4 /* CPU interfaces that are target independent. */
6 #ifndef CONFIG_USER_ONLY
7 #include "exec/hwaddr.h"
10 #define EXCP_INTERRUPT 0x10000 /* async interruption */
11 #define EXCP_HLT 0x10001 /* hlt instruction reached */
12 #define EXCP_DEBUG 0x10002 /* cpu stopped after a breakpoint or singlestep */
13 #define EXCP_HALTED 0x10003 /* cpu is halted (waiting for external event) */
14 #define EXCP_YIELD 0x10004 /* cpu wants to yield timeslice to another */
15 #define EXCP_ATOMIC 0x10005 /* stop-the-world and emulate atomic */
19 * Type wide enough to contain any #target_ulong virtual address.
21 typedef uint64_t vaddr
;
22 #define VADDR_PRId PRId64
23 #define VADDR_PRIu PRIu64
24 #define VADDR_PRIo PRIo64
25 #define VADDR_PRIx PRIx64
26 #define VADDR_PRIX PRIX64
27 #define VADDR_MAX UINT64_MAX
29 void cpu_exec_init_all(void);
30 void cpu_exec_step_atomic(CPUState
*cpu
);
32 /* Using intptr_t ensures that qemu_*_page_mask is sign-extended even
33 * when intptr_t is 32-bit and we are aligning a long long.
35 extern uintptr_t qemu_host_page_size
;
36 extern intptr_t qemu_host_page_mask
;
38 #define HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_host_page_size)
39 #define REAL_HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_real_host_page_size())
41 /* The CPU list lock nests outside page_(un)lock or mmap_(un)lock */
42 extern QemuMutex qemu_cpu_list_lock
;
43 void qemu_init_cpu_list(void);
44 void cpu_list_lock(void);
45 void cpu_list_unlock(void);
46 unsigned int cpu_list_generation_id_get(void);
48 void tcg_flush_softmmu_tlb(CPUState
*cs
);
49 void tcg_flush_jmp_cache(CPUState
*cs
);
51 void tcg_iommu_init_notifier_list(CPUState
*cpu
);
52 void tcg_iommu_free_notifier_list(CPUState
*cpu
);
54 #if !defined(CONFIG_USER_ONLY)
63 #define DEVICE_HOST_ENDIAN DEVICE_BIG_ENDIAN
65 #define DEVICE_HOST_ENDIAN DEVICE_LITTLE_ENDIAN
68 /* address in the RAM (different from a physical address) */
69 #if defined(CONFIG_XEN_BACKEND)
70 typedef uint64_t ram_addr_t
;
71 # define RAM_ADDR_MAX UINT64_MAX
72 # define RAM_ADDR_FMT "%" PRIx64
74 typedef uintptr_t ram_addr_t
;
75 # define RAM_ADDR_MAX UINTPTR_MAX
76 # define RAM_ADDR_FMT "%" PRIxPTR
81 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
);
82 /* This should not be used by devices. */
83 ram_addr_t
qemu_ram_addr_from_host(void *ptr
);
84 ram_addr_t
qemu_ram_addr_from_host_nofail(void *ptr
);
85 RAMBlock
*qemu_ram_block_by_name(const char *name
);
86 RAMBlock
*qemu_ram_block_from_host(void *ptr
, bool round_offset
,
88 ram_addr_t
qemu_ram_block_host_offset(RAMBlock
*rb
, void *host
);
89 void qemu_ram_set_idstr(RAMBlock
*block
, const char *name
, DeviceState
*dev
);
90 void qemu_ram_unset_idstr(RAMBlock
*block
);
91 const char *qemu_ram_get_idstr(RAMBlock
*rb
);
92 void *qemu_ram_get_host_addr(RAMBlock
*rb
);
93 ram_addr_t
qemu_ram_get_offset(RAMBlock
*rb
);
94 ram_addr_t
qemu_ram_get_used_length(RAMBlock
*rb
);
95 ram_addr_t
qemu_ram_get_max_length(RAMBlock
*rb
);
96 bool qemu_ram_is_shared(RAMBlock
*rb
);
97 bool qemu_ram_is_noreserve(RAMBlock
*rb
);
98 bool qemu_ram_is_uf_zeroable(RAMBlock
*rb
);
99 void qemu_ram_set_uf_zeroable(RAMBlock
*rb
);
100 bool qemu_ram_is_migratable(RAMBlock
*rb
);
101 void qemu_ram_set_migratable(RAMBlock
*rb
);
102 void qemu_ram_unset_migratable(RAMBlock
*rb
);
103 bool qemu_ram_is_named_file(RAMBlock
*rb
);
104 int qemu_ram_get_fd(RAMBlock
*rb
);
106 size_t qemu_ram_pagesize(RAMBlock
*block
);
107 size_t qemu_ram_pagesize_largest(void);
110 * cpu_address_space_init:
111 * @cpu: CPU to add this address space to
112 * @asidx: integer index of this address space
113 * @prefix: prefix to be used as name of address space
114 * @mr: the root memory region of address space
116 * Add the specified address space to the CPU's cpu_ases list.
117 * The address space added with @asidx 0 is the one used for the
118 * convenience pointer cpu->as.
119 * The target-specific code which registers ASes is responsible
120 * for defining what semantics address space 0, 1, 2, etc have.
122 * Before the first call to this function, the caller must set
123 * cpu->num_ases to the total number of address spaces it needs
126 * Note that with KVM only one address space is supported.
128 void cpu_address_space_init(CPUState
*cpu
, int asidx
,
129 const char *prefix
, MemoryRegion
*mr
);
131 void cpu_physical_memory_rw(hwaddr addr
, void *buf
,
132 hwaddr len
, bool is_write
);
133 static inline void cpu_physical_memory_read(hwaddr addr
,
134 void *buf
, hwaddr len
)
136 cpu_physical_memory_rw(addr
, buf
, len
, false);
138 static inline void cpu_physical_memory_write(hwaddr addr
,
139 const void *buf
, hwaddr len
)
141 cpu_physical_memory_rw(addr
, (void *)buf
, len
, true);
143 void *cpu_physical_memory_map(hwaddr addr
,
146 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
147 bool is_write
, hwaddr access_len
);
148 void cpu_register_map_client(QEMUBH
*bh
);
149 void cpu_unregister_map_client(QEMUBH
*bh
);
151 bool cpu_physical_memory_is_io(hwaddr phys_addr
);
153 /* Coalesced MMIO regions are areas where write operations can be reordered.
154 * This usually implies that write operations are side-effect free. This allows
155 * batching which can make a major impact on performance when using
158 void qemu_flush_coalesced_mmio_buffer(void);
160 void cpu_flush_icache_range(hwaddr start
, hwaddr len
);
162 typedef int (RAMBlockIterFunc
)(RAMBlock
*rb
, void *opaque
);
164 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
);
165 int ram_block_discard_range(RAMBlock
*rb
, uint64_t start
, size_t length
);
169 /* Returns: 0 on success, -1 on error */
170 int cpu_memory_rw_debug(CPUState
*cpu
, vaddr addr
,
171 void *ptr
, size_t len
, bool is_write
);
174 void list_cpus(void);
178 * cpu_unwind_state_data:
179 * @cpu: the cpu context
180 * @host_pc: the host pc within the translation
183 * Attempt to load the the unwind state for a host pc occurring in
184 * translated code. If @host_pc is not in translated code, the
185 * function returns false; otherwise @data is loaded.
186 * This is the same unwind info as given to restore_state_to_opc.
188 bool cpu_unwind_state_data(CPUState
*cpu
, uintptr_t host_pc
, uint64_t *data
);
192 * @cpu: the cpu context
193 * @host_pc: the host pc within the translation
194 * @return: true if state was restored, false otherwise
196 * Attempt to restore the state for a fault occurring in translated
197 * code. If @host_pc is not in translated code no state is
198 * restored and the function returns false.
200 bool cpu_restore_state(CPUState
*cpu
, uintptr_t host_pc
);
202 G_NORETURN
void cpu_loop_exit_noexc(CPUState
*cpu
);
203 G_NORETURN
void cpu_loop_exit_atomic(CPUState
*cpu
, uintptr_t pc
);
204 #endif /* CONFIG_TCG */
205 G_NORETURN
void cpu_loop_exit(CPUState
*cpu
);
206 G_NORETURN
void cpu_loop_exit_restore(CPUState
*cpu
, uintptr_t pc
);
208 #endif /* CPU_COMMON_H */