4 * This provides the API that is available to the plugins to interact
5 * with QEMU. We have to be careful not to expose internal details of
6 * how QEMU works so we abstract out things like translation and
7 * instructions to anonymous data types:
11 * qemu_plugin_register
13 * Which can then be passed back into the API to do additional things.
14 * As such all the public functions in here are exported in
17 * The general life-cycle of a plugin is:
19 * - plugin is loaded, public qemu_plugin_install called
20 * - the install func registers callbacks for events
21 * - usually an atexit_cb is registered to dump info at the end
22 * - when a registered event occurs the plugin is called
23 * - some events pass additional info
24 * - during translation the plugin can decide to instrument any
26 * - when QEMU exits all the registered atexit callbacks are called
28 * Copyright (C) 2017, Emilio G. Cota <cota@braap.org>
29 * Copyright (C) 2019, Linaro
31 * License: GNU GPL, version 2 or later.
32 * See the COPYING file in the top-level directory.
34 * SPDX-License-Identifier: GPL-2.0-or-later
38 #include "qemu/osdep.h"
39 #include "qemu/main-loop.h"
40 #include "qemu/plugin.h"
43 #include "exec/exec-all.h"
44 #include "exec/gdbstub.h"
45 #include "exec/translator.h"
46 #include "disas/disas.h"
48 #ifndef CONFIG_USER_ONLY
49 #include "exec/ram_addr.h"
50 #include "qemu/plugin-memory.h"
51 #include "hw/boards.h"
59 /* Uninstall and Reset handlers */
61 void qemu_plugin_uninstall(qemu_plugin_id_t id
, qemu_plugin_simple_cb_t cb
)
63 plugin_reset_uninstall(id
, cb
, false);
66 void qemu_plugin_reset(qemu_plugin_id_t id
, qemu_plugin_simple_cb_t cb
)
68 plugin_reset_uninstall(id
, cb
, true);
72 * Plugin Register Functions
74 * This allows the plugin to register callbacks for various events
75 * during the translation.
78 void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id
,
79 qemu_plugin_vcpu_simple_cb_t cb
)
81 plugin_register_cb(id
, QEMU_PLUGIN_EV_VCPU_INIT
, cb
);
84 void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id
,
85 qemu_plugin_vcpu_simple_cb_t cb
)
87 plugin_register_cb(id
, QEMU_PLUGIN_EV_VCPU_EXIT
, cb
);
90 static bool tb_is_mem_only(void)
92 return tb_cflags(tcg_ctx
->gen_tb
) & CF_MEMI_ONLY
;
95 void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb
*tb
,
96 qemu_plugin_vcpu_udata_cb_t cb
,
97 enum qemu_plugin_cb_flags flags
,
100 if (!tb_is_mem_only()) {
101 plugin_register_dyn_cb__udata(&tb
->cbs
, cb
, flags
, udata
);
105 void qemu_plugin_register_vcpu_tb_exec_cond_cb(struct qemu_plugin_tb
*tb
,
106 qemu_plugin_vcpu_udata_cb_t cb
,
107 enum qemu_plugin_cb_flags flags
,
108 enum qemu_plugin_cond cond
,
109 qemu_plugin_u64 entry
,
113 if (cond
== QEMU_PLUGIN_COND_NEVER
|| tb_is_mem_only()) {
116 if (cond
== QEMU_PLUGIN_COND_ALWAYS
) {
117 qemu_plugin_register_vcpu_tb_exec_cb(tb
, cb
, flags
, udata
);
120 plugin_register_dyn_cond_cb__udata(&tb
->cbs
, cb
, flags
,
121 cond
, entry
, imm
, udata
);
124 void qemu_plugin_register_vcpu_tb_exec_inline_per_vcpu(
125 struct qemu_plugin_tb
*tb
,
126 enum qemu_plugin_op op
,
127 qemu_plugin_u64 entry
,
130 if (!tb_is_mem_only()) {
131 plugin_register_inline_op_on_entry(&tb
->cbs
, 0, op
, entry
, imm
);
135 void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn
*insn
,
136 qemu_plugin_vcpu_udata_cb_t cb
,
137 enum qemu_plugin_cb_flags flags
,
140 if (!tb_is_mem_only()) {
141 plugin_register_dyn_cb__udata(&insn
->insn_cbs
, cb
, flags
, udata
);
145 void qemu_plugin_register_vcpu_insn_exec_cond_cb(
146 struct qemu_plugin_insn
*insn
,
147 qemu_plugin_vcpu_udata_cb_t cb
,
148 enum qemu_plugin_cb_flags flags
,
149 enum qemu_plugin_cond cond
,
150 qemu_plugin_u64 entry
,
154 if (cond
== QEMU_PLUGIN_COND_NEVER
|| tb_is_mem_only()) {
157 if (cond
== QEMU_PLUGIN_COND_ALWAYS
) {
158 qemu_plugin_register_vcpu_insn_exec_cb(insn
, cb
, flags
, udata
);
161 plugin_register_dyn_cond_cb__udata(&insn
->insn_cbs
, cb
, flags
,
162 cond
, entry
, imm
, udata
);
165 void qemu_plugin_register_vcpu_insn_exec_inline_per_vcpu(
166 struct qemu_plugin_insn
*insn
,
167 enum qemu_plugin_op op
,
168 qemu_plugin_u64 entry
,
171 if (!tb_is_mem_only()) {
172 plugin_register_inline_op_on_entry(&insn
->insn_cbs
, 0, op
, entry
, imm
);
178 * We always plant memory instrumentation because they don't finalise until
179 * after the operation has complete.
181 void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn
*insn
,
182 qemu_plugin_vcpu_mem_cb_t cb
,
183 enum qemu_plugin_cb_flags flags
,
184 enum qemu_plugin_mem_rw rw
,
187 plugin_register_vcpu_mem_cb(&insn
->mem_cbs
, cb
, flags
, rw
, udata
);
190 void qemu_plugin_register_vcpu_mem_inline_per_vcpu(
191 struct qemu_plugin_insn
*insn
,
192 enum qemu_plugin_mem_rw rw
,
193 enum qemu_plugin_op op
,
194 qemu_plugin_u64 entry
,
197 plugin_register_inline_op_on_entry(&insn
->mem_cbs
, rw
, op
, entry
, imm
);
200 void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id
,
201 qemu_plugin_vcpu_tb_trans_cb_t cb
)
203 plugin_register_cb(id
, QEMU_PLUGIN_EV_VCPU_TB_TRANS
, cb
);
206 void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id
,
207 qemu_plugin_vcpu_syscall_cb_t cb
)
209 plugin_register_cb(id
, QEMU_PLUGIN_EV_VCPU_SYSCALL
, cb
);
213 qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id
,
214 qemu_plugin_vcpu_syscall_ret_cb_t cb
)
216 plugin_register_cb(id
, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET
, cb
);
222 * These are queries that the plugin can make to gauge information
223 * from our opaque data types. We do not want to leak internal details
224 * here just information useful to the plugin.
228 * Translation block information:
230 * A plugin can query the virtual address of the start of the block
231 * and the number of instructions in it. It can also get access to
232 * each translated instruction.
235 size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb
*tb
)
240 uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb
*tb
)
242 const DisasContextBase
*db
= tcg_ctx
->plugin_db
;
246 struct qemu_plugin_insn
*
247 qemu_plugin_tb_get_insn(const struct qemu_plugin_tb
*tb
, size_t idx
)
249 struct qemu_plugin_insn
*insn
;
250 if (unlikely(idx
>= tb
->n
)) {
253 insn
= g_ptr_array_index(tb
->insns
, idx
);
258 * Instruction information
260 * These queries allow the plugin to retrieve information about each
261 * instruction being translated.
264 size_t qemu_plugin_insn_data(const struct qemu_plugin_insn
*insn
,
265 void *dest
, size_t len
)
267 const DisasContextBase
*db
= tcg_ctx
->plugin_db
;
269 len
= MIN(len
, insn
->len
);
270 return translator_st(db
, dest
, insn
->vaddr
, len
) ? len
: 0;
273 size_t qemu_plugin_insn_size(const struct qemu_plugin_insn
*insn
)
278 uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn
*insn
)
283 void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn
*insn
)
285 const DisasContextBase
*db
= tcg_ctx
->plugin_db
;
286 vaddr page0_last
= db
->pc_first
| ~TARGET_PAGE_MASK
;
293 * ??? The return value is not intended for use of host memory,
294 * but as a proxy for address space and physical address.
295 * Thus we are only interested in the first byte and do not
296 * care about spanning pages.
298 if (insn
->vaddr
<= page0_last
) {
299 if (db
->host_addr
[0] == NULL
) {
302 return db
->host_addr
[0] + insn
->vaddr
- db
->pc_first
;
304 if (db
->host_addr
[1] == NULL
) {
307 return db
->host_addr
[1] + insn
->vaddr
- (page0_last
+ 1);
311 char *qemu_plugin_insn_disas(const struct qemu_plugin_insn
*insn
)
313 return plugin_disas(tcg_ctx
->cpu
, tcg_ctx
->plugin_db
,
314 insn
->vaddr
, insn
->len
);
317 const char *qemu_plugin_insn_symbol(const struct qemu_plugin_insn
*insn
)
319 const char *sym
= lookup_symbol(insn
->vaddr
);
320 return sym
[0] != 0 ? sym
: NULL
;
324 * The memory queries allow the plugin to query information about a
328 unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info
)
330 MemOp op
= get_memop(info
);
334 bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info
)
336 MemOp op
= get_memop(info
);
340 bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info
)
342 MemOp op
= get_memop(info
);
343 return (op
& MO_BSWAP
) == MO_BE
;
346 bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info
)
348 return get_plugin_meminfo_rw(info
) & QEMU_PLUGIN_MEM_W
;
352 * Virtual Memory queries
355 #ifdef CONFIG_SOFTMMU
356 static __thread
struct qemu_plugin_hwaddr hwaddr_info
;
359 struct qemu_plugin_hwaddr
*qemu_plugin_get_hwaddr(qemu_plugin_meminfo_t info
,
362 #ifdef CONFIG_SOFTMMU
363 CPUState
*cpu
= current_cpu
;
364 unsigned int mmu_idx
= get_mmuidx(info
);
365 enum qemu_plugin_mem_rw rw
= get_plugin_meminfo_rw(info
);
366 hwaddr_info
.is_store
= (rw
& QEMU_PLUGIN_MEM_W
) != 0;
368 assert(mmu_idx
< NB_MMU_MODES
);
370 if (!tlb_plugin_lookup(cpu
, vaddr
, mmu_idx
,
371 hwaddr_info
.is_store
, &hwaddr_info
)) {
372 error_report("invalid use of qemu_plugin_get_hwaddr");
382 bool qemu_plugin_hwaddr_is_io(const struct qemu_plugin_hwaddr
*haddr
)
384 #ifdef CONFIG_SOFTMMU
391 uint64_t qemu_plugin_hwaddr_phys_addr(const struct qemu_plugin_hwaddr
*haddr
)
393 #ifdef CONFIG_SOFTMMU
395 return haddr
->phys_addr
;
401 const char *qemu_plugin_hwaddr_device_name(const struct qemu_plugin_hwaddr
*h
)
403 #ifdef CONFIG_SOFTMMU
405 MemoryRegion
*mr
= h
->mr
;
407 unsigned maddr
= (uintptr_t)mr
;
408 g_autofree
char *temp
= g_strdup_printf("anon%08x", maddr
);
409 return g_intern_string(temp
);
411 return g_intern_string(mr
->name
);
414 return g_intern_static_string("RAM");
417 return g_intern_static_string("Invalid");
421 int qemu_plugin_num_vcpus(void)
423 return plugin_num_vcpus();
429 void qemu_plugin_outs(const char *string
)
431 qemu_log_mask(CPU_LOG_PLUGIN
, "%s", string
);
434 bool qemu_plugin_bool_parse(const char *name
, const char *value
, bool *ret
)
436 return name
&& value
&& qapi_bool_parse(name
, value
, ret
, NULL
);
440 * Binary path, start and end locations
442 const char *qemu_plugin_path_to_binary(void)
445 #ifdef CONFIG_USER_ONLY
446 TaskState
*ts
= get_task_state(current_cpu
);
447 path
= g_strdup(ts
->bprm
->filename
);
452 uint64_t qemu_plugin_start_code(void)
455 #ifdef CONFIG_USER_ONLY
456 TaskState
*ts
= get_task_state(current_cpu
);
457 start
= ts
->info
->start_code
;
462 uint64_t qemu_plugin_end_code(void)
465 #ifdef CONFIG_USER_ONLY
466 TaskState
*ts
= get_task_state(current_cpu
);
467 end
= ts
->info
->end_code
;
472 uint64_t qemu_plugin_entry_code(void)
475 #ifdef CONFIG_USER_ONLY
476 TaskState
*ts
= get_task_state(current_cpu
);
477 entry
= ts
->info
->entry
;
483 * Create register handles.
485 * We need to create a handle for each register so the plugin
486 * infrastructure can call gdbstub to read a register. They are
487 * currently just a pointer encapsulation of the gdb_reg but in
488 * future may hold internal plugin state so its important plugin
489 * authors are not tempted to treat them as numbers.
491 * We also construct a result array with those handles and some
492 * ancillary data the plugin might find useful.
495 static GArray
*create_register_handles(GArray
*gdbstub_regs
)
497 GArray
*find_data
= g_array_new(true, true,
498 sizeof(qemu_plugin_reg_descriptor
));
500 for (int i
= 0; i
< gdbstub_regs
->len
; i
++) {
501 GDBRegDesc
*grd
= &g_array_index(gdbstub_regs
, GDBRegDesc
, i
);
502 qemu_plugin_reg_descriptor desc
;
504 /* skip "un-named" regs */
509 /* Create a record for the plugin */
510 desc
.handle
= GINT_TO_POINTER(grd
->gdb_reg
);
511 desc
.name
= g_intern_string(grd
->name
);
512 desc
.feature
= g_intern_string(grd
->feature_name
);
513 g_array_append_val(find_data
, desc
);
519 GArray
*qemu_plugin_get_registers(void)
521 g_assert(current_cpu
);
523 g_autoptr(GArray
) regs
= gdb_get_register_list(current_cpu
);
524 return create_register_handles(regs
);
527 int qemu_plugin_read_register(struct qemu_plugin_register
*reg
, GByteArray
*buf
)
529 g_assert(current_cpu
);
531 return gdb_read_register(current_cpu
, buf
, GPOINTER_TO_INT(reg
));
534 struct qemu_plugin_scoreboard
*qemu_plugin_scoreboard_new(size_t element_size
)
536 return plugin_scoreboard_new(element_size
);
539 void qemu_plugin_scoreboard_free(struct qemu_plugin_scoreboard
*score
)
541 plugin_scoreboard_free(score
);
544 void *qemu_plugin_scoreboard_find(struct qemu_plugin_scoreboard
*score
,
545 unsigned int vcpu_index
)
547 g_assert(vcpu_index
< qemu_plugin_num_vcpus());
548 /* we can't use g_array_index since entry size is not statically known */
549 char *base_ptr
= score
->data
->data
;
550 return base_ptr
+ vcpu_index
* g_array_get_element_size(score
->data
);
553 static uint64_t *plugin_u64_address(qemu_plugin_u64 entry
,
554 unsigned int vcpu_index
)
556 char *ptr
= qemu_plugin_scoreboard_find(entry
.score
, vcpu_index
);
557 return (uint64_t *)(ptr
+ entry
.offset
);
560 void qemu_plugin_u64_add(qemu_plugin_u64 entry
, unsigned int vcpu_index
,
563 *plugin_u64_address(entry
, vcpu_index
) += added
;
566 uint64_t qemu_plugin_u64_get(qemu_plugin_u64 entry
,
567 unsigned int vcpu_index
)
569 return *plugin_u64_address(entry
, vcpu_index
);
572 void qemu_plugin_u64_set(qemu_plugin_u64 entry
, unsigned int vcpu_index
,
575 *plugin_u64_address(entry
, vcpu_index
) = val
;
578 uint64_t qemu_plugin_u64_sum(qemu_plugin_u64 entry
)
581 for (int i
= 0, n
= qemu_plugin_num_vcpus(); i
< n
; ++i
) {
582 total
+= qemu_plugin_u64_get(entry
, i
);