target/ppc: declare xvxsigsp helper with call flags
[qemu/armbru.git] / target / arm / m_helper.c
bloba740c3e160f46a10c7e204d97614d21f2647021f
1 /*
2 * ARM generic helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "qemu/log.h"
23 #include "exec/exec-all.h"
24 #include <zlib.h> /* For crc32 */
25 #include "semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/kvm.h"
28 #include "qemu/range.h"
29 #include "qapi/qapi-commands-machine-target.h"
30 #include "qapi/error.h"
31 #include "qemu/guest-random.h"
32 #ifdef CONFIG_TCG
33 #include "arm_ldst.h"
34 #include "exec/cpu_ldst.h"
35 #include "semihosting/common-semi.h"
36 #endif
38 static void v7m_msr_xpsr(CPUARMState *env, uint32_t mask,
39 uint32_t reg, uint32_t val)
41 /* Only APSR is actually writable */
42 if (!(reg & 4)) {
43 uint32_t apsrmask = 0;
45 if (mask & 8) {
46 apsrmask |= XPSR_NZCV | XPSR_Q;
48 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
49 apsrmask |= XPSR_GE;
51 xpsr_write(env, val, apsrmask);
55 static uint32_t v7m_mrs_xpsr(CPUARMState *env, uint32_t reg, unsigned el)
57 uint32_t mask = 0;
59 if ((reg & 1) && el) {
60 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
62 if (!(reg & 4)) {
63 mask |= XPSR_NZCV | XPSR_Q; /* APSR */
64 if (arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
65 mask |= XPSR_GE;
68 /* EPSR reads as zero */
69 return xpsr_read(env) & mask;
72 static uint32_t v7m_mrs_control(CPUARMState *env, uint32_t secure)
74 uint32_t value = env->v7m.control[secure];
76 if (!secure) {
77 /* SFPA is RAZ/WI from NS; FPCA is stored in the M_REG_S bank */
78 value |= env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK;
80 return value;
83 #ifdef CONFIG_USER_ONLY
85 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
87 uint32_t mask = extract32(maskreg, 8, 4);
88 uint32_t reg = extract32(maskreg, 0, 8);
90 switch (reg) {
91 case 0 ... 7: /* xPSR sub-fields */
92 v7m_msr_xpsr(env, mask, reg, val);
93 break;
94 case 20: /* CONTROL */
95 /* There are no sub-fields that are actually writable from EL0. */
96 break;
97 default:
98 /* Unprivileged writes to other registers are ignored */
99 break;
103 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
105 switch (reg) {
106 case 0 ... 7: /* xPSR sub-fields */
107 return v7m_mrs_xpsr(env, reg, 0);
108 case 20: /* CONTROL */
109 return v7m_mrs_control(env, 0);
110 default:
111 /* Unprivileged reads others as zero. */
112 return 0;
116 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
118 /* translate.c should never generate calls here in user-only mode */
119 g_assert_not_reached();
122 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
124 /* translate.c should never generate calls here in user-only mode */
125 g_assert_not_reached();
128 void HELPER(v7m_preserve_fp_state)(CPUARMState *env)
130 /* translate.c should never generate calls here in user-only mode */
131 g_assert_not_reached();
134 void HELPER(v7m_vlstm)(CPUARMState *env, uint32_t fptr)
136 /* translate.c should never generate calls here in user-only mode */
137 g_assert_not_reached();
140 void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr)
142 /* translate.c should never generate calls here in user-only mode */
143 g_assert_not_reached();
146 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
149 * The TT instructions can be used by unprivileged code, but in
150 * user-only emulation we don't have the MPU.
151 * Luckily since we know we are NonSecure unprivileged (and that in
152 * turn means that the A flag wasn't specified), all the bits in the
153 * register must be zero:
154 * IREGION: 0 because IRVALID is 0
155 * IRVALID: 0 because NS
156 * S: 0 because NS
157 * NSRW: 0 because NS
158 * NSR: 0 because NS
159 * RW: 0 because unpriv and A flag not set
160 * R: 0 because unpriv and A flag not set
161 * SRVALID: 0 because NS
162 * MRVALID: 0 because unpriv and A flag not set
163 * SREGION: 0 becaus SRVALID is 0
164 * MREGION: 0 because MRVALID is 0
166 return 0;
169 #else
172 * What kind of stack write are we doing? This affects how exceptions
173 * generated during the stacking are treated.
175 typedef enum StackingMode {
176 STACK_NORMAL,
177 STACK_IGNFAULTS,
178 STACK_LAZYFP,
179 } StackingMode;
181 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
182 ARMMMUIdx mmu_idx, StackingMode mode)
184 CPUState *cs = CPU(cpu);
185 CPUARMState *env = &cpu->env;
186 MemTxAttrs attrs = {};
187 MemTxResult txres;
188 target_ulong page_size;
189 hwaddr physaddr;
190 int prot;
191 ARMMMUFaultInfo fi = {};
192 ARMCacheAttrs cacheattrs = {};
193 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
194 int exc;
195 bool exc_secure;
197 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
198 &attrs, &prot, &page_size, &fi, &cacheattrs)) {
199 /* MPU/SAU lookup failed */
200 if (fi.type == ARMFault_QEMU_SFault) {
201 if (mode == STACK_LAZYFP) {
202 qemu_log_mask(CPU_LOG_INT,
203 "...SecureFault with SFSR.LSPERR "
204 "during lazy stacking\n");
205 env->v7m.sfsr |= R_V7M_SFSR_LSPERR_MASK;
206 } else {
207 qemu_log_mask(CPU_LOG_INT,
208 "...SecureFault with SFSR.AUVIOL "
209 "during stacking\n");
210 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
212 env->v7m.sfsr |= R_V7M_SFSR_SFARVALID_MASK;
213 env->v7m.sfar = addr;
214 exc = ARMV7M_EXCP_SECURE;
215 exc_secure = false;
216 } else {
217 if (mode == STACK_LAZYFP) {
218 qemu_log_mask(CPU_LOG_INT,
219 "...MemManageFault with CFSR.MLSPERR\n");
220 env->v7m.cfsr[secure] |= R_V7M_CFSR_MLSPERR_MASK;
221 } else {
222 qemu_log_mask(CPU_LOG_INT,
223 "...MemManageFault with CFSR.MSTKERR\n");
224 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
226 exc = ARMV7M_EXCP_MEM;
227 exc_secure = secure;
229 goto pend_fault;
231 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
232 attrs, &txres);
233 if (txres != MEMTX_OK) {
234 /* BusFault trying to write the data */
235 if (mode == STACK_LAZYFP) {
236 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.LSPERR\n");
237 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_LSPERR_MASK;
238 } else {
239 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
240 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
242 exc = ARMV7M_EXCP_BUS;
243 exc_secure = false;
244 goto pend_fault;
246 return true;
248 pend_fault:
250 * By pending the exception at this point we are making
251 * the IMPDEF choice "overridden exceptions pended" (see the
252 * MergeExcInfo() pseudocode). The other choice would be to not
253 * pend them now and then make a choice about which to throw away
254 * later if we have two derived exceptions.
255 * The only case when we must not pend the exception but instead
256 * throw it away is if we are doing the push of the callee registers
257 * and we've already generated a derived exception (this is indicated
258 * by the caller passing STACK_IGNFAULTS). Even in this case we will
259 * still update the fault status registers.
261 switch (mode) {
262 case STACK_NORMAL:
263 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
264 break;
265 case STACK_LAZYFP:
266 armv7m_nvic_set_pending_lazyfp(env->nvic, exc, exc_secure);
267 break;
268 case STACK_IGNFAULTS:
269 break;
271 return false;
274 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
275 ARMMMUIdx mmu_idx)
277 CPUState *cs = CPU(cpu);
278 CPUARMState *env = &cpu->env;
279 MemTxAttrs attrs = {};
280 MemTxResult txres;
281 target_ulong page_size;
282 hwaddr physaddr;
283 int prot;
284 ARMMMUFaultInfo fi = {};
285 ARMCacheAttrs cacheattrs = {};
286 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
287 int exc;
288 bool exc_secure;
289 uint32_t value;
291 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
292 &attrs, &prot, &page_size, &fi, &cacheattrs)) {
293 /* MPU/SAU lookup failed */
294 if (fi.type == ARMFault_QEMU_SFault) {
295 qemu_log_mask(CPU_LOG_INT,
296 "...SecureFault with SFSR.AUVIOL during unstack\n");
297 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
298 env->v7m.sfar = addr;
299 exc = ARMV7M_EXCP_SECURE;
300 exc_secure = false;
301 } else {
302 qemu_log_mask(CPU_LOG_INT,
303 "...MemManageFault with CFSR.MUNSTKERR\n");
304 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
305 exc = ARMV7M_EXCP_MEM;
306 exc_secure = secure;
308 goto pend_fault;
311 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
312 attrs, &txres);
313 if (txres != MEMTX_OK) {
314 /* BusFault trying to read the data */
315 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
316 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
317 exc = ARMV7M_EXCP_BUS;
318 exc_secure = false;
319 goto pend_fault;
322 *dest = value;
323 return true;
325 pend_fault:
327 * By pending the exception at this point we are making
328 * the IMPDEF choice "overridden exceptions pended" (see the
329 * MergeExcInfo() pseudocode). The other choice would be to not
330 * pend them now and then make a choice about which to throw away
331 * later if we have two derived exceptions.
333 armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
334 return false;
337 void HELPER(v7m_preserve_fp_state)(CPUARMState *env)
340 * Preserve FP state (because LSPACT was set and we are about
341 * to execute an FP instruction). This corresponds to the
342 * PreserveFPState() pseudocode.
343 * We may throw an exception if the stacking fails.
345 ARMCPU *cpu = env_archcpu(env);
346 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
347 bool negpri = !(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_HFRDY_MASK);
348 bool is_priv = !(env->v7m.fpccr[is_secure] & R_V7M_FPCCR_USER_MASK);
349 bool splimviol = env->v7m.fpccr[is_secure] & R_V7M_FPCCR_SPLIMVIOL_MASK;
350 uint32_t fpcar = env->v7m.fpcar[is_secure];
351 bool stacked_ok = true;
352 bool ts = is_secure && (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK);
353 bool take_exception;
355 /* Take the iothread lock as we are going to touch the NVIC */
356 qemu_mutex_lock_iothread();
358 /* Check the background context had access to the FPU */
359 if (!v7m_cpacr_pass(env, is_secure, is_priv)) {
360 armv7m_nvic_set_pending_lazyfp(env->nvic, ARMV7M_EXCP_USAGE, is_secure);
361 env->v7m.cfsr[is_secure] |= R_V7M_CFSR_NOCP_MASK;
362 stacked_ok = false;
363 } else if (!is_secure && !extract32(env->v7m.nsacr, 10, 1)) {
364 armv7m_nvic_set_pending_lazyfp(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S);
365 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK;
366 stacked_ok = false;
369 if (!splimviol && stacked_ok) {
370 /* We only stack if the stack limit wasn't violated */
371 int i;
372 ARMMMUIdx mmu_idx;
374 mmu_idx = arm_v7m_mmu_idx_all(env, is_secure, is_priv, negpri);
375 for (i = 0; i < (ts ? 32 : 16); i += 2) {
376 uint64_t dn = *aa32_vfp_dreg(env, i / 2);
377 uint32_t faddr = fpcar + 4 * i;
378 uint32_t slo = extract64(dn, 0, 32);
379 uint32_t shi = extract64(dn, 32, 32);
381 if (i >= 16) {
382 faddr += 8; /* skip the slot for the FPSCR/VPR */
384 stacked_ok = stacked_ok &&
385 v7m_stack_write(cpu, faddr, slo, mmu_idx, STACK_LAZYFP) &&
386 v7m_stack_write(cpu, faddr + 4, shi, mmu_idx, STACK_LAZYFP);
389 stacked_ok = stacked_ok &&
390 v7m_stack_write(cpu, fpcar + 0x40,
391 vfp_get_fpscr(env), mmu_idx, STACK_LAZYFP);
392 if (cpu_isar_feature(aa32_mve, cpu)) {
393 stacked_ok = stacked_ok &&
394 v7m_stack_write(cpu, fpcar + 0x44,
395 env->v7m.vpr, mmu_idx, STACK_LAZYFP);
400 * We definitely pended an exception, but it's possible that it
401 * might not be able to be taken now. If its priority permits us
402 * to take it now, then we must not update the LSPACT or FP regs,
403 * but instead jump out to take the exception immediately.
404 * If it's just pending and won't be taken until the current
405 * handler exits, then we do update LSPACT and the FP regs.
407 take_exception = !stacked_ok &&
408 armv7m_nvic_can_take_pending_exception(env->nvic);
410 qemu_mutex_unlock_iothread();
412 if (take_exception) {
413 raise_exception_ra(env, EXCP_LAZYFP, 0, 1, GETPC());
416 env->v7m.fpccr[is_secure] &= ~R_V7M_FPCCR_LSPACT_MASK;
418 if (ts) {
419 /* Clear s0 to s31 and the FPSCR and VPR */
420 int i;
422 for (i = 0; i < 32; i += 2) {
423 *aa32_vfp_dreg(env, i / 2) = 0;
425 vfp_set_fpscr(env, 0);
426 if (cpu_isar_feature(aa32_mve, cpu)) {
427 env->v7m.vpr = 0;
431 * Otherwise s0 to s15, FPSCR and VPR are UNKNOWN; we choose to leave them
432 * unchanged.
437 * Write to v7M CONTROL.SPSEL bit for the specified security bank.
438 * This may change the current stack pointer between Main and Process
439 * stack pointers if it is done for the CONTROL register for the current
440 * security state.
442 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
443 bool new_spsel,
444 bool secstate)
446 bool old_is_psp = v7m_using_psp(env);
448 env->v7m.control[secstate] =
449 deposit32(env->v7m.control[secstate],
450 R_V7M_CONTROL_SPSEL_SHIFT,
451 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
453 if (secstate == env->v7m.secure) {
454 bool new_is_psp = v7m_using_psp(env);
455 uint32_t tmp;
457 if (old_is_psp != new_is_psp) {
458 tmp = env->v7m.other_sp;
459 env->v7m.other_sp = env->regs[13];
460 env->regs[13] = tmp;
466 * Write to v7M CONTROL.SPSEL bit. This may change the current
467 * stack pointer between Main and Process stack pointers.
469 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
471 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
474 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
477 * Write a new value to v7m.exception, thus transitioning into or out
478 * of Handler mode; this may result in a change of active stack pointer.
480 bool new_is_psp, old_is_psp = v7m_using_psp(env);
481 uint32_t tmp;
483 env->v7m.exception = new_exc;
485 new_is_psp = v7m_using_psp(env);
487 if (old_is_psp != new_is_psp) {
488 tmp = env->v7m.other_sp;
489 env->v7m.other_sp = env->regs[13];
490 env->regs[13] = tmp;
494 /* Switch M profile security state between NS and S */
495 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
497 uint32_t new_ss_msp, new_ss_psp;
499 if (env->v7m.secure == new_secstate) {
500 return;
504 * All the banked state is accessed by looking at env->v7m.secure
505 * except for the stack pointer; rearrange the SP appropriately.
507 new_ss_msp = env->v7m.other_ss_msp;
508 new_ss_psp = env->v7m.other_ss_psp;
510 if (v7m_using_psp(env)) {
511 env->v7m.other_ss_psp = env->regs[13];
512 env->v7m.other_ss_msp = env->v7m.other_sp;
513 } else {
514 env->v7m.other_ss_msp = env->regs[13];
515 env->v7m.other_ss_psp = env->v7m.other_sp;
518 env->v7m.secure = new_secstate;
520 if (v7m_using_psp(env)) {
521 env->regs[13] = new_ss_psp;
522 env->v7m.other_sp = new_ss_msp;
523 } else {
524 env->regs[13] = new_ss_msp;
525 env->v7m.other_sp = new_ss_psp;
529 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
532 * Handle v7M BXNS:
533 * - if the return value is a magic value, do exception return (like BX)
534 * - otherwise bit 0 of the return value is the target security state
536 uint32_t min_magic;
538 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
539 /* Covers FNC_RETURN and EXC_RETURN magic */
540 min_magic = FNC_RETURN_MIN_MAGIC;
541 } else {
542 /* EXC_RETURN magic only */
543 min_magic = EXC_RETURN_MIN_MAGIC;
546 if (dest >= min_magic) {
548 * This is an exception return magic value; put it where
549 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
550 * Note that if we ever add gen_ss_advance() singlestep support to
551 * M profile this should count as an "instruction execution complete"
552 * event (compare gen_bx_excret_final_code()).
554 env->regs[15] = dest & ~1;
555 env->thumb = dest & 1;
556 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
557 /* notreached */
560 /* translate.c should have made BXNS UNDEF unless we're secure */
561 assert(env->v7m.secure);
563 if (!(dest & 1)) {
564 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
566 switch_v7m_security_state(env, dest & 1);
567 env->thumb = true;
568 env->regs[15] = dest & ~1;
569 arm_rebuild_hflags(env);
572 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
575 * Handle v7M BLXNS:
576 * - bit 0 of the destination address is the target security state
579 /* At this point regs[15] is the address just after the BLXNS */
580 uint32_t nextinst = env->regs[15] | 1;
581 uint32_t sp = env->regs[13] - 8;
582 uint32_t saved_psr;
584 /* translate.c will have made BLXNS UNDEF unless we're secure */
585 assert(env->v7m.secure);
587 if (dest & 1) {
589 * Target is Secure, so this is just a normal BLX,
590 * except that the low bit doesn't indicate Thumb/not.
592 env->regs[14] = nextinst;
593 env->thumb = true;
594 env->regs[15] = dest & ~1;
595 return;
598 /* Target is non-secure: first push a stack frame */
599 if (!QEMU_IS_ALIGNED(sp, 8)) {
600 qemu_log_mask(LOG_GUEST_ERROR,
601 "BLXNS with misaligned SP is UNPREDICTABLE\n");
604 if (sp < v7m_sp_limit(env)) {
605 raise_exception(env, EXCP_STKOF, 0, 1);
608 saved_psr = env->v7m.exception;
609 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
610 saved_psr |= XPSR_SFPA;
613 /* Note that these stores can throw exceptions on MPU faults */
614 cpu_stl_data_ra(env, sp, nextinst, GETPC());
615 cpu_stl_data_ra(env, sp + 4, saved_psr, GETPC());
617 env->regs[13] = sp;
618 env->regs[14] = 0xfeffffff;
619 if (arm_v7m_is_handler_mode(env)) {
621 * Write a dummy value to IPSR, to avoid leaking the current secure
622 * exception number to non-secure code. This is guaranteed not
623 * to cause write_v7m_exception() to actually change stacks.
625 write_v7m_exception(env, 1);
627 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
628 switch_v7m_security_state(env, 0);
629 env->thumb = true;
630 env->regs[15] = dest;
631 arm_rebuild_hflags(env);
634 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
635 bool spsel)
638 * Return a pointer to the location where we currently store the
639 * stack pointer for the requested security state and thread mode.
640 * This pointer will become invalid if the CPU state is updated
641 * such that the stack pointers are switched around (eg changing
642 * the SPSEL control bit).
643 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
644 * Unlike that pseudocode, we require the caller to pass us in the
645 * SPSEL control bit value; this is because we also use this
646 * function in handling of pushing of the callee-saves registers
647 * part of the v8M stack frame (pseudocode PushCalleeStack()),
648 * and in the tailchain codepath the SPSEL bit comes from the exception
649 * return magic LR value from the previous exception. The pseudocode
650 * opencodes the stack-selection in PushCalleeStack(), but we prefer
651 * to make this utility function generic enough to do the job.
653 bool want_psp = threadmode && spsel;
655 if (secure == env->v7m.secure) {
656 if (want_psp == v7m_using_psp(env)) {
657 return &env->regs[13];
658 } else {
659 return &env->v7m.other_sp;
661 } else {
662 if (want_psp) {
663 return &env->v7m.other_ss_psp;
664 } else {
665 return &env->v7m.other_ss_msp;
670 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
671 uint32_t *pvec)
673 CPUState *cs = CPU(cpu);
674 CPUARMState *env = &cpu->env;
675 MemTxResult result;
676 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
677 uint32_t vector_entry;
678 MemTxAttrs attrs = {};
679 ARMMMUIdx mmu_idx;
680 bool exc_secure;
682 qemu_log_mask(CPU_LOG_INT,
683 "...loading from element %d of %s vector table at 0x%x\n",
684 exc, targets_secure ? "secure" : "non-secure", addr);
686 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
689 * We don't do a get_phys_addr() here because the rules for vector
690 * loads are special: they always use the default memory map, and
691 * the default memory map permits reads from all addresses.
692 * Since there's no easy way to pass through to pmsav8_mpu_lookup()
693 * that we want this special case which would always say "yes",
694 * we just do the SAU lookup here followed by a direct physical load.
696 attrs.secure = targets_secure;
697 attrs.user = false;
699 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
700 V8M_SAttributes sattrs = {};
702 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
703 if (sattrs.ns) {
704 attrs.secure = false;
705 } else if (!targets_secure) {
707 * NS access to S memory: the underlying exception which we escalate
708 * to HardFault is SecureFault, which always targets Secure.
710 exc_secure = true;
711 goto load_fail;
715 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
716 attrs, &result);
717 if (result != MEMTX_OK) {
719 * Underlying exception is BusFault: its target security state
720 * depends on BFHFNMINS.
722 exc_secure = !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
723 goto load_fail;
725 *pvec = vector_entry;
726 qemu_log_mask(CPU_LOG_INT, "...loaded new PC 0x%x\n", *pvec);
727 return true;
729 load_fail:
731 * All vector table fetch fails are reported as HardFault, with
732 * HFSR.VECTTBL and .FORCED set. (FORCED is set because
733 * technically the underlying exception is a SecureFault or BusFault
734 * that is escalated to HardFault.) This is a terminal exception,
735 * so we will either take the HardFault immediately or else enter
736 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
737 * The HardFault is Secure if BFHFNMINS is 0 (meaning that all HFs are
738 * secure); otherwise it targets the same security state as the
739 * underlying exception.
740 * In v8.1M HardFaults from vector table fetch fails don't set FORCED.
742 if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
743 exc_secure = true;
745 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK;
746 if (!arm_feature(env, ARM_FEATURE_V8_1M)) {
747 env->v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
749 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
750 return false;
753 static uint32_t v7m_integrity_sig(CPUARMState *env, uint32_t lr)
756 * Return the integrity signature value for the callee-saves
757 * stack frame section. @lr is the exception return payload/LR value
758 * whose FType bit forms bit 0 of the signature if FP is present.
760 uint32_t sig = 0xfefa125a;
762 if (!cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))
763 || (lr & R_V7M_EXCRET_FTYPE_MASK)) {
764 sig |= 1;
766 return sig;
769 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
770 bool ignore_faults)
773 * For v8M, push the callee-saves register part of the stack frame.
774 * Compare the v8M pseudocode PushCalleeStack().
775 * In the tailchaining case this may not be the current stack.
777 CPUARMState *env = &cpu->env;
778 uint32_t *frame_sp_p;
779 uint32_t frameptr;
780 ARMMMUIdx mmu_idx;
781 bool stacked_ok;
782 uint32_t limit;
783 bool want_psp;
784 uint32_t sig;
785 StackingMode smode = ignore_faults ? STACK_IGNFAULTS : STACK_NORMAL;
787 if (dotailchain) {
788 bool mode = lr & R_V7M_EXCRET_MODE_MASK;
789 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
790 !mode;
792 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
793 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
794 lr & R_V7M_EXCRET_SPSEL_MASK);
795 want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK);
796 if (want_psp) {
797 limit = env->v7m.psplim[M_REG_S];
798 } else {
799 limit = env->v7m.msplim[M_REG_S];
801 } else {
802 mmu_idx = arm_mmu_idx(env);
803 frame_sp_p = &env->regs[13];
804 limit = v7m_sp_limit(env);
807 frameptr = *frame_sp_p - 0x28;
808 if (frameptr < limit) {
810 * Stack limit failure: set SP to the limit value, and generate
811 * STKOF UsageFault. Stack pushes below the limit must not be
812 * performed. It is IMPDEF whether pushes above the limit are
813 * performed; we choose not to.
815 qemu_log_mask(CPU_LOG_INT,
816 "...STKOF during callee-saves register stacking\n");
817 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
818 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
819 env->v7m.secure);
820 *frame_sp_p = limit;
821 return true;
825 * Write as much of the stack frame as we can. A write failure may
826 * cause us to pend a derived exception.
828 sig = v7m_integrity_sig(env, lr);
829 stacked_ok =
830 v7m_stack_write(cpu, frameptr, sig, mmu_idx, smode) &&
831 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx, smode) &&
832 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx, smode) &&
833 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx, smode) &&
834 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx, smode) &&
835 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx, smode) &&
836 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx, smode) &&
837 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx, smode) &&
838 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx, smode);
840 /* Update SP regardless of whether any of the stack accesses failed. */
841 *frame_sp_p = frameptr;
843 return !stacked_ok;
846 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
847 bool ignore_stackfaults)
850 * Do the "take the exception" parts of exception entry,
851 * but not the pushing of state to the stack. This is
852 * similar to the pseudocode ExceptionTaken() function.
854 CPUARMState *env = &cpu->env;
855 uint32_t addr;
856 bool targets_secure;
857 int exc;
858 bool push_failed = false;
860 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
861 qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n",
862 targets_secure ? "secure" : "nonsecure", exc);
864 if (dotailchain) {
865 /* Sanitize LR FType and PREFIX bits */
866 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
867 lr |= R_V7M_EXCRET_FTYPE_MASK;
869 lr = deposit32(lr, 24, 8, 0xff);
872 if (arm_feature(env, ARM_FEATURE_V8)) {
873 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
874 (lr & R_V7M_EXCRET_S_MASK)) {
876 * The background code (the owner of the registers in the
877 * exception frame) is Secure. This means it may either already
878 * have or now needs to push callee-saves registers.
880 if (targets_secure) {
881 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
883 * We took an exception from Secure to NonSecure
884 * (which means the callee-saved registers got stacked)
885 * and are now tailchaining to a Secure exception.
886 * Clear DCRS so eventual return from this Secure
887 * exception unstacks the callee-saved registers.
889 lr &= ~R_V7M_EXCRET_DCRS_MASK;
891 } else {
893 * We're going to a non-secure exception; push the
894 * callee-saves registers to the stack now, if they're
895 * not already saved.
897 if (lr & R_V7M_EXCRET_DCRS_MASK &&
898 !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) {
899 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
900 ignore_stackfaults);
902 lr |= R_V7M_EXCRET_DCRS_MASK;
906 lr &= ~R_V7M_EXCRET_ES_MASK;
907 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
908 lr |= R_V7M_EXCRET_ES_MASK;
910 lr &= ~R_V7M_EXCRET_SPSEL_MASK;
911 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
912 lr |= R_V7M_EXCRET_SPSEL_MASK;
916 * Clear registers if necessary to prevent non-secure exception
917 * code being able to see register values from secure code.
918 * Where register values become architecturally UNKNOWN we leave
919 * them with their previous values. v8.1M is tighter than v8.0M
920 * here and always zeroes the caller-saved registers regardless
921 * of the security state the exception is targeting.
923 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
924 if (!targets_secure || arm_feature(env, ARM_FEATURE_V8_1M)) {
926 * Always clear the caller-saved registers (they have been
927 * pushed to the stack earlier in v7m_push_stack()).
928 * Clear callee-saved registers if the background code is
929 * Secure (in which case these regs were saved in
930 * v7m_push_callee_stack()).
932 int i;
934 * r4..r11 are callee-saves, zero only if background
935 * state was Secure (EXCRET.S == 1) and exception
936 * targets Non-secure state
938 bool zero_callee_saves = !targets_secure &&
939 (lr & R_V7M_EXCRET_S_MASK);
941 for (i = 0; i < 13; i++) {
942 if (i < 4 || i > 11 || zero_callee_saves) {
943 env->regs[i] = 0;
946 /* Clear EAPSR */
947 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
952 if (push_failed && !ignore_stackfaults) {
954 * Derived exception on callee-saves register stacking:
955 * we might now want to take a different exception which
956 * targets a different security state, so try again from the top.
958 qemu_log_mask(CPU_LOG_INT,
959 "...derived exception on callee-saves register stacking");
960 v7m_exception_taken(cpu, lr, true, true);
961 return;
964 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
965 /* Vector load failed: derived exception */
966 qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load");
967 v7m_exception_taken(cpu, lr, true, true);
968 return;
972 * Now we've done everything that might cause a derived exception
973 * we can go ahead and activate whichever exception we're going to
974 * take (which might now be the derived exception).
976 armv7m_nvic_acknowledge_irq(env->nvic);
978 /* Switch to target security state -- must do this before writing SPSEL */
979 switch_v7m_security_state(env, targets_secure);
980 write_v7m_control_spsel(env, 0);
981 arm_clear_exclusive(env);
982 /* Clear SFPA and FPCA (has no effect if no FPU) */
983 env->v7m.control[M_REG_S] &=
984 ~(R_V7M_CONTROL_FPCA_MASK | R_V7M_CONTROL_SFPA_MASK);
985 /* Clear IT bits */
986 env->condexec_bits = 0;
987 env->regs[14] = lr;
988 env->regs[15] = addr & 0xfffffffe;
989 env->thumb = addr & 1;
990 arm_rebuild_hflags(env);
993 static void v7m_update_fpccr(CPUARMState *env, uint32_t frameptr,
994 bool apply_splim)
997 * Like the pseudocode UpdateFPCCR: save state in FPCAR and FPCCR
998 * that we will need later in order to do lazy FP reg stacking.
1000 bool is_secure = env->v7m.secure;
1001 void *nvic = env->nvic;
1003 * Some bits are unbanked and live always in fpccr[M_REG_S]; some bits
1004 * are banked and we want to update the bit in the bank for the
1005 * current security state; and in one case we want to specifically
1006 * update the NS banked version of a bit even if we are secure.
1008 uint32_t *fpccr_s = &env->v7m.fpccr[M_REG_S];
1009 uint32_t *fpccr_ns = &env->v7m.fpccr[M_REG_NS];
1010 uint32_t *fpccr = &env->v7m.fpccr[is_secure];
1011 bool hfrdy, bfrdy, mmrdy, ns_ufrdy, s_ufrdy, sfrdy, monrdy;
1013 env->v7m.fpcar[is_secure] = frameptr & ~0x7;
1015 if (apply_splim && arm_feature(env, ARM_FEATURE_V8)) {
1016 bool splimviol;
1017 uint32_t splim = v7m_sp_limit(env);
1018 bool ign = armv7m_nvic_neg_prio_requested(nvic, is_secure) &&
1019 (env->v7m.ccr[is_secure] & R_V7M_CCR_STKOFHFNMIGN_MASK);
1021 splimviol = !ign && frameptr < splim;
1022 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, SPLIMVIOL, splimviol);
1025 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, LSPACT, 1);
1027 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, S, is_secure);
1029 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, USER, arm_current_el(env) == 0);
1031 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, THREAD,
1032 !arm_v7m_is_handler_mode(env));
1034 hfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_HARD, false);
1035 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
1037 bfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_BUS, false);
1038 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
1040 mmrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_MEM, is_secure);
1041 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, MMRDY, mmrdy);
1043 ns_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, false);
1044 *fpccr_ns = FIELD_DP32(*fpccr_ns, V7M_FPCCR, UFRDY, ns_ufrdy);
1046 monrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_DEBUG, false);
1047 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, MONRDY, monrdy);
1049 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1050 s_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, true);
1051 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, UFRDY, s_ufrdy);
1053 sfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_SECURE, false);
1054 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, SFRDY, sfrdy);
1058 void HELPER(v7m_vlstm)(CPUARMState *env, uint32_t fptr)
1060 /* fptr is the value of Rn, the frame pointer we store the FP regs to */
1061 ARMCPU *cpu = env_archcpu(env);
1062 bool s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
1063 bool lspact = env->v7m.fpccr[s] & R_V7M_FPCCR_LSPACT_MASK;
1064 uintptr_t ra = GETPC();
1066 assert(env->v7m.secure);
1068 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
1069 return;
1072 /* Check access to the coprocessor is permitted */
1073 if (!v7m_cpacr_pass(env, true, arm_current_el(env) != 0)) {
1074 raise_exception_ra(env, EXCP_NOCP, 0, 1, GETPC());
1077 if (lspact) {
1078 /* LSPACT should not be active when there is active FP state */
1079 raise_exception_ra(env, EXCP_LSERR, 0, 1, GETPC());
1082 if (fptr & 7) {
1083 raise_exception_ra(env, EXCP_UNALIGNED, 0, 1, GETPC());
1087 * Note that we do not use v7m_stack_write() here, because the
1088 * accesses should not set the FSR bits for stacking errors if they
1089 * fail. (In pseudocode terms, they are AccType_NORMAL, not AccType_STACK
1090 * or AccType_LAZYFP). Faults in cpu_stl_data_ra() will throw exceptions
1091 * and longjmp out.
1093 if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) {
1094 bool ts = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK;
1095 int i;
1097 for (i = 0; i < (ts ? 32 : 16); i += 2) {
1098 uint64_t dn = *aa32_vfp_dreg(env, i / 2);
1099 uint32_t faddr = fptr + 4 * i;
1100 uint32_t slo = extract64(dn, 0, 32);
1101 uint32_t shi = extract64(dn, 32, 32);
1103 if (i >= 16) {
1104 faddr += 8; /* skip the slot for the FPSCR */
1106 cpu_stl_data_ra(env, faddr, slo, ra);
1107 cpu_stl_data_ra(env, faddr + 4, shi, ra);
1109 cpu_stl_data_ra(env, fptr + 0x40, vfp_get_fpscr(env), ra);
1110 if (cpu_isar_feature(aa32_mve, cpu)) {
1111 cpu_stl_data_ra(env, fptr + 0x44, env->v7m.vpr, ra);
1115 * If TS is 0 then s0 to s15, FPSCR and VPR are UNKNOWN; we choose to
1116 * leave them unchanged, matching our choice in v7m_preserve_fp_state.
1118 if (ts) {
1119 for (i = 0; i < 32; i += 2) {
1120 *aa32_vfp_dreg(env, i / 2) = 0;
1122 vfp_set_fpscr(env, 0);
1123 if (cpu_isar_feature(aa32_mve, cpu)) {
1124 env->v7m.vpr = 0;
1127 } else {
1128 v7m_update_fpccr(env, fptr, false);
1131 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
1134 void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr)
1136 ARMCPU *cpu = env_archcpu(env);
1137 uintptr_t ra = GETPC();
1139 /* fptr is the value of Rn, the frame pointer we load the FP regs from */
1140 assert(env->v7m.secure);
1142 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
1143 return;
1146 /* Check access to the coprocessor is permitted */
1147 if (!v7m_cpacr_pass(env, true, arm_current_el(env) != 0)) {
1148 raise_exception_ra(env, EXCP_NOCP, 0, 1, GETPC());
1151 if (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK) {
1152 /* State in FP is still valid */
1153 env->v7m.fpccr[M_REG_S] &= ~R_V7M_FPCCR_LSPACT_MASK;
1154 } else {
1155 bool ts = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK;
1156 int i;
1157 uint32_t fpscr;
1159 if (fptr & 7) {
1160 raise_exception_ra(env, EXCP_UNALIGNED, 0, 1, GETPC());
1163 for (i = 0; i < (ts ? 32 : 16); i += 2) {
1164 uint32_t slo, shi;
1165 uint64_t dn;
1166 uint32_t faddr = fptr + 4 * i;
1168 if (i >= 16) {
1169 faddr += 8; /* skip the slot for the FPSCR and VPR */
1172 slo = cpu_ldl_data_ra(env, faddr, ra);
1173 shi = cpu_ldl_data_ra(env, faddr + 4, ra);
1175 dn = (uint64_t) shi << 32 | slo;
1176 *aa32_vfp_dreg(env, i / 2) = dn;
1178 fpscr = cpu_ldl_data_ra(env, fptr + 0x40, ra);
1179 vfp_set_fpscr(env, fpscr);
1180 if (cpu_isar_feature(aa32_mve, cpu)) {
1181 env->v7m.vpr = cpu_ldl_data_ra(env, fptr + 0x44, ra);
1185 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
1188 static bool v7m_push_stack(ARMCPU *cpu)
1191 * Do the "set up stack frame" part of exception entry,
1192 * similar to pseudocode PushStack().
1193 * Return true if we generate a derived exception (and so
1194 * should ignore further stack faults trying to process
1195 * that derived exception.)
1197 bool stacked_ok = true, limitviol = false;
1198 CPUARMState *env = &cpu->env;
1199 uint32_t xpsr = xpsr_read(env);
1200 uint32_t frameptr = env->regs[13];
1201 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
1202 uint32_t framesize;
1203 bool nsacr_cp10 = extract32(env->v7m.nsacr, 10, 1);
1205 if ((env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) &&
1206 (env->v7m.secure || nsacr_cp10)) {
1207 if (env->v7m.secure &&
1208 env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK) {
1209 framesize = 0xa8;
1210 } else {
1211 framesize = 0x68;
1213 } else {
1214 framesize = 0x20;
1217 /* Align stack pointer if the guest wants that */
1218 if ((frameptr & 4) &&
1219 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
1220 frameptr -= 4;
1221 xpsr |= XPSR_SPREALIGN;
1224 xpsr &= ~XPSR_SFPA;
1225 if (env->v7m.secure &&
1226 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
1227 xpsr |= XPSR_SFPA;
1230 frameptr -= framesize;
1232 if (arm_feature(env, ARM_FEATURE_V8)) {
1233 uint32_t limit = v7m_sp_limit(env);
1235 if (frameptr < limit) {
1237 * Stack limit failure: set SP to the limit value, and generate
1238 * STKOF UsageFault. Stack pushes below the limit must not be
1239 * performed. It is IMPDEF whether pushes above the limit are
1240 * performed; we choose not to.
1242 qemu_log_mask(CPU_LOG_INT,
1243 "...STKOF during stacking\n");
1244 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
1245 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1246 env->v7m.secure);
1247 env->regs[13] = limit;
1249 * We won't try to perform any further memory accesses but
1250 * we must continue through the following code to check for
1251 * permission faults during FPU state preservation, and we
1252 * must update FPCCR if lazy stacking is enabled.
1254 limitviol = true;
1255 stacked_ok = false;
1260 * Write as much of the stack frame as we can. If we fail a stack
1261 * write this will result in a derived exception being pended
1262 * (which may be taken in preference to the one we started with
1263 * if it has higher priority).
1265 stacked_ok = stacked_ok &&
1266 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, STACK_NORMAL) &&
1267 v7m_stack_write(cpu, frameptr + 4, env->regs[1],
1268 mmu_idx, STACK_NORMAL) &&
1269 v7m_stack_write(cpu, frameptr + 8, env->regs[2],
1270 mmu_idx, STACK_NORMAL) &&
1271 v7m_stack_write(cpu, frameptr + 12, env->regs[3],
1272 mmu_idx, STACK_NORMAL) &&
1273 v7m_stack_write(cpu, frameptr + 16, env->regs[12],
1274 mmu_idx, STACK_NORMAL) &&
1275 v7m_stack_write(cpu, frameptr + 20, env->regs[14],
1276 mmu_idx, STACK_NORMAL) &&
1277 v7m_stack_write(cpu, frameptr + 24, env->regs[15],
1278 mmu_idx, STACK_NORMAL) &&
1279 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, STACK_NORMAL);
1281 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) {
1282 /* FPU is active, try to save its registers */
1283 bool fpccr_s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
1284 bool lspact = env->v7m.fpccr[fpccr_s] & R_V7M_FPCCR_LSPACT_MASK;
1286 if (lspact && arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1287 qemu_log_mask(CPU_LOG_INT,
1288 "...SecureFault because LSPACT and FPCA both set\n");
1289 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
1290 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1291 } else if (!env->v7m.secure && !nsacr_cp10) {
1292 qemu_log_mask(CPU_LOG_INT,
1293 "...Secure UsageFault with CFSR.NOCP because "
1294 "NSACR.CP10 prevents stacking FP regs\n");
1295 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S);
1296 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK;
1297 } else {
1298 if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) {
1299 /* Lazy stacking disabled, save registers now */
1300 int i;
1301 bool cpacr_pass = v7m_cpacr_pass(env, env->v7m.secure,
1302 arm_current_el(env) != 0);
1304 if (stacked_ok && !cpacr_pass) {
1306 * Take UsageFault if CPACR forbids access. The pseudocode
1307 * here does a full CheckCPEnabled() but we know the NSACR
1308 * check can never fail as we have already handled that.
1310 qemu_log_mask(CPU_LOG_INT,
1311 "...UsageFault with CFSR.NOCP because "
1312 "CPACR.CP10 prevents stacking FP regs\n");
1313 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1314 env->v7m.secure);
1315 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
1316 stacked_ok = false;
1319 for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) {
1320 uint64_t dn = *aa32_vfp_dreg(env, i / 2);
1321 uint32_t faddr = frameptr + 0x20 + 4 * i;
1322 uint32_t slo = extract64(dn, 0, 32);
1323 uint32_t shi = extract64(dn, 32, 32);
1325 if (i >= 16) {
1326 faddr += 8; /* skip the slot for the FPSCR and VPR */
1328 stacked_ok = stacked_ok &&
1329 v7m_stack_write(cpu, faddr, slo,
1330 mmu_idx, STACK_NORMAL) &&
1331 v7m_stack_write(cpu, faddr + 4, shi,
1332 mmu_idx, STACK_NORMAL);
1334 stacked_ok = stacked_ok &&
1335 v7m_stack_write(cpu, frameptr + 0x60,
1336 vfp_get_fpscr(env), mmu_idx, STACK_NORMAL);
1337 if (cpu_isar_feature(aa32_mve, cpu)) {
1338 stacked_ok = stacked_ok &&
1339 v7m_stack_write(cpu, frameptr + 0x64,
1340 env->v7m.vpr, mmu_idx, STACK_NORMAL);
1342 if (cpacr_pass) {
1343 for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) {
1344 *aa32_vfp_dreg(env, i / 2) = 0;
1346 vfp_set_fpscr(env, 0);
1347 if (cpu_isar_feature(aa32_mve, cpu)) {
1348 env->v7m.vpr = 0;
1351 } else {
1352 /* Lazy stacking enabled, save necessary info to stack later */
1353 v7m_update_fpccr(env, frameptr + 0x20, true);
1359 * If we broke a stack limit then SP was already updated earlier;
1360 * otherwise we update SP regardless of whether any of the stack
1361 * accesses failed or we took some other kind of fault.
1363 if (!limitviol) {
1364 env->regs[13] = frameptr;
1367 return !stacked_ok;
1370 static void do_v7m_exception_exit(ARMCPU *cpu)
1372 CPUARMState *env = &cpu->env;
1373 uint32_t excret;
1374 uint32_t xpsr, xpsr_mask;
1375 bool ufault = false;
1376 bool sfault = false;
1377 bool return_to_sp_process;
1378 bool return_to_handler;
1379 bool rettobase = false;
1380 bool exc_secure = false;
1381 bool return_to_secure;
1382 bool ftype;
1383 bool restore_s16_s31 = false;
1386 * If we're not in Handler mode then jumps to magic exception-exit
1387 * addresses don't have magic behaviour. However for the v8M
1388 * security extensions the magic secure-function-return has to
1389 * work in thread mode too, so to avoid doing an extra check in
1390 * the generated code we allow exception-exit magic to also cause the
1391 * internal exception and bring us here in thread mode. Correct code
1392 * will never try to do this (the following insn fetch will always
1393 * fault) so we the overhead of having taken an unnecessary exception
1394 * doesn't matter.
1396 if (!arm_v7m_is_handler_mode(env)) {
1397 return;
1401 * In the spec pseudocode ExceptionReturn() is called directly
1402 * from BXWritePC() and gets the full target PC value including
1403 * bit zero. In QEMU's implementation we treat it as a normal
1404 * jump-to-register (which is then caught later on), and so split
1405 * the target value up between env->regs[15] and env->thumb in
1406 * gen_bx(). Reconstitute it.
1408 excret = env->regs[15];
1409 if (env->thumb) {
1410 excret |= 1;
1413 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
1414 " previous exception %d\n",
1415 excret, env->v7m.exception);
1417 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
1418 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
1419 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
1420 excret);
1423 ftype = excret & R_V7M_EXCRET_FTYPE_MASK;
1425 if (!ftype && !cpu_isar_feature(aa32_vfp_simd, cpu)) {
1426 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero FTYPE in exception "
1427 "exit PC value 0x%" PRIx32 " is UNPREDICTABLE "
1428 "if FPU not present\n",
1429 excret);
1430 ftype = true;
1433 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1435 * EXC_RETURN.ES validation check (R_SMFL). We must do this before
1436 * we pick which FAULTMASK to clear.
1438 if (!env->v7m.secure &&
1439 ((excret & R_V7M_EXCRET_ES_MASK) ||
1440 !(excret & R_V7M_EXCRET_DCRS_MASK))) {
1441 sfault = 1;
1442 /* For all other purposes, treat ES as 0 (R_HXSR) */
1443 excret &= ~R_V7M_EXCRET_ES_MASK;
1445 exc_secure = excret & R_V7M_EXCRET_ES_MASK;
1448 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
1450 * Auto-clear FAULTMASK on return from other than NMI.
1451 * If the security extension is implemented then this only
1452 * happens if the raw execution priority is >= 0; the
1453 * value of the ES bit in the exception return value indicates
1454 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
1456 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1457 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
1458 env->v7m.faultmask[exc_secure] = 0;
1460 } else {
1461 env->v7m.faultmask[M_REG_NS] = 0;
1465 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
1466 exc_secure)) {
1467 case -1:
1468 /* attempt to exit an exception that isn't active */
1469 ufault = true;
1470 break;
1471 case 0:
1472 /* still an irq active now */
1473 break;
1474 case 1:
1476 * We returned to base exception level, no nesting.
1477 * (In the pseudocode this is written using "NestedActivation != 1"
1478 * where we have 'rettobase == false'.)
1480 rettobase = true;
1481 break;
1482 default:
1483 g_assert_not_reached();
1486 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
1487 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
1488 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
1489 (excret & R_V7M_EXCRET_S_MASK);
1491 if (arm_feature(env, ARM_FEATURE_V8)) {
1492 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1494 * UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
1495 * we choose to take the UsageFault.
1497 if ((excret & R_V7M_EXCRET_S_MASK) ||
1498 (excret & R_V7M_EXCRET_ES_MASK) ||
1499 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
1500 ufault = true;
1503 if (excret & R_V7M_EXCRET_RES0_MASK) {
1504 ufault = true;
1506 } else {
1507 /* For v7M we only recognize certain combinations of the low bits */
1508 switch (excret & 0xf) {
1509 case 1: /* Return to Handler */
1510 break;
1511 case 13: /* Return to Thread using Process stack */
1512 case 9: /* Return to Thread using Main stack */
1514 * We only need to check NONBASETHRDENA for v7M, because in
1515 * v8M this bit does not exist (it is RES1).
1517 if (!rettobase &&
1518 !(env->v7m.ccr[env->v7m.secure] &
1519 R_V7M_CCR_NONBASETHRDENA_MASK)) {
1520 ufault = true;
1522 break;
1523 default:
1524 ufault = true;
1529 * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
1530 * Handler mode (and will be until we write the new XPSR.Interrupt
1531 * field) this does not switch around the current stack pointer.
1532 * We must do this before we do any kind of tailchaining, including
1533 * for the derived exceptions on integrity check failures, or we will
1534 * give the guest an incorrect EXCRET.SPSEL value on exception entry.
1536 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
1539 * Clear scratch FP values left in caller saved registers; this
1540 * must happen before any kind of tail chaining.
1542 if ((env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_CLRONRET_MASK) &&
1543 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) {
1544 if (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK) {
1545 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
1546 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1547 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
1548 "stackframe: error during lazy state deactivation\n");
1549 v7m_exception_taken(cpu, excret, true, false);
1550 return;
1551 } else {
1552 if (arm_feature(env, ARM_FEATURE_V8_1M)) {
1553 /* v8.1M adds this NOCP check */
1554 bool nsacr_pass = exc_secure ||
1555 extract32(env->v7m.nsacr, 10, 1);
1556 bool cpacr_pass = v7m_cpacr_pass(env, exc_secure, true);
1557 if (!nsacr_pass) {
1558 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, true);
1559 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK;
1560 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
1561 "stackframe: NSACR prevents clearing FPU registers\n");
1562 v7m_exception_taken(cpu, excret, true, false);
1563 return;
1564 } else if (!cpacr_pass) {
1565 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1566 exc_secure);
1567 env->v7m.cfsr[exc_secure] |= R_V7M_CFSR_NOCP_MASK;
1568 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
1569 "stackframe: CPACR prevents clearing FPU registers\n");
1570 v7m_exception_taken(cpu, excret, true, false);
1571 return;
1574 /* Clear s0..s15, FPSCR and VPR */
1575 int i;
1577 for (i = 0; i < 16; i += 2) {
1578 *aa32_vfp_dreg(env, i / 2) = 0;
1580 vfp_set_fpscr(env, 0);
1581 if (cpu_isar_feature(aa32_mve, cpu)) {
1582 env->v7m.vpr = 0;
1587 if (sfault) {
1588 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
1589 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1590 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
1591 "stackframe: failed EXC_RETURN.ES validity check\n");
1592 v7m_exception_taken(cpu, excret, true, false);
1593 return;
1596 if (ufault) {
1598 * Bad exception return: instead of popping the exception
1599 * stack, directly take a usage fault on the current stack.
1601 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
1602 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
1603 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
1604 "stackframe: failed exception return integrity check\n");
1605 v7m_exception_taken(cpu, excret, true, false);
1606 return;
1610 * Tailchaining: if there is currently a pending exception that
1611 * is high enough priority to preempt execution at the level we're
1612 * about to return to, then just directly take that exception now,
1613 * avoiding an unstack-and-then-stack. Note that now we have
1614 * deactivated the previous exception by calling armv7m_nvic_complete_irq()
1615 * our current execution priority is already the execution priority we are
1616 * returning to -- none of the state we would unstack or set based on
1617 * the EXCRET value affects it.
1619 if (armv7m_nvic_can_take_pending_exception(env->nvic)) {
1620 qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n");
1621 v7m_exception_taken(cpu, excret, true, false);
1622 return;
1625 switch_v7m_security_state(env, return_to_secure);
1629 * The stack pointer we should be reading the exception frame from
1630 * depends on bits in the magic exception return type value (and
1631 * for v8M isn't necessarily the stack pointer we will eventually
1632 * end up resuming execution with). Get a pointer to the location
1633 * in the CPU state struct where the SP we need is currently being
1634 * stored; we will use and modify it in place.
1635 * We use this limited C variable scope so we don't accidentally
1636 * use 'frame_sp_p' after we do something that makes it invalid.
1638 bool spsel = env->v7m.control[return_to_secure] & R_V7M_CONTROL_SPSEL_MASK;
1639 uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
1640 return_to_secure,
1641 !return_to_handler,
1642 spsel);
1643 uint32_t frameptr = *frame_sp_p;
1644 bool pop_ok = true;
1645 ARMMMUIdx mmu_idx;
1646 bool return_to_priv = return_to_handler ||
1647 !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK);
1649 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
1650 return_to_priv);
1652 if (!QEMU_IS_ALIGNED(frameptr, 8) &&
1653 arm_feature(env, ARM_FEATURE_V8)) {
1654 qemu_log_mask(LOG_GUEST_ERROR,
1655 "M profile exception return with non-8-aligned SP "
1656 "for destination state is UNPREDICTABLE\n");
1659 /* Do we need to pop callee-saved registers? */
1660 if (return_to_secure &&
1661 ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
1662 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
1663 uint32_t actual_sig;
1665 pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx);
1667 if (pop_ok && v7m_integrity_sig(env, excret) != actual_sig) {
1668 /* Take a SecureFault on the current stack */
1669 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
1670 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1671 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
1672 "stackframe: failed exception return integrity "
1673 "signature check\n");
1674 v7m_exception_taken(cpu, excret, true, false);
1675 return;
1678 pop_ok = pop_ok &&
1679 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
1680 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
1681 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
1682 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
1683 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
1684 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
1685 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
1686 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
1688 frameptr += 0x28;
1691 /* Pop registers */
1692 pop_ok = pop_ok &&
1693 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
1694 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
1695 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
1696 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
1697 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
1698 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
1699 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
1700 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
1702 if (!pop_ok) {
1704 * v7m_stack_read() pended a fault, so take it (as a tail
1705 * chained exception on the same stack frame)
1707 qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n");
1708 v7m_exception_taken(cpu, excret, true, false);
1709 return;
1713 * Returning from an exception with a PC with bit 0 set is defined
1714 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
1715 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
1716 * the lsbit, and there are several RTOSes out there which incorrectly
1717 * assume the r15 in the stack frame should be a Thumb-style "lsbit
1718 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
1719 * complain about the badly behaved guest.
1721 if (env->regs[15] & 1) {
1722 env->regs[15] &= ~1U;
1723 if (!arm_feature(env, ARM_FEATURE_V8)) {
1724 qemu_log_mask(LOG_GUEST_ERROR,
1725 "M profile return from interrupt with misaligned "
1726 "PC is UNPREDICTABLE on v7M\n");
1730 if (arm_feature(env, ARM_FEATURE_V8)) {
1732 * For v8M we have to check whether the xPSR exception field
1733 * matches the EXCRET value for return to handler/thread
1734 * before we commit to changing the SP and xPSR.
1736 bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
1737 if (return_to_handler != will_be_handler) {
1739 * Take an INVPC UsageFault on the current stack.
1740 * By this point we will have switched to the security state
1741 * for the background state, so this UsageFault will target
1742 * that state.
1744 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1745 env->v7m.secure);
1746 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
1747 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
1748 "stackframe: failed exception return integrity "
1749 "check\n");
1750 v7m_exception_taken(cpu, excret, true, false);
1751 return;
1755 if (!ftype) {
1756 /* FP present and we need to handle it */
1757 if (!return_to_secure &&
1758 (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK)) {
1759 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1760 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
1761 qemu_log_mask(CPU_LOG_INT,
1762 "...taking SecureFault on existing stackframe: "
1763 "Secure LSPACT set but exception return is "
1764 "not to secure state\n");
1765 v7m_exception_taken(cpu, excret, true, false);
1766 return;
1769 restore_s16_s31 = return_to_secure &&
1770 (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK);
1772 if (env->v7m.fpccr[return_to_secure] & R_V7M_FPCCR_LSPACT_MASK) {
1773 /* State in FPU is still valid, just clear LSPACT */
1774 env->v7m.fpccr[return_to_secure] &= ~R_V7M_FPCCR_LSPACT_MASK;
1775 } else {
1776 int i;
1777 uint32_t fpscr;
1778 bool cpacr_pass, nsacr_pass;
1780 cpacr_pass = v7m_cpacr_pass(env, return_to_secure,
1781 return_to_priv);
1782 nsacr_pass = return_to_secure ||
1783 extract32(env->v7m.nsacr, 10, 1);
1785 if (!cpacr_pass) {
1786 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1787 return_to_secure);
1788 env->v7m.cfsr[return_to_secure] |= R_V7M_CFSR_NOCP_MASK;
1789 qemu_log_mask(CPU_LOG_INT,
1790 "...taking UsageFault on existing "
1791 "stackframe: CPACR.CP10 prevents unstacking "
1792 "FP regs\n");
1793 v7m_exception_taken(cpu, excret, true, false);
1794 return;
1795 } else if (!nsacr_pass) {
1796 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, true);
1797 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_INVPC_MASK;
1798 qemu_log_mask(CPU_LOG_INT,
1799 "...taking Secure UsageFault on existing "
1800 "stackframe: NSACR.CP10 prevents unstacking "
1801 "FP regs\n");
1802 v7m_exception_taken(cpu, excret, true, false);
1803 return;
1806 for (i = 0; i < (restore_s16_s31 ? 32 : 16); i += 2) {
1807 uint32_t slo, shi;
1808 uint64_t dn;
1809 uint32_t faddr = frameptr + 0x20 + 4 * i;
1811 if (i >= 16) {
1812 faddr += 8; /* Skip the slot for the FPSCR and VPR */
1815 pop_ok = pop_ok &&
1816 v7m_stack_read(cpu, &slo, faddr, mmu_idx) &&
1817 v7m_stack_read(cpu, &shi, faddr + 4, mmu_idx);
1819 if (!pop_ok) {
1820 break;
1823 dn = (uint64_t)shi << 32 | slo;
1824 *aa32_vfp_dreg(env, i / 2) = dn;
1826 pop_ok = pop_ok &&
1827 v7m_stack_read(cpu, &fpscr, frameptr + 0x60, mmu_idx);
1828 if (pop_ok) {
1829 vfp_set_fpscr(env, fpscr);
1831 if (cpu_isar_feature(aa32_mve, cpu)) {
1832 pop_ok = pop_ok &&
1833 v7m_stack_read(cpu, &env->v7m.vpr,
1834 frameptr + 0x64, mmu_idx);
1836 if (!pop_ok) {
1838 * These regs are 0 if security extension present;
1839 * otherwise merely UNKNOWN. We zero always.
1841 for (i = 0; i < (restore_s16_s31 ? 32 : 16); i += 2) {
1842 *aa32_vfp_dreg(env, i / 2) = 0;
1844 vfp_set_fpscr(env, 0);
1845 if (cpu_isar_feature(aa32_mve, cpu)) {
1846 env->v7m.vpr = 0;
1851 env->v7m.control[M_REG_S] = FIELD_DP32(env->v7m.control[M_REG_S],
1852 V7M_CONTROL, FPCA, !ftype);
1854 /* Commit to consuming the stack frame */
1855 frameptr += 0x20;
1856 if (!ftype) {
1857 frameptr += 0x48;
1858 if (restore_s16_s31) {
1859 frameptr += 0x40;
1863 * Undo stack alignment (the SPREALIGN bit indicates that the original
1864 * pre-exception SP was not 8-aligned and we added a padding word to
1865 * align it, so we undo this by ORing in the bit that increases it
1866 * from the current 8-aligned value to the 8-unaligned value. (Adding 4
1867 * would work too but a logical OR is how the pseudocode specifies it.)
1869 if (xpsr & XPSR_SPREALIGN) {
1870 frameptr |= 4;
1872 *frame_sp_p = frameptr;
1875 xpsr_mask = ~(XPSR_SPREALIGN | XPSR_SFPA);
1876 if (!arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
1877 xpsr_mask &= ~XPSR_GE;
1879 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
1880 xpsr_write(env, xpsr, xpsr_mask);
1882 if (env->v7m.secure) {
1883 bool sfpa = xpsr & XPSR_SFPA;
1885 env->v7m.control[M_REG_S] = FIELD_DP32(env->v7m.control[M_REG_S],
1886 V7M_CONTROL, SFPA, sfpa);
1890 * The restored xPSR exception field will be zero if we're
1891 * resuming in Thread mode. If that doesn't match what the
1892 * exception return excret specified then this is a UsageFault.
1893 * v7M requires we make this check here; v8M did it earlier.
1895 if (return_to_handler != arm_v7m_is_handler_mode(env)) {
1897 * Take an INVPC UsageFault by pushing the stack again;
1898 * we know we're v7M so this is never a Secure UsageFault.
1900 bool ignore_stackfaults;
1902 assert(!arm_feature(env, ARM_FEATURE_V8));
1903 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
1904 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
1905 ignore_stackfaults = v7m_push_stack(cpu);
1906 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
1907 "failed exception return integrity check\n");
1908 v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
1909 return;
1912 /* Otherwise, we have a successful exception exit. */
1913 arm_clear_exclusive(env);
1914 arm_rebuild_hflags(env);
1915 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
1918 static bool do_v7m_function_return(ARMCPU *cpu)
1921 * v8M security extensions magic function return.
1922 * We may either:
1923 * (1) throw an exception (longjump)
1924 * (2) return true if we successfully handled the function return
1925 * (3) return false if we failed a consistency check and have
1926 * pended a UsageFault that needs to be taken now
1928 * At this point the magic return value is split between env->regs[15]
1929 * and env->thumb. We don't bother to reconstitute it because we don't
1930 * need it (all values are handled the same way).
1932 CPUARMState *env = &cpu->env;
1933 uint32_t newpc, newpsr, newpsr_exc;
1935 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
1938 bool threadmode, spsel;
1939 MemOpIdx oi;
1940 ARMMMUIdx mmu_idx;
1941 uint32_t *frame_sp_p;
1942 uint32_t frameptr;
1944 /* Pull the return address and IPSR from the Secure stack */
1945 threadmode = !arm_v7m_is_handler_mode(env);
1946 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
1948 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
1949 frameptr = *frame_sp_p;
1952 * These loads may throw an exception (for MPU faults). We want to
1953 * do them as secure, so work out what MMU index that is.
1955 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
1956 oi = make_memop_idx(MO_LEUL, arm_to_core_mmu_idx(mmu_idx));
1957 newpc = cpu_ldl_le_mmu(env, frameptr, oi, 0);
1958 newpsr = cpu_ldl_le_mmu(env, frameptr + 4, oi, 0);
1960 /* Consistency checks on new IPSR */
1961 newpsr_exc = newpsr & XPSR_EXCP;
1962 if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
1963 (env->v7m.exception == 1 && newpsr_exc != 0))) {
1964 /* Pend the fault and tell our caller to take it */
1965 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
1966 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1967 env->v7m.secure);
1968 qemu_log_mask(CPU_LOG_INT,
1969 "...taking INVPC UsageFault: "
1970 "IPSR consistency check failed\n");
1971 return false;
1974 *frame_sp_p = frameptr + 8;
1977 /* This invalidates frame_sp_p */
1978 switch_v7m_security_state(env, true);
1979 env->v7m.exception = newpsr_exc;
1980 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
1981 if (newpsr & XPSR_SFPA) {
1982 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
1984 xpsr_write(env, 0, XPSR_IT);
1985 env->thumb = newpc & 1;
1986 env->regs[15] = newpc & ~1;
1987 arm_rebuild_hflags(env);
1989 qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
1990 return true;
1993 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
1994 uint32_t addr, uint16_t *insn)
1997 * Load a 16-bit portion of a v7M instruction, returning true on success,
1998 * or false on failure (in which case we will have pended the appropriate
1999 * exception).
2000 * We need to do the instruction fetch's MPU and SAU checks
2001 * like this because there is no MMU index that would allow
2002 * doing the load with a single function call. Instead we must
2003 * first check that the security attributes permit the load
2004 * and that they don't mismatch on the two halves of the instruction,
2005 * and then we do the load as a secure load (ie using the security
2006 * attributes of the address, not the CPU, as architecturally required).
2008 CPUState *cs = CPU(cpu);
2009 CPUARMState *env = &cpu->env;
2010 V8M_SAttributes sattrs = {};
2011 MemTxAttrs attrs = {};
2012 ARMMMUFaultInfo fi = {};
2013 ARMCacheAttrs cacheattrs = {};
2014 MemTxResult txres;
2015 target_ulong page_size;
2016 hwaddr physaddr;
2017 int prot;
2019 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
2020 if (!sattrs.nsc || sattrs.ns) {
2022 * This must be the second half of the insn, and it straddles a
2023 * region boundary with the second half not being S&NSC.
2025 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
2026 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
2027 qemu_log_mask(CPU_LOG_INT,
2028 "...really SecureFault with SFSR.INVEP\n");
2029 return false;
2031 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx, &physaddr,
2032 &attrs, &prot, &page_size, &fi, &cacheattrs)) {
2033 /* the MPU lookup failed */
2034 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
2035 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
2036 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
2037 return false;
2039 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
2040 attrs, &txres);
2041 if (txres != MEMTX_OK) {
2042 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
2043 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
2044 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
2045 return false;
2047 return true;
2050 static bool v7m_read_sg_stack_word(ARMCPU *cpu, ARMMMUIdx mmu_idx,
2051 uint32_t addr, uint32_t *spdata)
2054 * Read a word of data from the stack for the SG instruction,
2055 * writing the value into *spdata. If the load succeeds, return
2056 * true; otherwise pend an appropriate exception and return false.
2057 * (We can't use data load helpers here that throw an exception
2058 * because of the context we're called in, which is halfway through
2059 * arm_v7m_cpu_do_interrupt().)
2061 CPUState *cs = CPU(cpu);
2062 CPUARMState *env = &cpu->env;
2063 MemTxAttrs attrs = {};
2064 MemTxResult txres;
2065 target_ulong page_size;
2066 hwaddr physaddr;
2067 int prot;
2068 ARMMMUFaultInfo fi = {};
2069 ARMCacheAttrs cacheattrs = {};
2070 uint32_t value;
2072 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
2073 &attrs, &prot, &page_size, &fi, &cacheattrs)) {
2074 /* MPU/SAU lookup failed */
2075 if (fi.type == ARMFault_QEMU_SFault) {
2076 qemu_log_mask(CPU_LOG_INT,
2077 "...SecureFault during stack word read\n");
2078 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
2079 env->v7m.sfar = addr;
2080 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
2081 } else {
2082 qemu_log_mask(CPU_LOG_INT,
2083 "...MemManageFault during stack word read\n");
2084 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_DACCVIOL_MASK |
2085 R_V7M_CFSR_MMARVALID_MASK;
2086 env->v7m.mmfar[M_REG_S] = addr;
2087 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, false);
2089 return false;
2091 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
2092 attrs, &txres);
2093 if (txres != MEMTX_OK) {
2094 /* BusFault trying to read the data */
2095 qemu_log_mask(CPU_LOG_INT,
2096 "...BusFault during stack word read\n");
2097 env->v7m.cfsr[M_REG_NS] |=
2098 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
2099 env->v7m.bfar = addr;
2100 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
2101 return false;
2104 *spdata = value;
2105 return true;
2108 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
2111 * Check whether this attempt to execute code in a Secure & NS-Callable
2112 * memory region is for an SG instruction; if so, then emulate the
2113 * effect of the SG instruction and return true. Otherwise pend
2114 * the correct kind of exception and return false.
2116 CPUARMState *env = &cpu->env;
2117 ARMMMUIdx mmu_idx;
2118 uint16_t insn;
2121 * We should never get here unless get_phys_addr_pmsav8() caused
2122 * an exception for NS executing in S&NSC memory.
2124 assert(!env->v7m.secure);
2125 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
2127 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
2128 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
2130 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
2131 return false;
2134 if (!env->thumb) {
2135 goto gen_invep;
2138 if (insn != 0xe97f) {
2140 * Not an SG instruction first half (we choose the IMPDEF
2141 * early-SG-check option).
2143 goto gen_invep;
2146 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
2147 return false;
2150 if (insn != 0xe97f) {
2152 * Not an SG instruction second half (yes, both halves of the SG
2153 * insn have the same hex value)
2155 goto gen_invep;
2159 * OK, we have confirmed that we really have an SG instruction.
2160 * We know we're NS in S memory so don't need to repeat those checks.
2162 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
2163 ", executing it\n", env->regs[15]);
2165 if (cpu_isar_feature(aa32_m_sec_state, cpu) &&
2166 !arm_v7m_is_handler_mode(env)) {
2168 * v8.1M exception stack frame integrity check. Note that we
2169 * must perform the memory access even if CCR_S.TRD is zero
2170 * and we aren't going to check what the data loaded is.
2172 uint32_t spdata, sp;
2175 * We know we are currently NS, so the S stack pointers must be
2176 * in other_ss_{psp,msp}, not in regs[13]/other_sp.
2178 sp = v7m_using_psp(env) ? env->v7m.other_ss_psp : env->v7m.other_ss_msp;
2179 if (!v7m_read_sg_stack_word(cpu, mmu_idx, sp, &spdata)) {
2180 /* Stack access failed and an exception has been pended */
2181 return false;
2184 if (env->v7m.ccr[M_REG_S] & R_V7M_CCR_TRD_MASK) {
2185 if (((spdata & ~1) == 0xfefa125a) ||
2186 !(env->v7m.control[M_REG_S] & 1)) {
2187 goto gen_invep;
2192 env->regs[14] &= ~1;
2193 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
2194 switch_v7m_security_state(env, true);
2195 xpsr_write(env, 0, XPSR_IT);
2196 env->regs[15] += 4;
2197 arm_rebuild_hflags(env);
2198 return true;
2200 gen_invep:
2201 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
2202 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
2203 qemu_log_mask(CPU_LOG_INT,
2204 "...really SecureFault with SFSR.INVEP\n");
2205 return false;
2208 void arm_v7m_cpu_do_interrupt(CPUState *cs)
2210 ARMCPU *cpu = ARM_CPU(cs);
2211 CPUARMState *env = &cpu->env;
2212 uint32_t lr;
2213 bool ignore_stackfaults;
2215 arm_log_exception(cs);
2218 * For exceptions we just mark as pending on the NVIC, and let that
2219 * handle it.
2221 switch (cs->exception_index) {
2222 case EXCP_UDEF:
2223 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
2224 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
2225 break;
2226 case EXCP_NOCP:
2229 * NOCP might be directed to something other than the current
2230 * security state if this fault is because of NSACR; we indicate
2231 * the target security state using exception.target_el.
2233 int target_secstate;
2235 if (env->exception.target_el == 3) {
2236 target_secstate = M_REG_S;
2237 } else {
2238 target_secstate = env->v7m.secure;
2240 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, target_secstate);
2241 env->v7m.cfsr[target_secstate] |= R_V7M_CFSR_NOCP_MASK;
2242 break;
2244 case EXCP_INVSTATE:
2245 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
2246 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
2247 break;
2248 case EXCP_STKOF:
2249 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
2250 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
2251 break;
2252 case EXCP_LSERR:
2253 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
2254 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
2255 break;
2256 case EXCP_UNALIGNED:
2257 /* Unaligned faults reported by M-profile aware code */
2258 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
2259 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNALIGNED_MASK;
2260 break;
2261 case EXCP_DIVBYZERO:
2262 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
2263 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_DIVBYZERO_MASK;
2264 break;
2265 case EXCP_SWI:
2266 /* The PC already points to the next instruction. */
2267 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
2268 break;
2269 case EXCP_PREFETCH_ABORT:
2270 case EXCP_DATA_ABORT:
2272 * Note that for M profile we don't have a guest facing FSR, but
2273 * the env->exception.fsr will be populated by the code that
2274 * raises the fault, in the A profile short-descriptor format.
2276 * Log the exception.vaddress now regardless of subtype, because
2277 * logging below only logs it when it goes into a guest visible
2278 * register.
2280 qemu_log_mask(CPU_LOG_INT, "...at fault address 0x%x\n",
2281 (uint32_t)env->exception.vaddress);
2282 switch (env->exception.fsr & 0xf) {
2283 case M_FAKE_FSR_NSC_EXEC:
2285 * Exception generated when we try to execute code at an address
2286 * which is marked as Secure & Non-Secure Callable and the CPU
2287 * is in the Non-Secure state. The only instruction which can
2288 * be executed like this is SG (and that only if both halves of
2289 * the SG instruction have the same security attributes.)
2290 * Everything else must generate an INVEP SecureFault, so we
2291 * emulate the SG instruction here.
2293 if (v7m_handle_execute_nsc(cpu)) {
2294 return;
2296 break;
2297 case M_FAKE_FSR_SFAULT:
2299 * Various flavours of SecureFault for attempts to execute or
2300 * access data in the wrong security state.
2302 switch (cs->exception_index) {
2303 case EXCP_PREFETCH_ABORT:
2304 if (env->v7m.secure) {
2305 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
2306 qemu_log_mask(CPU_LOG_INT,
2307 "...really SecureFault with SFSR.INVTRAN\n");
2308 } else {
2309 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
2310 qemu_log_mask(CPU_LOG_INT,
2311 "...really SecureFault with SFSR.INVEP\n");
2313 break;
2314 case EXCP_DATA_ABORT:
2315 /* This must be an NS access to S memory */
2316 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
2317 qemu_log_mask(CPU_LOG_INT,
2318 "...really SecureFault with SFSR.AUVIOL\n");
2319 break;
2321 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
2322 break;
2323 case 0x8: /* External Abort */
2324 switch (cs->exception_index) {
2325 case EXCP_PREFETCH_ABORT:
2326 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
2327 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
2328 break;
2329 case EXCP_DATA_ABORT:
2330 env->v7m.cfsr[M_REG_NS] |=
2331 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
2332 env->v7m.bfar = env->exception.vaddress;
2333 qemu_log_mask(CPU_LOG_INT,
2334 "...with CFSR.PRECISERR and BFAR 0x%x\n",
2335 env->v7m.bfar);
2336 break;
2338 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
2339 break;
2340 case 0x1: /* Alignment fault reported by generic code */
2341 qemu_log_mask(CPU_LOG_INT,
2342 "...really UsageFault with UFSR.UNALIGNED\n");
2343 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNALIGNED_MASK;
2344 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
2345 env->v7m.secure);
2346 break;
2347 default:
2349 * All other FSR values are either MPU faults or "can't happen
2350 * for M profile" cases.
2352 switch (cs->exception_index) {
2353 case EXCP_PREFETCH_ABORT:
2354 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
2355 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
2356 break;
2357 case EXCP_DATA_ABORT:
2358 env->v7m.cfsr[env->v7m.secure] |=
2359 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
2360 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
2361 qemu_log_mask(CPU_LOG_INT,
2362 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
2363 env->v7m.mmfar[env->v7m.secure]);
2364 break;
2366 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
2367 env->v7m.secure);
2368 break;
2370 break;
2371 case EXCP_SEMIHOST:
2372 qemu_log_mask(CPU_LOG_INT,
2373 "...handling as semihosting call 0x%x\n",
2374 env->regs[0]);
2375 #ifdef CONFIG_TCG
2376 env->regs[0] = do_common_semihosting(cs);
2377 #else
2378 g_assert_not_reached();
2379 #endif
2380 env->regs[15] += env->thumb ? 2 : 4;
2381 return;
2382 case EXCP_BKPT:
2383 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
2384 break;
2385 case EXCP_IRQ:
2386 break;
2387 case EXCP_EXCEPTION_EXIT:
2388 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
2389 /* Must be v8M security extension function return */
2390 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
2391 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
2392 if (do_v7m_function_return(cpu)) {
2393 return;
2395 } else {
2396 do_v7m_exception_exit(cpu);
2397 return;
2399 break;
2400 case EXCP_LAZYFP:
2402 * We already pended the specific exception in the NVIC in the
2403 * v7m_preserve_fp_state() helper function.
2405 break;
2406 default:
2407 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
2408 return; /* Never happens. Keep compiler happy. */
2411 if (arm_feature(env, ARM_FEATURE_V8)) {
2412 lr = R_V7M_EXCRET_RES1_MASK |
2413 R_V7M_EXCRET_DCRS_MASK;
2415 * The S bit indicates whether we should return to Secure
2416 * or NonSecure (ie our current state).
2417 * The ES bit indicates whether we're taking this exception
2418 * to Secure or NonSecure (ie our target state). We set it
2419 * later, in v7m_exception_taken().
2420 * The SPSEL bit is also set in v7m_exception_taken() for v8M.
2421 * This corresponds to the ARM ARM pseudocode for v8M setting
2422 * some LR bits in PushStack() and some in ExceptionTaken();
2423 * the distinction matters for the tailchain cases where we
2424 * can take an exception without pushing the stack.
2426 if (env->v7m.secure) {
2427 lr |= R_V7M_EXCRET_S_MASK;
2429 } else {
2430 lr = R_V7M_EXCRET_RES1_MASK |
2431 R_V7M_EXCRET_S_MASK |
2432 R_V7M_EXCRET_DCRS_MASK |
2433 R_V7M_EXCRET_ES_MASK;
2434 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
2435 lr |= R_V7M_EXCRET_SPSEL_MASK;
2438 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) {
2439 lr |= R_V7M_EXCRET_FTYPE_MASK;
2441 if (!arm_v7m_is_handler_mode(env)) {
2442 lr |= R_V7M_EXCRET_MODE_MASK;
2445 ignore_stackfaults = v7m_push_stack(cpu);
2446 v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
2449 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2451 unsigned el = arm_current_el(env);
2453 /* First handle registers which unprivileged can read */
2454 switch (reg) {
2455 case 0 ... 7: /* xPSR sub-fields */
2456 return v7m_mrs_xpsr(env, reg, el);
2457 case 20: /* CONTROL */
2458 return v7m_mrs_control(env, env->v7m.secure);
2459 case 0x94: /* CONTROL_NS */
2461 * We have to handle this here because unprivileged Secure code
2462 * can read the NS CONTROL register.
2464 if (!env->v7m.secure) {
2465 return 0;
2467 return env->v7m.control[M_REG_NS] |
2468 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK);
2471 if (el == 0) {
2472 return 0; /* unprivileged reads others as zero */
2475 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2476 switch (reg) {
2477 case 0x88: /* MSP_NS */
2478 if (!env->v7m.secure) {
2479 return 0;
2481 return env->v7m.other_ss_msp;
2482 case 0x89: /* PSP_NS */
2483 if (!env->v7m.secure) {
2484 return 0;
2486 return env->v7m.other_ss_psp;
2487 case 0x8a: /* MSPLIM_NS */
2488 if (!env->v7m.secure) {
2489 return 0;
2491 return env->v7m.msplim[M_REG_NS];
2492 case 0x8b: /* PSPLIM_NS */
2493 if (!env->v7m.secure) {
2494 return 0;
2496 return env->v7m.psplim[M_REG_NS];
2497 case 0x90: /* PRIMASK_NS */
2498 if (!env->v7m.secure) {
2499 return 0;
2501 return env->v7m.primask[M_REG_NS];
2502 case 0x91: /* BASEPRI_NS */
2503 if (!env->v7m.secure) {
2504 return 0;
2506 return env->v7m.basepri[M_REG_NS];
2507 case 0x93: /* FAULTMASK_NS */
2508 if (!env->v7m.secure) {
2509 return 0;
2511 return env->v7m.faultmask[M_REG_NS];
2512 case 0x98: /* SP_NS */
2515 * This gives the non-secure SP selected based on whether we're
2516 * currently in handler mode or not, using the NS CONTROL.SPSEL.
2518 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
2520 if (!env->v7m.secure) {
2521 return 0;
2523 if (!arm_v7m_is_handler_mode(env) && spsel) {
2524 return env->v7m.other_ss_psp;
2525 } else {
2526 return env->v7m.other_ss_msp;
2529 default:
2530 break;
2534 switch (reg) {
2535 case 8: /* MSP */
2536 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
2537 case 9: /* PSP */
2538 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
2539 case 10: /* MSPLIM */
2540 if (!arm_feature(env, ARM_FEATURE_V8)) {
2541 goto bad_reg;
2543 return env->v7m.msplim[env->v7m.secure];
2544 case 11: /* PSPLIM */
2545 if (!arm_feature(env, ARM_FEATURE_V8)) {
2546 goto bad_reg;
2548 return env->v7m.psplim[env->v7m.secure];
2549 case 16: /* PRIMASK */
2550 return env->v7m.primask[env->v7m.secure];
2551 case 17: /* BASEPRI */
2552 case 18: /* BASEPRI_MAX */
2553 return env->v7m.basepri[env->v7m.secure];
2554 case 19: /* FAULTMASK */
2555 return env->v7m.faultmask[env->v7m.secure];
2556 default:
2557 bad_reg:
2558 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
2559 " register %d\n", reg);
2560 return 0;
2564 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
2567 * We're passed bits [11..0] of the instruction; extract
2568 * SYSm and the mask bits.
2569 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
2570 * we choose to treat them as if the mask bits were valid.
2571 * NB that the pseudocode 'mask' variable is bits [11..10],
2572 * whereas ours is [11..8].
2574 uint32_t mask = extract32(maskreg, 8, 4);
2575 uint32_t reg = extract32(maskreg, 0, 8);
2576 int cur_el = arm_current_el(env);
2578 if (cur_el == 0 && reg > 7 && reg != 20) {
2580 * only xPSR sub-fields and CONTROL.SFPA may be written by
2581 * unprivileged code
2583 return;
2586 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2587 switch (reg) {
2588 case 0x88: /* MSP_NS */
2589 if (!env->v7m.secure) {
2590 return;
2592 env->v7m.other_ss_msp = val & ~3;
2593 return;
2594 case 0x89: /* PSP_NS */
2595 if (!env->v7m.secure) {
2596 return;
2598 env->v7m.other_ss_psp = val & ~3;
2599 return;
2600 case 0x8a: /* MSPLIM_NS */
2601 if (!env->v7m.secure) {
2602 return;
2604 env->v7m.msplim[M_REG_NS] = val & ~7;
2605 return;
2606 case 0x8b: /* PSPLIM_NS */
2607 if (!env->v7m.secure) {
2608 return;
2610 env->v7m.psplim[M_REG_NS] = val & ~7;
2611 return;
2612 case 0x90: /* PRIMASK_NS */
2613 if (!env->v7m.secure) {
2614 return;
2616 env->v7m.primask[M_REG_NS] = val & 1;
2617 return;
2618 case 0x91: /* BASEPRI_NS */
2619 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
2620 return;
2622 env->v7m.basepri[M_REG_NS] = val & 0xff;
2623 return;
2624 case 0x93: /* FAULTMASK_NS */
2625 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
2626 return;
2628 env->v7m.faultmask[M_REG_NS] = val & 1;
2629 return;
2630 case 0x94: /* CONTROL_NS */
2631 if (!env->v7m.secure) {
2632 return;
2634 write_v7m_control_spsel_for_secstate(env,
2635 val & R_V7M_CONTROL_SPSEL_MASK,
2636 M_REG_NS);
2637 if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
2638 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
2639 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
2642 * SFPA is RAZ/WI from NS. FPCA is RO if NSACR.CP10 == 0,
2643 * RES0 if the FPU is not present, and is stored in the S bank
2645 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env)) &&
2646 extract32(env->v7m.nsacr, 10, 1)) {
2647 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
2648 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK;
2650 return;
2651 case 0x98: /* SP_NS */
2654 * This gives the non-secure SP selected based on whether we're
2655 * currently in handler mode or not, using the NS CONTROL.SPSEL.
2657 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
2658 bool is_psp = !arm_v7m_is_handler_mode(env) && spsel;
2659 uint32_t limit;
2661 if (!env->v7m.secure) {
2662 return;
2665 limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false];
2667 val &= ~0x3;
2669 if (val < limit) {
2670 raise_exception_ra(env, EXCP_STKOF, 0, 1, GETPC());
2673 if (is_psp) {
2674 env->v7m.other_ss_psp = val;
2675 } else {
2676 env->v7m.other_ss_msp = val;
2678 return;
2680 default:
2681 break;
2685 switch (reg) {
2686 case 0 ... 7: /* xPSR sub-fields */
2687 v7m_msr_xpsr(env, mask, reg, val);
2688 break;
2689 case 8: /* MSP */
2690 if (v7m_using_psp(env)) {
2691 env->v7m.other_sp = val & ~3;
2692 } else {
2693 env->regs[13] = val & ~3;
2695 break;
2696 case 9: /* PSP */
2697 if (v7m_using_psp(env)) {
2698 env->regs[13] = val & ~3;
2699 } else {
2700 env->v7m.other_sp = val & ~3;
2702 break;
2703 case 10: /* MSPLIM */
2704 if (!arm_feature(env, ARM_FEATURE_V8)) {
2705 goto bad_reg;
2707 env->v7m.msplim[env->v7m.secure] = val & ~7;
2708 break;
2709 case 11: /* PSPLIM */
2710 if (!arm_feature(env, ARM_FEATURE_V8)) {
2711 goto bad_reg;
2713 env->v7m.psplim[env->v7m.secure] = val & ~7;
2714 break;
2715 case 16: /* PRIMASK */
2716 env->v7m.primask[env->v7m.secure] = val & 1;
2717 break;
2718 case 17: /* BASEPRI */
2719 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
2720 goto bad_reg;
2722 env->v7m.basepri[env->v7m.secure] = val & 0xff;
2723 break;
2724 case 18: /* BASEPRI_MAX */
2725 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
2726 goto bad_reg;
2728 val &= 0xff;
2729 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
2730 || env->v7m.basepri[env->v7m.secure] == 0)) {
2731 env->v7m.basepri[env->v7m.secure] = val;
2733 break;
2734 case 19: /* FAULTMASK */
2735 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
2736 goto bad_reg;
2738 env->v7m.faultmask[env->v7m.secure] = val & 1;
2739 break;
2740 case 20: /* CONTROL */
2742 * Writing to the SPSEL bit only has an effect if we are in
2743 * thread mode; other bits can be updated by any privileged code.
2744 * write_v7m_control_spsel() deals with updating the SPSEL bit in
2745 * env->v7m.control, so we only need update the others.
2746 * For v7M, we must just ignore explicit writes to SPSEL in handler
2747 * mode; for v8M the write is permitted but will have no effect.
2748 * All these bits are writes-ignored from non-privileged code,
2749 * except for SFPA.
2751 if (cur_el > 0 && (arm_feature(env, ARM_FEATURE_V8) ||
2752 !arm_v7m_is_handler_mode(env))) {
2753 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
2755 if (cur_el > 0 && arm_feature(env, ARM_FEATURE_M_MAIN)) {
2756 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
2757 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
2759 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
2761 * SFPA is RAZ/WI from NS or if no FPU.
2762 * FPCA is RO if NSACR.CP10 == 0, RES0 if the FPU is not present.
2763 * Both are stored in the S bank.
2765 if (env->v7m.secure) {
2766 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
2767 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_SFPA_MASK;
2769 if (cur_el > 0 &&
2770 (env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_SECURITY) ||
2771 extract32(env->v7m.nsacr, 10, 1))) {
2772 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
2773 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK;
2776 break;
2777 default:
2778 bad_reg:
2779 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
2780 " register %d\n", reg);
2781 return;
2785 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
2787 /* Implement the TT instruction. op is bits [7:6] of the insn. */
2788 bool forceunpriv = op & 1;
2789 bool alt = op & 2;
2790 V8M_SAttributes sattrs = {};
2791 uint32_t tt_resp;
2792 bool r, rw, nsr, nsrw, mrvalid;
2793 int prot;
2794 ARMMMUFaultInfo fi = {};
2795 MemTxAttrs attrs = {};
2796 hwaddr phys_addr;
2797 ARMMMUIdx mmu_idx;
2798 uint32_t mregion;
2799 bool targetpriv;
2800 bool targetsec = env->v7m.secure;
2801 bool is_subpage;
2804 * Work out what the security state and privilege level we're
2805 * interested in is...
2807 if (alt) {
2808 targetsec = !targetsec;
2811 if (forceunpriv) {
2812 targetpriv = false;
2813 } else {
2814 targetpriv = arm_v7m_is_handler_mode(env) ||
2815 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
2818 /* ...and then figure out which MMU index this is */
2819 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
2822 * We know that the MPU and SAU don't care about the access type
2823 * for our purposes beyond that we don't want to claim to be
2824 * an insn fetch, so we arbitrarily call this a read.
2828 * MPU region info only available for privileged or if
2829 * inspecting the other MPU state.
2831 if (arm_current_el(env) != 0 || alt) {
2832 /* We can ignore the return value as prot is always set */
2833 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
2834 &phys_addr, &attrs, &prot, &is_subpage,
2835 &fi, &mregion);
2836 if (mregion == -1) {
2837 mrvalid = false;
2838 mregion = 0;
2839 } else {
2840 mrvalid = true;
2842 r = prot & PAGE_READ;
2843 rw = prot & PAGE_WRITE;
2844 } else {
2845 r = false;
2846 rw = false;
2847 mrvalid = false;
2848 mregion = 0;
2851 if (env->v7m.secure) {
2852 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
2853 nsr = sattrs.ns && r;
2854 nsrw = sattrs.ns && rw;
2855 } else {
2856 sattrs.ns = true;
2857 nsr = false;
2858 nsrw = false;
2861 tt_resp = (sattrs.iregion << 24) |
2862 (sattrs.irvalid << 23) |
2863 ((!sattrs.ns) << 22) |
2864 (nsrw << 21) |
2865 (nsr << 20) |
2866 (rw << 19) |
2867 (r << 18) |
2868 (sattrs.srvalid << 17) |
2869 (mrvalid << 16) |
2870 (sattrs.sregion << 8) |
2871 mregion;
2873 return tt_resp;
2876 #endif /* !CONFIG_USER_ONLY */
2878 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
2879 bool secstate, bool priv, bool negpri)
2881 ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
2883 if (priv) {
2884 mmu_idx |= ARM_MMU_IDX_M_PRIV;
2887 if (negpri) {
2888 mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
2891 if (secstate) {
2892 mmu_idx |= ARM_MMU_IDX_M_S;
2895 return mmu_idx;
2898 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2899 bool secstate, bool priv)
2901 bool negpri = armv7m_nvic_neg_prio_requested(env->nvic, secstate);
2903 return arm_v7m_mmu_idx_all(env, secstate, priv, negpri);
2906 /* Return the MMU index for a v7M CPU in the specified security state */
2907 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
2909 bool priv = arm_v7m_is_handler_mode(env) ||
2910 !(env->v7m.control[secstate] & 1);
2912 return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);