migration/rdma: Clean up qemu_rdma_poll()'s return type
[qemu/armbru.git] / hw / ssi / aspeed_smc.c
blob2a4001b774a2f5c66a6c794763e99276b2bb1d94
1 /*
2 * ASPEED AST2400 SMC Controller (SPI Flash Only)
4 * Copyright (C) 2016 IBM Corp.
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "hw/sysbus.h"
27 #include "migration/vmstate.h"
28 #include "qemu/log.h"
29 #include "qemu/module.h"
30 #include "qemu/error-report.h"
31 #include "qapi/error.h"
32 #include "qemu/units.h"
33 #include "trace.h"
35 #include "hw/irq.h"
36 #include "hw/qdev-properties.h"
37 #include "hw/ssi/aspeed_smc.h"
39 /* CE Type Setting Register */
40 #define R_CONF (0x00 / 4)
41 #define CONF_LEGACY_DISABLE (1 << 31)
42 #define CONF_ENABLE_W4 20
43 #define CONF_ENABLE_W3 19
44 #define CONF_ENABLE_W2 18
45 #define CONF_ENABLE_W1 17
46 #define CONF_ENABLE_W0 16
47 #define CONF_FLASH_TYPE4 8
48 #define CONF_FLASH_TYPE3 6
49 #define CONF_FLASH_TYPE2 4
50 #define CONF_FLASH_TYPE1 2
51 #define CONF_FLASH_TYPE0 0
52 #define CONF_FLASH_TYPE_NOR 0x0
53 #define CONF_FLASH_TYPE_NAND 0x1
54 #define CONF_FLASH_TYPE_SPI 0x2 /* AST2600 is SPI only */
56 /* CE Control Register */
57 #define R_CE_CTRL (0x04 / 4)
58 #define CTRL_EXTENDED4 4 /* 32 bit addressing for SPI */
59 #define CTRL_EXTENDED3 3 /* 32 bit addressing for SPI */
60 #define CTRL_EXTENDED2 2 /* 32 bit addressing for SPI */
61 #define CTRL_EXTENDED1 1 /* 32 bit addressing for SPI */
62 #define CTRL_EXTENDED0 0 /* 32 bit addressing for SPI */
64 /* Interrupt Control and Status Register */
65 #define R_INTR_CTRL (0x08 / 4)
66 #define INTR_CTRL_DMA_STATUS (1 << 11)
67 #define INTR_CTRL_CMD_ABORT_STATUS (1 << 10)
68 #define INTR_CTRL_WRITE_PROTECT_STATUS (1 << 9)
69 #define INTR_CTRL_DMA_EN (1 << 3)
70 #define INTR_CTRL_CMD_ABORT_EN (1 << 2)
71 #define INTR_CTRL_WRITE_PROTECT_EN (1 << 1)
73 /* Command Control Register */
74 #define R_CE_CMD_CTRL (0x0C / 4)
75 #define CTRL_ADDR_BYTE0_DISABLE_SHIFT 4
76 #define CTRL_DATA_BYTE0_DISABLE_SHIFT 0
78 #define aspeed_smc_addr_byte_enabled(s, i) \
79 (!((s)->regs[R_CE_CMD_CTRL] & (1 << (CTRL_ADDR_BYTE0_DISABLE_SHIFT + (i)))))
80 #define aspeed_smc_data_byte_enabled(s, i) \
81 (!((s)->regs[R_CE_CMD_CTRL] & (1 << (CTRL_DATA_BYTE0_DISABLE_SHIFT + (i)))))
83 /* CEx Control Register */
84 #define R_CTRL0 (0x10 / 4)
85 #define CTRL_IO_QPI (1 << 31)
86 #define CTRL_IO_QUAD_DATA (1 << 30)
87 #define CTRL_IO_DUAL_DATA (1 << 29)
88 #define CTRL_IO_DUAL_ADDR_DATA (1 << 28) /* Includes dummies */
89 #define CTRL_IO_QUAD_ADDR_DATA (1 << 28) /* Includes dummies */
90 #define CTRL_CMD_SHIFT 16
91 #define CTRL_CMD_MASK 0xff
92 #define CTRL_DUMMY_HIGH_SHIFT 14
93 #define CTRL_AST2400_SPI_4BYTE (1 << 13)
94 #define CE_CTRL_CLOCK_FREQ_SHIFT 8
95 #define CE_CTRL_CLOCK_FREQ_MASK 0xf
96 #define CE_CTRL_CLOCK_FREQ(div) \
97 (((div) & CE_CTRL_CLOCK_FREQ_MASK) << CE_CTRL_CLOCK_FREQ_SHIFT)
98 #define CTRL_DUMMY_LOW_SHIFT 6 /* 2 bits [7:6] */
99 #define CTRL_CE_STOP_ACTIVE (1 << 2)
100 #define CTRL_CMD_MODE_MASK 0x3
101 #define CTRL_READMODE 0x0
102 #define CTRL_FREADMODE 0x1
103 #define CTRL_WRITEMODE 0x2
104 #define CTRL_USERMODE 0x3
105 #define R_CTRL1 (0x14 / 4)
106 #define R_CTRL2 (0x18 / 4)
107 #define R_CTRL3 (0x1C / 4)
108 #define R_CTRL4 (0x20 / 4)
110 /* CEx Segment Address Register */
111 #define R_SEG_ADDR0 (0x30 / 4)
112 #define SEG_END_SHIFT 24 /* 8MB units */
113 #define SEG_END_MASK 0xff
114 #define SEG_START_SHIFT 16 /* address bit [A29-A23] */
115 #define SEG_START_MASK 0xff
116 #define R_SEG_ADDR1 (0x34 / 4)
117 #define R_SEG_ADDR2 (0x38 / 4)
118 #define R_SEG_ADDR3 (0x3C / 4)
119 #define R_SEG_ADDR4 (0x40 / 4)
121 /* Misc Control Register #1 */
122 #define R_MISC_CTRL1 (0x50 / 4)
124 /* SPI dummy cycle data */
125 #define R_DUMMY_DATA (0x54 / 4)
127 /* FMC_WDT2 Control/Status Register for Alternate Boot (AST2600) */
128 #define R_FMC_WDT2_CTRL (0x64 / 4)
129 #define FMC_WDT2_CTRL_ALT_BOOT_MODE BIT(6) /* O: 2 chips 1: 1 chip */
130 #define FMC_WDT2_CTRL_SINGLE_BOOT_MODE BIT(5)
131 #define FMC_WDT2_CTRL_BOOT_SOURCE BIT(4) /* O: primary 1: alternate */
132 #define FMC_WDT2_CTRL_EN BIT(0)
134 /* DMA Control/Status Register */
135 #define R_DMA_CTRL (0x80 / 4)
136 #define DMA_CTRL_REQUEST (1 << 31)
137 #define DMA_CTRL_GRANT (1 << 30)
138 #define DMA_CTRL_DELAY_MASK 0xf
139 #define DMA_CTRL_DELAY_SHIFT 8
140 #define DMA_CTRL_FREQ_MASK 0xf
141 #define DMA_CTRL_FREQ_SHIFT 4
142 #define DMA_CTRL_CALIB (1 << 3)
143 #define DMA_CTRL_CKSUM (1 << 2)
144 #define DMA_CTRL_WRITE (1 << 1)
145 #define DMA_CTRL_ENABLE (1 << 0)
147 /* DMA Flash Side Address */
148 #define R_DMA_FLASH_ADDR (0x84 / 4)
150 /* DMA DRAM Side Address */
151 #define R_DMA_DRAM_ADDR (0x88 / 4)
153 /* DMA Length Register */
154 #define R_DMA_LEN (0x8C / 4)
156 /* Checksum Calculation Result */
157 #define R_DMA_CHECKSUM (0x90 / 4)
159 /* Read Timing Compensation Register */
160 #define R_TIMINGS (0x94 / 4)
162 /* SPI controller registers and bits (AST2400) */
163 #define R_SPI_CONF (0x00 / 4)
164 #define SPI_CONF_ENABLE_W0 0
165 #define R_SPI_CTRL0 (0x4 / 4)
166 #define R_SPI_MISC_CTRL (0x10 / 4)
167 #define R_SPI_TIMINGS (0x14 / 4)
169 #define ASPEED_SMC_R_SPI_MAX (0x20 / 4)
170 #define ASPEED_SMC_R_SMC_MAX (0x20 / 4)
173 * DMA DRAM addresses should be 4 bytes aligned and the valid address
174 * range is 0x40000000 - 0x5FFFFFFF (AST2400)
175 * 0x80000000 - 0xBFFFFFFF (AST2500)
177 * DMA flash addresses should be 4 bytes aligned and the valid address
178 * range is 0x20000000 - 0x2FFFFFFF.
180 * DMA length is from 4 bytes to 32MB
181 * 0: 4 bytes
182 * 0x7FFFFF: 32M bytes
184 #define DMA_DRAM_ADDR(asc, val) ((val) & (asc)->dma_dram_mask)
185 #define DMA_FLASH_ADDR(asc, val) ((val) & (asc)->dma_flash_mask)
186 #define DMA_LENGTH(val) ((val) & 0x01FFFFFC)
188 /* Flash opcodes. */
189 #define SPI_OP_READ 0x03 /* Read data bytes (low frequency) */
191 #define SNOOP_OFF 0xFF
192 #define SNOOP_START 0x0
195 * Default segments mapping addresses and size for each peripheral per
196 * controller. These can be changed when board is initialized with the
197 * Segment Address Registers.
199 static const AspeedSegments aspeed_2500_spi1_segments[];
200 static const AspeedSegments aspeed_2500_spi2_segments[];
202 #define ASPEED_SMC_FEATURE_DMA 0x1
203 #define ASPEED_SMC_FEATURE_DMA_GRANT 0x2
204 #define ASPEED_SMC_FEATURE_WDT_CONTROL 0x4
206 static inline bool aspeed_smc_has_dma(const AspeedSMCClass *asc)
208 return !!(asc->features & ASPEED_SMC_FEATURE_DMA);
211 static inline bool aspeed_smc_has_wdt_control(const AspeedSMCClass *asc)
213 return !!(asc->features & ASPEED_SMC_FEATURE_WDT_CONTROL);
216 #define aspeed_smc_error(fmt, ...) \
217 qemu_log_mask(LOG_GUEST_ERROR, "%s: " fmt "\n", __func__, ## __VA_ARGS__)
219 static bool aspeed_smc_flash_overlap(const AspeedSMCState *s,
220 const AspeedSegments *new,
221 int cs)
223 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
224 AspeedSegments seg;
225 int i;
227 for (i = 0; i < asc->cs_num_max; i++) {
228 if (i == cs) {
229 continue;
232 asc->reg_to_segment(s, s->regs[R_SEG_ADDR0 + i], &seg);
234 if (new->addr + new->size > seg.addr &&
235 new->addr < seg.addr + seg.size) {
236 aspeed_smc_error("new segment CS%d [ 0x%"
237 HWADDR_PRIx" - 0x%"HWADDR_PRIx" ] overlaps with "
238 "CS%d [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
239 cs, new->addr, new->addr + new->size,
240 i, seg.addr, seg.addr + seg.size);
241 return true;
244 return false;
247 static void aspeed_smc_flash_set_segment_region(AspeedSMCState *s, int cs,
248 uint64_t regval)
250 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
251 AspeedSMCFlash *fl = &s->flashes[cs];
252 AspeedSegments seg;
254 asc->reg_to_segment(s, regval, &seg);
256 memory_region_transaction_begin();
257 memory_region_set_size(&fl->mmio, seg.size);
258 memory_region_set_address(&fl->mmio, seg.addr - asc->flash_window_base);
259 memory_region_set_enabled(&fl->mmio, !!seg.size);
260 memory_region_transaction_commit();
262 if (asc->segment_addr_mask) {
263 regval &= asc->segment_addr_mask;
266 s->regs[R_SEG_ADDR0 + cs] = regval;
269 static void aspeed_smc_flash_set_segment(AspeedSMCState *s, int cs,
270 uint64_t new)
272 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
273 AspeedSegments seg;
275 asc->reg_to_segment(s, new, &seg);
277 trace_aspeed_smc_flash_set_segment(cs, new, seg.addr, seg.addr + seg.size);
279 /* The start address of CS0 is read-only */
280 if (cs == 0 && seg.addr != asc->flash_window_base) {
281 aspeed_smc_error("Tried to change CS0 start address to 0x%"
282 HWADDR_PRIx, seg.addr);
283 seg.addr = asc->flash_window_base;
284 new = asc->segment_to_reg(s, &seg);
288 * The end address of the AST2500 spi controllers is also
289 * read-only.
291 if ((asc->segments == aspeed_2500_spi1_segments ||
292 asc->segments == aspeed_2500_spi2_segments) &&
293 cs == asc->cs_num_max &&
294 seg.addr + seg.size != asc->segments[cs].addr +
295 asc->segments[cs].size) {
296 aspeed_smc_error("Tried to change CS%d end address to 0x%"
297 HWADDR_PRIx, cs, seg.addr + seg.size);
298 seg.size = asc->segments[cs].addr + asc->segments[cs].size -
299 seg.addr;
300 new = asc->segment_to_reg(s, &seg);
303 /* Keep the segment in the overall flash window */
304 if (seg.size &&
305 (seg.addr + seg.size <= asc->flash_window_base ||
306 seg.addr > asc->flash_window_base + asc->flash_window_size)) {
307 aspeed_smc_error("new segment for CS%d is invalid : "
308 "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
309 cs, seg.addr, seg.addr + seg.size);
310 return;
313 /* Check start address vs. alignment */
314 if (seg.size && !QEMU_IS_ALIGNED(seg.addr, seg.size)) {
315 aspeed_smc_error("new segment for CS%d is not "
316 "aligned : [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
317 cs, seg.addr, seg.addr + seg.size);
320 /* And segments should not overlap (in the specs) */
321 aspeed_smc_flash_overlap(s, &seg, cs);
323 /* All should be fine now to move the region */
324 aspeed_smc_flash_set_segment_region(s, cs, new);
327 static uint64_t aspeed_smc_flash_default_read(void *opaque, hwaddr addr,
328 unsigned size)
330 aspeed_smc_error("To 0x%" HWADDR_PRIx " of size %u", addr, size);
331 return 0;
334 static void aspeed_smc_flash_default_write(void *opaque, hwaddr addr,
335 uint64_t data, unsigned size)
337 aspeed_smc_error("To 0x%" HWADDR_PRIx " of size %u: 0x%" PRIx64,
338 addr, size, data);
341 static const MemoryRegionOps aspeed_smc_flash_default_ops = {
342 .read = aspeed_smc_flash_default_read,
343 .write = aspeed_smc_flash_default_write,
344 .endianness = DEVICE_LITTLE_ENDIAN,
345 .valid = {
346 .min_access_size = 1,
347 .max_access_size = 4,
351 static inline int aspeed_smc_flash_mode(const AspeedSMCFlash *fl)
353 const AspeedSMCState *s = fl->controller;
355 return s->regs[s->r_ctrl0 + fl->cs] & CTRL_CMD_MODE_MASK;
358 static inline bool aspeed_smc_is_writable(const AspeedSMCFlash *fl)
360 const AspeedSMCState *s = fl->controller;
362 return s->regs[s->r_conf] & (1 << (s->conf_enable_w0 + fl->cs));
365 static inline int aspeed_smc_flash_cmd(const AspeedSMCFlash *fl)
367 const AspeedSMCState *s = fl->controller;
368 int cmd = (s->regs[s->r_ctrl0 + fl->cs] >> CTRL_CMD_SHIFT) & CTRL_CMD_MASK;
371 * In read mode, the default SPI command is READ (0x3). In other
372 * modes, the command should necessarily be defined
374 * TODO: add support for READ4 (0x13) on AST2600
376 if (aspeed_smc_flash_mode(fl) == CTRL_READMODE) {
377 cmd = SPI_OP_READ;
380 if (!cmd) {
381 aspeed_smc_error("no command defined for mode %d",
382 aspeed_smc_flash_mode(fl));
385 return cmd;
388 static inline int aspeed_smc_flash_addr_width(const AspeedSMCFlash *fl)
390 const AspeedSMCState *s = fl->controller;
391 AspeedSMCClass *asc = fl->asc;
393 if (asc->addr_width) {
394 return asc->addr_width(s);
395 } else {
396 return s->regs[s->r_ce_ctrl] & (1 << (CTRL_EXTENDED0 + fl->cs)) ? 4 : 3;
400 static void aspeed_smc_flash_do_select(AspeedSMCFlash *fl, bool unselect)
402 AspeedSMCState *s = fl->controller;
404 trace_aspeed_smc_flash_select(fl->cs, unselect ? "un" : "");
406 qemu_set_irq(s->cs_lines[fl->cs], unselect);
409 static void aspeed_smc_flash_select(AspeedSMCFlash *fl)
411 aspeed_smc_flash_do_select(fl, false);
414 static void aspeed_smc_flash_unselect(AspeedSMCFlash *fl)
416 aspeed_smc_flash_do_select(fl, true);
419 static uint32_t aspeed_smc_check_segment_addr(const AspeedSMCFlash *fl,
420 uint32_t addr)
422 const AspeedSMCState *s = fl->controller;
423 AspeedSMCClass *asc = fl->asc;
424 AspeedSegments seg;
426 asc->reg_to_segment(s, s->regs[R_SEG_ADDR0 + fl->cs], &seg);
427 if ((addr % seg.size) != addr) {
428 aspeed_smc_error("invalid address 0x%08x for CS%d segment : "
429 "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
430 addr, fl->cs, seg.addr, seg.addr + seg.size);
431 addr %= seg.size;
434 return addr;
437 static int aspeed_smc_flash_dummies(const AspeedSMCFlash *fl)
439 const AspeedSMCState *s = fl->controller;
440 uint32_t r_ctrl0 = s->regs[s->r_ctrl0 + fl->cs];
441 uint32_t dummy_high = (r_ctrl0 >> CTRL_DUMMY_HIGH_SHIFT) & 0x1;
442 uint32_t dummy_low = (r_ctrl0 >> CTRL_DUMMY_LOW_SHIFT) & 0x3;
443 uint32_t dummies = ((dummy_high << 2) | dummy_low) * 8;
445 if (r_ctrl0 & CTRL_IO_DUAL_ADDR_DATA) {
446 dummies /= 2;
449 return dummies;
452 static void aspeed_smc_flash_setup(AspeedSMCFlash *fl, uint32_t addr)
454 const AspeedSMCState *s = fl->controller;
455 uint8_t cmd = aspeed_smc_flash_cmd(fl);
456 int i = aspeed_smc_flash_addr_width(fl);
458 /* Flash access can not exceed CS segment */
459 addr = aspeed_smc_check_segment_addr(fl, addr);
461 ssi_transfer(s->spi, cmd);
462 while (i--) {
463 if (aspeed_smc_addr_byte_enabled(s, i)) {
464 ssi_transfer(s->spi, (addr >> (i * 8)) & 0xff);
469 * Use fake transfers to model dummy bytes. The value should
470 * be configured to some non-zero value in fast read mode and
471 * zero in read mode. But, as the HW allows inconsistent
472 * settings, let's check for fast read mode.
474 if (aspeed_smc_flash_mode(fl) == CTRL_FREADMODE) {
475 for (i = 0; i < aspeed_smc_flash_dummies(fl); i++) {
476 ssi_transfer(fl->controller->spi, s->regs[R_DUMMY_DATA] & 0xff);
481 static uint64_t aspeed_smc_flash_read(void *opaque, hwaddr addr, unsigned size)
483 AspeedSMCFlash *fl = opaque;
484 AspeedSMCState *s = fl->controller;
485 uint64_t ret = 0;
486 int i;
488 switch (aspeed_smc_flash_mode(fl)) {
489 case CTRL_USERMODE:
490 for (i = 0; i < size; i++) {
491 ret |= (uint64_t) ssi_transfer(s->spi, 0x0) << (8 * i);
493 break;
494 case CTRL_READMODE:
495 case CTRL_FREADMODE:
496 aspeed_smc_flash_select(fl);
497 aspeed_smc_flash_setup(fl, addr);
499 for (i = 0; i < size; i++) {
500 ret |= (uint64_t) ssi_transfer(s->spi, 0x0) << (8 * i);
503 aspeed_smc_flash_unselect(fl);
504 break;
505 default:
506 aspeed_smc_error("invalid flash mode %d", aspeed_smc_flash_mode(fl));
509 trace_aspeed_smc_flash_read(fl->cs, addr, size, ret,
510 aspeed_smc_flash_mode(fl));
511 return ret;
515 * TODO (clg@kaod.org): stolen from xilinx_spips.c. Should move to a
516 * common include header.
518 typedef enum {
519 READ = 0x3, READ_4 = 0x13,
520 FAST_READ = 0xb, FAST_READ_4 = 0x0c,
521 DOR = 0x3b, DOR_4 = 0x3c,
522 QOR = 0x6b, QOR_4 = 0x6c,
523 DIOR = 0xbb, DIOR_4 = 0xbc,
524 QIOR = 0xeb, QIOR_4 = 0xec,
526 PP = 0x2, PP_4 = 0x12,
527 DPP = 0xa2,
528 QPP = 0x32, QPP_4 = 0x34,
529 } FlashCMD;
531 static int aspeed_smc_num_dummies(uint8_t command)
533 switch (command) { /* check for dummies */
534 case READ: /* no dummy bytes/cycles */
535 case PP:
536 case DPP:
537 case QPP:
538 case READ_4:
539 case PP_4:
540 case QPP_4:
541 return 0;
542 case FAST_READ:
543 case DOR:
544 case QOR:
545 case FAST_READ_4:
546 case DOR_4:
547 case QOR_4:
548 return 1;
549 case DIOR:
550 case DIOR_4:
551 return 2;
552 case QIOR:
553 case QIOR_4:
554 return 4;
555 default:
556 return -1;
560 static bool aspeed_smc_do_snoop(AspeedSMCFlash *fl, uint64_t data,
561 unsigned size)
563 AspeedSMCState *s = fl->controller;
564 uint8_t addr_width = aspeed_smc_flash_addr_width(fl);
566 trace_aspeed_smc_do_snoop(fl->cs, s->snoop_index, s->snoop_dummies,
567 (uint8_t) data & 0xff);
569 if (s->snoop_index == SNOOP_OFF) {
570 return false; /* Do nothing */
572 } else if (s->snoop_index == SNOOP_START) {
573 uint8_t cmd = data & 0xff;
574 int ndummies = aspeed_smc_num_dummies(cmd);
577 * No dummy cycles are expected with the current command. Turn
578 * off snooping and let the transfer proceed normally.
580 if (ndummies <= 0) {
581 s->snoop_index = SNOOP_OFF;
582 return false;
585 s->snoop_dummies = ndummies * 8;
587 } else if (s->snoop_index >= addr_width + 1) {
589 /* The SPI transfer has reached the dummy cycles sequence */
590 for (; s->snoop_dummies; s->snoop_dummies--) {
591 ssi_transfer(s->spi, s->regs[R_DUMMY_DATA] & 0xff);
594 /* If no more dummy cycles are expected, turn off snooping */
595 if (!s->snoop_dummies) {
596 s->snoop_index = SNOOP_OFF;
597 } else {
598 s->snoop_index += size;
602 * Dummy cycles have been faked already. Ignore the current
603 * SPI transfer
605 return true;
608 s->snoop_index += size;
609 return false;
612 static void aspeed_smc_flash_write(void *opaque, hwaddr addr, uint64_t data,
613 unsigned size)
615 AspeedSMCFlash *fl = opaque;
616 AspeedSMCState *s = fl->controller;
617 int i;
619 trace_aspeed_smc_flash_write(fl->cs, addr, size, data,
620 aspeed_smc_flash_mode(fl));
622 if (!aspeed_smc_is_writable(fl)) {
623 aspeed_smc_error("flash is not writable at 0x%" HWADDR_PRIx, addr);
624 return;
627 switch (aspeed_smc_flash_mode(fl)) {
628 case CTRL_USERMODE:
629 if (aspeed_smc_do_snoop(fl, data, size)) {
630 break;
633 for (i = 0; i < size; i++) {
634 ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
636 break;
637 case CTRL_WRITEMODE:
638 aspeed_smc_flash_select(fl);
639 aspeed_smc_flash_setup(fl, addr);
641 for (i = 0; i < size; i++) {
642 ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
645 aspeed_smc_flash_unselect(fl);
646 break;
647 default:
648 aspeed_smc_error("invalid flash mode %d", aspeed_smc_flash_mode(fl));
652 static const MemoryRegionOps aspeed_smc_flash_ops = {
653 .read = aspeed_smc_flash_read,
654 .write = aspeed_smc_flash_write,
655 .endianness = DEVICE_LITTLE_ENDIAN,
656 .valid = {
657 .min_access_size = 1,
658 .max_access_size = 4,
662 static void aspeed_smc_flash_update_ctrl(AspeedSMCFlash *fl, uint32_t value)
664 AspeedSMCState *s = fl->controller;
665 bool unselect;
667 /* User mode selects the CS, other modes unselect */
668 unselect = (value & CTRL_CMD_MODE_MASK) != CTRL_USERMODE;
670 /* A change of CTRL_CE_STOP_ACTIVE from 0 to 1, unselects the CS */
671 if (!(s->regs[s->r_ctrl0 + fl->cs] & CTRL_CE_STOP_ACTIVE) &&
672 value & CTRL_CE_STOP_ACTIVE) {
673 unselect = true;
676 s->regs[s->r_ctrl0 + fl->cs] = value;
678 s->snoop_index = unselect ? SNOOP_OFF : SNOOP_START;
680 aspeed_smc_flash_do_select(fl, unselect);
683 static void aspeed_smc_reset(DeviceState *d)
685 AspeedSMCState *s = ASPEED_SMC(d);
686 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
687 int i;
689 if (asc->resets) {
690 memcpy(s->regs, asc->resets, sizeof s->regs);
691 } else {
692 memset(s->regs, 0, sizeof s->regs);
695 for (i = 0; i < asc->cs_num_max; i++) {
696 DeviceState *dev = ssi_get_cs(s->spi, i);
697 if (dev) {
698 qemu_irq cs_line = qdev_get_gpio_in_named(dev, SSI_GPIO_CS, 0);
699 qdev_connect_gpio_out_named(DEVICE(s), "cs", i, cs_line);
703 /* Unselect all peripherals */
704 for (i = 0; i < asc->cs_num_max; ++i) {
705 s->regs[s->r_ctrl0 + i] |= CTRL_CE_STOP_ACTIVE;
706 qemu_set_irq(s->cs_lines[i], true);
709 /* setup the default segment register values and regions for all */
710 for (i = 0; i < asc->cs_num_max; ++i) {
711 aspeed_smc_flash_set_segment_region(s, i,
712 asc->segment_to_reg(s, &asc->segments[i]));
715 s->snoop_index = SNOOP_OFF;
716 s->snoop_dummies = 0;
719 static uint64_t aspeed_smc_read(void *opaque, hwaddr addr, unsigned int size)
721 AspeedSMCState *s = ASPEED_SMC(opaque);
722 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(opaque);
724 addr >>= 2;
726 if (addr == s->r_conf ||
727 (addr >= s->r_timings &&
728 addr < s->r_timings + asc->nregs_timings) ||
729 addr == s->r_ce_ctrl ||
730 addr == R_CE_CMD_CTRL ||
731 addr == R_INTR_CTRL ||
732 addr == R_DUMMY_DATA ||
733 (aspeed_smc_has_wdt_control(asc) && addr == R_FMC_WDT2_CTRL) ||
734 (aspeed_smc_has_dma(asc) && addr == R_DMA_CTRL) ||
735 (aspeed_smc_has_dma(asc) && addr == R_DMA_FLASH_ADDR) ||
736 (aspeed_smc_has_dma(asc) && addr == R_DMA_DRAM_ADDR) ||
737 (aspeed_smc_has_dma(asc) && addr == R_DMA_LEN) ||
738 (aspeed_smc_has_dma(asc) && addr == R_DMA_CHECKSUM) ||
739 (addr >= R_SEG_ADDR0 &&
740 addr < R_SEG_ADDR0 + asc->cs_num_max) ||
741 (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + asc->cs_num_max)) {
743 trace_aspeed_smc_read(addr << 2, size, s->regs[addr]);
745 return s->regs[addr];
746 } else {
747 qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
748 __func__, addr);
749 return -1;
753 static uint8_t aspeed_smc_hclk_divisor(uint8_t hclk_mask)
755 /* HCLK/1 .. HCLK/16 */
756 const uint8_t hclk_divisors[] = {
757 15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0
759 int i;
761 for (i = 0; i < ARRAY_SIZE(hclk_divisors); i++) {
762 if (hclk_mask == hclk_divisors[i]) {
763 return i + 1;
767 aspeed_smc_error("invalid HCLK mask %x", hclk_mask);
768 return 0;
772 * When doing calibration, the SPI clock rate in the CE0 Control
773 * Register and the read delay cycles in the Read Timing Compensation
774 * Register are set using bit[11:4] of the DMA Control Register.
776 static void aspeed_smc_dma_calibration(AspeedSMCState *s)
778 uint8_t delay =
779 (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
780 uint8_t hclk_mask =
781 (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
782 uint8_t hclk_div = aspeed_smc_hclk_divisor(hclk_mask);
783 uint32_t hclk_shift = (hclk_div - 1) << 2;
784 uint8_t cs;
787 * The Read Timing Compensation Register values apply to all CS on
788 * the SPI bus and only HCLK/1 - HCLK/5 can have tunable delays
790 if (hclk_div && hclk_div < 6) {
791 s->regs[s->r_timings] &= ~(0xf << hclk_shift);
792 s->regs[s->r_timings] |= delay << hclk_shift;
796 * TODO: compute the CS from the DMA address and the segment
797 * registers. This is not really a problem for now because the
798 * Timing Register values apply to all CS and software uses CS0 to
799 * do calibration.
801 cs = 0;
802 s->regs[s->r_ctrl0 + cs] &=
803 ~(CE_CTRL_CLOCK_FREQ_MASK << CE_CTRL_CLOCK_FREQ_SHIFT);
804 s->regs[s->r_ctrl0 + cs] |= CE_CTRL_CLOCK_FREQ(hclk_div);
808 * Emulate read errors in the DMA Checksum Register for high
809 * frequencies and optimistic settings of the Read Timing Compensation
810 * Register. This will help in tuning the SPI timing calibration
811 * algorithm.
813 static bool aspeed_smc_inject_read_failure(AspeedSMCState *s)
815 uint8_t delay =
816 (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
817 uint8_t hclk_mask =
818 (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
821 * Typical values of a palmetto-bmc machine.
823 switch (aspeed_smc_hclk_divisor(hclk_mask)) {
824 case 4 ... 16:
825 return false;
826 case 3: /* at least one HCLK cycle delay */
827 return (delay & 0x7) < 1;
828 case 2: /* at least two HCLK cycle delay */
829 return (delay & 0x7) < 2;
830 case 1: /* (> 100MHz) is above the max freq of the controller */
831 return true;
832 default:
833 g_assert_not_reached();
838 * Accumulate the result of the reads to provide a checksum that will
839 * be used to validate the read timing settings.
841 static void aspeed_smc_dma_checksum(AspeedSMCState *s)
843 MemTxResult result;
844 uint32_t data;
846 if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
847 aspeed_smc_error("invalid direction for DMA checksum");
848 return;
851 if (s->regs[R_DMA_CTRL] & DMA_CTRL_CALIB) {
852 aspeed_smc_dma_calibration(s);
855 while (s->regs[R_DMA_LEN]) {
856 data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
857 MEMTXATTRS_UNSPECIFIED, &result);
858 if (result != MEMTX_OK) {
859 aspeed_smc_error("Flash read failed @%08x",
860 s->regs[R_DMA_FLASH_ADDR]);
861 return;
863 trace_aspeed_smc_dma_checksum(s->regs[R_DMA_FLASH_ADDR], data);
866 * When the DMA is on-going, the DMA registers are updated
867 * with the current working addresses and length.
869 s->regs[R_DMA_CHECKSUM] += data;
870 s->regs[R_DMA_FLASH_ADDR] += 4;
871 s->regs[R_DMA_LEN] -= 4;
874 if (s->inject_failure && aspeed_smc_inject_read_failure(s)) {
875 s->regs[R_DMA_CHECKSUM] = 0xbadc0de;
880 static void aspeed_smc_dma_rw(AspeedSMCState *s)
882 MemTxResult result;
883 uint32_t data;
885 trace_aspeed_smc_dma_rw(s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE ?
886 "write" : "read",
887 s->regs[R_DMA_FLASH_ADDR],
888 s->regs[R_DMA_DRAM_ADDR],
889 s->regs[R_DMA_LEN]);
890 while (s->regs[R_DMA_LEN]) {
891 if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
892 data = address_space_ldl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
893 MEMTXATTRS_UNSPECIFIED, &result);
894 if (result != MEMTX_OK) {
895 aspeed_smc_error("DRAM read failed @%08x",
896 s->regs[R_DMA_DRAM_ADDR]);
897 return;
900 address_space_stl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
901 data, MEMTXATTRS_UNSPECIFIED, &result);
902 if (result != MEMTX_OK) {
903 aspeed_smc_error("Flash write failed @%08x",
904 s->regs[R_DMA_FLASH_ADDR]);
905 return;
907 } else {
908 data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
909 MEMTXATTRS_UNSPECIFIED, &result);
910 if (result != MEMTX_OK) {
911 aspeed_smc_error("Flash read failed @%08x",
912 s->regs[R_DMA_FLASH_ADDR]);
913 return;
916 address_space_stl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
917 data, MEMTXATTRS_UNSPECIFIED, &result);
918 if (result != MEMTX_OK) {
919 aspeed_smc_error("DRAM write failed @%08x",
920 s->regs[R_DMA_DRAM_ADDR]);
921 return;
926 * When the DMA is on-going, the DMA registers are updated
927 * with the current working addresses and length.
929 s->regs[R_DMA_FLASH_ADDR] += 4;
930 s->regs[R_DMA_DRAM_ADDR] += 4;
931 s->regs[R_DMA_LEN] -= 4;
932 s->regs[R_DMA_CHECKSUM] += data;
936 static void aspeed_smc_dma_stop(AspeedSMCState *s)
939 * When the DMA is disabled, INTR_CTRL_DMA_STATUS=0 means the
940 * engine is idle
942 s->regs[R_INTR_CTRL] &= ~INTR_CTRL_DMA_STATUS;
943 s->regs[R_DMA_CHECKSUM] = 0;
946 * Lower the DMA irq in any case. The IRQ control register could
947 * have been cleared before disabling the DMA.
949 qemu_irq_lower(s->irq);
953 * When INTR_CTRL_DMA_STATUS=1, the DMA has completed and a new DMA
954 * can start even if the result of the previous was not collected.
956 static bool aspeed_smc_dma_in_progress(AspeedSMCState *s)
958 return s->regs[R_DMA_CTRL] & DMA_CTRL_ENABLE &&
959 !(s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_STATUS);
962 static void aspeed_smc_dma_done(AspeedSMCState *s)
964 s->regs[R_INTR_CTRL] |= INTR_CTRL_DMA_STATUS;
965 if (s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_EN) {
966 qemu_irq_raise(s->irq);
970 static void aspeed_smc_dma_ctrl(AspeedSMCState *s, uint32_t dma_ctrl)
972 if (!(dma_ctrl & DMA_CTRL_ENABLE)) {
973 s->regs[R_DMA_CTRL] = dma_ctrl;
975 aspeed_smc_dma_stop(s);
976 return;
979 if (aspeed_smc_dma_in_progress(s)) {
980 aspeed_smc_error("DMA in progress !");
981 return;
984 s->regs[R_DMA_CTRL] = dma_ctrl;
986 if (s->regs[R_DMA_CTRL] & DMA_CTRL_CKSUM) {
987 aspeed_smc_dma_checksum(s);
988 } else {
989 aspeed_smc_dma_rw(s);
992 aspeed_smc_dma_done(s);
995 static inline bool aspeed_smc_dma_granted(AspeedSMCState *s)
997 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
999 if (!(asc->features & ASPEED_SMC_FEATURE_DMA_GRANT)) {
1000 return true;
1003 if (!(s->regs[R_DMA_CTRL] & DMA_CTRL_GRANT)) {
1004 aspeed_smc_error("DMA not granted");
1005 return false;
1008 return true;
1011 static void aspeed_2600_smc_dma_ctrl(AspeedSMCState *s, uint32_t dma_ctrl)
1013 /* Preserve DMA bits */
1014 dma_ctrl |= s->regs[R_DMA_CTRL] & (DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1016 if (dma_ctrl == 0xAEED0000) {
1017 /* automatically grant request */
1018 s->regs[R_DMA_CTRL] |= (DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1019 return;
1022 /* clear request */
1023 if (dma_ctrl == 0xDEEA0000) {
1024 s->regs[R_DMA_CTRL] &= ~(DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1025 return;
1028 if (!aspeed_smc_dma_granted(s)) {
1029 aspeed_smc_error("DMA not granted");
1030 return;
1033 aspeed_smc_dma_ctrl(s, dma_ctrl);
1034 s->regs[R_DMA_CTRL] &= ~(DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1037 static void aspeed_smc_write(void *opaque, hwaddr addr, uint64_t data,
1038 unsigned int size)
1040 AspeedSMCState *s = ASPEED_SMC(opaque);
1041 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1042 uint32_t value = data;
1044 trace_aspeed_smc_write(addr, size, data);
1046 addr >>= 2;
1048 if (addr == s->r_conf ||
1049 (addr >= s->r_timings &&
1050 addr < s->r_timings + asc->nregs_timings) ||
1051 addr == s->r_ce_ctrl) {
1052 s->regs[addr] = value;
1053 } else if (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + asc->cs_num_max) {
1054 int cs = addr - s->r_ctrl0;
1055 aspeed_smc_flash_update_ctrl(&s->flashes[cs], value);
1056 } else if (addr >= R_SEG_ADDR0 &&
1057 addr < R_SEG_ADDR0 + asc->cs_num_max) {
1058 int cs = addr - R_SEG_ADDR0;
1060 if (value != s->regs[R_SEG_ADDR0 + cs]) {
1061 aspeed_smc_flash_set_segment(s, cs, value);
1063 } else if (addr == R_CE_CMD_CTRL) {
1064 s->regs[addr] = value & 0xff;
1065 } else if (addr == R_DUMMY_DATA) {
1066 s->regs[addr] = value & 0xff;
1067 } else if (aspeed_smc_has_wdt_control(asc) && addr == R_FMC_WDT2_CTRL) {
1068 s->regs[addr] = value & FMC_WDT2_CTRL_EN;
1069 } else if (addr == R_INTR_CTRL) {
1070 s->regs[addr] = value;
1071 } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_CTRL) {
1072 asc->dma_ctrl(s, value);
1073 } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_DRAM_ADDR &&
1074 aspeed_smc_dma_granted(s)) {
1075 s->regs[addr] = DMA_DRAM_ADDR(asc, value);
1076 } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_FLASH_ADDR &&
1077 aspeed_smc_dma_granted(s)) {
1078 s->regs[addr] = DMA_FLASH_ADDR(asc, value);
1079 } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_LEN &&
1080 aspeed_smc_dma_granted(s)) {
1081 s->regs[addr] = DMA_LENGTH(value);
1082 } else {
1083 qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
1084 __func__, addr);
1085 return;
1089 static const MemoryRegionOps aspeed_smc_ops = {
1090 .read = aspeed_smc_read,
1091 .write = aspeed_smc_write,
1092 .endianness = DEVICE_LITTLE_ENDIAN,
1095 static void aspeed_smc_instance_init(Object *obj)
1097 AspeedSMCState *s = ASPEED_SMC(obj);
1098 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1099 int i;
1101 for (i = 0; i < asc->cs_num_max; i++) {
1102 object_initialize_child(obj, "flash[*]", &s->flashes[i],
1103 TYPE_ASPEED_SMC_FLASH);
1108 * Initialize the custom address spaces for DMAs
1110 static void aspeed_smc_dma_setup(AspeedSMCState *s, Error **errp)
1112 if (!s->dram_mr) {
1113 error_setg(errp, TYPE_ASPEED_SMC ": 'dram' link not set");
1114 return;
1117 address_space_init(&s->flash_as, &s->mmio_flash,
1118 TYPE_ASPEED_SMC ".dma-flash");
1119 address_space_init(&s->dram_as, s->dram_mr,
1120 TYPE_ASPEED_SMC ".dma-dram");
1123 static void aspeed_smc_realize(DeviceState *dev, Error **errp)
1125 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1126 AspeedSMCState *s = ASPEED_SMC(dev);
1127 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1128 int i;
1129 hwaddr offset = 0;
1131 /* keep a copy under AspeedSMCState to speed up accesses */
1132 s->r_conf = asc->r_conf;
1133 s->r_ce_ctrl = asc->r_ce_ctrl;
1134 s->r_ctrl0 = asc->r_ctrl0;
1135 s->r_timings = asc->r_timings;
1136 s->conf_enable_w0 = asc->conf_enable_w0;
1138 /* DMA irq. Keep it first for the initialization in the SoC */
1139 sysbus_init_irq(sbd, &s->irq);
1141 s->spi = ssi_create_bus(dev, NULL);
1143 /* Setup cs_lines for peripherals */
1144 s->cs_lines = g_new0(qemu_irq, asc->cs_num_max);
1145 qdev_init_gpio_out_named(DEVICE(s), s->cs_lines, "cs", asc->cs_num_max);
1147 /* The memory region for the controller registers */
1148 memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_ops, s,
1149 TYPE_ASPEED_SMC, asc->nregs * 4);
1150 sysbus_init_mmio(sbd, &s->mmio);
1153 * The container memory region representing the address space
1154 * window in which the flash modules are mapped. The size and
1155 * address depends on the SoC model and controller type.
1157 memory_region_init(&s->mmio_flash_container, OBJECT(s),
1158 TYPE_ASPEED_SMC ".container",
1159 asc->flash_window_size);
1160 sysbus_init_mmio(sbd, &s->mmio_flash_container);
1162 memory_region_init_io(&s->mmio_flash, OBJECT(s),
1163 &aspeed_smc_flash_default_ops, s,
1164 TYPE_ASPEED_SMC ".flash",
1165 asc->flash_window_size);
1166 memory_region_add_subregion(&s->mmio_flash_container, 0x0,
1167 &s->mmio_flash);
1170 * Let's create a sub memory region for each possible peripheral. All
1171 * have a configurable memory segment in the overall flash mapping
1172 * window of the controller but, there is not necessarily a flash
1173 * module behind to handle the memory accesses. This depends on
1174 * the board configuration.
1176 for (i = 0; i < asc->cs_num_max; ++i) {
1177 AspeedSMCFlash *fl = &s->flashes[i];
1179 if (!object_property_set_link(OBJECT(fl), "controller", OBJECT(s),
1180 errp)) {
1181 return;
1183 if (!object_property_set_uint(OBJECT(fl), "cs", i, errp)) {
1184 return;
1186 if (!sysbus_realize(SYS_BUS_DEVICE(fl), errp)) {
1187 return;
1190 memory_region_add_subregion(&s->mmio_flash, offset, &fl->mmio);
1191 offset += asc->segments[i].size;
1194 /* DMA support */
1195 if (aspeed_smc_has_dma(asc)) {
1196 aspeed_smc_dma_setup(s, errp);
1200 static const VMStateDescription vmstate_aspeed_smc = {
1201 .name = "aspeed.smc",
1202 .version_id = 2,
1203 .minimum_version_id = 2,
1204 .fields = (VMStateField[]) {
1205 VMSTATE_UINT32_ARRAY(regs, AspeedSMCState, ASPEED_SMC_R_MAX),
1206 VMSTATE_UINT8(snoop_index, AspeedSMCState),
1207 VMSTATE_UINT8(snoop_dummies, AspeedSMCState),
1208 VMSTATE_END_OF_LIST()
1212 static Property aspeed_smc_properties[] = {
1213 DEFINE_PROP_BOOL("inject-failure", AspeedSMCState, inject_failure, false),
1214 DEFINE_PROP_LINK("dram", AspeedSMCState, dram_mr,
1215 TYPE_MEMORY_REGION, MemoryRegion *),
1216 DEFINE_PROP_END_OF_LIST(),
1219 static void aspeed_smc_class_init(ObjectClass *klass, void *data)
1221 DeviceClass *dc = DEVICE_CLASS(klass);
1223 dc->realize = aspeed_smc_realize;
1224 dc->reset = aspeed_smc_reset;
1225 device_class_set_props(dc, aspeed_smc_properties);
1226 dc->vmsd = &vmstate_aspeed_smc;
1229 static const TypeInfo aspeed_smc_info = {
1230 .name = TYPE_ASPEED_SMC,
1231 .parent = TYPE_SYS_BUS_DEVICE,
1232 .instance_init = aspeed_smc_instance_init,
1233 .instance_size = sizeof(AspeedSMCState),
1234 .class_size = sizeof(AspeedSMCClass),
1235 .class_init = aspeed_smc_class_init,
1236 .abstract = true,
1239 static void aspeed_smc_flash_realize(DeviceState *dev, Error **errp)
1241 AspeedSMCFlash *s = ASPEED_SMC_FLASH(dev);
1242 g_autofree char *name = g_strdup_printf(TYPE_ASPEED_SMC_FLASH ".%d", s->cs);
1244 if (!s->controller) {
1245 error_setg(errp, TYPE_ASPEED_SMC_FLASH ": 'controller' link not set");
1246 return;
1249 s->asc = ASPEED_SMC_GET_CLASS(s->controller);
1252 * Use the default segment value to size the memory region. This
1253 * can be changed by FW at runtime.
1255 memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_flash_ops,
1256 s, name, s->asc->segments[s->cs].size);
1257 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->mmio);
1260 static Property aspeed_smc_flash_properties[] = {
1261 DEFINE_PROP_UINT8("cs", AspeedSMCFlash, cs, 0),
1262 DEFINE_PROP_LINK("controller", AspeedSMCFlash, controller, TYPE_ASPEED_SMC,
1263 AspeedSMCState *),
1264 DEFINE_PROP_END_OF_LIST(),
1267 static void aspeed_smc_flash_class_init(ObjectClass *klass, void *data)
1269 DeviceClass *dc = DEVICE_CLASS(klass);
1271 dc->desc = "Aspeed SMC Flash device region";
1272 dc->realize = aspeed_smc_flash_realize;
1273 device_class_set_props(dc, aspeed_smc_flash_properties);
1276 static const TypeInfo aspeed_smc_flash_info = {
1277 .name = TYPE_ASPEED_SMC_FLASH,
1278 .parent = TYPE_SYS_BUS_DEVICE,
1279 .instance_size = sizeof(AspeedSMCFlash),
1280 .class_init = aspeed_smc_flash_class_init,
1284 * The Segment Registers of the AST2400 and AST2500 have a 8MB
1285 * unit. The address range of a flash SPI peripheral is encoded with
1286 * absolute addresses which should be part of the overall controller
1287 * window.
1289 static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s,
1290 const AspeedSegments *seg)
1292 uint32_t reg = 0;
1293 reg |= ((seg->addr >> 23) & SEG_START_MASK) << SEG_START_SHIFT;
1294 reg |= (((seg->addr + seg->size) >> 23) & SEG_END_MASK) << SEG_END_SHIFT;
1295 return reg;
1298 static void aspeed_smc_reg_to_segment(const AspeedSMCState *s,
1299 uint32_t reg, AspeedSegments *seg)
1301 seg->addr = ((reg >> SEG_START_SHIFT) & SEG_START_MASK) << 23;
1302 seg->size = (((reg >> SEG_END_SHIFT) & SEG_END_MASK) << 23) - seg->addr;
1305 static const AspeedSegments aspeed_2400_smc_segments[] = {
1306 { 0x10000000, 32 * MiB },
1309 static void aspeed_2400_smc_class_init(ObjectClass *klass, void *data)
1311 DeviceClass *dc = DEVICE_CLASS(klass);
1312 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1314 dc->desc = "Aspeed 2400 SMC Controller";
1315 asc->r_conf = R_CONF;
1316 asc->r_ce_ctrl = R_CE_CTRL;
1317 asc->r_ctrl0 = R_CTRL0;
1318 asc->r_timings = R_TIMINGS;
1319 asc->nregs_timings = 1;
1320 asc->conf_enable_w0 = CONF_ENABLE_W0;
1321 asc->cs_num_max = 1;
1322 asc->segments = aspeed_2400_smc_segments;
1323 asc->flash_window_base = 0x10000000;
1324 asc->flash_window_size = 0x6000000;
1325 asc->features = 0x0;
1326 asc->nregs = ASPEED_SMC_R_SMC_MAX;
1327 asc->segment_to_reg = aspeed_smc_segment_to_reg;
1328 asc->reg_to_segment = aspeed_smc_reg_to_segment;
1329 asc->dma_ctrl = aspeed_smc_dma_ctrl;
1332 static const TypeInfo aspeed_2400_smc_info = {
1333 .name = "aspeed.smc-ast2400",
1334 .parent = TYPE_ASPEED_SMC,
1335 .class_init = aspeed_2400_smc_class_init,
1338 static const uint32_t aspeed_2400_fmc_resets[ASPEED_SMC_R_MAX] = {
1340 * CE0 and CE1 types are HW strapped in SCU70. Do it here to
1341 * simplify the model.
1343 [R_CONF] = CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0,
1346 static const AspeedSegments aspeed_2400_fmc_segments[] = {
1347 { 0x20000000, 64 * MiB }, /* start address is readonly */
1348 { 0x24000000, 32 * MiB },
1349 { 0x26000000, 32 * MiB },
1350 { 0x28000000, 32 * MiB },
1351 { 0x2A000000, 32 * MiB }
1354 static void aspeed_2400_fmc_class_init(ObjectClass *klass, void *data)
1356 DeviceClass *dc = DEVICE_CLASS(klass);
1357 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1359 dc->desc = "Aspeed 2400 FMC Controller";
1360 asc->r_conf = R_CONF;
1361 asc->r_ce_ctrl = R_CE_CTRL;
1362 asc->r_ctrl0 = R_CTRL0;
1363 asc->r_timings = R_TIMINGS;
1364 asc->nregs_timings = 1;
1365 asc->conf_enable_w0 = CONF_ENABLE_W0;
1366 asc->cs_num_max = 5;
1367 asc->segments = aspeed_2400_fmc_segments;
1368 asc->segment_addr_mask = 0xffff0000;
1369 asc->resets = aspeed_2400_fmc_resets;
1370 asc->flash_window_base = 0x20000000;
1371 asc->flash_window_size = 0x10000000;
1372 asc->features = ASPEED_SMC_FEATURE_DMA;
1373 asc->dma_flash_mask = 0x0FFFFFFC;
1374 asc->dma_dram_mask = 0x1FFFFFFC;
1375 asc->nregs = ASPEED_SMC_R_MAX;
1376 asc->segment_to_reg = aspeed_smc_segment_to_reg;
1377 asc->reg_to_segment = aspeed_smc_reg_to_segment;
1378 asc->dma_ctrl = aspeed_smc_dma_ctrl;
1381 static const TypeInfo aspeed_2400_fmc_info = {
1382 .name = "aspeed.fmc-ast2400",
1383 .parent = TYPE_ASPEED_SMC,
1384 .class_init = aspeed_2400_fmc_class_init,
1387 static const AspeedSegments aspeed_2400_spi1_segments[] = {
1388 { 0x30000000, 64 * MiB },
1391 static int aspeed_2400_spi1_addr_width(const AspeedSMCState *s)
1393 return s->regs[R_SPI_CTRL0] & CTRL_AST2400_SPI_4BYTE ? 4 : 3;
1396 static void aspeed_2400_spi1_class_init(ObjectClass *klass, void *data)
1398 DeviceClass *dc = DEVICE_CLASS(klass);
1399 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1401 dc->desc = "Aspeed 2400 SPI1 Controller";
1402 asc->r_conf = R_SPI_CONF;
1403 asc->r_ce_ctrl = 0xff;
1404 asc->r_ctrl0 = R_SPI_CTRL0;
1405 asc->r_timings = R_SPI_TIMINGS;
1406 asc->nregs_timings = 1;
1407 asc->conf_enable_w0 = SPI_CONF_ENABLE_W0;
1408 asc->cs_num_max = 1;
1409 asc->segments = aspeed_2400_spi1_segments;
1410 asc->flash_window_base = 0x30000000;
1411 asc->flash_window_size = 0x10000000;
1412 asc->features = 0x0;
1413 asc->nregs = ASPEED_SMC_R_SPI_MAX;
1414 asc->segment_to_reg = aspeed_smc_segment_to_reg;
1415 asc->reg_to_segment = aspeed_smc_reg_to_segment;
1416 asc->dma_ctrl = aspeed_smc_dma_ctrl;
1417 asc->addr_width = aspeed_2400_spi1_addr_width;
1420 static const TypeInfo aspeed_2400_spi1_info = {
1421 .name = "aspeed.spi1-ast2400",
1422 .parent = TYPE_ASPEED_SMC,
1423 .class_init = aspeed_2400_spi1_class_init,
1426 static const uint32_t aspeed_2500_fmc_resets[ASPEED_SMC_R_MAX] = {
1427 [R_CONF] = (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0 |
1428 CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1),
1431 static const AspeedSegments aspeed_2500_fmc_segments[] = {
1432 { 0x20000000, 128 * MiB }, /* start address is readonly */
1433 { 0x28000000, 32 * MiB },
1434 { 0x2A000000, 32 * MiB },
1437 static void aspeed_2500_fmc_class_init(ObjectClass *klass, void *data)
1439 DeviceClass *dc = DEVICE_CLASS(klass);
1440 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1442 dc->desc = "Aspeed 2600 FMC Controller";
1443 asc->r_conf = R_CONF;
1444 asc->r_ce_ctrl = R_CE_CTRL;
1445 asc->r_ctrl0 = R_CTRL0;
1446 asc->r_timings = R_TIMINGS;
1447 asc->nregs_timings = 1;
1448 asc->conf_enable_w0 = CONF_ENABLE_W0;
1449 asc->cs_num_max = 3;
1450 asc->segments = aspeed_2500_fmc_segments;
1451 asc->segment_addr_mask = 0xffff0000;
1452 asc->resets = aspeed_2500_fmc_resets;
1453 asc->flash_window_base = 0x20000000;
1454 asc->flash_window_size = 0x10000000;
1455 asc->features = ASPEED_SMC_FEATURE_DMA;
1456 asc->dma_flash_mask = 0x0FFFFFFC;
1457 asc->dma_dram_mask = 0x3FFFFFFC;
1458 asc->nregs = ASPEED_SMC_R_MAX;
1459 asc->segment_to_reg = aspeed_smc_segment_to_reg;
1460 asc->reg_to_segment = aspeed_smc_reg_to_segment;
1461 asc->dma_ctrl = aspeed_smc_dma_ctrl;
1464 static const TypeInfo aspeed_2500_fmc_info = {
1465 .name = "aspeed.fmc-ast2500",
1466 .parent = TYPE_ASPEED_SMC,
1467 .class_init = aspeed_2500_fmc_class_init,
1470 static const AspeedSegments aspeed_2500_spi1_segments[] = {
1471 { 0x30000000, 32 * MiB }, /* start address is readonly */
1472 { 0x32000000, 96 * MiB }, /* end address is readonly */
1475 static void aspeed_2500_spi1_class_init(ObjectClass *klass, void *data)
1477 DeviceClass *dc = DEVICE_CLASS(klass);
1478 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1480 dc->desc = "Aspeed 2600 SPI1 Controller";
1481 asc->r_conf = R_CONF;
1482 asc->r_ce_ctrl = R_CE_CTRL;
1483 asc->r_ctrl0 = R_CTRL0;
1484 asc->r_timings = R_TIMINGS;
1485 asc->nregs_timings = 1;
1486 asc->conf_enable_w0 = CONF_ENABLE_W0;
1487 asc->cs_num_max = 2;
1488 asc->segments = aspeed_2500_spi1_segments;
1489 asc->segment_addr_mask = 0xffff0000;
1490 asc->flash_window_base = 0x30000000;
1491 asc->flash_window_size = 0x8000000;
1492 asc->features = 0x0;
1493 asc->nregs = ASPEED_SMC_R_MAX;
1494 asc->segment_to_reg = aspeed_smc_segment_to_reg;
1495 asc->reg_to_segment = aspeed_smc_reg_to_segment;
1496 asc->dma_ctrl = aspeed_smc_dma_ctrl;
1499 static const TypeInfo aspeed_2500_spi1_info = {
1500 .name = "aspeed.spi1-ast2500",
1501 .parent = TYPE_ASPEED_SMC,
1502 .class_init = aspeed_2500_spi1_class_init,
1505 static const AspeedSegments aspeed_2500_spi2_segments[] = {
1506 { 0x38000000, 32 * MiB }, /* start address is readonly */
1507 { 0x3A000000, 96 * MiB }, /* end address is readonly */
1510 static void aspeed_2500_spi2_class_init(ObjectClass *klass, void *data)
1512 DeviceClass *dc = DEVICE_CLASS(klass);
1513 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1515 dc->desc = "Aspeed 2600 SPI2 Controller";
1516 asc->r_conf = R_CONF;
1517 asc->r_ce_ctrl = R_CE_CTRL;
1518 asc->r_ctrl0 = R_CTRL0;
1519 asc->r_timings = R_TIMINGS;
1520 asc->nregs_timings = 1;
1521 asc->conf_enable_w0 = CONF_ENABLE_W0;
1522 asc->cs_num_max = 2;
1523 asc->segments = aspeed_2500_spi2_segments;
1524 asc->segment_addr_mask = 0xffff0000;
1525 asc->flash_window_base = 0x38000000;
1526 asc->flash_window_size = 0x8000000;
1527 asc->features = 0x0;
1528 asc->nregs = ASPEED_SMC_R_MAX;
1529 asc->segment_to_reg = aspeed_smc_segment_to_reg;
1530 asc->reg_to_segment = aspeed_smc_reg_to_segment;
1531 asc->dma_ctrl = aspeed_smc_dma_ctrl;
1534 static const TypeInfo aspeed_2500_spi2_info = {
1535 .name = "aspeed.spi2-ast2500",
1536 .parent = TYPE_ASPEED_SMC,
1537 .class_init = aspeed_2500_spi2_class_init,
1541 * The Segment Registers of the AST2600 have a 1MB unit. The address
1542 * range of a flash SPI peripheral is encoded with offsets in the overall
1543 * controller window. The previous SoC AST2400 and AST2500 used
1544 * absolute addresses. Only bits [27:20] are relevant and the end
1545 * address is an upper bound limit.
1547 #define AST2600_SEG_ADDR_MASK 0x0ff00000
1549 static uint32_t aspeed_2600_smc_segment_to_reg(const AspeedSMCState *s,
1550 const AspeedSegments *seg)
1552 uint32_t reg = 0;
1554 /* Disabled segments have a nil register */
1555 if (!seg->size) {
1556 return 0;
1559 reg |= (seg->addr & AST2600_SEG_ADDR_MASK) >> 16; /* start offset */
1560 reg |= (seg->addr + seg->size - 1) & AST2600_SEG_ADDR_MASK; /* end offset */
1561 return reg;
1564 static void aspeed_2600_smc_reg_to_segment(const AspeedSMCState *s,
1565 uint32_t reg, AspeedSegments *seg)
1567 uint32_t start_offset = (reg << 16) & AST2600_SEG_ADDR_MASK;
1568 uint32_t end_offset = reg & AST2600_SEG_ADDR_MASK;
1569 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1571 if (reg) {
1572 seg->addr = asc->flash_window_base + start_offset;
1573 seg->size = end_offset + MiB - start_offset;
1574 } else {
1575 seg->addr = asc->flash_window_base;
1576 seg->size = 0;
1580 static const uint32_t aspeed_2600_fmc_resets[ASPEED_SMC_R_MAX] = {
1581 [R_CONF] = (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0 |
1582 CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1 |
1583 CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE2),
1586 static const AspeedSegments aspeed_2600_fmc_segments[] = {
1587 { 0x0, 128 * MiB }, /* start address is readonly */
1588 { 128 * MiB, 128 * MiB }, /* default is disabled but needed for -kernel */
1589 { 0x0, 0 }, /* disabled */
1592 static void aspeed_2600_fmc_class_init(ObjectClass *klass, void *data)
1594 DeviceClass *dc = DEVICE_CLASS(klass);
1595 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1597 dc->desc = "Aspeed 2600 FMC Controller";
1598 asc->r_conf = R_CONF;
1599 asc->r_ce_ctrl = R_CE_CTRL;
1600 asc->r_ctrl0 = R_CTRL0;
1601 asc->r_timings = R_TIMINGS;
1602 asc->nregs_timings = 1;
1603 asc->conf_enable_w0 = CONF_ENABLE_W0;
1604 asc->cs_num_max = 3;
1605 asc->segments = aspeed_2600_fmc_segments;
1606 asc->segment_addr_mask = 0x0ff00ff0;
1607 asc->resets = aspeed_2600_fmc_resets;
1608 asc->flash_window_base = 0x20000000;
1609 asc->flash_window_size = 0x10000000;
1610 asc->features = ASPEED_SMC_FEATURE_DMA |
1611 ASPEED_SMC_FEATURE_WDT_CONTROL;
1612 asc->dma_flash_mask = 0x0FFFFFFC;
1613 asc->dma_dram_mask = 0x3FFFFFFC;
1614 asc->nregs = ASPEED_SMC_R_MAX;
1615 asc->segment_to_reg = aspeed_2600_smc_segment_to_reg;
1616 asc->reg_to_segment = aspeed_2600_smc_reg_to_segment;
1617 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
1620 static const TypeInfo aspeed_2600_fmc_info = {
1621 .name = "aspeed.fmc-ast2600",
1622 .parent = TYPE_ASPEED_SMC,
1623 .class_init = aspeed_2600_fmc_class_init,
1626 static const AspeedSegments aspeed_2600_spi1_segments[] = {
1627 { 0x0, 128 * MiB }, /* start address is readonly */
1628 { 0x0, 0 }, /* disabled */
1631 static void aspeed_2600_spi1_class_init(ObjectClass *klass, void *data)
1633 DeviceClass *dc = DEVICE_CLASS(klass);
1634 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1636 dc->desc = "Aspeed 2600 SPI1 Controller";
1637 asc->r_conf = R_CONF;
1638 asc->r_ce_ctrl = R_CE_CTRL;
1639 asc->r_ctrl0 = R_CTRL0;
1640 asc->r_timings = R_TIMINGS;
1641 asc->nregs_timings = 2;
1642 asc->conf_enable_w0 = CONF_ENABLE_W0;
1643 asc->cs_num_max = 2;
1644 asc->segments = aspeed_2600_spi1_segments;
1645 asc->segment_addr_mask = 0x0ff00ff0;
1646 asc->flash_window_base = 0x30000000;
1647 asc->flash_window_size = 0x10000000;
1648 asc->features = ASPEED_SMC_FEATURE_DMA |
1649 ASPEED_SMC_FEATURE_DMA_GRANT;
1650 asc->dma_flash_mask = 0x0FFFFFFC;
1651 asc->dma_dram_mask = 0x3FFFFFFC;
1652 asc->nregs = ASPEED_SMC_R_MAX;
1653 asc->segment_to_reg = aspeed_2600_smc_segment_to_reg;
1654 asc->reg_to_segment = aspeed_2600_smc_reg_to_segment;
1655 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
1658 static const TypeInfo aspeed_2600_spi1_info = {
1659 .name = "aspeed.spi1-ast2600",
1660 .parent = TYPE_ASPEED_SMC,
1661 .class_init = aspeed_2600_spi1_class_init,
1664 static const AspeedSegments aspeed_2600_spi2_segments[] = {
1665 { 0x0, 128 * MiB }, /* start address is readonly */
1666 { 0x0, 0 }, /* disabled */
1667 { 0x0, 0 }, /* disabled */
1670 static void aspeed_2600_spi2_class_init(ObjectClass *klass, void *data)
1672 DeviceClass *dc = DEVICE_CLASS(klass);
1673 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1675 dc->desc = "Aspeed 2600 SPI2 Controller";
1676 asc->r_conf = R_CONF;
1677 asc->r_ce_ctrl = R_CE_CTRL;
1678 asc->r_ctrl0 = R_CTRL0;
1679 asc->r_timings = R_TIMINGS;
1680 asc->nregs_timings = 3;
1681 asc->conf_enable_w0 = CONF_ENABLE_W0;
1682 asc->cs_num_max = 3;
1683 asc->segments = aspeed_2600_spi2_segments;
1684 asc->segment_addr_mask = 0x0ff00ff0;
1685 asc->flash_window_base = 0x50000000;
1686 asc->flash_window_size = 0x10000000;
1687 asc->features = ASPEED_SMC_FEATURE_DMA |
1688 ASPEED_SMC_FEATURE_DMA_GRANT;
1689 asc->dma_flash_mask = 0x0FFFFFFC;
1690 asc->dma_dram_mask = 0x3FFFFFFC;
1691 asc->nregs = ASPEED_SMC_R_MAX;
1692 asc->segment_to_reg = aspeed_2600_smc_segment_to_reg;
1693 asc->reg_to_segment = aspeed_2600_smc_reg_to_segment;
1694 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
1697 static const TypeInfo aspeed_2600_spi2_info = {
1698 .name = "aspeed.spi2-ast2600",
1699 .parent = TYPE_ASPEED_SMC,
1700 .class_init = aspeed_2600_spi2_class_init,
1704 * The FMC Segment Registers of the AST1030 have a 512KB unit.
1705 * Only bits [27:19] are used for decoding.
1707 #define AST1030_SEG_ADDR_MASK 0x0ff80000
1709 static uint32_t aspeed_1030_smc_segment_to_reg(const AspeedSMCState *s,
1710 const AspeedSegments *seg)
1712 uint32_t reg = 0;
1714 /* Disabled segments have a nil register */
1715 if (!seg->size) {
1716 return 0;
1719 reg |= (seg->addr & AST1030_SEG_ADDR_MASK) >> 16; /* start offset */
1720 reg |= (seg->addr + seg->size - 1) & AST1030_SEG_ADDR_MASK; /* end offset */
1721 return reg;
1724 static void aspeed_1030_smc_reg_to_segment(const AspeedSMCState *s,
1725 uint32_t reg, AspeedSegments *seg)
1727 uint32_t start_offset = (reg << 16) & AST1030_SEG_ADDR_MASK;
1728 uint32_t end_offset = reg & AST1030_SEG_ADDR_MASK;
1729 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1731 if (reg) {
1732 seg->addr = asc->flash_window_base + start_offset;
1733 seg->size = end_offset + (512 * KiB) - start_offset;
1734 } else {
1735 seg->addr = asc->flash_window_base;
1736 seg->size = 0;
1740 static const uint32_t aspeed_1030_fmc_resets[ASPEED_SMC_R_MAX] = {
1741 [R_CONF] = (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0 |
1742 CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1),
1745 static const AspeedSegments aspeed_1030_fmc_segments[] = {
1746 { 0x0, 128 * MiB }, /* start address is readonly */
1747 { 128 * MiB, 128 * MiB }, /* default is disabled but needed for -kernel */
1748 { 0x0, 0 }, /* disabled */
1751 static void aspeed_1030_fmc_class_init(ObjectClass *klass, void *data)
1753 DeviceClass *dc = DEVICE_CLASS(klass);
1754 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1756 dc->desc = "Aspeed 1030 FMC Controller";
1757 asc->r_conf = R_CONF;
1758 asc->r_ce_ctrl = R_CE_CTRL;
1759 asc->r_ctrl0 = R_CTRL0;
1760 asc->r_timings = R_TIMINGS;
1761 asc->nregs_timings = 2;
1762 asc->conf_enable_w0 = CONF_ENABLE_W0;
1763 asc->cs_num_max = 2;
1764 asc->segments = aspeed_1030_fmc_segments;
1765 asc->segment_addr_mask = 0x0ff80ff8;
1766 asc->resets = aspeed_1030_fmc_resets;
1767 asc->flash_window_base = 0x80000000;
1768 asc->flash_window_size = 0x10000000;
1769 asc->features = ASPEED_SMC_FEATURE_DMA;
1770 asc->dma_flash_mask = 0x0FFFFFFC;
1771 asc->dma_dram_mask = 0x000BFFFC;
1772 asc->nregs = ASPEED_SMC_R_MAX;
1773 asc->segment_to_reg = aspeed_1030_smc_segment_to_reg;
1774 asc->reg_to_segment = aspeed_1030_smc_reg_to_segment;
1775 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
1778 static const TypeInfo aspeed_1030_fmc_info = {
1779 .name = "aspeed.fmc-ast1030",
1780 .parent = TYPE_ASPEED_SMC,
1781 .class_init = aspeed_1030_fmc_class_init,
1784 static const AspeedSegments aspeed_1030_spi1_segments[] = {
1785 { 0x0, 128 * MiB }, /* start address is readonly */
1786 { 0x0, 0 }, /* disabled */
1789 static void aspeed_1030_spi1_class_init(ObjectClass *klass, void *data)
1791 DeviceClass *dc = DEVICE_CLASS(klass);
1792 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1794 dc->desc = "Aspeed 1030 SPI1 Controller";
1795 asc->r_conf = R_CONF;
1796 asc->r_ce_ctrl = R_CE_CTRL;
1797 asc->r_ctrl0 = R_CTRL0;
1798 asc->r_timings = R_TIMINGS;
1799 asc->nregs_timings = 2;
1800 asc->conf_enable_w0 = CONF_ENABLE_W0;
1801 asc->cs_num_max = 2;
1802 asc->segments = aspeed_1030_spi1_segments;
1803 asc->segment_addr_mask = 0x0ff00ff0;
1804 asc->flash_window_base = 0x90000000;
1805 asc->flash_window_size = 0x10000000;
1806 asc->features = ASPEED_SMC_FEATURE_DMA;
1807 asc->dma_flash_mask = 0x0FFFFFFC;
1808 asc->dma_dram_mask = 0x000BFFFC;
1809 asc->nregs = ASPEED_SMC_R_MAX;
1810 asc->segment_to_reg = aspeed_2600_smc_segment_to_reg;
1811 asc->reg_to_segment = aspeed_2600_smc_reg_to_segment;
1812 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
1815 static const TypeInfo aspeed_1030_spi1_info = {
1816 .name = "aspeed.spi1-ast1030",
1817 .parent = TYPE_ASPEED_SMC,
1818 .class_init = aspeed_1030_spi1_class_init,
1820 static const AspeedSegments aspeed_1030_spi2_segments[] = {
1821 { 0x0, 128 * MiB }, /* start address is readonly */
1822 { 0x0, 0 }, /* disabled */
1825 static void aspeed_1030_spi2_class_init(ObjectClass *klass, void *data)
1827 DeviceClass *dc = DEVICE_CLASS(klass);
1828 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1830 dc->desc = "Aspeed 1030 SPI2 Controller";
1831 asc->r_conf = R_CONF;
1832 asc->r_ce_ctrl = R_CE_CTRL;
1833 asc->r_ctrl0 = R_CTRL0;
1834 asc->r_timings = R_TIMINGS;
1835 asc->nregs_timings = 2;
1836 asc->conf_enable_w0 = CONF_ENABLE_W0;
1837 asc->cs_num_max = 2;
1838 asc->segments = aspeed_1030_spi2_segments;
1839 asc->segment_addr_mask = 0x0ff00ff0;
1840 asc->flash_window_base = 0xb0000000;
1841 asc->flash_window_size = 0x10000000;
1842 asc->features = ASPEED_SMC_FEATURE_DMA;
1843 asc->dma_flash_mask = 0x0FFFFFFC;
1844 asc->dma_dram_mask = 0x000BFFFC;
1845 asc->nregs = ASPEED_SMC_R_MAX;
1846 asc->segment_to_reg = aspeed_2600_smc_segment_to_reg;
1847 asc->reg_to_segment = aspeed_2600_smc_reg_to_segment;
1848 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
1851 static const TypeInfo aspeed_1030_spi2_info = {
1852 .name = "aspeed.spi2-ast1030",
1853 .parent = TYPE_ASPEED_SMC,
1854 .class_init = aspeed_1030_spi2_class_init,
1857 static void aspeed_smc_register_types(void)
1859 type_register_static(&aspeed_smc_flash_info);
1860 type_register_static(&aspeed_smc_info);
1861 type_register_static(&aspeed_2400_smc_info);
1862 type_register_static(&aspeed_2400_fmc_info);
1863 type_register_static(&aspeed_2400_spi1_info);
1864 type_register_static(&aspeed_2500_fmc_info);
1865 type_register_static(&aspeed_2500_spi1_info);
1866 type_register_static(&aspeed_2500_spi2_info);
1867 type_register_static(&aspeed_2600_fmc_info);
1868 type_register_static(&aspeed_2600_spi1_info);
1869 type_register_static(&aspeed_2600_spi2_info);
1870 type_register_static(&aspeed_1030_fmc_info);
1871 type_register_static(&aspeed_1030_spi1_info);
1872 type_register_static(&aspeed_1030_spi2_info);
1875 type_init(aspeed_smc_register_types)