migration/rdma: Drop superfluous assignments to @ret
[qemu/armbru.git] / hw / arm / mps2-tz.c
blobeae3639da23c6fd78674c763d77063767a1a08ea
1 /*
2 * ARM V2M MPS2 board emulation, trustzone aware FPGA images
4 * Copyright (c) 2017 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13 * FPGA but is otherwise the same as the 2). Since the CPU itself
14 * and most of the devices are in the FPGA, the details of the board
15 * as seen by the guest depend significantly on the FPGA image.
16 * This source file covers the following FPGA images, for TrustZone cores:
17 * "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
18 * "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
19 * "mps2-an524" -- Dual Cortex-M33 as documented in Application Note AN524
20 * "mps2-an547" -- Single Cortex-M55 as documented in Application Note AN547
22 * Links to the TRM for the board itself and to the various Application
23 * Notes which document the FPGA images can be found here:
24 * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
26 * Board TRM:
27 * https://developer.arm.com/documentation/100112/latest/
28 * Application Note AN505:
29 * https://developer.arm.com/documentation/dai0505/latest/
30 * Application Note AN521:
31 * https://developer.arm.com/documentation/dai0521/latest/
32 * Application Note AN524:
33 * https://developer.arm.com/documentation/dai0524/latest/
34 * Application Note AN547:
35 * https://developer.arm.com/documentation/dai0547/latest/
37 * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
38 * (ARM ECM0601256) for the details of some of the device layout:
39 * https://developer.arm.com/documentation/ecm0601256/latest
40 * Similarly, the AN521 and AN524 use the SSE-200, and the SSE-200 TRM defines
41 * most of the device layout:
42 * https://developer.arm.com/documentation/101104/latest/
43 * and the AN547 uses the SSE-300, whose layout is in the SSE-300 TRM:
44 * https://developer.arm.com/documentation/101773/latest/
47 #include "qemu/osdep.h"
48 #include "qemu/units.h"
49 #include "qemu/cutils.h"
50 #include "qapi/error.h"
51 #include "qemu/error-report.h"
52 #include "hw/arm/boot.h"
53 #include "hw/arm/armv7m.h"
54 #include "hw/or-irq.h"
55 #include "hw/boards.h"
56 #include "exec/address-spaces.h"
57 #include "sysemu/sysemu.h"
58 #include "sysemu/reset.h"
59 #include "hw/misc/unimp.h"
60 #include "hw/char/cmsdk-apb-uart.h"
61 #include "hw/timer/cmsdk-apb-timer.h"
62 #include "hw/misc/mps2-scc.h"
63 #include "hw/misc/mps2-fpgaio.h"
64 #include "hw/misc/tz-mpc.h"
65 #include "hw/misc/tz-msc.h"
66 #include "hw/arm/armsse.h"
67 #include "hw/dma/pl080.h"
68 #include "hw/rtc/pl031.h"
69 #include "hw/ssi/pl022.h"
70 #include "hw/i2c/arm_sbcon_i2c.h"
71 #include "hw/net/lan9118.h"
72 #include "net/net.h"
73 #include "hw/core/split-irq.h"
74 #include "hw/qdev-clock.h"
75 #include "qom/object.h"
76 #include "hw/irq.h"
78 #define MPS2TZ_NUMIRQ_MAX 96
79 #define MPS2TZ_RAM_MAX 5
81 typedef enum MPS2TZFPGAType {
82 FPGA_AN505,
83 FPGA_AN521,
84 FPGA_AN524,
85 FPGA_AN547,
86 } MPS2TZFPGAType;
89 * Define the layout of RAM in a board, including which parts are
90 * behind which MPCs.
91 * mrindex specifies the index into mms->ram[] to use for the backing RAM;
92 * -1 means "use the system RAM".
94 typedef struct RAMInfo {
95 const char *name;
96 uint32_t base;
97 uint32_t size;
98 int mpc; /* MPC number, -1 for "not behind an MPC" */
99 int mrindex;
100 int flags;
101 } RAMInfo;
104 * Flag values:
105 * IS_ALIAS: this RAM area is an alias to the upstream end of the
106 * MPC specified by its .mpc value
107 * IS_ROM: this RAM area is read-only
109 #define IS_ALIAS 1
110 #define IS_ROM 2
112 struct MPS2TZMachineClass {
113 MachineClass parent;
114 MPS2TZFPGAType fpga_type;
115 uint32_t scc_id;
116 uint32_t sysclk_frq; /* Main SYSCLK frequency in Hz */
117 uint32_t apb_periph_frq; /* APB peripheral frequency in Hz */
118 uint32_t len_oscclk;
119 const uint32_t *oscclk;
120 uint32_t fpgaio_num_leds; /* Number of LEDs in FPGAIO LED0 register */
121 bool fpgaio_has_switches; /* Does FPGAIO have SWITCH register? */
122 bool fpgaio_has_dbgctrl; /* Does FPGAIO have DBGCTRL register? */
123 int numirq; /* Number of external interrupts */
124 int uart_overflow_irq; /* number of the combined UART overflow IRQ */
125 uint32_t init_svtor; /* init-svtor setting for SSE */
126 uint32_t sram_addr_width; /* SRAM_ADDR_WIDTH setting for SSE */
127 uint32_t cpu0_mpu_ns; /* CPU0_MPU_NS setting for SSE */
128 uint32_t cpu0_mpu_s; /* CPU0_MPU_S setting for SSE */
129 uint32_t cpu1_mpu_ns; /* CPU1_MPU_NS setting for SSE */
130 uint32_t cpu1_mpu_s; /* CPU1_MPU_S setting for SSE */
131 const RAMInfo *raminfo;
132 const char *armsse_type;
133 uint32_t boot_ram_size; /* size of ram at address 0; 0 == find in raminfo */
136 struct MPS2TZMachineState {
137 MachineState parent;
139 ARMSSE iotkit;
140 MemoryRegion ram[MPS2TZ_RAM_MAX];
141 MemoryRegion eth_usb_container;
143 MPS2SCC scc;
144 MPS2FPGAIO fpgaio;
145 TZPPC ppc[5];
146 TZMPC mpc[3];
147 PL022State spi[5];
148 ArmSbconI2CState i2c[5];
149 UnimplementedDeviceState i2s_audio;
150 UnimplementedDeviceState gpio[4];
151 UnimplementedDeviceState gfx;
152 UnimplementedDeviceState cldc;
153 UnimplementedDeviceState usb;
154 PL031State rtc;
155 PL080State dma[4];
156 TZMSC msc[4];
157 CMSDKAPBUART uart[6];
158 SplitIRQ sec_resp_splitter;
159 OrIRQState uart_irq_orgate;
160 DeviceState *lan9118;
161 SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ_MAX];
162 Clock *sysclk;
163 Clock *s32kclk;
165 bool remap;
166 qemu_irq remap_irq;
169 #define TYPE_MPS2TZ_MACHINE "mps2tz"
170 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
171 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
172 #define TYPE_MPS3TZ_AN524_MACHINE MACHINE_TYPE_NAME("mps3-an524")
173 #define TYPE_MPS3TZ_AN547_MACHINE MACHINE_TYPE_NAME("mps3-an547")
175 OBJECT_DECLARE_TYPE(MPS2TZMachineState, MPS2TZMachineClass, MPS2TZ_MACHINE)
177 /* Slow 32Khz S32KCLK frequency in Hz */
178 #define S32KCLK_FRQ (32 * 1000)
181 * The MPS3 DDR is 2GiB, but on a 32-bit host QEMU doesn't permit
182 * emulation of that much guest RAM, so artificially make it smaller.
184 #if HOST_LONG_BITS == 32
185 #define MPS3_DDR_SIZE (1 * GiB)
186 #else
187 #define MPS3_DDR_SIZE (2 * GiB)
188 #endif
190 /* For cpu{0,1}_mpu_{ns,s}, means "leave at SSE's default value" */
191 #define MPU_REGION_DEFAULT UINT32_MAX
193 static const uint32_t an505_oscclk[] = {
194 40000000,
195 24580000,
196 25000000,
199 static const uint32_t an524_oscclk[] = {
200 24000000,
201 32000000,
202 50000000,
203 50000000,
204 24576000,
205 23750000,
208 static const RAMInfo an505_raminfo[] = { {
209 .name = "ssram-0",
210 .base = 0x00000000,
211 .size = 0x00400000,
212 .mpc = 0,
213 .mrindex = 0,
214 }, {
215 .name = "ssram-1",
216 .base = 0x28000000,
217 .size = 0x00200000,
218 .mpc = 1,
219 .mrindex = 1,
220 }, {
221 .name = "ssram-2",
222 .base = 0x28200000,
223 .size = 0x00200000,
224 .mpc = 2,
225 .mrindex = 2,
226 }, {
227 .name = "ssram-0-alias",
228 .base = 0x00400000,
229 .size = 0x00400000,
230 .mpc = 0,
231 .mrindex = 3,
232 .flags = IS_ALIAS,
233 }, {
234 /* Use the largest bit of contiguous RAM as our "system memory" */
235 .name = "mps.ram",
236 .base = 0x80000000,
237 .size = 16 * MiB,
238 .mpc = -1,
239 .mrindex = -1,
240 }, {
241 .name = NULL,
246 * Note that the addresses and MPC numbering here should match up
247 * with those used in remap_memory(), which can swap the BRAM and QSPI.
249 static const RAMInfo an524_raminfo[] = { {
250 .name = "bram",
251 .base = 0x00000000,
252 .size = 512 * KiB,
253 .mpc = 0,
254 .mrindex = 0,
255 }, {
256 /* We don't model QSPI flash yet; for now expose it as simple ROM */
257 .name = "QSPI",
258 .base = 0x28000000,
259 .size = 8 * MiB,
260 .mpc = 1,
261 .mrindex = 1,
262 .flags = IS_ROM,
263 }, {
264 .name = "DDR",
265 .base = 0x60000000,
266 .size = MPS3_DDR_SIZE,
267 .mpc = 2,
268 .mrindex = -1,
269 }, {
270 .name = NULL,
274 static const RAMInfo an547_raminfo[] = { {
275 .name = "sram",
276 .base = 0x01000000,
277 .size = 2 * MiB,
278 .mpc = 0,
279 .mrindex = 1,
280 }, {
281 .name = "sram 2",
282 .base = 0x21000000,
283 .size = 4 * MiB,
284 .mpc = -1,
285 .mrindex = 3,
286 }, {
287 /* We don't model QSPI flash yet; for now expose it as simple ROM */
288 .name = "QSPI",
289 .base = 0x28000000,
290 .size = 8 * MiB,
291 .mpc = 1,
292 .mrindex = 4,
293 .flags = IS_ROM,
294 }, {
295 .name = "DDR",
296 .base = 0x60000000,
297 .size = MPS3_DDR_SIZE,
298 .mpc = 2,
299 .mrindex = -1,
300 }, {
301 .name = NULL,
305 static const RAMInfo *find_raminfo_for_mpc(MPS2TZMachineState *mms, int mpc)
307 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
308 const RAMInfo *p;
309 const RAMInfo *found = NULL;
311 for (p = mmc->raminfo; p->name; p++) {
312 if (p->mpc == mpc && !(p->flags & IS_ALIAS)) {
313 /* There should only be one entry in the array for this MPC */
314 g_assert(!found);
315 found = p;
318 /* if raminfo array doesn't have an entry for each MPC this is a bug */
319 assert(found);
320 return found;
323 static MemoryRegion *mr_for_raminfo(MPS2TZMachineState *mms,
324 const RAMInfo *raminfo)
326 /* Return an initialized MemoryRegion for the RAMInfo. */
327 MemoryRegion *ram;
329 if (raminfo->mrindex < 0) {
330 /* Means this RAMInfo is for QEMU's "system memory" */
331 MachineState *machine = MACHINE(mms);
332 assert(!(raminfo->flags & IS_ROM));
333 return machine->ram;
336 assert(raminfo->mrindex < MPS2TZ_RAM_MAX);
337 ram = &mms->ram[raminfo->mrindex];
339 memory_region_init_ram(ram, NULL, raminfo->name,
340 raminfo->size, &error_fatal);
341 if (raminfo->flags & IS_ROM) {
342 memory_region_set_readonly(ram, true);
344 return ram;
347 /* Create an alias of an entire original MemoryRegion @orig
348 * located at @base in the memory map.
350 static void make_ram_alias(MemoryRegion *mr, const char *name,
351 MemoryRegion *orig, hwaddr base)
353 memory_region_init_alias(mr, NULL, name, orig, 0,
354 memory_region_size(orig));
355 memory_region_add_subregion(get_system_memory(), base, mr);
358 static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
361 * Return a qemu_irq which will signal IRQ n to all CPUs in the
362 * SSE. The irqno should be as the CPU sees it, so the first
363 * external-to-the-SSE interrupt is 32.
365 MachineClass *mc = MACHINE_GET_CLASS(mms);
366 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
368 assert(irqno >= 32 && irqno < (mmc->numirq + 32));
371 * Convert from "CPU irq number" (as listed in the FPGA image
372 * documentation) to the SSE external-interrupt number.
374 irqno -= 32;
376 if (mc->max_cpus > 1) {
377 return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
378 } else {
379 return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
383 /* Union describing the device-specific extra data we pass to the devfn. */
384 typedef union PPCExtraData {
385 bool i2c_internal;
386 } PPCExtraData;
388 /* Most of the devices in the AN505 FPGA image sit behind
389 * Peripheral Protection Controllers. These data structures
390 * define the layout of which devices sit behind which PPCs.
391 * The devfn for each port is a function which creates, configures
392 * and initializes the device, returning the MemoryRegion which
393 * needs to be plugged into the downstream end of the PPC port.
395 typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
396 const char *name, hwaddr size,
397 const int *irqs,
398 const PPCExtraData *extradata);
400 typedef struct PPCPortInfo {
401 const char *name;
402 MakeDevFn *devfn;
403 void *opaque;
404 hwaddr addr;
405 hwaddr size;
406 int irqs[3]; /* currently no device needs more IRQ lines than this */
407 PPCExtraData extradata; /* to pass device-specific info to the devfn */
408 } PPCPortInfo;
410 typedef struct PPCInfo {
411 const char *name;
412 PPCPortInfo ports[TZ_NUM_PORTS];
413 } PPCInfo;
415 static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
416 void *opaque,
417 const char *name, hwaddr size,
418 const int *irqs,
419 const PPCExtraData *extradata)
421 /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
422 * and return a pointer to its MemoryRegion.
424 UnimplementedDeviceState *uds = opaque;
426 object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
427 qdev_prop_set_string(DEVICE(uds), "name", name);
428 qdev_prop_set_uint64(DEVICE(uds), "size", size);
429 sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
430 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
433 static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
434 const char *name, hwaddr size,
435 const int *irqs, const PPCExtraData *extradata)
437 /* The irq[] array is tx, rx, combined, in that order */
438 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
439 CMSDKAPBUART *uart = opaque;
440 int i = uart - &mms->uart[0];
441 SysBusDevice *s;
442 DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
444 object_initialize_child(OBJECT(mms), name, uart, TYPE_CMSDK_APB_UART);
445 qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
446 qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", mmc->apb_periph_frq);
447 sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
448 s = SYS_BUS_DEVICE(uart);
449 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
450 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1]));
451 sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
452 sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
453 sysbus_connect_irq(s, 4, get_sse_irq_in(mms, irqs[2]));
454 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
457 static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
458 const char *name, hwaddr size,
459 const int *irqs, const PPCExtraData *extradata)
461 MPS2SCC *scc = opaque;
462 DeviceState *sccdev;
463 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
464 uint32_t i;
466 object_initialize_child(OBJECT(mms), "scc", scc, TYPE_MPS2_SCC);
467 sccdev = DEVICE(scc);
468 qdev_prop_set_uint32(sccdev, "scc-cfg0", mms->remap ? 1 : 0);
469 qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
470 qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
471 qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
472 qdev_prop_set_uint32(sccdev, "len-oscclk", mmc->len_oscclk);
473 for (i = 0; i < mmc->len_oscclk; i++) {
474 g_autofree char *propname = g_strdup_printf("oscclk[%u]", i);
475 qdev_prop_set_uint32(sccdev, propname, mmc->oscclk[i]);
477 sysbus_realize(SYS_BUS_DEVICE(scc), &error_fatal);
478 return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
481 static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
482 const char *name, hwaddr size,
483 const int *irqs, const PPCExtraData *extradata)
485 MPS2FPGAIO *fpgaio = opaque;
486 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
488 object_initialize_child(OBJECT(mms), "fpgaio", fpgaio, TYPE_MPS2_FPGAIO);
489 qdev_prop_set_uint32(DEVICE(fpgaio), "num-leds", mmc->fpgaio_num_leds);
490 qdev_prop_set_bit(DEVICE(fpgaio), "has-switches", mmc->fpgaio_has_switches);
491 qdev_prop_set_bit(DEVICE(fpgaio), "has-dbgctrl", mmc->fpgaio_has_dbgctrl);
492 sysbus_realize(SYS_BUS_DEVICE(fpgaio), &error_fatal);
493 return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
496 static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
497 const char *name, hwaddr size,
498 const int *irqs,
499 const PPCExtraData *extradata)
501 SysBusDevice *s;
502 NICInfo *nd = &nd_table[0];
504 /* In hardware this is a LAN9220; the LAN9118 is software compatible
505 * except that it doesn't support the checksum-offload feature.
507 qemu_check_nic_model(nd, "lan9118");
508 mms->lan9118 = qdev_new(TYPE_LAN9118);
509 qdev_set_nic_properties(mms->lan9118, nd);
511 s = SYS_BUS_DEVICE(mms->lan9118);
512 sysbus_realize_and_unref(s, &error_fatal);
513 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
514 return sysbus_mmio_get_region(s, 0);
517 static MemoryRegion *make_eth_usb(MPS2TZMachineState *mms, void *opaque,
518 const char *name, hwaddr size,
519 const int *irqs,
520 const PPCExtraData *extradata)
523 * The AN524 makes the ethernet and USB share a PPC port.
524 * irqs[] is the ethernet IRQ.
526 SysBusDevice *s;
527 NICInfo *nd = &nd_table[0];
529 memory_region_init(&mms->eth_usb_container, OBJECT(mms),
530 "mps2-tz-eth-usb-container", 0x200000);
533 * In hardware this is a LAN9220; the LAN9118 is software compatible
534 * except that it doesn't support the checksum-offload feature.
536 qemu_check_nic_model(nd, "lan9118");
537 mms->lan9118 = qdev_new(TYPE_LAN9118);
538 qdev_set_nic_properties(mms->lan9118, nd);
540 s = SYS_BUS_DEVICE(mms->lan9118);
541 sysbus_realize_and_unref(s, &error_fatal);
542 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
544 memory_region_add_subregion(&mms->eth_usb_container,
545 0, sysbus_mmio_get_region(s, 0));
547 /* The USB OTG controller is an ISP1763; we don't have a model of it. */
548 object_initialize_child(OBJECT(mms), "usb-otg",
549 &mms->usb, TYPE_UNIMPLEMENTED_DEVICE);
550 qdev_prop_set_string(DEVICE(&mms->usb), "name", "usb-otg");
551 qdev_prop_set_uint64(DEVICE(&mms->usb), "size", 0x100000);
552 s = SYS_BUS_DEVICE(&mms->usb);
553 sysbus_realize(s, &error_fatal);
555 memory_region_add_subregion(&mms->eth_usb_container,
556 0x100000, sysbus_mmio_get_region(s, 0));
558 return &mms->eth_usb_container;
561 static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
562 const char *name, hwaddr size,
563 const int *irqs, const PPCExtraData *extradata)
565 TZMPC *mpc = opaque;
566 int i = mpc - &mms->mpc[0];
567 MemoryRegion *upstream;
568 const RAMInfo *raminfo = find_raminfo_for_mpc(mms, i);
569 MemoryRegion *ram = mr_for_raminfo(mms, raminfo);
571 object_initialize_child(OBJECT(mms), name, mpc, TYPE_TZ_MPC);
572 object_property_set_link(OBJECT(mpc), "downstream", OBJECT(ram),
573 &error_fatal);
574 sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
575 /* Map the upstream end of the MPC into system memory */
576 upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
577 memory_region_add_subregion(get_system_memory(), raminfo->base, upstream);
578 /* and connect its interrupt to the IoTKit */
579 qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
580 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
581 "mpcexp_status", i));
583 /* Return the register interface MR for our caller to map behind the PPC */
584 return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
587 static hwaddr boot_mem_base(MPS2TZMachineState *mms)
590 * Return the canonical address of the block which will be mapped
591 * at address 0x0 (i.e. where the vector table is).
592 * This is usually 0, but if the AN524 alternate memory map is
593 * enabled it will be the base address of the QSPI block.
595 return mms->remap ? 0x28000000 : 0;
598 static void remap_memory(MPS2TZMachineState *mms, int map)
601 * Remap the memory for the AN524. 'map' is the value of
602 * SCC CFG_REG0 bit 0, i.e. 0 for the default map and 1
603 * for the "option 1" mapping where QSPI is at address 0.
605 * Effectively we need to swap around the "upstream" ends of
606 * MPC 0 and MPC 1.
608 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
609 int i;
611 if (mmc->fpga_type != FPGA_AN524) {
612 return;
615 memory_region_transaction_begin();
616 for (i = 0; i < 2; i++) {
617 TZMPC *mpc = &mms->mpc[i];
618 MemoryRegion *upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
619 hwaddr addr = (i ^ map) ? 0x28000000 : 0;
621 memory_region_set_address(upstream, addr);
623 memory_region_transaction_commit();
626 static void remap_irq_fn(void *opaque, int n, int level)
628 MPS2TZMachineState *mms = opaque;
630 remap_memory(mms, level);
633 static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
634 const char *name, hwaddr size,
635 const int *irqs, const PPCExtraData *extradata)
637 /* The irq[] array is DMACINTR, DMACINTERR, DMACINTTC, in that order */
638 PL080State *dma = opaque;
639 int i = dma - &mms->dma[0];
640 SysBusDevice *s;
641 char *mscname = g_strdup_printf("%s-msc", name);
642 TZMSC *msc = &mms->msc[i];
643 DeviceState *iotkitdev = DEVICE(&mms->iotkit);
644 MemoryRegion *msc_upstream;
645 MemoryRegion *msc_downstream;
648 * Each DMA device is a PL081 whose transaction master interface
649 * is guarded by a Master Security Controller. The downstream end of
650 * the MSC connects to the IoTKit AHB Slave Expansion port, so the
651 * DMA devices can see all devices and memory that the CPU does.
653 object_initialize_child(OBJECT(mms), mscname, msc, TYPE_TZ_MSC);
654 msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
655 object_property_set_link(OBJECT(msc), "downstream",
656 OBJECT(msc_downstream), &error_fatal);
657 object_property_set_link(OBJECT(msc), "idau", OBJECT(mms), &error_fatal);
658 sysbus_realize(SYS_BUS_DEVICE(msc), &error_fatal);
660 qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
661 qdev_get_gpio_in_named(iotkitdev,
662 "mscexp_status", i));
663 qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
664 qdev_get_gpio_in_named(DEVICE(msc),
665 "irq_clear", 0));
666 qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
667 qdev_get_gpio_in_named(DEVICE(msc),
668 "cfg_nonsec", 0));
669 qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
670 ARRAY_SIZE(mms->ppc) + i,
671 qdev_get_gpio_in_named(DEVICE(msc),
672 "cfg_sec_resp", 0));
673 msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
675 object_initialize_child(OBJECT(mms), name, dma, TYPE_PL081);
676 object_property_set_link(OBJECT(dma), "downstream", OBJECT(msc_upstream),
677 &error_fatal);
678 sysbus_realize(SYS_BUS_DEVICE(dma), &error_fatal);
680 s = SYS_BUS_DEVICE(dma);
681 /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
682 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
683 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1]));
684 sysbus_connect_irq(s, 2, get_sse_irq_in(mms, irqs[2]));
686 g_free(mscname);
687 return sysbus_mmio_get_region(s, 0);
690 static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
691 const char *name, hwaddr size,
692 const int *irqs, const PPCExtraData *extradata)
695 * The AN505 has five PL022 SPI controllers.
696 * One of these should have the LCD controller behind it; the others
697 * are connected only to the FPGA's "general purpose SPI connector"
698 * or "shield" expansion connectors.
699 * Note that if we do implement devices behind SPI, the chip select
700 * lines are set via the "MISC" register in the MPS2 FPGAIO device.
702 PL022State *spi = opaque;
703 SysBusDevice *s;
705 object_initialize_child(OBJECT(mms), name, spi, TYPE_PL022);
706 sysbus_realize(SYS_BUS_DEVICE(spi), &error_fatal);
707 s = SYS_BUS_DEVICE(spi);
708 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
709 return sysbus_mmio_get_region(s, 0);
712 static MemoryRegion *make_i2c(MPS2TZMachineState *mms, void *opaque,
713 const char *name, hwaddr size,
714 const int *irqs, const PPCExtraData *extradata)
716 ArmSbconI2CState *i2c = opaque;
717 SysBusDevice *s;
719 object_initialize_child(OBJECT(mms), name, i2c, TYPE_ARM_SBCON_I2C);
720 s = SYS_BUS_DEVICE(i2c);
721 sysbus_realize(s, &error_fatal);
724 * If this is an internal-use-only i2c bus, mark it full
725 * so that user-created i2c devices are not plugged into it.
726 * If we implement models of any on-board i2c devices that
727 * plug in to one of the internal-use-only buses, then we will
728 * need to create and plugging those in here before we mark the
729 * bus as full.
731 if (extradata->i2c_internal) {
732 BusState *qbus = qdev_get_child_bus(DEVICE(i2c), "i2c");
733 qbus_mark_full(qbus);
736 return sysbus_mmio_get_region(s, 0);
739 static MemoryRegion *make_rtc(MPS2TZMachineState *mms, void *opaque,
740 const char *name, hwaddr size,
741 const int *irqs, const PPCExtraData *extradata)
743 PL031State *pl031 = opaque;
744 SysBusDevice *s;
746 object_initialize_child(OBJECT(mms), name, pl031, TYPE_PL031);
747 s = SYS_BUS_DEVICE(pl031);
748 sysbus_realize(s, &error_fatal);
750 * The board docs don't give an IRQ number for the PL031, so
751 * presumably it is not connected.
753 return sysbus_mmio_get_region(s, 0);
756 static void create_non_mpc_ram(MPS2TZMachineState *mms)
759 * Handle the RAMs which are either not behind MPCs or which are
760 * aliases to another MPC.
762 const RAMInfo *p;
763 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
765 for (p = mmc->raminfo; p->name; p++) {
766 if (p->flags & IS_ALIAS) {
767 SysBusDevice *mpc_sbd = SYS_BUS_DEVICE(&mms->mpc[p->mpc]);
768 MemoryRegion *upstream = sysbus_mmio_get_region(mpc_sbd, 1);
769 make_ram_alias(&mms->ram[p->mrindex], p->name, upstream, p->base);
770 } else if (p->mpc == -1) {
771 /* RAM not behind an MPC */
772 MemoryRegion *mr = mr_for_raminfo(mms, p);
773 memory_region_add_subregion(get_system_memory(), p->base, mr);
778 static uint32_t boot_ram_size(MPS2TZMachineState *mms)
780 /* Return the size of the RAM block at guest address zero */
781 const RAMInfo *p;
782 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
785 * Use a per-board specification (for when the boot RAM is in
786 * the SSE and so doesn't have a RAMInfo list entry)
788 if (mmc->boot_ram_size) {
789 return mmc->boot_ram_size;
792 for (p = mmc->raminfo; p->name; p++) {
793 if (p->base == boot_mem_base(mms)) {
794 return p->size;
797 g_assert_not_reached();
800 static void mps2tz_common_init(MachineState *machine)
802 MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
803 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
804 MachineClass *mc = MACHINE_GET_CLASS(machine);
805 MemoryRegion *system_memory = get_system_memory();
806 DeviceState *iotkitdev;
807 DeviceState *dev_splitter;
808 const PPCInfo *ppcs;
809 int num_ppcs;
810 int i;
812 if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
813 error_report("This board can only be used with CPU %s",
814 mc->default_cpu_type);
815 exit(1);
818 if (machine->ram_size != mc->default_ram_size) {
819 char *sz = size_to_str(mc->default_ram_size);
820 error_report("Invalid RAM size, should be %s", sz);
821 g_free(sz);
822 exit(EXIT_FAILURE);
825 /* These clocks don't need migration because they are fixed-frequency */
826 mms->sysclk = clock_new(OBJECT(machine), "SYSCLK");
827 clock_set_hz(mms->sysclk, mmc->sysclk_frq);
828 mms->s32kclk = clock_new(OBJECT(machine), "S32KCLK");
829 clock_set_hz(mms->s32kclk, S32KCLK_FRQ);
831 object_initialize_child(OBJECT(machine), TYPE_IOTKIT, &mms->iotkit,
832 mmc->armsse_type);
833 iotkitdev = DEVICE(&mms->iotkit);
834 object_property_set_link(OBJECT(&mms->iotkit), "memory",
835 OBJECT(system_memory), &error_abort);
836 qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", mmc->numirq);
837 qdev_prop_set_uint32(iotkitdev, "init-svtor", mmc->init_svtor);
838 if (mmc->cpu0_mpu_ns != MPU_REGION_DEFAULT) {
839 qdev_prop_set_uint32(iotkitdev, "CPU0_MPU_NS", mmc->cpu0_mpu_ns);
841 if (mmc->cpu0_mpu_s != MPU_REGION_DEFAULT) {
842 qdev_prop_set_uint32(iotkitdev, "CPU0_MPU_S", mmc->cpu0_mpu_s);
844 if (object_property_find(OBJECT(iotkitdev), "CPU1_MPU_NS")) {
845 if (mmc->cpu1_mpu_ns != MPU_REGION_DEFAULT) {
846 qdev_prop_set_uint32(iotkitdev, "CPU1_MPU_NS", mmc->cpu1_mpu_ns);
848 if (mmc->cpu1_mpu_s != MPU_REGION_DEFAULT) {
849 qdev_prop_set_uint32(iotkitdev, "CPU1_MPU_S", mmc->cpu1_mpu_s);
852 qdev_prop_set_uint32(iotkitdev, "SRAM_ADDR_WIDTH", mmc->sram_addr_width);
853 qdev_connect_clock_in(iotkitdev, "MAINCLK", mms->sysclk);
854 qdev_connect_clock_in(iotkitdev, "S32KCLK", mms->s32kclk);
855 sysbus_realize(SYS_BUS_DEVICE(&mms->iotkit), &error_fatal);
858 * If this board has more than one CPU, then we need to create splitters
859 * to feed the IRQ inputs for each CPU in the SSE from each device in the
860 * board. If there is only one CPU, we can just wire the device IRQ
861 * directly to the SSE's IRQ input.
863 assert(mmc->numirq <= MPS2TZ_NUMIRQ_MAX);
864 if (mc->max_cpus > 1) {
865 for (i = 0; i < mmc->numirq; i++) {
866 char *name = g_strdup_printf("mps2-irq-splitter%d", i);
867 SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
869 object_initialize_child_with_props(OBJECT(machine), name,
870 splitter, sizeof(*splitter),
871 TYPE_SPLIT_IRQ, &error_fatal,
872 NULL);
873 g_free(name);
875 object_property_set_int(OBJECT(splitter), "num-lines", 2,
876 &error_fatal);
877 qdev_realize(DEVICE(splitter), NULL, &error_fatal);
878 qdev_connect_gpio_out(DEVICE(splitter), 0,
879 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
880 "EXP_IRQ", i));
881 qdev_connect_gpio_out(DEVICE(splitter), 1,
882 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
883 "EXP_CPU1_IRQ", i));
887 /* The sec_resp_cfg output from the IoTKit must be split into multiple
888 * lines, one for each of the PPCs we create here, plus one per MSC.
890 object_initialize_child(OBJECT(machine), "sec-resp-splitter",
891 &mms->sec_resp_splitter, TYPE_SPLIT_IRQ);
892 object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines",
893 ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
894 &error_fatal);
895 qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
896 dev_splitter = DEVICE(&mms->sec_resp_splitter);
897 qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
898 qdev_get_gpio_in(dev_splitter, 0));
901 * The IoTKit sets up much of the memory layout, including
902 * the aliases between secure and non-secure regions in the
903 * address space, and also most of the devices in the system.
904 * The FPGA itself contains various RAMs and some additional devices.
905 * The FPGA images have an odd combination of different RAMs,
906 * because in hardware they are different implementations and
907 * connected to different buses, giving varying performance/size
908 * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
909 * call the largest lump our "system memory".
913 * The overflow IRQs for all UARTs are ORed together.
914 * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
915 * Create the OR gate for this: it has one input for the TX overflow
916 * and one for the RX overflow for each UART we might have.
917 * (If the board has fewer than the maximum possible number of UARTs
918 * those inputs are never wired up and are treated as always-zero.)
920 object_initialize_child(OBJECT(mms), "uart-irq-orgate",
921 &mms->uart_irq_orgate, TYPE_OR_IRQ);
922 object_property_set_int(OBJECT(&mms->uart_irq_orgate), "num-lines",
923 2 * ARRAY_SIZE(mms->uart),
924 &error_fatal);
925 qdev_realize(DEVICE(&mms->uart_irq_orgate), NULL, &error_fatal);
926 qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
927 get_sse_irq_in(mms, mmc->uart_overflow_irq));
929 /* Most of the devices in the FPGA are behind Peripheral Protection
930 * Controllers. The required order for initializing things is:
931 * + initialize the PPC
932 * + initialize, configure and realize downstream devices
933 * + connect downstream device MemoryRegions to the PPC
934 * + realize the PPC
935 * + map the PPC's MemoryRegions to the places in the address map
936 * where the downstream devices should appear
937 * + wire up the PPC's control lines to the IoTKit object
940 const PPCInfo an505_ppcs[] = { {
941 .name = "apb_ppcexp0",
942 .ports = {
943 { "ssram-0-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 },
944 { "ssram-1-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 },
945 { "ssram-2-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 },
947 }, {
948 .name = "apb_ppcexp1",
949 .ports = {
950 { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000, { 51 } },
951 { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000, { 52 } },
952 { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000, { 53 } },
953 { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000, { 54 } },
954 { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000, { 55 } },
955 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000, { 32, 33, 42 } },
956 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000, { 34, 35, 43 } },
957 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000, { 36, 37, 44 } },
958 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000, { 38, 39, 45 } },
959 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000, { 40, 41, 46 } },
960 { "i2c0", make_i2c, &mms->i2c[0], 0x40207000, 0x1000, {},
961 { .i2c_internal = true /* touchscreen */ } },
962 { "i2c1", make_i2c, &mms->i2c[1], 0x40208000, 0x1000, {},
963 { .i2c_internal = true /* audio conf */ } },
964 { "i2c2", make_i2c, &mms->i2c[2], 0x4020c000, 0x1000, {},
965 { .i2c_internal = false /* shield 0 */ } },
966 { "i2c3", make_i2c, &mms->i2c[3], 0x4020d000, 0x1000, {},
967 { .i2c_internal = false /* shield 1 */ } },
969 }, {
970 .name = "apb_ppcexp2",
971 .ports = {
972 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
973 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
974 0x40301000, 0x1000 },
975 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
977 }, {
978 .name = "ahb_ppcexp0",
979 .ports = {
980 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
981 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
982 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
983 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
984 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
985 { "eth", make_eth_dev, NULL, 0x42000000, 0x100000, { 48 } },
987 }, {
988 .name = "ahb_ppcexp1",
989 .ports = {
990 { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000, { 58, 56, 57 } },
991 { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000, { 61, 59, 60 } },
992 { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000, { 64, 62, 63 } },
993 { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000, { 67, 65, 66 } },
998 const PPCInfo an524_ppcs[] = { {
999 .name = "apb_ppcexp0",
1000 .ports = {
1001 { "bram-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 },
1002 { "qspi-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 },
1003 { "ddr-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 },
1005 }, {
1006 .name = "apb_ppcexp1",
1007 .ports = {
1008 { "i2c0", make_i2c, &mms->i2c[0], 0x41200000, 0x1000, {},
1009 { .i2c_internal = true /* touchscreen */ } },
1010 { "i2c1", make_i2c, &mms->i2c[1], 0x41201000, 0x1000, {},
1011 { .i2c_internal = true /* audio conf */ } },
1012 { "spi0", make_spi, &mms->spi[0], 0x41202000, 0x1000, { 52 } },
1013 { "spi1", make_spi, &mms->spi[1], 0x41203000, 0x1000, { 53 } },
1014 { "spi2", make_spi, &mms->spi[2], 0x41204000, 0x1000, { 54 } },
1015 { "i2c2", make_i2c, &mms->i2c[2], 0x41205000, 0x1000, {},
1016 { .i2c_internal = false /* shield 0 */ } },
1017 { "i2c3", make_i2c, &mms->i2c[3], 0x41206000, 0x1000, {},
1018 { .i2c_internal = false /* shield 1 */ } },
1019 { /* port 7 reserved */ },
1020 { "i2c4", make_i2c, &mms->i2c[4], 0x41208000, 0x1000, {},
1021 { .i2c_internal = true /* DDR4 EEPROM */ } },
1023 }, {
1024 .name = "apb_ppcexp2",
1025 .ports = {
1026 { "scc", make_scc, &mms->scc, 0x41300000, 0x1000 },
1027 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
1028 0x41301000, 0x1000 },
1029 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x41302000, 0x1000 },
1030 { "uart0", make_uart, &mms->uart[0], 0x41303000, 0x1000, { 32, 33, 42 } },
1031 { "uart1", make_uart, &mms->uart[1], 0x41304000, 0x1000, { 34, 35, 43 } },
1032 { "uart2", make_uart, &mms->uart[2], 0x41305000, 0x1000, { 36, 37, 44 } },
1033 { "uart3", make_uart, &mms->uart[3], 0x41306000, 0x1000, { 38, 39, 45 } },
1034 { "uart4", make_uart, &mms->uart[4], 0x41307000, 0x1000, { 40, 41, 46 } },
1035 { "uart5", make_uart, &mms->uart[5], 0x41308000, 0x1000, { 124, 125, 126 } },
1037 { /* port 9 reserved */ },
1038 { "clcd", make_unimp_dev, &mms->cldc, 0x4130a000, 0x1000 },
1039 { "rtc", make_rtc, &mms->rtc, 0x4130b000, 0x1000 },
1041 }, {
1042 .name = "ahb_ppcexp0",
1043 .ports = {
1044 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x41100000, 0x1000 },
1045 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x41101000, 0x1000 },
1046 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x41102000, 0x1000 },
1047 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x41103000, 0x1000 },
1048 { "eth-usb", make_eth_usb, NULL, 0x41400000, 0x200000, { 48 } },
1053 const PPCInfo an547_ppcs[] = { {
1054 .name = "apb_ppcexp0",
1055 .ports = {
1056 { "ssram-mpc", make_mpc, &mms->mpc[0], 0x57000000, 0x1000 },
1057 { "qspi-mpc", make_mpc, &mms->mpc[1], 0x57001000, 0x1000 },
1058 { "ddr-mpc", make_mpc, &mms->mpc[2], 0x57002000, 0x1000 },
1060 }, {
1061 .name = "apb_ppcexp1",
1062 .ports = {
1063 { "i2c0", make_i2c, &mms->i2c[0], 0x49200000, 0x1000, {},
1064 { .i2c_internal = true /* touchscreen */ } },
1065 { "i2c1", make_i2c, &mms->i2c[1], 0x49201000, 0x1000, {},
1066 { .i2c_internal = true /* audio conf */ } },
1067 { "spi0", make_spi, &mms->spi[0], 0x49202000, 0x1000, { 53 } },
1068 { "spi1", make_spi, &mms->spi[1], 0x49203000, 0x1000, { 54 } },
1069 { "spi2", make_spi, &mms->spi[2], 0x49204000, 0x1000, { 55 } },
1070 { "i2c2", make_i2c, &mms->i2c[2], 0x49205000, 0x1000, {},
1071 { .i2c_internal = false /* shield 0 */ } },
1072 { "i2c3", make_i2c, &mms->i2c[3], 0x49206000, 0x1000, {},
1073 { .i2c_internal = false /* shield 1 */ } },
1074 { /* port 7 reserved */ },
1075 { "i2c4", make_i2c, &mms->i2c[4], 0x49208000, 0x1000, {},
1076 { .i2c_internal = true /* DDR4 EEPROM */ } },
1078 }, {
1079 .name = "apb_ppcexp2",
1080 .ports = {
1081 { "scc", make_scc, &mms->scc, 0x49300000, 0x1000 },
1082 { "i2s-audio", make_unimp_dev, &mms->i2s_audio, 0x49301000, 0x1000 },
1083 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x49302000, 0x1000 },
1084 { "uart0", make_uart, &mms->uart[0], 0x49303000, 0x1000, { 33, 34, 43 } },
1085 { "uart1", make_uart, &mms->uart[1], 0x49304000, 0x1000, { 35, 36, 44 } },
1086 { "uart2", make_uart, &mms->uart[2], 0x49305000, 0x1000, { 37, 38, 45 } },
1087 { "uart3", make_uart, &mms->uart[3], 0x49306000, 0x1000, { 39, 40, 46 } },
1088 { "uart4", make_uart, &mms->uart[4], 0x49307000, 0x1000, { 41, 42, 47 } },
1089 { "uart5", make_uart, &mms->uart[5], 0x49308000, 0x1000, { 125, 126, 127 } },
1091 { /* port 9 reserved */ },
1092 { "clcd", make_unimp_dev, &mms->cldc, 0x4930a000, 0x1000 },
1093 { "rtc", make_rtc, &mms->rtc, 0x4930b000, 0x1000 },
1095 }, {
1096 .name = "ahb_ppcexp0",
1097 .ports = {
1098 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x41100000, 0x1000 },
1099 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x41101000, 0x1000 },
1100 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x41102000, 0x1000 },
1101 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x41103000, 0x1000 },
1102 { /* port 4 USER AHB interface 0 */ },
1103 { /* port 5 USER AHB interface 1 */ },
1104 { /* port 6 USER AHB interface 2 */ },
1105 { /* port 7 USER AHB interface 3 */ },
1106 { "eth-usb", make_eth_usb, NULL, 0x41400000, 0x200000, { 49 } },
1111 switch (mmc->fpga_type) {
1112 case FPGA_AN505:
1113 case FPGA_AN521:
1114 ppcs = an505_ppcs;
1115 num_ppcs = ARRAY_SIZE(an505_ppcs);
1116 break;
1117 case FPGA_AN524:
1118 ppcs = an524_ppcs;
1119 num_ppcs = ARRAY_SIZE(an524_ppcs);
1120 break;
1121 case FPGA_AN547:
1122 ppcs = an547_ppcs;
1123 num_ppcs = ARRAY_SIZE(an547_ppcs);
1124 break;
1125 default:
1126 g_assert_not_reached();
1129 for (i = 0; i < num_ppcs; i++) {
1130 const PPCInfo *ppcinfo = &ppcs[i];
1131 TZPPC *ppc = &mms->ppc[i];
1132 DeviceState *ppcdev;
1133 int port;
1134 char *gpioname;
1136 object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
1137 TYPE_TZ_PPC);
1138 ppcdev = DEVICE(ppc);
1140 for (port = 0; port < TZ_NUM_PORTS; port++) {
1141 const PPCPortInfo *pinfo = &ppcinfo->ports[port];
1142 MemoryRegion *mr;
1143 char *portname;
1145 if (!pinfo->devfn) {
1146 continue;
1149 mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size,
1150 pinfo->irqs, &pinfo->extradata);
1151 portname = g_strdup_printf("port[%d]", port);
1152 object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
1153 &error_fatal);
1154 g_free(portname);
1157 sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
1159 for (port = 0; port < TZ_NUM_PORTS; port++) {
1160 const PPCPortInfo *pinfo = &ppcinfo->ports[port];
1162 if (!pinfo->devfn) {
1163 continue;
1165 sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
1167 gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
1168 qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
1169 qdev_get_gpio_in_named(ppcdev,
1170 "cfg_nonsec",
1171 port));
1172 g_free(gpioname);
1173 gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
1174 qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
1175 qdev_get_gpio_in_named(ppcdev,
1176 "cfg_ap", port));
1177 g_free(gpioname);
1180 gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
1181 qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
1182 qdev_get_gpio_in_named(ppcdev,
1183 "irq_enable", 0));
1184 g_free(gpioname);
1185 gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
1186 qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
1187 qdev_get_gpio_in_named(ppcdev,
1188 "irq_clear", 0));
1189 g_free(gpioname);
1190 gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
1191 qdev_connect_gpio_out_named(ppcdev, "irq", 0,
1192 qdev_get_gpio_in_named(iotkitdev,
1193 gpioname, 0));
1194 g_free(gpioname);
1196 qdev_connect_gpio_out(dev_splitter, i,
1197 qdev_get_gpio_in_named(ppcdev,
1198 "cfg_sec_resp", 0));
1201 create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
1203 if (mmc->fpga_type == FPGA_AN547) {
1204 create_unimplemented_device("U55 timing adapter 0", 0x48102000, 0x1000);
1205 create_unimplemented_device("U55 timing adapter 1", 0x48103000, 0x1000);
1208 create_non_mpc_ram(mms);
1210 if (mmc->fpga_type == FPGA_AN524) {
1212 * Connect the line from the SCC so that we can remap when the
1213 * guest updates that register.
1215 mms->remap_irq = qemu_allocate_irq(remap_irq_fn, mms, 0);
1216 qdev_connect_gpio_out_named(DEVICE(&mms->scc), "remap", 0,
1217 mms->remap_irq);
1220 armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename,
1221 0, boot_ram_size(mms));
1224 static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
1225 int *iregion, bool *exempt, bool *ns, bool *nsc)
1228 * The MPS2 TZ FPGA images have IDAUs in them which are connected to
1229 * the Master Security Controllers. These have the same logic as
1230 * is used by the IoTKit for the IDAU connected to the CPU, except
1231 * that MSCs don't care about the NSC attribute.
1233 int region = extract32(address, 28, 4);
1235 *ns = !(region & 1);
1236 *nsc = false;
1237 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1238 *exempt = (address & 0xeff00000) == 0xe0000000;
1239 *iregion = region;
1242 static char *mps2_get_remap(Object *obj, Error **errp)
1244 MPS2TZMachineState *mms = MPS2TZ_MACHINE(obj);
1245 const char *val = mms->remap ? "QSPI" : "BRAM";
1246 return g_strdup(val);
1249 static void mps2_set_remap(Object *obj, const char *value, Error **errp)
1251 MPS2TZMachineState *mms = MPS2TZ_MACHINE(obj);
1253 if (!strcmp(value, "BRAM")) {
1254 mms->remap = false;
1255 } else if (!strcmp(value, "QSPI")) {
1256 mms->remap = true;
1257 } else {
1258 error_setg(errp, "Invalid remap value");
1259 error_append_hint(errp, "Valid values are BRAM and QSPI.\n");
1263 static void mps2_machine_reset(MachineState *machine, ShutdownCause reason)
1265 MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
1268 * Set the initial memory mapping before triggering the reset of
1269 * the rest of the system, so that the guest image loader and CPU
1270 * reset see the correct mapping.
1272 remap_memory(mms, mms->remap);
1273 qemu_devices_reset(reason);
1276 static void mps2tz_class_init(ObjectClass *oc, void *data)
1278 MachineClass *mc = MACHINE_CLASS(oc);
1279 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
1280 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1282 mc->init = mps2tz_common_init;
1283 mc->reset = mps2_machine_reset;
1284 iic->check = mps2_tz_idau_check;
1286 /* Most machines leave these at the SSE defaults */
1287 mmc->cpu0_mpu_ns = MPU_REGION_DEFAULT;
1288 mmc->cpu0_mpu_s = MPU_REGION_DEFAULT;
1289 mmc->cpu1_mpu_ns = MPU_REGION_DEFAULT;
1290 mmc->cpu1_mpu_s = MPU_REGION_DEFAULT;
1293 static void mps2tz_set_default_ram_info(MPS2TZMachineClass *mmc)
1296 * Set mc->default_ram_size and default_ram_id from the
1297 * information in mmc->raminfo.
1299 MachineClass *mc = MACHINE_CLASS(mmc);
1300 const RAMInfo *p;
1302 for (p = mmc->raminfo; p->name; p++) {
1303 if (p->mrindex < 0) {
1304 /* Found the entry for "system memory" */
1305 mc->default_ram_size = p->size;
1306 mc->default_ram_id = p->name;
1307 return;
1310 g_assert_not_reached();
1313 static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
1315 MachineClass *mc = MACHINE_CLASS(oc);
1316 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1318 mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
1319 mc->default_cpus = 1;
1320 mc->min_cpus = mc->default_cpus;
1321 mc->max_cpus = mc->default_cpus;
1322 mmc->fpga_type = FPGA_AN505;
1323 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1324 mmc->scc_id = 0x41045050;
1325 mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */
1326 mmc->apb_periph_frq = mmc->sysclk_frq;
1327 mmc->oscclk = an505_oscclk;
1328 mmc->len_oscclk = ARRAY_SIZE(an505_oscclk);
1329 mmc->fpgaio_num_leds = 2;
1330 mmc->fpgaio_has_switches = false;
1331 mmc->fpgaio_has_dbgctrl = false;
1332 mmc->numirq = 92;
1333 mmc->uart_overflow_irq = 47;
1334 mmc->init_svtor = 0x10000000;
1335 mmc->sram_addr_width = 15;
1336 mmc->raminfo = an505_raminfo;
1337 mmc->armsse_type = TYPE_IOTKIT;
1338 mmc->boot_ram_size = 0;
1339 mps2tz_set_default_ram_info(mmc);
1342 static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
1344 MachineClass *mc = MACHINE_CLASS(oc);
1345 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1347 mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
1348 mc->default_cpus = 2;
1349 mc->min_cpus = mc->default_cpus;
1350 mc->max_cpus = mc->default_cpus;
1351 mmc->fpga_type = FPGA_AN521;
1352 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1353 mmc->scc_id = 0x41045210;
1354 mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */
1355 mmc->apb_periph_frq = mmc->sysclk_frq;
1356 mmc->oscclk = an505_oscclk; /* AN521 is the same as AN505 here */
1357 mmc->len_oscclk = ARRAY_SIZE(an505_oscclk);
1358 mmc->fpgaio_num_leds = 2;
1359 mmc->fpgaio_has_switches = false;
1360 mmc->fpgaio_has_dbgctrl = false;
1361 mmc->numirq = 92;
1362 mmc->uart_overflow_irq = 47;
1363 mmc->init_svtor = 0x10000000;
1364 mmc->sram_addr_width = 15;
1365 mmc->raminfo = an505_raminfo; /* AN521 is the same as AN505 here */
1366 mmc->armsse_type = TYPE_SSE200;
1367 mmc->boot_ram_size = 0;
1368 mps2tz_set_default_ram_info(mmc);
1371 static void mps3tz_an524_class_init(ObjectClass *oc, void *data)
1373 MachineClass *mc = MACHINE_CLASS(oc);
1374 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1376 mc->desc = "ARM MPS3 with AN524 FPGA image for dual Cortex-M33";
1377 mc->default_cpus = 2;
1378 mc->min_cpus = mc->default_cpus;
1379 mc->max_cpus = mc->default_cpus;
1380 mmc->fpga_type = FPGA_AN524;
1381 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1382 mmc->scc_id = 0x41045240;
1383 mmc->sysclk_frq = 32 * 1000 * 1000; /* 32MHz */
1384 mmc->apb_periph_frq = mmc->sysclk_frq;
1385 mmc->oscclk = an524_oscclk;
1386 mmc->len_oscclk = ARRAY_SIZE(an524_oscclk);
1387 mmc->fpgaio_num_leds = 10;
1388 mmc->fpgaio_has_switches = true;
1389 mmc->fpgaio_has_dbgctrl = false;
1390 mmc->numirq = 95;
1391 mmc->uart_overflow_irq = 47;
1392 mmc->init_svtor = 0x10000000;
1393 mmc->sram_addr_width = 15;
1394 mmc->raminfo = an524_raminfo;
1395 mmc->armsse_type = TYPE_SSE200;
1396 mmc->boot_ram_size = 0;
1397 mps2tz_set_default_ram_info(mmc);
1399 object_class_property_add_str(oc, "remap", mps2_get_remap, mps2_set_remap);
1400 object_class_property_set_description(oc, "remap",
1401 "Set memory mapping. Valid values "
1402 "are BRAM (default) and QSPI.");
1405 static void mps3tz_an547_class_init(ObjectClass *oc, void *data)
1407 MachineClass *mc = MACHINE_CLASS(oc);
1408 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1410 mc->desc = "ARM MPS3 with AN547 FPGA image for Cortex-M55";
1411 mc->default_cpus = 1;
1412 mc->min_cpus = mc->default_cpus;
1413 mc->max_cpus = mc->default_cpus;
1414 mmc->fpga_type = FPGA_AN547;
1415 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m55");
1416 mmc->scc_id = 0x41055470;
1417 mmc->sysclk_frq = 32 * 1000 * 1000; /* 32MHz */
1418 mmc->apb_periph_frq = 25 * 1000 * 1000; /* 25MHz */
1419 mmc->oscclk = an524_oscclk; /* same as AN524 */
1420 mmc->len_oscclk = ARRAY_SIZE(an524_oscclk);
1421 mmc->fpgaio_num_leds = 10;
1422 mmc->fpgaio_has_switches = true;
1423 mmc->fpgaio_has_dbgctrl = true;
1424 mmc->numirq = 96;
1425 mmc->uart_overflow_irq = 48;
1426 mmc->init_svtor = 0x00000000;
1427 mmc->cpu0_mpu_s = mmc->cpu0_mpu_ns = 16;
1428 mmc->sram_addr_width = 21;
1429 mmc->raminfo = an547_raminfo;
1430 mmc->armsse_type = TYPE_SSE300;
1431 mmc->boot_ram_size = 512 * KiB;
1432 mps2tz_set_default_ram_info(mmc);
1435 static const TypeInfo mps2tz_info = {
1436 .name = TYPE_MPS2TZ_MACHINE,
1437 .parent = TYPE_MACHINE,
1438 .abstract = true,
1439 .instance_size = sizeof(MPS2TZMachineState),
1440 .class_size = sizeof(MPS2TZMachineClass),
1441 .class_init = mps2tz_class_init,
1442 .interfaces = (InterfaceInfo[]) {
1443 { TYPE_IDAU_INTERFACE },
1448 static const TypeInfo mps2tz_an505_info = {
1449 .name = TYPE_MPS2TZ_AN505_MACHINE,
1450 .parent = TYPE_MPS2TZ_MACHINE,
1451 .class_init = mps2tz_an505_class_init,
1454 static const TypeInfo mps2tz_an521_info = {
1455 .name = TYPE_MPS2TZ_AN521_MACHINE,
1456 .parent = TYPE_MPS2TZ_MACHINE,
1457 .class_init = mps2tz_an521_class_init,
1460 static const TypeInfo mps3tz_an524_info = {
1461 .name = TYPE_MPS3TZ_AN524_MACHINE,
1462 .parent = TYPE_MPS2TZ_MACHINE,
1463 .class_init = mps3tz_an524_class_init,
1466 static const TypeInfo mps3tz_an547_info = {
1467 .name = TYPE_MPS3TZ_AN547_MACHINE,
1468 .parent = TYPE_MPS2TZ_MACHINE,
1469 .class_init = mps3tz_an547_class_init,
1472 static void mps2tz_machine_init(void)
1474 type_register_static(&mps2tz_info);
1475 type_register_static(&mps2tz_an505_info);
1476 type_register_static(&mps2tz_an521_info);
1477 type_register_static(&mps3tz_an524_info);
1478 type_register_static(&mps3tz_an547_info);
1481 type_init(mps2tz_machine_init);