRESS,
1374 if (flags & BDRV_REQ_MAY_UNMAP) {
1375 cdw12 |= (1 << 25);
1378 if (flags & BDRV_REQ_FUA) {
1379 cdw12 |= (1 << 30);
1382 cmd.cdw12 = cpu_to_le32(cdw12);
1384 trace_nvme_write_zeroes(s, offset, bytes, flags);
1385 assert(s->queue_count > 1);
1386 req = nvme_get_free_req(ioq);
1387 assert(req);
1389 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1391 data.co = qemu_coroutine_self();
1392 while (data.ret == -EINPROGRESS) {
1393 qemu_coroutine_yield();
1396 trace_nvme_rw_done(s, true, offset, bytes, data.ret);
1397 return data.ret;
1401 static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs,
1402 int64_t offset,
1403 int64_t bytes)
1405 BDRVNVMeState *s = bs->opaque;
1406 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1407 NVMeRequest *req;
1408 QEMU_AUTO_VFREE NvmeDsmRange *buf = NULL;
1409 QEMUIOVector local_qiov;
1410 int ret;
1412 NvmeCmd cmd = {
1413 .opcode = NVME_CMD_DSM,
1414 .nsid = cpu_to_le32(s->nsid),
1415 .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/
1416 .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/
1419 NVMeCoData data = {
1420 .ctx = bdrv_get_aio_context(bs),
1421 .ret = -EINPROGRESS,
1424 if (!s->supports_discard) {
1425 return -ENOTSUP;
1428 assert(s->queue_count > 1);
1431 * Filling the @buf requires @offset and @bytes to satisfy restrictions
1432 * defined in nvme_refresh_limits().
1434 assert(QEMU_IS_ALIGNED(bytes, 1UL << s->blkshift));
1435 assert(QEMU_IS_ALIGNED(offset, 1UL << s->blkshift));
1436 assert((bytes >> s->blkshift) <= UINT32_MAX);
1438 buf = qemu_try_memalign(s->page_size, s->page_size);
1439 if (!buf) {
1440 return -ENOMEM;
1442 memset(buf, 0, s->page_size);
1443 buf->nlb = cpu_to_le32(bytes >> s->blkshift);
1444 buf->slba = cpu_to_le64(offset >> s->blkshift);
1445 buf->cattr = 0;
1447 qemu_iovec_init(&local_qiov, 1);
1448 qemu_iovec_add(&local_qiov, buf, 4096);
1450 req = nvme_get_free_req(ioq);
1451 assert(req);
1453 qemu_co_mutex_lock(&s->dma_map_lock);
1454 ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov);
1455 qemu_co_mutex_unlock(&s->dma_map_lock);
1457 if (ret) {
1458 nvme_put_free_req_and_wake(ioq, req);
1459 goto out;
1462 trace_nvme_dsm(s, offset, bytes);
1464 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1466 data.co = qemu_coroutine_self();
1467 while (data.ret == -EINPROGRESS) {
1468 qemu_coroutine_yield();
1471 qemu_co_mutex_lock(&s->dma_map_lock);
1472 ret = nvme_cmd_unmap_qiov(bs, &local_qiov);
1473 qemu_co_mutex_unlock(&s->dma_map_lock);
1475 if (ret) {
1476 goto out;
1479 ret = data.ret;
1480 trace_nvme_dsm_done(s, offset, bytes, ret);
1481 out:
1482 qemu_iovec_destroy(&local_qiov);
1483 return ret;
1487 static int coroutine_fn nvme_co_truncate(BlockDriverState *bs, int64_t offset,
1488 bool exact, PreallocMode prealloc,
1489 BdrvRequestFlags flags, Error **errp)
1491 int64_t cur_length;
1493 if (prealloc != PREALLOC_MODE_OFF) {
1494 error_setg(errp, "Unsupported preallocation mode '%s'",
1495 PreallocMode_str(prealloc));
1496 return -ENOTSUP;
1499 cur_length = nvme_co_getlength(bs);
1500 if (offset != cur_length && exact) {
1501 error_setg(errp, "Cannot resize NVMe devices");
1502 return -ENOTSUP;
1503 } else if (offset > cur_length) {
1504 error_setg(errp, "Cannot grow NVMe devices");
1505 return -EINVAL;
1508 return 0;
1511 static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1512 BlockReopenQueue *queue, Error **errp)
1514 return 0;
1517 static void nvme_refresh_filename(BlockDriverState *bs)
1519 BDRVNVMeState *s = bs->opaque;
1521 snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1522 s->device, s->nsid);
1525 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1527 BDRVNVMeState *s = bs->opaque;
1529 bs->bl.opt_mem_alignment = s->page_size;
1530 bs->bl.request_alignment = s->page_size;
1531 bs->bl.max_transfer = s->max_transfer;
1534 * Look at nvme_co_pwrite_zeroes: after shift and decrement we should get
1535 * at most 0xFFFF
1537 bs->bl.max_pwrite_zeroes = 1ULL << (s->blkshift + 16);
1538 bs->bl.pwrite_zeroes_alignment = MAX(bs->bl.request_alignment,
1539 1UL << s->blkshift);
1541 bs->bl.max_pdiscard = (uint64_t)UINT32_MAX << s->blkshift;
1542 bs->bl.pdiscard_alignment = MAX(bs->bl.request_alignment,
1543 1UL << s->blkshift);
1546 static void nvme_detach_aio_context(BlockDriverState *bs)
1548 BDRVNVMeState *s = bs->opaque;
1550 for (unsigned i = 0; i < s->queue_count; i++) {
1551 NVMeQueuePair *q = s->queues[i];
1553 qemu_bh_delete(q->completion_bh);
1554 q->completion_bh = NULL;
1557 aio_set_event_notifier(bdrv_get_aio_context(bs),
1558 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1559 NULL, NULL, NULL);
1562 static void nvme_attach_aio_context(BlockDriverState *bs,
1563 AioContext *new_context)
1565 BDRVNVMeState *s = bs->opaque;
1567 s->aio_context = new_context;
1568 aio_set_event_notifier(new_context, &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1569 nvme_handle_event, nvme_poll_cb,
1570 nvme_poll_ready);
1572 for (unsigned i = 0; i < s->queue_count; i++) {
1573 NVMeQueuePair *q = s->queues[i];
1575 q->completion_bh =
1576 aio_bh_new(new_context, nvme_process_completion_bh, q);
1580 static bool nvme_register_buf(BlockDriverState *bs, void *host, size_t size,
1581 Error **errp)
1583 int ret;
1584 BDRVNVMeState *s = bs->opaque;
1587 * FIXME: we may run out of IOVA addresses after repeated
1588 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1589 * doesn't reclaim addresses for fixed mappings.
1591 ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL, errp);
1592 return ret == 0;
1595 static void nvme_unregister_buf(BlockDriverState *bs, void *host, size_t size)
1597 BDRVNVMeState *s = bs->opaque;
1599 qemu_vfio_dma_unmap(s->vfio, host);
1602 static BlockStatsSpecific *nvme_get_specific_stats(BlockDriverState *bs)
1604 BlockStatsSpecific *stats = g_new(BlockStatsSpecific, 1);
1605 BDRVNVMeState *s = bs->opaque;
1607 stats->driver = BLOCKDEV_DRIVER_NVME;
1608 stats->u.nvme = (BlockStatsSpecificNvme) {
1609 .completion_errors = s->stats.completion_errors,
1610 .aligned_accesses = s->stats.aligned_accesses,
1611 .unaligned_accesses = s->stats.unaligned_accesses,
1614 return stats;
1617 static const char *const nvme_strong_runtime_opts[] = {
1618 NVME_BLOCK_OPT_DEVICE,
1619 NVME_BLOCK_OPT_NAMESPACE,
1621 NULL
1624 static BlockDriver bdrv_nvme = {
1625 .format_name = "nvme",
1626 .protocol_name = "nvme",
1627 .instance_size = sizeof(BDRVNVMeState),
1629 .bdrv_co_create_opts = bdrv_co_create_opts_simple,
1630 .create_opts = &bdrv_create_opts_simple,
1632 .bdrv_parse_filename = nvme_parse_filename,
1633 .bdrv_open = nvme_open,
1634 .bdrv_close = nvme_close,
1635 .bdrv_co_getlength = nvme_co_getlength,
1636 .bdrv_probe_blocksizes = nvme_probe_blocksizes,
1637 .bdrv_co_truncate = nvme_co_truncate,
1639 .bdrv_co_preadv = nvme_co_preadv,
1640 .bdrv_co_pwritev = nvme_co_pwritev,
1642 .bdrv_co_pwrite_zeroes = nvme_co_pwrite_zeroes,
1643 .bdrv_co_pdiscard = nvme_co_pdiscard,
1645 .bdrv_co_flush_to_disk = nvme_co_flush,
1646 .bdrv_reopen_prepare = nvme_reopen_prepare,
1648 .bdrv_refresh_filename = nvme_refresh_filename,
1649 .bdrv_refresh_limits = nvme_refresh_limits,
1650 .strong_runtime_opts = nvme_strong_runtime_opts,
1651 .bdrv_get_specific_stats = nvme_get_specific_stats,
1653 .bdrv_detach_aio_context = nvme_detach_aio_context,
1654 .bdrv_attach_aio_context = nvme_attach_aio_context,
1656 .bdrv_register_buf = nvme_register_buf,
1657 .bdrv_unregister_buf = nvme_unregister_buf,
1660 static void bdrv_nvme_init(void)
1662 bdrv_register(&bdrv_nvme);
1665 block_init(bdrv_nvme_init);