block: Remove monitor command block_passwd
[qemu/armbru.git] / hw / core / loader.c
blob9feca32de9897a7d5a0bce907c9d54ad11fbc0cc
1 /*
2 * QEMU Executable loader
4 * Copyright (c) 2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 * Gunzip functionality in this file is derived from u-boot:
26 * (C) Copyright 2008 Semihalf
28 * (C) Copyright 2000-2005
29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License as
33 * published by the Free Software Foundation; either version 2 of
34 * the License, or (at your option) any later version.
36 * This program is distributed in the hope that it will be useful,
37 * but WITHOUT ANY WARRANTY; without even the implied warranty of
38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
39 * GNU General Public License for more details.
41 * You should have received a copy of the GNU General Public License along
42 * with this program; if not, see <http://www.gnu.org/licenses/>.
45 #include "qemu/osdep.h"
46 #include "qemu-common.h"
47 #include "qemu/datadir.h"
48 #include "qapi/error.h"
49 #include "trace.h"
50 #include "hw/hw.h"
51 #include "disas/disas.h"
52 #include "migration/vmstate.h"
53 #include "monitor/monitor.h"
54 #include "sysemu/reset.h"
55 #include "sysemu/sysemu.h"
56 #include "uboot_image.h"
57 #include "hw/loader.h"
58 #include "hw/nvram/fw_cfg.h"
59 #include "exec/memory.h"
60 #include "exec/address-spaces.h"
61 #include "hw/boards.h"
62 #include "qemu/cutils.h"
63 #include "sysemu/runstate.h"
65 #include <zlib.h>
67 static int roms_loaded;
69 /* return the size or -1 if error */
70 int64_t get_image_size(const char *filename)
72 int fd;
73 int64_t size;
74 fd = open(filename, O_RDONLY | O_BINARY);
75 if (fd < 0)
76 return -1;
77 size = lseek(fd, 0, SEEK_END);
78 close(fd);
79 return size;
82 /* return the size or -1 if error */
83 ssize_t load_image_size(const char *filename, void *addr, size_t size)
85 int fd;
86 ssize_t actsize, l = 0;
88 fd = open(filename, O_RDONLY | O_BINARY);
89 if (fd < 0) {
90 return -1;
93 while ((actsize = read(fd, addr + l, size - l)) > 0) {
94 l += actsize;
97 close(fd);
99 return actsize < 0 ? -1 : l;
102 /* read()-like version */
103 ssize_t read_targphys(const char *name,
104 int fd, hwaddr dst_addr, size_t nbytes)
106 uint8_t *buf;
107 ssize_t did;
109 buf = g_malloc(nbytes);
110 did = read(fd, buf, nbytes);
111 if (did > 0)
112 rom_add_blob_fixed("read", buf, did, dst_addr);
113 g_free(buf);
114 return did;
117 int load_image_targphys(const char *filename,
118 hwaddr addr, uint64_t max_sz)
120 return load_image_targphys_as(filename, addr, max_sz, NULL);
123 /* return the size or -1 if error */
124 int load_image_targphys_as(const char *filename,
125 hwaddr addr, uint64_t max_sz, AddressSpace *as)
127 int size;
129 size = get_image_size(filename);
130 if (size < 0 || size > max_sz) {
131 return -1;
133 if (size > 0) {
134 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) {
135 return -1;
138 return size;
141 int load_image_mr(const char *filename, MemoryRegion *mr)
143 int size;
145 if (!memory_access_is_direct(mr, false)) {
146 /* Can only load an image into RAM or ROM */
147 return -1;
150 size = get_image_size(filename);
152 if (size < 0 || size > memory_region_size(mr)) {
153 return -1;
155 if (size > 0) {
156 if (rom_add_file_mr(filename, mr, -1) < 0) {
157 return -1;
160 return size;
163 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size,
164 const char *source)
166 const char *nulp;
167 char *ptr;
169 if (buf_size <= 0) return;
170 nulp = memchr(source, 0, buf_size);
171 if (nulp) {
172 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest);
173 } else {
174 rom_add_blob_fixed(name, source, buf_size, dest);
175 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr));
176 *ptr = 0;
180 /* A.OUT loader */
182 struct exec
184 uint32_t a_info; /* Use macros N_MAGIC, etc for access */
185 uint32_t a_text; /* length of text, in bytes */
186 uint32_t a_data; /* length of data, in bytes */
187 uint32_t a_bss; /* length of uninitialized data area, in bytes */
188 uint32_t a_syms; /* length of symbol table data in file, in bytes */
189 uint32_t a_entry; /* start address */
190 uint32_t a_trsize; /* length of relocation info for text, in bytes */
191 uint32_t a_drsize; /* length of relocation info for data, in bytes */
194 static void bswap_ahdr(struct exec *e)
196 bswap32s(&e->a_info);
197 bswap32s(&e->a_text);
198 bswap32s(&e->a_data);
199 bswap32s(&e->a_bss);
200 bswap32s(&e->a_syms);
201 bswap32s(&e->a_entry);
202 bswap32s(&e->a_trsize);
203 bswap32s(&e->a_drsize);
206 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
207 #define OMAGIC 0407
208 #define NMAGIC 0410
209 #define ZMAGIC 0413
210 #define QMAGIC 0314
211 #define _N_HDROFF(x) (1024 - sizeof (struct exec))
212 #define N_TXTOFF(x) \
213 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \
214 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
215 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
216 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
218 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
220 #define N_DATADDR(x, target_page_size) \
221 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
222 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
225 int load_aout(const char *filename, hwaddr addr, int max_sz,
226 int bswap_needed, hwaddr target_page_size)
228 int fd;
229 ssize_t size, ret;
230 struct exec e;
231 uint32_t magic;
233 fd = open(filename, O_RDONLY | O_BINARY);
234 if (fd < 0)
235 return -1;
237 size = read(fd, &e, sizeof(e));
238 if (size < 0)
239 goto fail;
241 if (bswap_needed) {
242 bswap_ahdr(&e);
245 magic = N_MAGIC(e);
246 switch (magic) {
247 case ZMAGIC:
248 case QMAGIC:
249 case OMAGIC:
250 if (e.a_text + e.a_data > max_sz)
251 goto fail;
252 lseek(fd, N_TXTOFF(e), SEEK_SET);
253 size = read_targphys(filename, fd, addr, e.a_text + e.a_data);
254 if (size < 0)
255 goto fail;
256 break;
257 case NMAGIC:
258 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
259 goto fail;
260 lseek(fd, N_TXTOFF(e), SEEK_SET);
261 size = read_targphys(filename, fd, addr, e.a_text);
262 if (size < 0)
263 goto fail;
264 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size),
265 e.a_data);
266 if (ret < 0)
267 goto fail;
268 size += ret;
269 break;
270 default:
271 goto fail;
273 close(fd);
274 return size;
275 fail:
276 close(fd);
277 return -1;
280 /* ELF loader */
282 static void *load_at(int fd, off_t offset, size_t size)
284 void *ptr;
285 if (lseek(fd, offset, SEEK_SET) < 0)
286 return NULL;
287 ptr = g_malloc(size);
288 if (read(fd, ptr, size) != size) {
289 g_free(ptr);
290 return NULL;
292 return ptr;
295 #ifdef ELF_CLASS
296 #undef ELF_CLASS
297 #endif
299 #define ELF_CLASS ELFCLASS32
300 #include "elf.h"
302 #define SZ 32
303 #define elf_word uint32_t
304 #define elf_sword int32_t
305 #define bswapSZs bswap32s
306 #include "hw/elf_ops.h"
308 #undef elfhdr
309 #undef elf_phdr
310 #undef elf_shdr
311 #undef elf_sym
312 #undef elf_rela
313 #undef elf_note
314 #undef elf_word
315 #undef elf_sword
316 #undef bswapSZs
317 #undef SZ
318 #define elfhdr elf64_hdr
319 #define elf_phdr elf64_phdr
320 #define elf_note elf64_note
321 #define elf_shdr elf64_shdr
322 #define elf_sym elf64_sym
323 #define elf_rela elf64_rela
324 #define elf_word uint64_t
325 #define elf_sword int64_t
326 #define bswapSZs bswap64s
327 #define SZ 64
328 #include "hw/elf_ops.h"
330 const char *load_elf_strerror(int error)
332 switch (error) {
333 case 0:
334 return "No error";
335 case ELF_LOAD_FAILED:
336 return "Failed to load ELF";
337 case ELF_LOAD_NOT_ELF:
338 return "The image is not ELF";
339 case ELF_LOAD_WRONG_ARCH:
340 return "The image is from incompatible architecture";
341 case ELF_LOAD_WRONG_ENDIAN:
342 return "The image has incorrect endianness";
343 case ELF_LOAD_TOO_BIG:
344 return "The image segments are too big to load";
345 default:
346 return "Unknown error";
350 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp)
352 int fd;
353 uint8_t e_ident_local[EI_NIDENT];
354 uint8_t *e_ident;
355 size_t hdr_size, off;
356 bool is64l;
358 if (!hdr) {
359 hdr = e_ident_local;
361 e_ident = hdr;
363 fd = open(filename, O_RDONLY | O_BINARY);
364 if (fd < 0) {
365 error_setg_errno(errp, errno, "Failed to open file: %s", filename);
366 return;
368 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) {
369 error_setg_errno(errp, errno, "Failed to read file: %s", filename);
370 goto fail;
372 if (e_ident[0] != ELFMAG0 ||
373 e_ident[1] != ELFMAG1 ||
374 e_ident[2] != ELFMAG2 ||
375 e_ident[3] != ELFMAG3) {
376 error_setg(errp, "Bad ELF magic");
377 goto fail;
380 is64l = e_ident[EI_CLASS] == ELFCLASS64;
381 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr);
382 if (is64) {
383 *is64 = is64l;
386 off = EI_NIDENT;
387 while (hdr != e_ident_local && off < hdr_size) {
388 size_t br = read(fd, hdr + off, hdr_size - off);
389 switch (br) {
390 case 0:
391 error_setg(errp, "File too short: %s", filename);
392 goto fail;
393 case -1:
394 error_setg_errno(errp, errno, "Failed to read file: %s",
395 filename);
396 goto fail;
398 off += br;
401 fail:
402 close(fd);
405 /* return < 0 if error, otherwise the number of bytes loaded in memory */
406 int load_elf(const char *filename,
407 uint64_t (*elf_note_fn)(void *, void *, bool),
408 uint64_t (*translate_fn)(void *, uint64_t),
409 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
410 uint64_t *highaddr, uint32_t *pflags, int big_endian,
411 int elf_machine, int clear_lsb, int data_swab)
413 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque,
414 pentry, lowaddr, highaddr, pflags, big_endian,
415 elf_machine, clear_lsb, data_swab, NULL);
418 /* return < 0 if error, otherwise the number of bytes loaded in memory */
419 int load_elf_as(const char *filename,
420 uint64_t (*elf_note_fn)(void *, void *, bool),
421 uint64_t (*translate_fn)(void *, uint64_t),
422 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
423 uint64_t *highaddr, uint32_t *pflags, int big_endian,
424 int elf_machine, int clear_lsb, int data_swab, AddressSpace *as)
426 return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque,
427 pentry, lowaddr, highaddr, pflags, big_endian,
428 elf_machine, clear_lsb, data_swab, as, true);
431 /* return < 0 if error, otherwise the number of bytes loaded in memory */
432 int load_elf_ram(const char *filename,
433 uint64_t (*elf_note_fn)(void *, void *, bool),
434 uint64_t (*translate_fn)(void *, uint64_t),
435 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
436 uint64_t *highaddr, uint32_t *pflags, int big_endian,
437 int elf_machine, int clear_lsb, int data_swab,
438 AddressSpace *as, bool load_rom)
440 return load_elf_ram_sym(filename, elf_note_fn,
441 translate_fn, translate_opaque,
442 pentry, lowaddr, highaddr, pflags, big_endian,
443 elf_machine, clear_lsb, data_swab, as,
444 load_rom, NULL);
447 /* return < 0 if error, otherwise the number of bytes loaded in memory */
448 int load_elf_ram_sym(const char *filename,
449 uint64_t (*elf_note_fn)(void *, void *, bool),
450 uint64_t (*translate_fn)(void *, uint64_t),
451 void *translate_opaque, uint64_t *pentry,
452 uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags,
453 int big_endian, int elf_machine,
454 int clear_lsb, int data_swab,
455 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb)
457 int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED;
458 uint8_t e_ident[EI_NIDENT];
460 fd = open(filename, O_RDONLY | O_BINARY);
461 if (fd < 0) {
462 perror(filename);
463 return -1;
465 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
466 goto fail;
467 if (e_ident[0] != ELFMAG0 ||
468 e_ident[1] != ELFMAG1 ||
469 e_ident[2] != ELFMAG2 ||
470 e_ident[3] != ELFMAG3) {
471 ret = ELF_LOAD_NOT_ELF;
472 goto fail;
474 #ifdef HOST_WORDS_BIGENDIAN
475 data_order = ELFDATA2MSB;
476 #else
477 data_order = ELFDATA2LSB;
478 #endif
479 must_swab = data_order != e_ident[EI_DATA];
480 if (big_endian) {
481 target_data_order = ELFDATA2MSB;
482 } else {
483 target_data_order = ELFDATA2LSB;
486 if (target_data_order != e_ident[EI_DATA]) {
487 ret = ELF_LOAD_WRONG_ENDIAN;
488 goto fail;
491 lseek(fd, 0, SEEK_SET);
492 if (e_ident[EI_CLASS] == ELFCLASS64) {
493 ret = load_elf64(filename, fd, elf_note_fn,
494 translate_fn, translate_opaque, must_swab,
495 pentry, lowaddr, highaddr, pflags, elf_machine,
496 clear_lsb, data_swab, as, load_rom, sym_cb);
497 } else {
498 ret = load_elf32(filename, fd, elf_note_fn,
499 translate_fn, translate_opaque, must_swab,
500 pentry, lowaddr, highaddr, pflags, elf_machine,
501 clear_lsb, data_swab, as, load_rom, sym_cb);
504 fail:
505 close(fd);
506 return ret;
509 static void bswap_uboot_header(uboot_image_header_t *hdr)
511 #ifndef HOST_WORDS_BIGENDIAN
512 bswap32s(&hdr->ih_magic);
513 bswap32s(&hdr->ih_hcrc);
514 bswap32s(&hdr->ih_time);
515 bswap32s(&hdr->ih_size);
516 bswap32s(&hdr->ih_load);
517 bswap32s(&hdr->ih_ep);
518 bswap32s(&hdr->ih_dcrc);
519 #endif
523 #define ZALLOC_ALIGNMENT 16
525 static void *zalloc(void *x, unsigned items, unsigned size)
527 void *p;
529 size *= items;
530 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
532 p = g_malloc(size);
534 return (p);
537 static void zfree(void *x, void *addr)
539 g_free(addr);
543 #define HEAD_CRC 2
544 #define EXTRA_FIELD 4
545 #define ORIG_NAME 8
546 #define COMMENT 0x10
547 #define RESERVED 0xe0
549 #define DEFLATED 8
551 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen)
553 z_stream s;
554 ssize_t dstbytes;
555 int r, i, flags;
557 /* skip header */
558 i = 10;
559 flags = src[3];
560 if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
561 puts ("Error: Bad gzipped data\n");
562 return -1;
564 if ((flags & EXTRA_FIELD) != 0)
565 i = 12 + src[10] + (src[11] << 8);
566 if ((flags & ORIG_NAME) != 0)
567 while (src[i++] != 0)
569 if ((flags & COMMENT) != 0)
570 while (src[i++] != 0)
572 if ((flags & HEAD_CRC) != 0)
573 i += 2;
574 if (i >= srclen) {
575 puts ("Error: gunzip out of data in header\n");
576 return -1;
579 s.zalloc = zalloc;
580 s.zfree = zfree;
582 r = inflateInit2(&s, -MAX_WBITS);
583 if (r != Z_OK) {
584 printf ("Error: inflateInit2() returned %d\n", r);
585 return (-1);
587 s.next_in = src + i;
588 s.avail_in = srclen - i;
589 s.next_out = dst;
590 s.avail_out = dstlen;
591 r = inflate(&s, Z_FINISH);
592 if (r != Z_OK && r != Z_STREAM_END) {
593 printf ("Error: inflate() returned %d\n", r);
594 return -1;
596 dstbytes = s.next_out - (unsigned char *) dst;
597 inflateEnd(&s);
599 return dstbytes;
602 /* Load a U-Boot image. */
603 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr,
604 int *is_linux, uint8_t image_type,
605 uint64_t (*translate_fn)(void *, uint64_t),
606 void *translate_opaque, AddressSpace *as)
608 int fd;
609 int size;
610 hwaddr address;
611 uboot_image_header_t h;
612 uboot_image_header_t *hdr = &h;
613 uint8_t *data = NULL;
614 int ret = -1;
615 int do_uncompress = 0;
617 fd = open(filename, O_RDONLY | O_BINARY);
618 if (fd < 0)
619 return -1;
621 size = read(fd, hdr, sizeof(uboot_image_header_t));
622 if (size < sizeof(uboot_image_header_t)) {
623 goto out;
626 bswap_uboot_header(hdr);
628 if (hdr->ih_magic != IH_MAGIC)
629 goto out;
631 if (hdr->ih_type != image_type) {
632 if (!(image_type == IH_TYPE_KERNEL &&
633 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) {
634 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
635 image_type);
636 goto out;
640 /* TODO: Implement other image types. */
641 switch (hdr->ih_type) {
642 case IH_TYPE_KERNEL_NOLOAD:
643 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) {
644 fprintf(stderr, "this image format (kernel_noload) cannot be "
645 "loaded on this machine type");
646 goto out;
649 hdr->ih_load = *loadaddr + sizeof(*hdr);
650 hdr->ih_ep += hdr->ih_load;
651 /* fall through */
652 case IH_TYPE_KERNEL:
653 address = hdr->ih_load;
654 if (translate_fn) {
655 address = translate_fn(translate_opaque, address);
657 if (loadaddr) {
658 *loadaddr = hdr->ih_load;
661 switch (hdr->ih_comp) {
662 case IH_COMP_NONE:
663 break;
664 case IH_COMP_GZIP:
665 do_uncompress = 1;
666 break;
667 default:
668 fprintf(stderr,
669 "Unable to load u-boot images with compression type %d\n",
670 hdr->ih_comp);
671 goto out;
674 if (ep) {
675 *ep = hdr->ih_ep;
678 /* TODO: Check CPU type. */
679 if (is_linux) {
680 if (hdr->ih_os == IH_OS_LINUX) {
681 *is_linux = 1;
682 } else {
683 *is_linux = 0;
687 break;
688 case IH_TYPE_RAMDISK:
689 address = *loadaddr;
690 break;
691 default:
692 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type);
693 goto out;
696 data = g_malloc(hdr->ih_size);
698 if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
699 fprintf(stderr, "Error reading file\n");
700 goto out;
703 if (do_uncompress) {
704 uint8_t *compressed_data;
705 size_t max_bytes;
706 ssize_t bytes;
708 compressed_data = data;
709 max_bytes = UBOOT_MAX_GUNZIP_BYTES;
710 data = g_malloc(max_bytes);
712 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
713 g_free(compressed_data);
714 if (bytes < 0) {
715 fprintf(stderr, "Unable to decompress gzipped image!\n");
716 goto out;
718 hdr->ih_size = bytes;
721 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as);
723 ret = hdr->ih_size;
725 out:
726 g_free(data);
727 close(fd);
728 return ret;
731 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr,
732 int *is_linux,
733 uint64_t (*translate_fn)(void *, uint64_t),
734 void *translate_opaque)
736 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
737 translate_fn, translate_opaque, NULL);
740 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr,
741 int *is_linux,
742 uint64_t (*translate_fn)(void *, uint64_t),
743 void *translate_opaque, AddressSpace *as)
745 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
746 translate_fn, translate_opaque, as);
749 /* Load a ramdisk. */
750 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
752 return load_ramdisk_as(filename, addr, max_sz, NULL);
755 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz,
756 AddressSpace *as)
758 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK,
759 NULL, NULL, as);
762 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */
763 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz,
764 uint8_t **buffer)
766 uint8_t *compressed_data = NULL;
767 uint8_t *data = NULL;
768 gsize len;
769 ssize_t bytes;
770 int ret = -1;
772 if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
773 NULL)) {
774 goto out;
777 /* Is it a gzip-compressed file? */
778 if (len < 2 ||
779 compressed_data[0] != 0x1f ||
780 compressed_data[1] != 0x8b) {
781 goto out;
784 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
785 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
788 data = g_malloc(max_sz);
789 bytes = gunzip(data, max_sz, compressed_data, len);
790 if (bytes < 0) {
791 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
792 filename);
793 goto out;
796 /* trim to actual size and return to caller */
797 *buffer = g_realloc(data, bytes);
798 ret = bytes;
799 /* ownership has been transferred to caller */
800 data = NULL;
802 out:
803 g_free(compressed_data);
804 g_free(data);
805 return ret;
808 /* Load a gzip-compressed kernel. */
809 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz)
811 int bytes;
812 uint8_t *data;
814 bytes = load_image_gzipped_buffer(filename, max_sz, &data);
815 if (bytes != -1) {
816 rom_add_blob_fixed(filename, data, bytes, addr);
817 g_free(data);
819 return bytes;
823 * Functions for reboot-persistent memory regions.
824 * - used for vga bios and option roms.
825 * - also linux kernel (-kernel / -initrd).
828 typedef struct Rom Rom;
830 struct Rom {
831 char *name;
832 char *path;
834 /* datasize is the amount of memory allocated in "data". If datasize is less
835 * than romsize, it means that the area from datasize to romsize is filled
836 * with zeros.
838 size_t romsize;
839 size_t datasize;
841 uint8_t *data;
842 MemoryRegion *mr;
843 AddressSpace *as;
844 int isrom;
845 char *fw_dir;
846 char *fw_file;
847 GMappedFile *mapped_file;
849 bool committed;
851 hwaddr addr;
852 QTAILQ_ENTRY(Rom) next;
855 static FWCfgState *fw_cfg;
856 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms);
859 * rom->data can be heap-allocated or memory-mapped (e.g. when added with
860 * rom_add_elf_program())
862 static void rom_free_data(Rom *rom)
864 if (rom->mapped_file) {
865 g_mapped_file_unref(rom->mapped_file);
866 rom->mapped_file = NULL;
867 } else {
868 g_free(rom->data);
871 rom->data = NULL;
874 static void rom_free(Rom *rom)
876 rom_free_data(rom);
877 g_free(rom->path);
878 g_free(rom->name);
879 g_free(rom->fw_dir);
880 g_free(rom->fw_file);
881 g_free(rom);
884 static inline bool rom_order_compare(Rom *rom, Rom *item)
886 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) ||
887 (rom->as == item->as && rom->addr >= item->addr);
890 static void rom_insert(Rom *rom)
892 Rom *item;
894 if (roms_loaded) {
895 hw_error ("ROM images must be loaded at startup\n");
898 /* The user didn't specify an address space, this is the default */
899 if (!rom->as) {
900 rom->as = &address_space_memory;
903 rom->committed = false;
905 /* List is ordered by load address in the same address space */
906 QTAILQ_FOREACH(item, &roms, next) {
907 if (rom_order_compare(rom, item)) {
908 continue;
910 QTAILQ_INSERT_BEFORE(item, rom, next);
911 return;
913 QTAILQ_INSERT_TAIL(&roms, rom, next);
916 static void fw_cfg_resized(const char *id, uint64_t length, void *host)
918 if (fw_cfg) {
919 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length);
923 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro)
925 void *data;
927 rom->mr = g_malloc(sizeof(*rom->mr));
928 memory_region_init_resizeable_ram(rom->mr, owner, name,
929 rom->datasize, rom->romsize,
930 fw_cfg_resized,
931 &error_fatal);
932 memory_region_set_readonly(rom->mr, ro);
933 vmstate_register_ram_global(rom->mr);
935 data = memory_region_get_ram_ptr(rom->mr);
936 memcpy(data, rom->data, rom->datasize);
938 return data;
941 int rom_add_file(const char *file, const char *fw_dir,
942 hwaddr addr, int32_t bootindex,
943 bool option_rom, MemoryRegion *mr,
944 AddressSpace *as)
946 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
947 Rom *rom;
948 int rc, fd = -1;
949 char devpath[100];
951 if (as && mr) {
952 fprintf(stderr, "Specifying an Address Space and Memory Region is " \
953 "not valid when loading a rom\n");
954 /* We haven't allocated anything so we don't need any cleanup */
955 return -1;
958 rom = g_malloc0(sizeof(*rom));
959 rom->name = g_strdup(file);
960 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
961 rom->as = as;
962 if (rom->path == NULL) {
963 rom->path = g_strdup(file);
966 fd = open(rom->path, O_RDONLY | O_BINARY);
967 if (fd == -1) {
968 fprintf(stderr, "Could not open option rom '%s': %s\n",
969 rom->path, strerror(errno));
970 goto err;
973 if (fw_dir) {
974 rom->fw_dir = g_strdup(fw_dir);
975 rom->fw_file = g_strdup(file);
977 rom->addr = addr;
978 rom->romsize = lseek(fd, 0, SEEK_END);
979 if (rom->romsize == -1) {
980 fprintf(stderr, "rom: file %-20s: get size error: %s\n",
981 rom->name, strerror(errno));
982 goto err;
985 rom->datasize = rom->romsize;
986 rom->data = g_malloc0(rom->datasize);
987 lseek(fd, 0, SEEK_SET);
988 rc = read(fd, rom->data, rom->datasize);
989 if (rc != rom->datasize) {
990 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n",
991 rom->name, rc, rom->datasize);
992 goto err;
994 close(fd);
995 rom_insert(rom);
996 if (rom->fw_file && fw_cfg) {
997 const char *basename;
998 char fw_file_name[FW_CFG_MAX_FILE_PATH];
999 void *data;
1001 basename = strrchr(rom->fw_file, '/');
1002 if (basename) {
1003 basename++;
1004 } else {
1005 basename = rom->fw_file;
1007 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir,
1008 basename);
1009 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1011 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) {
1012 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true);
1013 } else {
1014 data = rom->data;
1017 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize);
1018 } else {
1019 if (mr) {
1020 rom->mr = mr;
1021 snprintf(devpath, sizeof(devpath), "/rom@%s", file);
1022 } else {
1023 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr);
1027 add_boot_device_path(bootindex, NULL, devpath);
1028 return 0;
1030 err:
1031 if (fd != -1)
1032 close(fd);
1034 rom_free(rom);
1035 return -1;
1038 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len,
1039 size_t max_len, hwaddr addr, const char *fw_file_name,
1040 FWCfgCallback fw_callback, void *callback_opaque,
1041 AddressSpace *as, bool read_only)
1043 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1044 Rom *rom;
1045 MemoryRegion *mr = NULL;
1047 rom = g_malloc0(sizeof(*rom));
1048 rom->name = g_strdup(name);
1049 rom->as = as;
1050 rom->addr = addr;
1051 rom->romsize = max_len ? max_len : len;
1052 rom->datasize = len;
1053 g_assert(rom->romsize >= rom->datasize);
1054 rom->data = g_malloc0(rom->datasize);
1055 memcpy(rom->data, blob, len);
1056 rom_insert(rom);
1057 if (fw_file_name && fw_cfg) {
1058 char devpath[100];
1059 void *data;
1061 if (read_only) {
1062 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1063 } else {
1064 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name);
1067 if (mc->rom_file_has_mr) {
1068 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only);
1069 mr = rom->mr;
1070 } else {
1071 data = rom->data;
1074 fw_cfg_add_file_callback(fw_cfg, fw_file_name,
1075 fw_callback, NULL, callback_opaque,
1076 data, rom->datasize, read_only);
1078 return mr;
1081 /* This function is specific for elf program because we don't need to allocate
1082 * all the rom. We just allocate the first part and the rest is just zeros. This
1083 * is why romsize and datasize are different. Also, this function takes its own
1084 * reference to "mapped_file", so we don't have to allocate and copy the buffer.
1086 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data,
1087 size_t datasize, size_t romsize, hwaddr addr,
1088 AddressSpace *as)
1090 Rom *rom;
1092 rom = g_malloc0(sizeof(*rom));
1093 rom->name = g_strdup(name);
1094 rom->addr = addr;
1095 rom->datasize = datasize;
1096 rom->romsize = romsize;
1097 rom->data = data;
1098 rom->as = as;
1100 if (mapped_file && data) {
1101 g_mapped_file_ref(mapped_file);
1102 rom->mapped_file = mapped_file;
1105 rom_insert(rom);
1106 return 0;
1109 int rom_add_vga(const char *file)
1111 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL);
1114 int rom_add_option(const char *file, int32_t bootindex)
1116 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL);
1119 static void rom_reset(void *unused)
1121 Rom *rom;
1123 QTAILQ_FOREACH(rom, &roms, next) {
1124 if (rom->fw_file) {
1125 continue;
1128 * We don't need to fill in the RAM with ROM data because we'll fill
1129 * the data in during the next incoming migration in all cases. Note
1130 * that some of those RAMs can actually be modified by the guest.
1132 if (runstate_check(RUN_STATE_INMIGRATE)) {
1133 if (rom->data && rom->isrom) {
1135 * Free it so that a rom_reset after migration doesn't
1136 * overwrite a potentially modified 'rom'.
1138 rom_free_data(rom);
1140 continue;
1143 if (rom->data == NULL) {
1144 continue;
1146 if (rom->mr) {
1147 void *host = memory_region_get_ram_ptr(rom->mr);
1148 memcpy(host, rom->data, rom->datasize);
1149 } else {
1150 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED,
1151 rom->data, rom->datasize);
1153 if (rom->isrom) {
1154 /* rom needs to be written only once */
1155 rom_free_data(rom);
1158 * The rom loader is really on the same level as firmware in the guest
1159 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure
1160 * that the instruction cache for that new region is clear, so that the
1161 * CPU definitely fetches its instructions from the just written data.
1163 cpu_flush_icache_range(rom->addr, rom->datasize);
1165 trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom);
1169 /* Return true if two consecutive ROMs in the ROM list overlap */
1170 static bool roms_overlap(Rom *last_rom, Rom *this_rom)
1172 if (!last_rom) {
1173 return false;
1175 return last_rom->as == this_rom->as &&
1176 last_rom->addr + last_rom->romsize > this_rom->addr;
1179 static const char *rom_as_name(Rom *rom)
1181 const char *name = rom->as ? rom->as->name : NULL;
1182 return name ?: "anonymous";
1185 static void rom_print_overlap_error_header(void)
1187 error_report("Some ROM regions are overlapping");
1188 error_printf(
1189 "These ROM regions might have been loaded by "
1190 "direct user request or by default.\n"
1191 "They could be BIOS/firmware images, a guest kernel, "
1192 "initrd or some other file loaded into guest memory.\n"
1193 "Check whether you intended to load all this guest code, and "
1194 "whether it has been built to load to the correct addresses.\n");
1197 static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom)
1199 error_printf(
1200 "\nThe following two regions overlap (in the %s address space):\n",
1201 rom_as_name(rom));
1202 error_printf(
1203 " %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n",
1204 last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize);
1205 error_printf(
1206 " %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n",
1207 rom->name, rom->addr, rom->addr + rom->romsize);
1210 int rom_check_and_register_reset(void)
1212 MemoryRegionSection section;
1213 Rom *rom, *last_rom = NULL;
1214 bool found_overlap = false;
1216 QTAILQ_FOREACH(rom, &roms, next) {
1217 if (rom->fw_file) {
1218 continue;
1220 if (!rom->mr) {
1221 if (roms_overlap(last_rom, rom)) {
1222 if (!found_overlap) {
1223 found_overlap = true;
1224 rom_print_overlap_error_header();
1226 rom_print_one_overlap_error(last_rom, rom);
1227 /* Keep going through the list so we report all overlaps */
1229 last_rom = rom;
1231 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(),
1232 rom->addr, 1);
1233 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr);
1234 memory_region_unref(section.mr);
1236 if (found_overlap) {
1237 return -1;
1240 qemu_register_reset(rom_reset, NULL);
1241 roms_loaded = 1;
1242 return 0;
1245 void rom_set_fw(FWCfgState *f)
1247 fw_cfg = f;
1250 void rom_set_order_override(int order)
1252 if (!fw_cfg)
1253 return;
1254 fw_cfg_set_order_override(fw_cfg, order);
1257 void rom_reset_order_override(void)
1259 if (!fw_cfg)
1260 return;
1261 fw_cfg_reset_order_override(fw_cfg);
1264 void rom_transaction_begin(void)
1266 Rom *rom;
1268 /* Ignore ROMs added without the transaction API */
1269 QTAILQ_FOREACH(rom, &roms, next) {
1270 rom->committed = true;
1274 void rom_transaction_end(bool commit)
1276 Rom *rom;
1277 Rom *tmp;
1279 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) {
1280 if (rom->committed) {
1281 continue;
1283 if (commit) {
1284 rom->committed = true;
1285 } else {
1286 QTAILQ_REMOVE(&roms, rom, next);
1287 rom_free(rom);
1292 static Rom *find_rom(hwaddr addr, size_t size)
1294 Rom *rom;
1296 QTAILQ_FOREACH(rom, &roms, next) {
1297 if (rom->fw_file) {
1298 continue;
1300 if (rom->mr) {
1301 continue;
1303 if (rom->addr > addr) {
1304 continue;
1306 if (rom->addr + rom->romsize < addr + size) {
1307 continue;
1309 return rom;
1311 return NULL;
1315 * Copies memory from registered ROMs to dest. Any memory that is contained in
1316 * a ROM between addr and addr + size is copied. Note that this can involve
1317 * multiple ROMs, which need not start at addr and need not end at addr + size.
1319 int rom_copy(uint8_t *dest, hwaddr addr, size_t size)
1321 hwaddr end = addr + size;
1322 uint8_t *s, *d = dest;
1323 size_t l = 0;
1324 Rom *rom;
1326 QTAILQ_FOREACH(rom, &roms, next) {
1327 if (rom->fw_file) {
1328 continue;
1330 if (rom->mr) {
1331 continue;
1333 if (rom->addr + rom->romsize < addr) {
1334 continue;
1336 if (rom->addr > end || rom->addr < addr) {
1337 break;
1340 d = dest + (rom->addr - addr);
1341 s = rom->data;
1342 l = rom->datasize;
1344 if ((d + l) > (dest + size)) {
1345 l = dest - d;
1348 if (l > 0) {
1349 memcpy(d, s, l);
1352 if (rom->romsize > rom->datasize) {
1353 /* If datasize is less than romsize, it means that we didn't
1354 * allocate all the ROM because the trailing data are only zeros.
1357 d += l;
1358 l = rom->romsize - rom->datasize;
1360 if ((d + l) > (dest + size)) {
1361 /* Rom size doesn't fit in the destination area. Adjust to avoid
1362 * overflow.
1364 l = dest - d;
1367 if (l > 0) {
1368 memset(d, 0x0, l);
1373 return (d + l) - dest;
1376 void *rom_ptr(hwaddr addr, size_t size)
1378 Rom *rom;
1380 rom = find_rom(addr, size);
1381 if (!rom || !rom->data)
1382 return NULL;
1383 return rom->data + (addr - rom->addr);
1386 void hmp_info_roms(Monitor *mon, const QDict *qdict)
1388 Rom *rom;
1390 QTAILQ_FOREACH(rom, &roms, next) {
1391 if (rom->mr) {
1392 monitor_printf(mon, "%s"
1393 " size=0x%06zx name=\"%s\"\n",
1394 memory_region_name(rom->mr),
1395 rom->romsize,
1396 rom->name);
1397 } else if (!rom->fw_file) {
1398 monitor_printf(mon, "addr=" TARGET_FMT_plx
1399 " size=0x%06zx mem=%s name=\"%s\"\n",
1400 rom->addr, rom->romsize,
1401 rom->isrom ? "rom" : "ram",
1402 rom->name);
1403 } else {
1404 monitor_printf(mon, "fw=%s/%s"
1405 " size=0x%06zx name=\"%s\"\n",
1406 rom->fw_dir,
1407 rom->fw_file,
1408 rom->romsize,
1409 rom->name);
1414 typedef enum HexRecord HexRecord;
1415 enum HexRecord {
1416 DATA_RECORD = 0,
1417 EOF_RECORD,
1418 EXT_SEG_ADDR_RECORD,
1419 START_SEG_ADDR_RECORD,
1420 EXT_LINEAR_ADDR_RECORD,
1421 START_LINEAR_ADDR_RECORD,
1424 /* Each record contains a 16-bit address which is combined with the upper 16
1425 * bits of the implicit "next address" to form a 32-bit address.
1427 #define NEXT_ADDR_MASK 0xffff0000
1429 #define DATA_FIELD_MAX_LEN 0xff
1430 #define LEN_EXCEPT_DATA 0x5
1431 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) +
1432 * sizeof(checksum) */
1433 typedef struct {
1434 uint8_t byte_count;
1435 uint16_t address;
1436 uint8_t record_type;
1437 uint8_t data[DATA_FIELD_MAX_LEN];
1438 uint8_t checksum;
1439 } HexLine;
1441 /* return 0 or -1 if error */
1442 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c,
1443 uint32_t *index, const bool in_process)
1445 /* +-------+---------------+-------+---------------------+--------+
1446 * | byte | |record | | |
1447 * | count | address | type | data |checksum|
1448 * +-------+---------------+-------+---------------------+--------+
1449 * ^ ^ ^ ^ ^ ^
1450 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte |
1452 uint8_t value = 0;
1453 uint32_t idx = *index;
1454 /* ignore space */
1455 if (g_ascii_isspace(c)) {
1456 return true;
1458 if (!g_ascii_isxdigit(c) || !in_process) {
1459 return false;
1461 value = g_ascii_xdigit_value(c);
1462 value = (idx & 0x1) ? (value & 0xf) : (value << 4);
1463 if (idx < 2) {
1464 line->byte_count |= value;
1465 } else if (2 <= idx && idx < 6) {
1466 line->address <<= 4;
1467 line->address += g_ascii_xdigit_value(c);
1468 } else if (6 <= idx && idx < 8) {
1469 line->record_type |= value;
1470 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) {
1471 line->data[(idx - 8) >> 1] |= value;
1472 } else if (8 + 2 * line->byte_count <= idx &&
1473 idx < 10 + 2 * line->byte_count) {
1474 line->checksum |= value;
1475 } else {
1476 return false;
1478 *our_checksum += value;
1479 ++(*index);
1480 return true;
1483 typedef struct {
1484 const char *filename;
1485 HexLine line;
1486 uint8_t *bin_buf;
1487 hwaddr *start_addr;
1488 int total_size;
1489 uint32_t next_address_to_write;
1490 uint32_t current_address;
1491 uint32_t current_rom_index;
1492 uint32_t rom_start_address;
1493 AddressSpace *as;
1494 bool complete;
1495 } HexParser;
1497 /* return size or -1 if error */
1498 static int handle_record_type(HexParser *parser)
1500 HexLine *line = &(parser->line);
1501 switch (line->record_type) {
1502 case DATA_RECORD:
1503 parser->current_address =
1504 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address;
1505 /* verify this is a contiguous block of memory */
1506 if (parser->current_address != parser->next_address_to_write) {
1507 if (parser->current_rom_index != 0) {
1508 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1509 parser->current_rom_index,
1510 parser->rom_start_address, parser->as);
1512 parser->rom_start_address = parser->current_address;
1513 parser->current_rom_index = 0;
1516 /* copy from line buffer to output bin_buf */
1517 memcpy(parser->bin_buf + parser->current_rom_index, line->data,
1518 line->byte_count);
1519 parser->current_rom_index += line->byte_count;
1520 parser->total_size += line->byte_count;
1521 /* save next address to write */
1522 parser->next_address_to_write =
1523 parser->current_address + line->byte_count;
1524 break;
1526 case EOF_RECORD:
1527 if (parser->current_rom_index != 0) {
1528 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1529 parser->current_rom_index,
1530 parser->rom_start_address, parser->as);
1532 parser->complete = true;
1533 return parser->total_size;
1534 case EXT_SEG_ADDR_RECORD:
1535 case EXT_LINEAR_ADDR_RECORD:
1536 if (line->byte_count != 2 && line->address != 0) {
1537 return -1;
1540 if (parser->current_rom_index != 0) {
1541 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1542 parser->current_rom_index,
1543 parser->rom_start_address, parser->as);
1546 /* save next address to write,
1547 * in case of non-contiguous block of memory */
1548 parser->next_address_to_write = (line->data[0] << 12) |
1549 (line->data[1] << 4);
1550 if (line->record_type == EXT_LINEAR_ADDR_RECORD) {
1551 parser->next_address_to_write <<= 12;
1554 parser->rom_start_address = parser->next_address_to_write;
1555 parser->current_rom_index = 0;
1556 break;
1558 case START_SEG_ADDR_RECORD:
1559 if (line->byte_count != 4 && line->address != 0) {
1560 return -1;
1563 /* x86 16-bit CS:IP segmented addressing */
1564 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) +
1565 ((line->data[2] << 8) | line->data[3]);
1566 break;
1568 case START_LINEAR_ADDR_RECORD:
1569 if (line->byte_count != 4 && line->address != 0) {
1570 return -1;
1573 *(parser->start_addr) = ldl_be_p(line->data);
1574 break;
1576 default:
1577 return -1;
1580 return parser->total_size;
1583 /* return size or -1 if error */
1584 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob,
1585 size_t hex_blob_size, AddressSpace *as)
1587 bool in_process = false; /* avoid re-enter and
1588 * check whether record begin with ':' */
1589 uint8_t *end = hex_blob + hex_blob_size;
1590 uint8_t our_checksum = 0;
1591 uint32_t record_index = 0;
1592 HexParser parser = {
1593 .filename = filename,
1594 .bin_buf = g_malloc(hex_blob_size),
1595 .start_addr = addr,
1596 .as = as,
1597 .complete = false
1600 rom_transaction_begin();
1602 for (; hex_blob < end && !parser.complete; ++hex_blob) {
1603 switch (*hex_blob) {
1604 case '\r':
1605 case '\n':
1606 if (!in_process) {
1607 break;
1610 in_process = false;
1611 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 !=
1612 record_index ||
1613 our_checksum != 0) {
1614 parser.total_size = -1;
1615 goto out;
1618 if (handle_record_type(&parser) == -1) {
1619 parser.total_size = -1;
1620 goto out;
1622 break;
1624 /* start of a new record. */
1625 case ':':
1626 memset(&parser.line, 0, sizeof(HexLine));
1627 in_process = true;
1628 record_index = 0;
1629 break;
1631 /* decoding lines */
1632 default:
1633 if (!parse_record(&parser.line, &our_checksum, *hex_blob,
1634 &record_index, in_process)) {
1635 parser.total_size = -1;
1636 goto out;
1638 break;
1642 out:
1643 g_free(parser.bin_buf);
1644 rom_transaction_end(parser.total_size != -1);
1645 return parser.total_size;
1648 /* return size or -1 if error */
1649 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as)
1651 gsize hex_blob_size;
1652 gchar *hex_blob;
1653 int total_size = 0;
1655 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) {
1656 return -1;
1659 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob,
1660 hex_blob_size, as);
1662 g_free(hex_blob);
1663 return total_size;