hw: Replace anti-social QOM type names (again)
[qemu/armbru.git] / hw / ppc / ppc.c
blobbe167710a3561fba9742676b330fe98471032000
1 /*
2 * QEMU generic PowerPC hardware System Emulator
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "hw/irq.h"
27 #include "hw/ppc/ppc.h"
28 #include "hw/ppc/ppc_e500.h"
29 #include "qemu/timer.h"
30 #include "sysemu/cpus.h"
31 #include "qemu/log.h"
32 #include "qemu/main-loop.h"
33 #include "qemu/error-report.h"
34 #include "sysemu/kvm.h"
35 #include "sysemu/replay.h"
36 #include "sysemu/runstate.h"
37 #include "kvm_ppc.h"
38 #include "migration/vmstate.h"
39 #include "trace.h"
41 static void cpu_ppc_tb_stop (CPUPPCState *env);
42 static void cpu_ppc_tb_start (CPUPPCState *env);
44 void ppc_set_irq(PowerPCCPU *cpu, int irq, int level)
46 CPUPPCState *env = &cpu->env;
47 unsigned int old_pending;
49 /* We may already have the BQL if coming from the reset path */
50 QEMU_IOTHREAD_LOCK_GUARD();
52 old_pending = env->pending_interrupts;
54 if (level) {
55 env->pending_interrupts |= irq;
56 } else {
57 env->pending_interrupts &= ~irq;
60 if (old_pending != env->pending_interrupts) {
61 ppc_maybe_interrupt(env);
62 if (kvm_enabled()) {
63 kvmppc_set_interrupt(cpu, irq, level);
67 trace_ppc_irq_set_exit(env, irq, level, env->pending_interrupts,
68 CPU(cpu)->interrupt_request);
71 /* PowerPC 6xx / 7xx internal IRQ controller */
72 static void ppc6xx_set_irq(void *opaque, int pin, int level)
74 PowerPCCPU *cpu = opaque;
75 CPUPPCState *env = &cpu->env;
76 int cur_level;
78 trace_ppc_irq_set(env, pin, level);
80 cur_level = (env->irq_input_state >> pin) & 1;
81 /* Don't generate spurious events */
82 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
83 CPUState *cs = CPU(cpu);
85 switch (pin) {
86 case PPC6xx_INPUT_TBEN:
87 /* Level sensitive - active high */
88 trace_ppc_irq_set_state("time base", level);
89 if (level) {
90 cpu_ppc_tb_start(env);
91 } else {
92 cpu_ppc_tb_stop(env);
94 break;
95 case PPC6xx_INPUT_INT:
96 /* Level sensitive - active high */
97 trace_ppc_irq_set_state("external IRQ", level);
98 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
99 break;
100 case PPC6xx_INPUT_SMI:
101 /* Level sensitive - active high */
102 trace_ppc_irq_set_state("SMI IRQ", level);
103 ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
104 break;
105 case PPC6xx_INPUT_MCP:
106 /* Negative edge sensitive */
107 /* XXX: TODO: actual reaction may depends on HID0 status
108 * 603/604/740/750: check HID0[EMCP]
110 if (cur_level == 1 && level == 0) {
111 trace_ppc_irq_set_state("machine check", 1);
112 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
114 break;
115 case PPC6xx_INPUT_CKSTP_IN:
116 /* Level sensitive - active low */
117 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
118 /* XXX: Note that the only way to restart the CPU is to reset it */
119 if (level) {
120 trace_ppc_irq_cpu("stop");
121 cs->halted = 1;
123 break;
124 case PPC6xx_INPUT_HRESET:
125 /* Level sensitive - active low */
126 if (level) {
127 trace_ppc_irq_reset("CPU");
128 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
130 break;
131 case PPC6xx_INPUT_SRESET:
132 trace_ppc_irq_set_state("RESET IRQ", level);
133 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
134 break;
135 default:
136 g_assert_not_reached();
138 if (level)
139 env->irq_input_state |= 1 << pin;
140 else
141 env->irq_input_state &= ~(1 << pin);
145 void ppc6xx_irq_init(PowerPCCPU *cpu)
147 qdev_init_gpio_in(DEVICE(cpu), ppc6xx_set_irq, PPC6xx_INPUT_NB);
150 #if defined(TARGET_PPC64)
151 /* PowerPC 970 internal IRQ controller */
152 static void ppc970_set_irq(void *opaque, int pin, int level)
154 PowerPCCPU *cpu = opaque;
155 CPUPPCState *env = &cpu->env;
156 int cur_level;
158 trace_ppc_irq_set(env, pin, level);
160 cur_level = (env->irq_input_state >> pin) & 1;
161 /* Don't generate spurious events */
162 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
163 CPUState *cs = CPU(cpu);
165 switch (pin) {
166 case PPC970_INPUT_INT:
167 /* Level sensitive - active high */
168 trace_ppc_irq_set_state("external IRQ", level);
169 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
170 break;
171 case PPC970_INPUT_THINT:
172 /* Level sensitive - active high */
173 trace_ppc_irq_set_state("SMI IRQ", level);
174 ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
175 break;
176 case PPC970_INPUT_MCP:
177 /* Negative edge sensitive */
178 /* XXX: TODO: actual reaction may depends on HID0 status
179 * 603/604/740/750: check HID0[EMCP]
181 if (cur_level == 1 && level == 0) {
182 trace_ppc_irq_set_state("machine check", 1);
183 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
185 break;
186 case PPC970_INPUT_CKSTP:
187 /* Level sensitive - active low */
188 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
189 if (level) {
190 trace_ppc_irq_cpu("stop");
191 cs->halted = 1;
192 } else {
193 trace_ppc_irq_cpu("restart");
194 cs->halted = 0;
195 qemu_cpu_kick(cs);
197 break;
198 case PPC970_INPUT_HRESET:
199 /* Level sensitive - active low */
200 if (level) {
201 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
203 break;
204 case PPC970_INPUT_SRESET:
205 trace_ppc_irq_set_state("RESET IRQ", level);
206 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
207 break;
208 case PPC970_INPUT_TBEN:
209 trace_ppc_irq_set_state("TBEN IRQ", level);
210 /* XXX: TODO */
211 break;
212 default:
213 g_assert_not_reached();
215 if (level)
216 env->irq_input_state |= 1 << pin;
217 else
218 env->irq_input_state &= ~(1 << pin);
222 void ppc970_irq_init(PowerPCCPU *cpu)
224 qdev_init_gpio_in(DEVICE(cpu), ppc970_set_irq, PPC970_INPUT_NB);
227 /* POWER7 internal IRQ controller */
228 static void power7_set_irq(void *opaque, int pin, int level)
230 PowerPCCPU *cpu = opaque;
232 trace_ppc_irq_set(&cpu->env, pin, level);
234 switch (pin) {
235 case POWER7_INPUT_INT:
236 /* Level sensitive - active high */
237 trace_ppc_irq_set_state("external IRQ", level);
238 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
239 break;
240 default:
241 g_assert_not_reached();
245 void ppcPOWER7_irq_init(PowerPCCPU *cpu)
247 qdev_init_gpio_in(DEVICE(cpu), power7_set_irq, POWER7_INPUT_NB);
250 /* POWER9 internal IRQ controller */
251 static void power9_set_irq(void *opaque, int pin, int level)
253 PowerPCCPU *cpu = opaque;
255 trace_ppc_irq_set(&cpu->env, pin, level);
257 switch (pin) {
258 case POWER9_INPUT_INT:
259 /* Level sensitive - active high */
260 trace_ppc_irq_set_state("external IRQ", level);
261 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
262 break;
263 case POWER9_INPUT_HINT:
264 /* Level sensitive - active high */
265 trace_ppc_irq_set_state("HV external IRQ", level);
266 ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level);
267 break;
268 default:
269 g_assert_not_reached();
270 return;
274 void ppcPOWER9_irq_init(PowerPCCPU *cpu)
276 qdev_init_gpio_in(DEVICE(cpu), power9_set_irq, POWER9_INPUT_NB);
278 #endif /* defined(TARGET_PPC64) */
280 void ppc40x_core_reset(PowerPCCPU *cpu)
282 CPUPPCState *env = &cpu->env;
283 target_ulong dbsr;
285 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n");
286 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
287 dbsr = env->spr[SPR_40x_DBSR];
288 dbsr &= ~0x00000300;
289 dbsr |= 0x00000100;
290 env->spr[SPR_40x_DBSR] = dbsr;
293 void ppc40x_chip_reset(PowerPCCPU *cpu)
295 CPUPPCState *env = &cpu->env;
296 target_ulong dbsr;
298 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n");
299 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
300 /* XXX: TODO reset all internal peripherals */
301 dbsr = env->spr[SPR_40x_DBSR];
302 dbsr &= ~0x00000300;
303 dbsr |= 0x00000200;
304 env->spr[SPR_40x_DBSR] = dbsr;
307 void ppc40x_system_reset(PowerPCCPU *cpu)
309 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n");
310 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
313 void store_40x_dbcr0(CPUPPCState *env, uint32_t val)
315 PowerPCCPU *cpu = env_archcpu(env);
317 qemu_mutex_lock_iothread();
319 switch ((val >> 28) & 0x3) {
320 case 0x0:
321 /* No action */
322 break;
323 case 0x1:
324 /* Core reset */
325 ppc40x_core_reset(cpu);
326 break;
327 case 0x2:
328 /* Chip reset */
329 ppc40x_chip_reset(cpu);
330 break;
331 case 0x3:
332 /* System reset */
333 ppc40x_system_reset(cpu);
334 break;
337 qemu_mutex_unlock_iothread();
340 /* PowerPC 40x internal IRQ controller */
341 static void ppc40x_set_irq(void *opaque, int pin, int level)
343 PowerPCCPU *cpu = opaque;
344 CPUPPCState *env = &cpu->env;
345 int cur_level;
347 trace_ppc_irq_set(env, pin, level);
349 cur_level = (env->irq_input_state >> pin) & 1;
350 /* Don't generate spurious events */
351 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
352 CPUState *cs = CPU(cpu);
354 switch (pin) {
355 case PPC40x_INPUT_RESET_SYS:
356 if (level) {
357 trace_ppc_irq_reset("system");
358 ppc40x_system_reset(cpu);
360 break;
361 case PPC40x_INPUT_RESET_CHIP:
362 if (level) {
363 trace_ppc_irq_reset("chip");
364 ppc40x_chip_reset(cpu);
366 break;
367 case PPC40x_INPUT_RESET_CORE:
368 /* XXX: TODO: update DBSR[MRR] */
369 if (level) {
370 trace_ppc_irq_reset("core");
371 ppc40x_core_reset(cpu);
373 break;
374 case PPC40x_INPUT_CINT:
375 /* Level sensitive - active high */
376 trace_ppc_irq_set_state("critical IRQ", level);
377 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
378 break;
379 case PPC40x_INPUT_INT:
380 /* Level sensitive - active high */
381 trace_ppc_irq_set_state("external IRQ", level);
382 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
383 break;
384 case PPC40x_INPUT_HALT:
385 /* Level sensitive - active low */
386 if (level) {
387 trace_ppc_irq_cpu("stop");
388 cs->halted = 1;
389 } else {
390 trace_ppc_irq_cpu("restart");
391 cs->halted = 0;
392 qemu_cpu_kick(cs);
394 break;
395 case PPC40x_INPUT_DEBUG:
396 /* Level sensitive - active high */
397 trace_ppc_irq_set_state("debug pin", level);
398 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
399 break;
400 default:
401 g_assert_not_reached();
403 if (level)
404 env->irq_input_state |= 1 << pin;
405 else
406 env->irq_input_state &= ~(1 << pin);
410 void ppc40x_irq_init(PowerPCCPU *cpu)
412 qdev_init_gpio_in(DEVICE(cpu), ppc40x_set_irq, PPC40x_INPUT_NB);
415 /* PowerPC E500 internal IRQ controller */
416 static void ppce500_set_irq(void *opaque, int pin, int level)
418 PowerPCCPU *cpu = opaque;
419 CPUPPCState *env = &cpu->env;
420 int cur_level;
422 trace_ppc_irq_set(env, pin, level);
424 cur_level = (env->irq_input_state >> pin) & 1;
425 /* Don't generate spurious events */
426 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
427 switch (pin) {
428 case PPCE500_INPUT_MCK:
429 if (level) {
430 trace_ppc_irq_reset("system");
431 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
433 break;
434 case PPCE500_INPUT_RESET_CORE:
435 if (level) {
436 trace_ppc_irq_reset("core");
437 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
439 break;
440 case PPCE500_INPUT_CINT:
441 /* Level sensitive - active high */
442 trace_ppc_irq_set_state("critical IRQ", level);
443 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
444 break;
445 case PPCE500_INPUT_INT:
446 /* Level sensitive - active high */
447 trace_ppc_irq_set_state("core IRQ", level);
448 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
449 break;
450 case PPCE500_INPUT_DEBUG:
451 /* Level sensitive - active high */
452 trace_ppc_irq_set_state("debug pin", level);
453 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
454 break;
455 default:
456 g_assert_not_reached();
458 if (level)
459 env->irq_input_state |= 1 << pin;
460 else
461 env->irq_input_state &= ~(1 << pin);
465 void ppce500_irq_init(PowerPCCPU *cpu)
467 qdev_init_gpio_in(DEVICE(cpu), ppce500_set_irq, PPCE500_INPUT_NB);
470 /* Enable or Disable the E500 EPR capability */
471 void ppce500_set_mpic_proxy(bool enabled)
473 CPUState *cs;
475 CPU_FOREACH(cs) {
476 PowerPCCPU *cpu = POWERPC_CPU(cs);
478 cpu->env.mpic_proxy = enabled;
479 if (kvm_enabled()) {
480 kvmppc_set_mpic_proxy(cpu, enabled);
485 /*****************************************************************************/
486 /* PowerPC time base and decrementer emulation */
489 * Conversion between QEMU_CLOCK_VIRTUAL ns and timebase (TB) ticks:
490 * TB ticks are arrived at by multiplying tb_freq then dividing by
491 * ns per second, and rounding down. TB ticks drive all clocks and
492 * timers in the target machine.
494 * Converting TB intervals to ns for the purpose of setting a
495 * QEMU_CLOCK_VIRTUAL timer should go the other way, but rounding
496 * up. Rounding down could cause the timer to fire before the TB
497 * value has been reached.
499 static uint64_t ns_to_tb(uint32_t freq, int64_t clock)
501 return muldiv64(clock, freq, NANOSECONDS_PER_SECOND);
504 /* virtual clock in TB ticks, not adjusted by TB offset */
505 static int64_t tb_to_ns_round_up(uint32_t freq, uint64_t tb)
507 return muldiv64_round_up(tb, NANOSECONDS_PER_SECOND, freq);
510 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
512 /* TB time in tb periods */
513 return ns_to_tb(tb_env->tb_freq, vmclk) + tb_offset;
516 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
518 ppc_tb_t *tb_env = env->tb_env;
519 uint64_t tb;
521 if (kvm_enabled()) {
522 return env->spr[SPR_TBL];
525 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
526 tb_env->tb_offset);
527 trace_ppc_tb_load(tb);
529 return tb;
532 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
534 ppc_tb_t *tb_env = env->tb_env;
535 uint64_t tb;
537 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
538 tb_env->tb_offset);
539 trace_ppc_tb_load(tb);
541 return tb >> 32;
544 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
546 if (kvm_enabled()) {
547 return env->spr[SPR_TBU];
550 return _cpu_ppc_load_tbu(env);
553 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
554 int64_t *tb_offsetp, uint64_t value)
556 *tb_offsetp = value - ns_to_tb(tb_env->tb_freq, vmclk);
558 trace_ppc_tb_store(value, *tb_offsetp);
561 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
563 ppc_tb_t *tb_env = env->tb_env;
564 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
565 uint64_t tb;
567 tb = cpu_ppc_get_tb(tb_env, clock, tb_env->tb_offset);
568 tb &= 0xFFFFFFFF00000000ULL;
569 cpu_ppc_store_tb(tb_env, clock, &tb_env->tb_offset, tb | (uint64_t)value);
572 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
574 ppc_tb_t *tb_env = env->tb_env;
575 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
576 uint64_t tb;
578 tb = cpu_ppc_get_tb(tb_env, clock, tb_env->tb_offset);
579 tb &= 0x00000000FFFFFFFFULL;
580 cpu_ppc_store_tb(tb_env, clock, &tb_env->tb_offset,
581 ((uint64_t)value << 32) | tb);
584 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
586 _cpu_ppc_store_tbu(env, value);
589 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
591 ppc_tb_t *tb_env = env->tb_env;
592 uint64_t tb;
594 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
595 tb_env->atb_offset);
596 trace_ppc_tb_load(tb);
598 return tb;
601 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
603 ppc_tb_t *tb_env = env->tb_env;
604 uint64_t tb;
606 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
607 tb_env->atb_offset);
608 trace_ppc_tb_load(tb);
610 return tb >> 32;
613 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
615 ppc_tb_t *tb_env = env->tb_env;
616 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
617 uint64_t tb;
619 tb = cpu_ppc_get_tb(tb_env, clock, tb_env->atb_offset);
620 tb &= 0xFFFFFFFF00000000ULL;
621 cpu_ppc_store_tb(tb_env, clock, &tb_env->atb_offset, tb | (uint64_t)value);
624 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
626 ppc_tb_t *tb_env = env->tb_env;
627 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
628 uint64_t tb;
630 tb = cpu_ppc_get_tb(tb_env, clock, tb_env->atb_offset);
631 tb &= 0x00000000FFFFFFFFULL;
632 cpu_ppc_store_tb(tb_env, clock, &tb_env->atb_offset,
633 ((uint64_t)value << 32) | tb);
636 uint64_t cpu_ppc_load_vtb(CPUPPCState *env)
638 ppc_tb_t *tb_env = env->tb_env;
640 return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
641 tb_env->vtb_offset);
644 void cpu_ppc_store_vtb(CPUPPCState *env, uint64_t value)
646 ppc_tb_t *tb_env = env->tb_env;
648 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
649 &tb_env->vtb_offset, value);
652 void cpu_ppc_store_tbu40(CPUPPCState *env, uint64_t value)
654 ppc_tb_t *tb_env = env->tb_env;
655 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
656 uint64_t tb;
658 tb = cpu_ppc_get_tb(tb_env, clock, tb_env->tb_offset);
659 tb &= 0xFFFFFFUL;
660 tb |= (value & ~0xFFFFFFUL);
661 cpu_ppc_store_tb(tb_env, clock, &tb_env->tb_offset, tb);
664 static void cpu_ppc_tb_stop (CPUPPCState *env)
666 ppc_tb_t *tb_env = env->tb_env;
667 uint64_t tb, atb, vmclk;
669 /* If the time base is already frozen, do nothing */
670 if (tb_env->tb_freq != 0) {
671 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
672 /* Get the time base */
673 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
674 /* Get the alternate time base */
675 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
676 /* Store the time base value (ie compute the current offset) */
677 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
678 /* Store the alternate time base value (compute the current offset) */
679 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
680 /* Set the time base frequency to zero */
681 tb_env->tb_freq = 0;
682 /* Now, the time bases are frozen to tb_offset / atb_offset value */
686 static void cpu_ppc_tb_start (CPUPPCState *env)
688 ppc_tb_t *tb_env = env->tb_env;
689 uint64_t tb, atb, vmclk;
691 /* If the time base is not frozen, do nothing */
692 if (tb_env->tb_freq == 0) {
693 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
694 /* Get the time base from tb_offset */
695 tb = tb_env->tb_offset;
696 /* Get the alternate time base from atb_offset */
697 atb = tb_env->atb_offset;
698 /* Restore the tb frequency from the decrementer frequency */
699 tb_env->tb_freq = tb_env->decr_freq;
700 /* Store the time base value */
701 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
702 /* Store the alternate time base value */
703 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
707 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
709 ppc_tb_t *tb_env = env->tb_env;
710 int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
711 return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
714 static inline int64_t __cpu_ppc_load_decr(CPUPPCState *env, int64_t now,
715 uint64_t next)
717 ppc_tb_t *tb_env = env->tb_env;
718 uint64_t n;
719 int64_t decr;
721 n = ns_to_tb(tb_env->decr_freq, now);
722 if (next > n && tb_env->flags & PPC_TIMER_BOOKE) {
723 decr = 0;
724 } else {
725 decr = next - n;
728 trace_ppc_decr_load(decr);
730 return decr;
733 static target_ulong _cpu_ppc_load_decr(CPUPPCState *env, int64_t now)
735 ppc_tb_t *tb_env = env->tb_env;
736 uint64_t decr;
738 decr = __cpu_ppc_load_decr(env, now, tb_env->decr_next);
741 * If large decrementer is enabled then the decrementer is signed extended
742 * to 64 bits, otherwise it is a 32 bit value.
744 if (env->spr[SPR_LPCR] & LPCR_LD) {
745 PowerPCCPU *cpu = env_archcpu(env);
746 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
747 return sextract64(decr, 0, pcc->lrg_decr_bits);
749 return (uint32_t) decr;
752 target_ulong cpu_ppc_load_decr(CPUPPCState *env)
754 if (kvm_enabled()) {
755 return env->spr[SPR_DECR];
756 } else {
757 return _cpu_ppc_load_decr(env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
761 static target_ulong _cpu_ppc_load_hdecr(CPUPPCState *env, int64_t now)
763 PowerPCCPU *cpu = env_archcpu(env);
764 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
765 ppc_tb_t *tb_env = env->tb_env;
766 uint64_t hdecr;
768 hdecr = __cpu_ppc_load_decr(env, now, tb_env->hdecr_next);
771 * If we have a large decrementer (POWER9 or later) then hdecr is sign
772 * extended to 64 bits, otherwise it is 32 bits.
774 if (pcc->lrg_decr_bits > 32) {
775 return sextract64(hdecr, 0, pcc->lrg_decr_bits);
777 return (uint32_t) hdecr;
780 target_ulong cpu_ppc_load_hdecr(CPUPPCState *env)
782 return _cpu_ppc_load_hdecr(env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
785 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
787 ppc_tb_t *tb_env = env->tb_env;
789 return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
790 tb_env->purr_offset);
793 /* When decrementer expires,
794 * all we need to do is generate or queue a CPU exception
796 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
798 /* Raise it */
799 trace_ppc_decr_excp("raise");
800 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
803 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
805 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
808 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
810 CPUPPCState *env = &cpu->env;
812 /* Raise it */
813 trace_ppc_decr_excp("raise HV");
815 /* The architecture specifies that we don't deliver HDEC
816 * interrupts in a PM state. Not only they don't cause a
817 * wakeup but they also get effectively discarded.
819 if (!env->resume_as_sreset) {
820 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
824 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
826 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
829 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, int64_t now, uint64_t *nextp,
830 QEMUTimer *timer,
831 void (*raise_excp)(void *),
832 void (*lower_excp)(PowerPCCPU *),
833 uint32_t flags, target_ulong decr,
834 target_ulong value, int nr_bits)
836 CPUPPCState *env = &cpu->env;
837 ppc_tb_t *tb_env = env->tb_env;
838 uint64_t next;
839 int64_t signed_value;
840 int64_t signed_decr;
842 /* Truncate value to decr_width and sign extend for simplicity */
843 value = extract64(value, 0, nr_bits);
844 decr = extract64(decr, 0, nr_bits);
845 signed_value = sextract64(value, 0, nr_bits);
846 signed_decr = sextract64(decr, 0, nr_bits);
848 trace_ppc_decr_store(nr_bits, decr, value);
851 * Calculate the next decrementer event and set a timer.
852 * decr_next is in timebase units to keep rounding simple. Note it is
853 * not adjusted by tb_offset because if TB changes via tb_offset changing,
854 * decrementer does not change, so not directly comparable with TB.
856 next = ns_to_tb(tb_env->decr_freq, now) + value;
857 *nextp = next; /* nextp is in timebase units */
860 * Going from 1 -> 0 or 0 -> -1 is the event to generate a DEC interrupt.
862 * On MSB level based DEC implementations the MSB always means the interrupt
863 * is pending, so raise it on those.
865 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
866 * an edge interrupt, so raise it here too.
868 if (((flags & PPC_DECR_UNDERFLOW_LEVEL) && signed_value < 0) ||
869 ((flags & PPC_DECR_UNDERFLOW_TRIGGERED) && signed_value < 0
870 && signed_decr >= 0)) {
871 (*raise_excp)(cpu);
872 return;
875 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
876 if (signed_value >= 0 && (flags & PPC_DECR_UNDERFLOW_LEVEL)) {
877 (*lower_excp)(cpu);
880 /* Adjust timer */
881 timer_mod(timer, tb_to_ns_round_up(tb_env->decr_freq, next));
884 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, int64_t now,
885 target_ulong decr, target_ulong value,
886 int nr_bits)
888 ppc_tb_t *tb_env = cpu->env.tb_env;
890 __cpu_ppc_store_decr(cpu, now, &tb_env->decr_next, tb_env->decr_timer,
891 tb_env->decr_timer->cb, &cpu_ppc_decr_lower,
892 tb_env->flags, decr, value, nr_bits);
895 void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value)
897 PowerPCCPU *cpu = env_archcpu(env);
898 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
899 int64_t now;
900 target_ulong decr;
901 int nr_bits = 32;
903 if (kvm_enabled()) {
904 /* KVM handles decrementer exceptions, we don't need our own timer */
905 return;
908 if (env->spr[SPR_LPCR] & LPCR_LD) {
909 nr_bits = pcc->lrg_decr_bits;
912 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
913 decr = _cpu_ppc_load_decr(env, now);
914 _cpu_ppc_store_decr(cpu, now, decr, value, nr_bits);
917 static void cpu_ppc_decr_cb(void *opaque)
919 PowerPCCPU *cpu = opaque;
921 cpu_ppc_decr_excp(cpu);
924 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, int64_t now,
925 target_ulong hdecr, target_ulong value,
926 int nr_bits)
928 ppc_tb_t *tb_env = cpu->env.tb_env;
930 if (tb_env->hdecr_timer != NULL) {
931 /* HDECR (Book3S 64bit) is edge-based, not level like DECR */
932 __cpu_ppc_store_decr(cpu, now, &tb_env->hdecr_next, tb_env->hdecr_timer,
933 tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
934 PPC_DECR_UNDERFLOW_TRIGGERED,
935 hdecr, value, nr_bits);
939 void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value)
941 PowerPCCPU *cpu = env_archcpu(env);
942 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
943 int64_t now;
944 target_ulong hdecr;
946 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
947 hdecr = _cpu_ppc_load_hdecr(env, now);
948 _cpu_ppc_store_hdecr(cpu, now, hdecr, value, pcc->lrg_decr_bits);
951 static void cpu_ppc_hdecr_cb(void *opaque)
953 PowerPCCPU *cpu = opaque;
955 cpu_ppc_hdecr_excp(cpu);
958 static void _cpu_ppc_store_purr(CPUPPCState *env, int64_t now, uint64_t value)
960 ppc_tb_t *tb_env = env->tb_env;
962 cpu_ppc_store_tb(tb_env, now, &tb_env->purr_offset, value);
965 void cpu_ppc_store_purr(CPUPPCState *env, uint64_t value)
967 _cpu_ppc_store_purr(env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), value);
970 static void timebase_save(PPCTimebase *tb)
972 uint64_t ticks = cpu_get_host_ticks();
973 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
975 if (!first_ppc_cpu->env.tb_env) {
976 error_report("No timebase object");
977 return;
980 if (replay_mode == REPLAY_MODE_NONE) {
981 /* not used anymore, we keep it for compatibility */
982 tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
983 } else {
984 /* simpler for record-replay to avoid this event, compat not needed */
985 tb->time_of_the_day_ns = 0;
989 * tb_offset is only expected to be changed by QEMU so
990 * there is no need to update it from KVM here
992 tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
994 tb->runstate_paused =
995 runstate_check(RUN_STATE_PAUSED) || runstate_check(RUN_STATE_SAVE_VM);
998 static void timebase_load(PPCTimebase *tb)
1000 CPUState *cpu;
1001 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1002 int64_t tb_off_adj, tb_off;
1003 unsigned long freq;
1005 if (!first_ppc_cpu->env.tb_env) {
1006 error_report("No timebase object");
1007 return;
1010 freq = first_ppc_cpu->env.tb_env->tb_freq;
1012 tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
1014 tb_off = first_ppc_cpu->env.tb_env->tb_offset;
1015 trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
1016 (tb_off_adj - tb_off) / freq);
1018 /* Set new offset to all CPUs */
1019 CPU_FOREACH(cpu) {
1020 PowerPCCPU *pcpu = POWERPC_CPU(cpu);
1021 pcpu->env.tb_env->tb_offset = tb_off_adj;
1022 kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset);
1026 void cpu_ppc_clock_vm_state_change(void *opaque, bool running,
1027 RunState state)
1029 PPCTimebase *tb = opaque;
1031 if (running) {
1032 timebase_load(tb);
1033 } else {
1034 timebase_save(tb);
1039 * When migrating a running guest, read the clock just
1040 * before migration, so that the guest clock counts
1041 * during the events between:
1043 * * vm_stop()
1045 * * pre_save()
1047 * This reduces clock difference on migration from 5s
1048 * to 0.1s (when max_downtime == 5s), because sending the
1049 * final pages of memory (which happens between vm_stop()
1050 * and pre_save()) takes max_downtime.
1052 static int timebase_pre_save(void *opaque)
1054 PPCTimebase *tb = opaque;
1056 /* guest_timebase won't be overridden in case of paused guest or savevm */
1057 if (!tb->runstate_paused) {
1058 timebase_save(tb);
1061 return 0;
1064 const VMStateDescription vmstate_ppc_timebase = {
1065 .name = "timebase",
1066 .version_id = 1,
1067 .minimum_version_id = 1,
1068 .pre_save = timebase_pre_save,
1069 .fields = (VMStateField []) {
1070 VMSTATE_UINT64(guest_timebase, PPCTimebase),
1071 VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
1072 VMSTATE_END_OF_LIST()
1076 /* Set up (once) timebase frequency (in Hz) */
1077 void cpu_ppc_tb_init(CPUPPCState *env, uint32_t freq)
1079 PowerPCCPU *cpu = env_archcpu(env);
1080 ppc_tb_t *tb_env;
1082 tb_env = g_new0(ppc_tb_t, 1);
1083 env->tb_env = tb_env;
1084 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1085 if (is_book3s_arch2x(env)) {
1086 /* All Book3S 64bit CPUs implement level based DEC logic */
1087 tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
1089 /* Create new timer */
1090 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
1091 &cpu_ppc_decr_cb, cpu);
1092 if (env->has_hv_mode && !cpu->vhyp) {
1093 tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
1094 &cpu_ppc_hdecr_cb, cpu);
1095 } else {
1096 tb_env->hdecr_timer = NULL;
1099 tb_env->tb_freq = freq;
1100 tb_env->decr_freq = freq;
1103 void cpu_ppc_tb_reset(CPUPPCState *env)
1105 PowerPCCPU *cpu = env_archcpu(env);
1106 ppc_tb_t *tb_env = env->tb_env;
1108 timer_del(tb_env->decr_timer);
1109 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
1110 tb_env->decr_next = 0;
1111 if (tb_env->hdecr_timer != NULL) {
1112 timer_del(tb_env->hdecr_timer);
1113 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
1114 tb_env->hdecr_next = 0;
1118 * There is a bug in Linux 2.4 kernels:
1119 * if a decrementer exception is pending when it enables msr_ee at startup,
1120 * it's not ready to handle it...
1122 cpu_ppc_store_decr(env, -1);
1123 cpu_ppc_store_hdecr(env, -1);
1124 cpu_ppc_store_purr(env, 0x0000000000000000ULL);
1127 void cpu_ppc_tb_free(CPUPPCState *env)
1129 timer_free(env->tb_env->decr_timer);
1130 timer_free(env->tb_env->hdecr_timer);
1131 g_free(env->tb_env);
1134 /* cpu_ppc_hdecr_init may be used if the timer is not used by HDEC emulation */
1135 void cpu_ppc_hdecr_init(CPUPPCState *env)
1137 PowerPCCPU *cpu = env_archcpu(env);
1139 assert(env->tb_env->hdecr_timer == NULL);
1141 env->tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
1142 &cpu_ppc_hdecr_cb, cpu);
1145 void cpu_ppc_hdecr_exit(CPUPPCState *env)
1147 PowerPCCPU *cpu = env_archcpu(env);
1149 timer_free(env->tb_env->hdecr_timer);
1150 env->tb_env->hdecr_timer = NULL;
1152 cpu_ppc_hdecr_lower(cpu);
1155 /*****************************************************************************/
1156 /* PowerPC 40x timers */
1158 /* PIT, FIT & WDT */
1159 typedef struct ppc40x_timer_t ppc40x_timer_t;
1160 struct ppc40x_timer_t {
1161 uint64_t pit_reload; /* PIT auto-reload value */
1162 uint64_t fit_next; /* Tick for next FIT interrupt */
1163 QEMUTimer *fit_timer;
1164 uint64_t wdt_next; /* Tick for next WDT interrupt */
1165 QEMUTimer *wdt_timer;
1167 /* 405 have the PIT, 440 have a DECR. */
1168 unsigned int decr_excp;
1171 /* Fixed interval timer */
1172 static void cpu_4xx_fit_cb (void *opaque)
1174 PowerPCCPU *cpu = opaque;
1175 CPUPPCState *env = &cpu->env;
1176 ppc_tb_t *tb_env;
1177 ppc40x_timer_t *ppc40x_timer;
1178 uint64_t now, next;
1180 tb_env = env->tb_env;
1181 ppc40x_timer = tb_env->opaque;
1182 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1183 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1184 case 0:
1185 next = 1 << 9;
1186 break;
1187 case 1:
1188 next = 1 << 13;
1189 break;
1190 case 2:
1191 next = 1 << 17;
1192 break;
1193 case 3:
1194 next = 1 << 21;
1195 break;
1196 default:
1197 /* Cannot occur, but makes gcc happy */
1198 return;
1200 next = now + tb_to_ns_round_up(tb_env->tb_freq, next);
1201 timer_mod(ppc40x_timer->fit_timer, next);
1202 env->spr[SPR_40x_TSR] |= 1 << 26;
1203 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1204 ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1206 trace_ppc4xx_fit((int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1207 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1210 /* Programmable interval timer */
1211 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1213 ppc40x_timer_t *ppc40x_timer;
1214 uint64_t now, next;
1216 ppc40x_timer = tb_env->opaque;
1217 if (ppc40x_timer->pit_reload <= 1 ||
1218 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1219 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1220 /* Stop PIT */
1221 trace_ppc4xx_pit_stop();
1222 timer_del(tb_env->decr_timer);
1223 } else {
1224 trace_ppc4xx_pit_start(ppc40x_timer->pit_reload);
1225 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1227 if (is_excp) {
1228 tb_env->decr_next += ppc40x_timer->pit_reload;
1229 } else {
1230 tb_env->decr_next = ns_to_tb(tb_env->decr_freq, now)
1231 + ppc40x_timer->pit_reload;
1233 next = tb_to_ns_round_up(tb_env->decr_freq, tb_env->decr_next);
1234 timer_mod(tb_env->decr_timer, next);
1238 static void cpu_4xx_pit_cb (void *opaque)
1240 PowerPCCPU *cpu = opaque;
1241 CPUPPCState *env = &cpu->env;
1242 ppc_tb_t *tb_env;
1243 ppc40x_timer_t *ppc40x_timer;
1245 tb_env = env->tb_env;
1246 ppc40x_timer = tb_env->opaque;
1247 env->spr[SPR_40x_TSR] |= 1 << 27;
1248 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1249 ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1251 start_stop_pit(env, tb_env, 1);
1252 trace_ppc4xx_pit((int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1253 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1254 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1255 ppc40x_timer->pit_reload);
1258 /* Watchdog timer */
1259 static void cpu_4xx_wdt_cb (void *opaque)
1261 PowerPCCPU *cpu = opaque;
1262 CPUPPCState *env = &cpu->env;
1263 ppc_tb_t *tb_env;
1264 ppc40x_timer_t *ppc40x_timer;
1265 uint64_t now, next;
1267 tb_env = env->tb_env;
1268 ppc40x_timer = tb_env->opaque;
1269 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1270 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1271 case 0:
1272 next = 1 << 17;
1273 break;
1274 case 1:
1275 next = 1 << 21;
1276 break;
1277 case 2:
1278 next = 1 << 25;
1279 break;
1280 case 3:
1281 next = 1 << 29;
1282 break;
1283 default:
1284 /* Cannot occur, but makes gcc happy */
1285 return;
1287 next = now + tb_to_ns_round_up(tb_env->decr_freq, next);
1288 trace_ppc4xx_wdt(env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1289 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1290 case 0x0:
1291 case 0x1:
1292 timer_mod(ppc40x_timer->wdt_timer, next);
1293 ppc40x_timer->wdt_next = next;
1294 env->spr[SPR_40x_TSR] |= 1U << 31;
1295 break;
1296 case 0x2:
1297 timer_mod(ppc40x_timer->wdt_timer, next);
1298 ppc40x_timer->wdt_next = next;
1299 env->spr[SPR_40x_TSR] |= 1 << 30;
1300 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1301 ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1303 break;
1304 case 0x3:
1305 env->spr[SPR_40x_TSR] &= ~0x30000000;
1306 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1307 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1308 case 0x0:
1309 /* No reset */
1310 break;
1311 case 0x1: /* Core reset */
1312 ppc40x_core_reset(cpu);
1313 break;
1314 case 0x2: /* Chip reset */
1315 ppc40x_chip_reset(cpu);
1316 break;
1317 case 0x3: /* System reset */
1318 ppc40x_system_reset(cpu);
1319 break;
1324 void store_40x_pit (CPUPPCState *env, target_ulong val)
1326 ppc_tb_t *tb_env;
1327 ppc40x_timer_t *ppc40x_timer;
1329 tb_env = env->tb_env;
1330 ppc40x_timer = tb_env->opaque;
1331 trace_ppc40x_store_pit(val);
1332 ppc40x_timer->pit_reload = val;
1333 start_stop_pit(env, tb_env, 0);
1336 target_ulong load_40x_pit (CPUPPCState *env)
1338 return cpu_ppc_load_decr(env);
1341 void store_40x_tsr(CPUPPCState *env, target_ulong val)
1343 PowerPCCPU *cpu = env_archcpu(env);
1345 trace_ppc40x_store_tcr(val);
1347 env->spr[SPR_40x_TSR] &= ~(val & 0xFC000000);
1348 if (val & 0x80000000) {
1349 ppc_set_irq(cpu, PPC_INTERRUPT_PIT, 0);
1353 void store_40x_tcr(CPUPPCState *env, target_ulong val)
1355 PowerPCCPU *cpu = env_archcpu(env);
1356 ppc_tb_t *tb_env;
1358 trace_ppc40x_store_tsr(val);
1360 tb_env = env->tb_env;
1361 env->spr[SPR_40x_TCR] = val & 0xFFC00000;
1362 start_stop_pit(env, tb_env, 1);
1363 cpu_4xx_wdt_cb(cpu);
1366 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1368 CPUPPCState *env = opaque;
1369 ppc_tb_t *tb_env = env->tb_env;
1371 trace_ppc40x_set_tb_clk(freq);
1372 tb_env->tb_freq = freq;
1373 tb_env->decr_freq = freq;
1374 /* XXX: we should also update all timers */
1377 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1378 unsigned int decr_excp)
1380 ppc_tb_t *tb_env;
1381 ppc40x_timer_t *ppc40x_timer;
1382 PowerPCCPU *cpu = env_archcpu(env);
1384 trace_ppc40x_timers_init(freq);
1386 tb_env = g_new0(ppc_tb_t, 1);
1387 ppc40x_timer = g_new0(ppc40x_timer_t, 1);
1389 env->tb_env = tb_env;
1390 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1391 tb_env->tb_freq = freq;
1392 tb_env->decr_freq = freq;
1393 tb_env->opaque = ppc40x_timer;
1395 /* We use decr timer for PIT */
1396 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, cpu);
1397 ppc40x_timer->fit_timer =
1398 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, cpu);
1399 ppc40x_timer->wdt_timer =
1400 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, cpu);
1401 ppc40x_timer->decr_excp = decr_excp;
1403 return &ppc_40x_set_tb_clk;
1406 /*****************************************************************************/
1407 /* Embedded PowerPC Device Control Registers */
1408 typedef struct ppc_dcrn_t ppc_dcrn_t;
1409 struct ppc_dcrn_t {
1410 dcr_read_cb dcr_read;
1411 dcr_write_cb dcr_write;
1412 void *opaque;
1415 /* XXX: on 460, DCR addresses are 32 bits wide,
1416 * using DCRIPR to get the 22 upper bits of the DCR address
1418 #define DCRN_NB 1024
1419 struct ppc_dcr_t {
1420 ppc_dcrn_t dcrn[DCRN_NB];
1421 int (*read_error)(int dcrn);
1422 int (*write_error)(int dcrn);
1425 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1427 ppc_dcrn_t *dcr;
1429 if (dcrn < 0 || dcrn >= DCRN_NB)
1430 goto error;
1431 dcr = &dcr_env->dcrn[dcrn];
1432 if (dcr->dcr_read == NULL)
1433 goto error;
1434 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1435 trace_ppc_dcr_read(dcrn, *valp);
1437 return 0;
1439 error:
1440 if (dcr_env->read_error != NULL)
1441 return (*dcr_env->read_error)(dcrn);
1443 return -1;
1446 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1448 ppc_dcrn_t *dcr;
1450 if (dcrn < 0 || dcrn >= DCRN_NB)
1451 goto error;
1452 dcr = &dcr_env->dcrn[dcrn];
1453 if (dcr->dcr_write == NULL)
1454 goto error;
1455 trace_ppc_dcr_write(dcrn, val);
1456 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1458 return 0;
1460 error:
1461 if (dcr_env->write_error != NULL)
1462 return (*dcr_env->write_error)(dcrn);
1464 return -1;
1467 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1468 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1470 ppc_dcr_t *dcr_env;
1471 ppc_dcrn_t *dcr;
1473 dcr_env = env->dcr_env;
1474 if (dcr_env == NULL)
1475 return -1;
1476 if (dcrn < 0 || dcrn >= DCRN_NB)
1477 return -1;
1478 dcr = &dcr_env->dcrn[dcrn];
1479 if (dcr->opaque != NULL ||
1480 dcr->dcr_read != NULL ||
1481 dcr->dcr_write != NULL)
1482 return -1;
1483 dcr->opaque = opaque;
1484 dcr->dcr_read = dcr_read;
1485 dcr->dcr_write = dcr_write;
1487 return 0;
1490 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1491 int (*write_error)(int dcrn))
1493 ppc_dcr_t *dcr_env;
1495 dcr_env = g_new0(ppc_dcr_t, 1);
1496 dcr_env->read_error = read_error;
1497 dcr_env->write_error = write_error;
1498 env->dcr_env = dcr_env;
1500 return 0;
1503 /*****************************************************************************/
1505 int ppc_cpu_pir(PowerPCCPU *cpu)
1507 CPUPPCState *env = &cpu->env;
1508 return env->spr_cb[SPR_PIR].default_value;
1511 int ppc_cpu_tir(PowerPCCPU *cpu)
1513 CPUPPCState *env = &cpu->env;
1514 return env->spr_cb[SPR_TIR].default_value;
1517 PowerPCCPU *ppc_get_vcpu_by_pir(int pir)
1519 CPUState *cs;
1521 CPU_FOREACH(cs) {
1522 PowerPCCPU *cpu = POWERPC_CPU(cs);
1524 if (ppc_cpu_pir(cpu) == pir) {
1525 return cpu;
1529 return NULL;
1532 void ppc_irq_reset(PowerPCCPU *cpu)
1534 CPUPPCState *env = &cpu->env;
1536 env->irq_input_state = 0;
1537 if (kvm_enabled()) {
1538 kvmppc_set_interrupt(cpu, PPC_INTERRUPT_EXT, 0);