target/alpha: Split out gen_pc_disp
[qemu/armbru.git] / migration / postcopy-ram.c
blobeccff499cb20874ab17ad8c6da7da3c12cb5f92e
1 /*
2 * Postcopy migration for RAM
4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Dave Gilbert <dgilbert@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
15 * Postcopy is a migration technique where the execution flips from the
16 * source to the destination before all the data has been copied.
19 #include "qemu/osdep.h"
20 #include "qemu/madvise.h"
21 #include "exec/target_page.h"
22 #include "migration.h"
23 #include "qemu-file.h"
24 #include "savevm.h"
25 #include "postcopy-ram.h"
26 #include "ram.h"
27 #include "qapi/error.h"
28 #include "qemu/notify.h"
29 #include "qemu/rcu.h"
30 #include "sysemu/sysemu.h"
31 #include "qemu/error-report.h"
32 #include "trace.h"
33 #include "hw/boards.h"
34 #include "exec/ramblock.h"
35 #include "socket.h"
36 #include "yank_functions.h"
37 #include "tls.h"
38 #include "qemu/userfaultfd.h"
39 #include "qemu/mmap-alloc.h"
40 #include "options.h"
42 /* Arbitrary limit on size of each discard command,
43 * keeps them around ~200 bytes
45 #define MAX_DISCARDS_PER_COMMAND 12
47 struct PostcopyDiscardState {
48 const char *ramblock_name;
49 uint16_t cur_entry;
51 * Start and length of a discard range (bytes)
53 uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
54 uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
55 unsigned int nsentwords;
56 unsigned int nsentcmds;
59 static NotifierWithReturnList postcopy_notifier_list;
61 void postcopy_infrastructure_init(void)
63 notifier_with_return_list_init(&postcopy_notifier_list);
66 void postcopy_add_notifier(NotifierWithReturn *nn)
68 notifier_with_return_list_add(&postcopy_notifier_list, nn);
71 void postcopy_remove_notifier(NotifierWithReturn *n)
73 notifier_with_return_remove(n);
76 int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp)
78 struct PostcopyNotifyData pnd;
79 pnd.reason = reason;
81 return notifier_with_return_list_notify(&postcopy_notifier_list,
82 &pnd, errp);
86 * NOTE: this routine is not thread safe, we can't call it concurrently. But it
87 * should be good enough for migration's purposes.
89 void postcopy_thread_create(MigrationIncomingState *mis,
90 QemuThread *thread, const char *name,
91 void *(*fn)(void *), int joinable)
93 qemu_sem_init(&mis->thread_sync_sem, 0);
94 qemu_thread_create(thread, name, fn, mis, joinable);
95 qemu_sem_wait(&mis->thread_sync_sem);
96 qemu_sem_destroy(&mis->thread_sync_sem);
99 /* Postcopy needs to detect accesses to pages that haven't yet been copied
100 * across, and efficiently map new pages in, the techniques for doing this
101 * are target OS specific.
103 #if defined(__linux__)
104 #include <poll.h>
105 #include <sys/ioctl.h>
106 #include <sys/syscall.h>
107 #endif
109 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
110 #include <sys/eventfd.h>
111 #include <linux/userfaultfd.h>
113 typedef struct PostcopyBlocktimeContext {
114 /* time when page fault initiated per vCPU */
115 uint32_t *page_fault_vcpu_time;
116 /* page address per vCPU */
117 uintptr_t *vcpu_addr;
118 uint32_t total_blocktime;
119 /* blocktime per vCPU */
120 uint32_t *vcpu_blocktime;
121 /* point in time when last page fault was initiated */
122 uint32_t last_begin;
123 /* number of vCPU are suspended */
124 int smp_cpus_down;
125 uint64_t start_time;
128 * Handler for exit event, necessary for
129 * releasing whole blocktime_ctx
131 Notifier exit_notifier;
132 } PostcopyBlocktimeContext;
134 static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx)
136 g_free(ctx->page_fault_vcpu_time);
137 g_free(ctx->vcpu_addr);
138 g_free(ctx->vcpu_blocktime);
139 g_free(ctx);
142 static void migration_exit_cb(Notifier *n, void *data)
144 PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext,
145 exit_notifier);
146 destroy_blocktime_context(ctx);
149 static struct PostcopyBlocktimeContext *blocktime_context_new(void)
151 MachineState *ms = MACHINE(qdev_get_machine());
152 unsigned int smp_cpus = ms->smp.cpus;
153 PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1);
154 ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus);
155 ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus);
156 ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus);
158 ctx->exit_notifier.notify = migration_exit_cb;
159 ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
160 qemu_add_exit_notifier(&ctx->exit_notifier);
161 return ctx;
164 static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx)
166 MachineState *ms = MACHINE(qdev_get_machine());
167 uint32List *list = NULL;
168 int i;
170 for (i = ms->smp.cpus - 1; i >= 0; i--) {
171 QAPI_LIST_PREPEND(list, ctx->vcpu_blocktime[i]);
174 return list;
178 * This function just populates MigrationInfo from postcopy's
179 * blocktime context. It will not populate MigrationInfo,
180 * unless postcopy-blocktime capability was set.
182 * @info: pointer to MigrationInfo to populate
184 void fill_destination_postcopy_migration_info(MigrationInfo *info)
186 MigrationIncomingState *mis = migration_incoming_get_current();
187 PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
189 if (!bc) {
190 return;
193 info->has_postcopy_blocktime = true;
194 info->postcopy_blocktime = bc->total_blocktime;
195 info->has_postcopy_vcpu_blocktime = true;
196 info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc);
199 static uint32_t get_postcopy_total_blocktime(void)
201 MigrationIncomingState *mis = migration_incoming_get_current();
202 PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
204 if (!bc) {
205 return 0;
208 return bc->total_blocktime;
212 * receive_ufd_features: check userfault fd features, to request only supported
213 * features in the future.
215 * Returns: true on success
217 * __NR_userfaultfd - should be checked before
218 * @features: out parameter will contain uffdio_api.features provided by kernel
219 * in case of success
221 static bool receive_ufd_features(uint64_t *features)
223 struct uffdio_api api_struct = {0};
224 int ufd;
225 bool ret = true;
227 ufd = uffd_open(O_CLOEXEC);
228 if (ufd == -1) {
229 error_report("%s: uffd_open() failed: %s", __func__, strerror(errno));
230 return false;
233 /* ask features */
234 api_struct.api = UFFD_API;
235 api_struct.features = 0;
236 if (ioctl(ufd, UFFDIO_API, &api_struct)) {
237 error_report("%s: UFFDIO_API failed: %s", __func__,
238 strerror(errno));
239 ret = false;
240 goto release_ufd;
243 *features = api_struct.features;
245 release_ufd:
246 close(ufd);
247 return ret;
251 * request_ufd_features: this function should be called only once on a newly
252 * opened ufd, subsequent calls will lead to error.
254 * Returns: true on success
256 * @ufd: fd obtained from userfaultfd syscall
257 * @features: bit mask see UFFD_API_FEATURES
259 static bool request_ufd_features(int ufd, uint64_t features)
261 struct uffdio_api api_struct = {0};
262 uint64_t ioctl_mask;
264 api_struct.api = UFFD_API;
265 api_struct.features = features;
266 if (ioctl(ufd, UFFDIO_API, &api_struct)) {
267 error_report("%s failed: UFFDIO_API failed: %s", __func__,
268 strerror(errno));
269 return false;
272 ioctl_mask = 1ULL << _UFFDIO_REGISTER |
273 1ULL << _UFFDIO_UNREGISTER;
274 if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
275 error_report("Missing userfault features: %" PRIx64,
276 (uint64_t)(~api_struct.ioctls & ioctl_mask));
277 return false;
280 return true;
283 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis,
284 Error **errp)
286 ERRP_GUARD();
287 uint64_t asked_features = 0;
288 static uint64_t supported_features;
291 * it's not possible to
292 * request UFFD_API twice per one fd
293 * userfault fd features is persistent
295 if (!supported_features) {
296 if (!receive_ufd_features(&supported_features)) {
297 error_setg(errp, "Userfault feature detection failed");
298 return false;
302 #ifdef UFFD_FEATURE_THREAD_ID
303 if (UFFD_FEATURE_THREAD_ID & supported_features) {
304 asked_features |= UFFD_FEATURE_THREAD_ID;
305 if (migrate_postcopy_blocktime()) {
306 if (!mis->blocktime_ctx) {
307 mis->blocktime_ctx = blocktime_context_new();
311 #endif
314 * request features, even if asked_features is 0, due to
315 * kernel expects UFFD_API before UFFDIO_REGISTER, per
316 * userfault file descriptor
318 if (!request_ufd_features(ufd, asked_features)) {
319 error_setg(errp, "Failed features %" PRIu64, asked_features);
320 return false;
323 if (qemu_real_host_page_size() != ram_pagesize_summary()) {
324 bool have_hp = false;
325 /* We've got a huge page */
326 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS
327 have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
328 #endif
329 if (!have_hp) {
330 error_setg(errp,
331 "Userfault on this host does not support huge pages");
332 return false;
335 return true;
338 /* Callback from postcopy_ram_supported_by_host block iterator.
340 static int test_ramblock_postcopiable(RAMBlock *rb, Error **errp)
342 const char *block_name = qemu_ram_get_idstr(rb);
343 ram_addr_t length = qemu_ram_get_used_length(rb);
344 size_t pagesize = qemu_ram_pagesize(rb);
345 QemuFsType fs;
347 if (length % pagesize) {
348 error_setg(errp,
349 "Postcopy requires RAM blocks to be a page size multiple,"
350 " block %s is 0x" RAM_ADDR_FMT " bytes with a "
351 "page size of 0x%zx", block_name, length, pagesize);
352 return 1;
355 if (rb->fd >= 0) {
356 fs = qemu_fd_getfs(rb->fd);
357 if (fs != QEMU_FS_TYPE_TMPFS && fs != QEMU_FS_TYPE_HUGETLBFS) {
358 error_setg(errp,
359 "Host backend files need to be TMPFS or HUGETLBFS only");
360 return 1;
364 return 0;
368 * Note: This has the side effect of munlock'ing all of RAM, that's
369 * normally fine since if the postcopy succeeds it gets turned back on at the
370 * end.
372 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis, Error **errp)
374 ERRP_GUARD();
375 long pagesize = qemu_real_host_page_size();
376 int ufd = -1;
377 bool ret = false; /* Error unless we change it */
378 void *testarea = NULL;
379 struct uffdio_register reg_struct;
380 struct uffdio_range range_struct;
381 uint64_t feature_mask;
382 RAMBlock *block;
384 if (qemu_target_page_size() > pagesize) {
385 error_setg(errp, "Target page size bigger than host page size");
386 goto out;
389 ufd = uffd_open(O_CLOEXEC);
390 if (ufd == -1) {
391 error_setg(errp, "Userfaultfd not available: %s", strerror(errno));
392 goto out;
395 /* Give devices a chance to object */
396 if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, errp)) {
397 goto out;
400 /* Version and features check */
401 if (!ufd_check_and_apply(ufd, mis, errp)) {
402 goto out;
406 * We don't support postcopy with some type of ramblocks.
408 * NOTE: we explicitly ignored migrate_ram_is_ignored() instead we checked
409 * all possible ramblocks. This is because this function can be called
410 * when creating the migration object, during the phase RAM_MIGRATABLE
411 * is not even properly set for all the ramblocks.
413 * A side effect of this is we'll also check against RAM_SHARED
414 * ramblocks even if migrate_ignore_shared() is set (in which case
415 * we'll never migrate RAM_SHARED at all), but normally this shouldn't
416 * affect in reality, or we can revisit.
418 RAMBLOCK_FOREACH(block) {
419 if (test_ramblock_postcopiable(block, errp)) {
420 goto out;
425 * userfault and mlock don't go together; we'll put it back later if
426 * it was enabled.
428 if (munlockall()) {
429 error_setg(errp, "munlockall() failed: %s", strerror(errno));
430 goto out;
434 * We need to check that the ops we need are supported on anon memory
435 * To do that we need to register a chunk and see the flags that
436 * are returned.
438 testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
439 MAP_ANONYMOUS, -1, 0);
440 if (testarea == MAP_FAILED) {
441 error_setg(errp, "Failed to map test area: %s", strerror(errno));
442 goto out;
444 g_assert(QEMU_PTR_IS_ALIGNED(testarea, pagesize));
446 reg_struct.range.start = (uintptr_t)testarea;
447 reg_struct.range.len = pagesize;
448 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
450 if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
451 error_setg(errp, "UFFDIO_REGISTER failed: %s", strerror(errno));
452 goto out;
455 range_struct.start = (uintptr_t)testarea;
456 range_struct.len = pagesize;
457 if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
458 error_setg(errp, "UFFDIO_UNREGISTER failed: %s", strerror(errno));
459 goto out;
462 feature_mask = 1ULL << _UFFDIO_WAKE |
463 1ULL << _UFFDIO_COPY |
464 1ULL << _UFFDIO_ZEROPAGE;
465 if ((reg_struct.ioctls & feature_mask) != feature_mask) {
466 error_setg(errp, "Missing userfault map features: %" PRIx64,
467 (uint64_t)(~reg_struct.ioctls & feature_mask));
468 goto out;
471 /* Success! */
472 ret = true;
473 out:
474 if (testarea) {
475 munmap(testarea, pagesize);
477 if (ufd != -1) {
478 close(ufd);
480 return ret;
484 * Setup an area of RAM so that it *can* be used for postcopy later; this
485 * must be done right at the start prior to pre-copy.
486 * opaque should be the MIS.
488 static int init_range(RAMBlock *rb, void *opaque)
490 const char *block_name = qemu_ram_get_idstr(rb);
491 void *host_addr = qemu_ram_get_host_addr(rb);
492 ram_addr_t offset = qemu_ram_get_offset(rb);
493 ram_addr_t length = qemu_ram_get_used_length(rb);
494 trace_postcopy_init_range(block_name, host_addr, offset, length);
497 * Save the used_length before running the guest. In case we have to
498 * resize RAM blocks when syncing RAM block sizes from the source during
499 * precopy, we'll update it manually via the ram block notifier.
501 rb->postcopy_length = length;
504 * We need the whole of RAM to be truly empty for postcopy, so things
505 * like ROMs and any data tables built during init must be zero'd
506 * - we're going to get the copy from the source anyway.
507 * (Precopy will just overwrite this data, so doesn't need the discard)
509 if (ram_discard_range(block_name, 0, length)) {
510 return -1;
513 return 0;
517 * At the end of migration, undo the effects of init_range
518 * opaque should be the MIS.
520 static int cleanup_range(RAMBlock *rb, void *opaque)
522 const char *block_name = qemu_ram_get_idstr(rb);
523 void *host_addr = qemu_ram_get_host_addr(rb);
524 ram_addr_t offset = qemu_ram_get_offset(rb);
525 ram_addr_t length = rb->postcopy_length;
526 MigrationIncomingState *mis = opaque;
527 struct uffdio_range range_struct;
528 trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
531 * We turned off hugepage for the precopy stage with postcopy enabled
532 * we can turn it back on now.
534 qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
537 * We can also turn off userfault now since we should have all the
538 * pages. It can be useful to leave it on to debug postcopy
539 * if you're not sure it's always getting every page.
541 range_struct.start = (uintptr_t)host_addr;
542 range_struct.len = length;
544 if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
545 error_report("%s: userfault unregister %s", __func__, strerror(errno));
547 return -1;
550 return 0;
554 * Initialise postcopy-ram, setting the RAM to a state where we can go into
555 * postcopy later; must be called prior to any precopy.
556 * called from arch_init's similarly named ram_postcopy_incoming_init
558 int postcopy_ram_incoming_init(MigrationIncomingState *mis)
560 if (foreach_not_ignored_block(init_range, NULL)) {
561 return -1;
564 return 0;
567 static void postcopy_temp_pages_cleanup(MigrationIncomingState *mis)
569 int i;
571 if (mis->postcopy_tmp_pages) {
572 for (i = 0; i < mis->postcopy_channels; i++) {
573 if (mis->postcopy_tmp_pages[i].tmp_huge_page) {
574 munmap(mis->postcopy_tmp_pages[i].tmp_huge_page,
575 mis->largest_page_size);
576 mis->postcopy_tmp_pages[i].tmp_huge_page = NULL;
579 g_free(mis->postcopy_tmp_pages);
580 mis->postcopy_tmp_pages = NULL;
583 if (mis->postcopy_tmp_zero_page) {
584 munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
585 mis->postcopy_tmp_zero_page = NULL;
590 * At the end of a migration where postcopy_ram_incoming_init was called.
592 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
594 trace_postcopy_ram_incoming_cleanup_entry();
596 if (mis->preempt_thread_status == PREEMPT_THREAD_CREATED) {
597 /* Notify the fast load thread to quit */
598 mis->preempt_thread_status = PREEMPT_THREAD_QUIT;
600 * Update preempt_thread_status before reading count. Note: mutex
601 * lock only provide ACQUIRE semantic, and it doesn't stops this
602 * write to be reordered after reading the count.
604 smp_mb();
606 * It's possible that the preempt thread is still handling the last
607 * pages to arrive which were requested by guest page faults.
608 * Making sure nothing is left behind by waiting on the condvar if
609 * that unlikely case happened.
611 WITH_QEMU_LOCK_GUARD(&mis->page_request_mutex) {
612 if (qatomic_read(&mis->page_requested_count)) {
614 * It is guaranteed to receive a signal later, because the
615 * count>0 now, so it's destined to be decreased to zero
616 * very soon by the preempt thread.
618 qemu_cond_wait(&mis->page_request_cond,
619 &mis->page_request_mutex);
622 /* Notify the fast load thread to quit */
623 if (mis->postcopy_qemufile_dst) {
624 qemu_file_shutdown(mis->postcopy_qemufile_dst);
626 qemu_thread_join(&mis->postcopy_prio_thread);
627 mis->preempt_thread_status = PREEMPT_THREAD_NONE;
630 if (mis->have_fault_thread) {
631 Error *local_err = NULL;
633 /* Let the fault thread quit */
634 qatomic_set(&mis->fault_thread_quit, 1);
635 postcopy_fault_thread_notify(mis);
636 trace_postcopy_ram_incoming_cleanup_join();
637 qemu_thread_join(&mis->fault_thread);
639 if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) {
640 error_report_err(local_err);
641 return -1;
644 if (foreach_not_ignored_block(cleanup_range, mis)) {
645 return -1;
648 trace_postcopy_ram_incoming_cleanup_closeuf();
649 close(mis->userfault_fd);
650 close(mis->userfault_event_fd);
651 mis->have_fault_thread = false;
654 if (enable_mlock) {
655 if (os_mlock() < 0) {
656 error_report("mlock: %s", strerror(errno));
658 * It doesn't feel right to fail at this point, we have a valid
659 * VM state.
664 postcopy_temp_pages_cleanup(mis);
666 trace_postcopy_ram_incoming_cleanup_blocktime(
667 get_postcopy_total_blocktime());
669 trace_postcopy_ram_incoming_cleanup_exit();
670 return 0;
674 * Disable huge pages on an area
676 static int nhp_range(RAMBlock *rb, void *opaque)
678 const char *block_name = qemu_ram_get_idstr(rb);
679 void *host_addr = qemu_ram_get_host_addr(rb);
680 ram_addr_t offset = qemu_ram_get_offset(rb);
681 ram_addr_t length = rb->postcopy_length;
682 trace_postcopy_nhp_range(block_name, host_addr, offset, length);
685 * Before we do discards we need to ensure those discards really
686 * do delete areas of the page, even if THP thinks a hugepage would
687 * be a good idea, so force hugepages off.
689 qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
691 return 0;
695 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
696 * however leaving it until after precopy means that most of the precopy
697 * data is still THPd
699 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
701 if (foreach_not_ignored_block(nhp_range, mis)) {
702 return -1;
705 postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
707 return 0;
711 * Mark the given area of RAM as requiring notification to unwritten areas
712 * Used as a callback on foreach_not_ignored_block.
713 * host_addr: Base of area to mark
714 * offset: Offset in the whole ram arena
715 * length: Length of the section
716 * opaque: MigrationIncomingState pointer
717 * Returns 0 on success
719 static int ram_block_enable_notify(RAMBlock *rb, void *opaque)
721 MigrationIncomingState *mis = opaque;
722 struct uffdio_register reg_struct;
724 reg_struct.range.start = (uintptr_t)qemu_ram_get_host_addr(rb);
725 reg_struct.range.len = rb->postcopy_length;
726 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
728 /* Now tell our userfault_fd that it's responsible for this area */
729 if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
730 error_report("%s userfault register: %s", __func__, strerror(errno));
731 return -1;
733 if (!(reg_struct.ioctls & (1ULL << _UFFDIO_COPY))) {
734 error_report("%s userfault: Region doesn't support COPY", __func__);
735 return -1;
737 if (reg_struct.ioctls & (1ULL << _UFFDIO_ZEROPAGE)) {
738 qemu_ram_set_uf_zeroable(rb);
741 return 0;
744 int postcopy_wake_shared(struct PostCopyFD *pcfd,
745 uint64_t client_addr,
746 RAMBlock *rb)
748 size_t pagesize = qemu_ram_pagesize(rb);
749 struct uffdio_range range;
750 int ret;
751 trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb));
752 range.start = ROUND_DOWN(client_addr, pagesize);
753 range.len = pagesize;
754 ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range);
755 if (ret) {
756 error_report("%s: Failed to wake: %zx in %s (%s)",
757 __func__, (size_t)client_addr, qemu_ram_get_idstr(rb),
758 strerror(errno));
760 return ret;
763 static int postcopy_request_page(MigrationIncomingState *mis, RAMBlock *rb,
764 ram_addr_t start, uint64_t haddr)
766 void *aligned = (void *)(uintptr_t)ROUND_DOWN(haddr, qemu_ram_pagesize(rb));
769 * Discarded pages (via RamDiscardManager) are never migrated. On unlikely
770 * access, place a zeropage, which will also set the relevant bits in the
771 * recv_bitmap accordingly, so we won't try placing a zeropage twice.
773 * Checking a single bit is sufficient to handle pagesize > TPS as either
774 * all relevant bits are set or not.
776 assert(QEMU_IS_ALIGNED(start, qemu_ram_pagesize(rb)));
777 if (ramblock_page_is_discarded(rb, start)) {
778 bool received = ramblock_recv_bitmap_test_byte_offset(rb, start);
780 return received ? 0 : postcopy_place_page_zero(mis, aligned, rb);
783 return migrate_send_rp_req_pages(mis, rb, start, haddr);
787 * Callback from shared fault handlers to ask for a page,
788 * the page must be specified by a RAMBlock and an offset in that rb
789 * Note: Only for use by shared fault handlers (in fault thread)
791 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
792 uint64_t client_addr, uint64_t rb_offset)
794 uint64_t aligned_rbo = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb));
795 MigrationIncomingState *mis = migration_incoming_get_current();
797 trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb),
798 rb_offset);
799 if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) {
800 trace_postcopy_request_shared_page_present(pcfd->idstr,
801 qemu_ram_get_idstr(rb), rb_offset);
802 return postcopy_wake_shared(pcfd, client_addr, rb);
804 postcopy_request_page(mis, rb, aligned_rbo, client_addr);
805 return 0;
808 static int get_mem_fault_cpu_index(uint32_t pid)
810 CPUState *cpu_iter;
812 CPU_FOREACH(cpu_iter) {
813 if (cpu_iter->thread_id == pid) {
814 trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid);
815 return cpu_iter->cpu_index;
818 trace_get_mem_fault_cpu_index(-1, pid);
819 return -1;
822 static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc)
824 int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) -
825 dc->start_time;
826 return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX;
830 * This function is being called when pagefault occurs. It
831 * tracks down vCPU blocking time.
833 * @addr: faulted host virtual address
834 * @ptid: faulted process thread id
835 * @rb: ramblock appropriate to addr
837 static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid,
838 RAMBlock *rb)
840 int cpu, already_received;
841 MigrationIncomingState *mis = migration_incoming_get_current();
842 PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
843 uint32_t low_time_offset;
845 if (!dc || ptid == 0) {
846 return;
848 cpu = get_mem_fault_cpu_index(ptid);
849 if (cpu < 0) {
850 return;
853 low_time_offset = get_low_time_offset(dc);
854 if (dc->vcpu_addr[cpu] == 0) {
855 qatomic_inc(&dc->smp_cpus_down);
858 qatomic_xchg(&dc->last_begin, low_time_offset);
859 qatomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset);
860 qatomic_xchg(&dc->vcpu_addr[cpu], addr);
863 * check it here, not at the beginning of the function,
864 * due to, check could occur early than bitmap_set in
865 * qemu_ufd_copy_ioctl
867 already_received = ramblock_recv_bitmap_test(rb, (void *)addr);
868 if (already_received) {
869 qatomic_xchg(&dc->vcpu_addr[cpu], 0);
870 qatomic_xchg(&dc->page_fault_vcpu_time[cpu], 0);
871 qatomic_dec(&dc->smp_cpus_down);
873 trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu],
874 cpu, already_received);
878 * This function just provide calculated blocktime per cpu and trace it.
879 * Total blocktime is calculated in mark_postcopy_blocktime_end.
882 * Assume we have 3 CPU
884 * S1 E1 S1 E1
885 * -----***********------------xxx***************------------------------> CPU1
887 * S2 E2
888 * ------------****************xxx---------------------------------------> CPU2
890 * S3 E3
891 * ------------------------****xxx********-------------------------------> CPU3
893 * We have sequence S1,S2,E1,S3,S1,E2,E3,E1
894 * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
895 * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
896 * it's a part of total blocktime.
897 * S1 - here is last_begin
898 * Legend of the picture is following:
899 * * - means blocktime per vCPU
900 * x - means overlapped blocktime (total blocktime)
902 * @addr: host virtual address
904 static void mark_postcopy_blocktime_end(uintptr_t addr)
906 MigrationIncomingState *mis = migration_incoming_get_current();
907 PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
908 MachineState *ms = MACHINE(qdev_get_machine());
909 unsigned int smp_cpus = ms->smp.cpus;
910 int i, affected_cpu = 0;
911 bool vcpu_total_blocktime = false;
912 uint32_t read_vcpu_time, low_time_offset;
914 if (!dc) {
915 return;
918 low_time_offset = get_low_time_offset(dc);
919 /* lookup cpu, to clear it,
920 * that algorithm looks straightforward, but it's not
921 * optimal, more optimal algorithm is keeping tree or hash
922 * where key is address value is a list of */
923 for (i = 0; i < smp_cpus; i++) {
924 uint32_t vcpu_blocktime = 0;
926 read_vcpu_time = qatomic_fetch_add(&dc->page_fault_vcpu_time[i], 0);
927 if (qatomic_fetch_add(&dc->vcpu_addr[i], 0) != addr ||
928 read_vcpu_time == 0) {
929 continue;
931 qatomic_xchg(&dc->vcpu_addr[i], 0);
932 vcpu_blocktime = low_time_offset - read_vcpu_time;
933 affected_cpu += 1;
934 /* we need to know is that mark_postcopy_end was due to
935 * faulted page, another possible case it's prefetched
936 * page and in that case we shouldn't be here */
937 if (!vcpu_total_blocktime &&
938 qatomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) {
939 vcpu_total_blocktime = true;
941 /* continue cycle, due to one page could affect several vCPUs */
942 dc->vcpu_blocktime[i] += vcpu_blocktime;
945 qatomic_sub(&dc->smp_cpus_down, affected_cpu);
946 if (vcpu_total_blocktime) {
947 dc->total_blocktime += low_time_offset - qatomic_fetch_add(
948 &dc->last_begin, 0);
950 trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime,
951 affected_cpu);
954 static void postcopy_pause_fault_thread(MigrationIncomingState *mis)
956 trace_postcopy_pause_fault_thread();
957 qemu_sem_wait(&mis->postcopy_pause_sem_fault);
958 trace_postcopy_pause_fault_thread_continued();
962 * Handle faults detected by the USERFAULT markings
964 static void *postcopy_ram_fault_thread(void *opaque)
966 MigrationIncomingState *mis = opaque;
967 struct uffd_msg msg;
968 int ret;
969 size_t index;
970 RAMBlock *rb = NULL;
972 trace_postcopy_ram_fault_thread_entry();
973 rcu_register_thread();
974 mis->last_rb = NULL; /* last RAMBlock we sent part of */
975 qemu_sem_post(&mis->thread_sync_sem);
977 struct pollfd *pfd;
978 size_t pfd_len = 2 + mis->postcopy_remote_fds->len;
980 pfd = g_new0(struct pollfd, pfd_len);
982 pfd[0].fd = mis->userfault_fd;
983 pfd[0].events = POLLIN;
984 pfd[1].fd = mis->userfault_event_fd;
985 pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
986 trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd);
987 for (index = 0; index < mis->postcopy_remote_fds->len; index++) {
988 struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds,
989 struct PostCopyFD, index);
990 pfd[2 + index].fd = pcfd->fd;
991 pfd[2 + index].events = POLLIN;
992 trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr,
993 pcfd->fd);
996 while (true) {
997 ram_addr_t rb_offset;
998 int poll_result;
1001 * We're mainly waiting for the kernel to give us a faulting HVA,
1002 * however we can be told to quit via userfault_quit_fd which is
1003 * an eventfd
1006 poll_result = poll(pfd, pfd_len, -1 /* Wait forever */);
1007 if (poll_result == -1) {
1008 error_report("%s: userfault poll: %s", __func__, strerror(errno));
1009 break;
1012 if (!mis->to_src_file) {
1014 * Possibly someone tells us that the return path is
1015 * broken already using the event. We should hold until
1016 * the channel is rebuilt.
1018 postcopy_pause_fault_thread(mis);
1021 if (pfd[1].revents) {
1022 uint64_t tmp64 = 0;
1024 /* Consume the signal */
1025 if (read(mis->userfault_event_fd, &tmp64, 8) != 8) {
1026 /* Nothing obviously nicer than posting this error. */
1027 error_report("%s: read() failed", __func__);
1030 if (qatomic_read(&mis->fault_thread_quit)) {
1031 trace_postcopy_ram_fault_thread_quit();
1032 break;
1036 if (pfd[0].revents) {
1037 poll_result--;
1038 ret = read(mis->userfault_fd, &msg, sizeof(msg));
1039 if (ret != sizeof(msg)) {
1040 if (errno == EAGAIN) {
1042 * if a wake up happens on the other thread just after
1043 * the poll, there is nothing to read.
1045 continue;
1047 if (ret < 0) {
1048 error_report("%s: Failed to read full userfault "
1049 "message: %s",
1050 __func__, strerror(errno));
1051 break;
1052 } else {
1053 error_report("%s: Read %d bytes from userfaultfd "
1054 "expected %zd",
1055 __func__, ret, sizeof(msg));
1056 break; /* Lost alignment, don't know what we'd read next */
1059 if (msg.event != UFFD_EVENT_PAGEFAULT) {
1060 error_report("%s: Read unexpected event %ud from userfaultfd",
1061 __func__, msg.event);
1062 continue; /* It's not a page fault, shouldn't happen */
1065 rb = qemu_ram_block_from_host(
1066 (void *)(uintptr_t)msg.arg.pagefault.address,
1067 true, &rb_offset);
1068 if (!rb) {
1069 error_report("postcopy_ram_fault_thread: Fault outside guest: %"
1070 PRIx64, (uint64_t)msg.arg.pagefault.address);
1071 break;
1074 rb_offset = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb));
1075 trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
1076 qemu_ram_get_idstr(rb),
1077 rb_offset,
1078 msg.arg.pagefault.feat.ptid);
1079 mark_postcopy_blocktime_begin(
1080 (uintptr_t)(msg.arg.pagefault.address),
1081 msg.arg.pagefault.feat.ptid, rb);
1083 retry:
1085 * Send the request to the source - we want to request one
1086 * of our host page sizes (which is >= TPS)
1088 ret = postcopy_request_page(mis, rb, rb_offset,
1089 msg.arg.pagefault.address);
1090 if (ret) {
1091 /* May be network failure, try to wait for recovery */
1092 postcopy_pause_fault_thread(mis);
1093 goto retry;
1097 /* Now handle any requests from external processes on shared memory */
1098 /* TODO: May need to handle devices deregistering during postcopy */
1099 for (index = 2; index < pfd_len && poll_result; index++) {
1100 if (pfd[index].revents) {
1101 struct PostCopyFD *pcfd =
1102 &g_array_index(mis->postcopy_remote_fds,
1103 struct PostCopyFD, index - 2);
1105 poll_result--;
1106 if (pfd[index].revents & POLLERR) {
1107 error_report("%s: POLLERR on poll %zd fd=%d",
1108 __func__, index, pcfd->fd);
1109 pfd[index].events = 0;
1110 continue;
1113 ret = read(pcfd->fd, &msg, sizeof(msg));
1114 if (ret != sizeof(msg)) {
1115 if (errno == EAGAIN) {
1117 * if a wake up happens on the other thread just after
1118 * the poll, there is nothing to read.
1120 continue;
1122 if (ret < 0) {
1123 error_report("%s: Failed to read full userfault "
1124 "message: %s (shared) revents=%d",
1125 __func__, strerror(errno),
1126 pfd[index].revents);
1127 /*TODO: Could just disable this sharer */
1128 break;
1129 } else {
1130 error_report("%s: Read %d bytes from userfaultfd "
1131 "expected %zd (shared)",
1132 __func__, ret, sizeof(msg));
1133 /*TODO: Could just disable this sharer */
1134 break; /*Lost alignment,don't know what we'd read next*/
1137 if (msg.event != UFFD_EVENT_PAGEFAULT) {
1138 error_report("%s: Read unexpected event %ud "
1139 "from userfaultfd (shared)",
1140 __func__, msg.event);
1141 continue; /* It's not a page fault, shouldn't happen */
1143 /* Call the device handler registered with us */
1144 ret = pcfd->handler(pcfd, &msg);
1145 if (ret) {
1146 error_report("%s: Failed to resolve shared fault on %zd/%s",
1147 __func__, index, pcfd->idstr);
1148 /* TODO: Fail? Disable this sharer? */
1153 rcu_unregister_thread();
1154 trace_postcopy_ram_fault_thread_exit();
1155 g_free(pfd);
1156 return NULL;
1159 static int postcopy_temp_pages_setup(MigrationIncomingState *mis)
1161 PostcopyTmpPage *tmp_page;
1162 int err, i, channels;
1163 void *temp_page;
1165 if (migrate_postcopy_preempt()) {
1166 /* If preemption enabled, need extra channel for urgent requests */
1167 mis->postcopy_channels = RAM_CHANNEL_MAX;
1168 } else {
1169 /* Both precopy/postcopy on the same channel */
1170 mis->postcopy_channels = 1;
1173 channels = mis->postcopy_channels;
1174 mis->postcopy_tmp_pages = g_malloc0_n(sizeof(PostcopyTmpPage), channels);
1176 for (i = 0; i < channels; i++) {
1177 tmp_page = &mis->postcopy_tmp_pages[i];
1178 temp_page = mmap(NULL, mis->largest_page_size, PROT_READ | PROT_WRITE,
1179 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1180 if (temp_page == MAP_FAILED) {
1181 err = errno;
1182 error_report("%s: Failed to map postcopy_tmp_pages[%d]: %s",
1183 __func__, i, strerror(err));
1184 /* Clean up will be done later */
1185 return -err;
1187 tmp_page->tmp_huge_page = temp_page;
1188 /* Initialize default states for each tmp page */
1189 postcopy_temp_page_reset(tmp_page);
1193 * Map large zero page when kernel can't use UFFDIO_ZEROPAGE for hugepages
1195 mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
1196 PROT_READ | PROT_WRITE,
1197 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1198 if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
1199 err = errno;
1200 mis->postcopy_tmp_zero_page = NULL;
1201 error_report("%s: Failed to map large zero page %s",
1202 __func__, strerror(err));
1203 return -err;
1206 memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
1208 return 0;
1211 int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
1213 Error *local_err = NULL;
1215 /* Open the fd for the kernel to give us userfaults */
1216 mis->userfault_fd = uffd_open(O_CLOEXEC | O_NONBLOCK);
1217 if (mis->userfault_fd == -1) {
1218 error_report("%s: Failed to open userfault fd: %s", __func__,
1219 strerror(errno));
1220 return -1;
1224 * Although the host check already tested the API, we need to
1225 * do the check again as an ABI handshake on the new fd.
1227 if (!ufd_check_and_apply(mis->userfault_fd, mis, &local_err)) {
1228 error_report_err(local_err);
1229 return -1;
1232 /* Now an eventfd we use to tell the fault-thread to quit */
1233 mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC);
1234 if (mis->userfault_event_fd == -1) {
1235 error_report("%s: Opening userfault_event_fd: %s", __func__,
1236 strerror(errno));
1237 close(mis->userfault_fd);
1238 return -1;
1241 postcopy_thread_create(mis, &mis->fault_thread, "fault-default",
1242 postcopy_ram_fault_thread, QEMU_THREAD_JOINABLE);
1243 mis->have_fault_thread = true;
1245 /* Mark so that we get notified of accesses to unwritten areas */
1246 if (foreach_not_ignored_block(ram_block_enable_notify, mis)) {
1247 error_report("ram_block_enable_notify failed");
1248 return -1;
1251 if (postcopy_temp_pages_setup(mis)) {
1252 /* Error dumped in the sub-function */
1253 return -1;
1256 if (migrate_postcopy_preempt()) {
1258 * This thread needs to be created after the temp pages because
1259 * it'll fetch RAM_CHANNEL_POSTCOPY PostcopyTmpPage immediately.
1261 postcopy_thread_create(mis, &mis->postcopy_prio_thread, "fault-fast",
1262 postcopy_preempt_thread, QEMU_THREAD_JOINABLE);
1263 mis->preempt_thread_status = PREEMPT_THREAD_CREATED;
1266 trace_postcopy_ram_enable_notify();
1268 return 0;
1271 static int qemu_ufd_copy_ioctl(MigrationIncomingState *mis, void *host_addr,
1272 void *from_addr, uint64_t pagesize, RAMBlock *rb)
1274 int userfault_fd = mis->userfault_fd;
1275 int ret;
1277 if (from_addr) {
1278 struct uffdio_copy copy_struct;
1279 copy_struct.dst = (uint64_t)(uintptr_t)host_addr;
1280 copy_struct.src = (uint64_t)(uintptr_t)from_addr;
1281 copy_struct.len = pagesize;
1282 copy_struct.mode = 0;
1283 ret = ioctl(userfault_fd, UFFDIO_COPY, &copy_struct);
1284 } else {
1285 struct uffdio_zeropage zero_struct;
1286 zero_struct.range.start = (uint64_t)(uintptr_t)host_addr;
1287 zero_struct.range.len = pagesize;
1288 zero_struct.mode = 0;
1289 ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct);
1291 if (!ret) {
1292 qemu_mutex_lock(&mis->page_request_mutex);
1293 ramblock_recv_bitmap_set_range(rb, host_addr,
1294 pagesize / qemu_target_page_size());
1296 * If this page resolves a page fault for a previous recorded faulted
1297 * address, take a special note to maintain the requested page list.
1299 if (g_tree_lookup(mis->page_requested, host_addr)) {
1300 g_tree_remove(mis->page_requested, host_addr);
1301 int left_pages = qatomic_dec_fetch(&mis->page_requested_count);
1303 trace_postcopy_page_req_del(host_addr, mis->page_requested_count);
1304 /* Order the update of count and read of preempt status */
1305 smp_mb();
1306 if (mis->preempt_thread_status == PREEMPT_THREAD_QUIT &&
1307 left_pages == 0) {
1309 * This probably means the main thread is waiting for us.
1310 * Notify that we've finished receiving the last requested
1311 * page.
1313 qemu_cond_signal(&mis->page_request_cond);
1316 qemu_mutex_unlock(&mis->page_request_mutex);
1317 mark_postcopy_blocktime_end((uintptr_t)host_addr);
1319 return ret;
1322 int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset)
1324 int i;
1325 MigrationIncomingState *mis = migration_incoming_get_current();
1326 GArray *pcrfds = mis->postcopy_remote_fds;
1328 for (i = 0; i < pcrfds->len; i++) {
1329 struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1330 int ret = cur->waker(cur, rb, offset);
1331 if (ret) {
1332 return ret;
1335 return 0;
1339 * Place a host page (from) at (host) atomically
1340 * returns 0 on success
1342 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1343 RAMBlock *rb)
1345 size_t pagesize = qemu_ram_pagesize(rb);
1347 /* copy also acks to the kernel waking the stalled thread up
1348 * TODO: We can inhibit that ack and only do it if it was requested
1349 * which would be slightly cheaper, but we'd have to be careful
1350 * of the order of updating our page state.
1352 if (qemu_ufd_copy_ioctl(mis, host, from, pagesize, rb)) {
1353 int e = errno;
1354 error_report("%s: %s copy host: %p from: %p (size: %zd)",
1355 __func__, strerror(e), host, from, pagesize);
1357 return -e;
1360 trace_postcopy_place_page(host);
1361 return postcopy_notify_shared_wake(rb,
1362 qemu_ram_block_host_offset(rb, host));
1366 * Place a zero page at (host) atomically
1367 * returns 0 on success
1369 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1370 RAMBlock *rb)
1372 size_t pagesize = qemu_ram_pagesize(rb);
1373 trace_postcopy_place_page_zero(host);
1375 /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
1376 * but it's not available for everything (e.g. hugetlbpages)
1378 if (qemu_ram_is_uf_zeroable(rb)) {
1379 if (qemu_ufd_copy_ioctl(mis, host, NULL, pagesize, rb)) {
1380 int e = errno;
1381 error_report("%s: %s zero host: %p",
1382 __func__, strerror(e), host);
1384 return -e;
1386 return postcopy_notify_shared_wake(rb,
1387 qemu_ram_block_host_offset(rb,
1388 host));
1389 } else {
1390 return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, rb);
1394 #else
1395 /* No target OS support, stubs just fail */
1396 void fill_destination_postcopy_migration_info(MigrationInfo *info)
1400 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis, Error **errp)
1402 error_report("%s: No OS support", __func__);
1403 return false;
1406 int postcopy_ram_incoming_init(MigrationIncomingState *mis)
1408 error_report("postcopy_ram_incoming_init: No OS support");
1409 return -1;
1412 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
1414 assert(0);
1415 return -1;
1418 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
1420 assert(0);
1421 return -1;
1424 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
1425 uint64_t client_addr, uint64_t rb_offset)
1427 assert(0);
1428 return -1;
1431 int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
1433 assert(0);
1434 return -1;
1437 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1438 RAMBlock *rb)
1440 assert(0);
1441 return -1;
1444 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1445 RAMBlock *rb)
1447 assert(0);
1448 return -1;
1451 int postcopy_wake_shared(struct PostCopyFD *pcfd,
1452 uint64_t client_addr,
1453 RAMBlock *rb)
1455 assert(0);
1456 return -1;
1458 #endif
1460 /* ------------------------------------------------------------------------- */
1461 void postcopy_temp_page_reset(PostcopyTmpPage *tmp_page)
1463 tmp_page->target_pages = 0;
1464 tmp_page->host_addr = NULL;
1466 * This is set to true when reset, and cleared as long as we received any
1467 * of the non-zero small page within this huge page.
1469 tmp_page->all_zero = true;
1472 void postcopy_fault_thread_notify(MigrationIncomingState *mis)
1474 uint64_t tmp64 = 1;
1477 * Wakeup the fault_thread. It's an eventfd that should currently
1478 * be at 0, we're going to increment it to 1
1480 if (write(mis->userfault_event_fd, &tmp64, 8) != 8) {
1481 /* Not much we can do here, but may as well report it */
1482 error_report("%s: incrementing failed: %s", __func__,
1483 strerror(errno));
1488 * postcopy_discard_send_init: Called at the start of each RAMBlock before
1489 * asking to discard individual ranges.
1491 * @ms: The current migration state.
1492 * @offset: the bitmap offset of the named RAMBlock in the migration bitmap.
1493 * @name: RAMBlock that discards will operate on.
1495 static PostcopyDiscardState pds = {0};
1496 void postcopy_discard_send_init(MigrationState *ms, const char *name)
1498 pds.ramblock_name = name;
1499 pds.cur_entry = 0;
1500 pds.nsentwords = 0;
1501 pds.nsentcmds = 0;
1505 * postcopy_discard_send_range: Called by the bitmap code for each chunk to
1506 * discard. May send a discard message, may just leave it queued to
1507 * be sent later.
1509 * @ms: Current migration state.
1510 * @start,@length: a range of pages in the migration bitmap in the
1511 * RAM block passed to postcopy_discard_send_init() (length=1 is one page)
1513 void postcopy_discard_send_range(MigrationState *ms, unsigned long start,
1514 unsigned long length)
1516 size_t tp_size = qemu_target_page_size();
1517 /* Convert to byte offsets within the RAM block */
1518 pds.start_list[pds.cur_entry] = start * tp_size;
1519 pds.length_list[pds.cur_entry] = length * tp_size;
1520 trace_postcopy_discard_send_range(pds.ramblock_name, start, length);
1521 pds.cur_entry++;
1522 pds.nsentwords++;
1524 if (pds.cur_entry == MAX_DISCARDS_PER_COMMAND) {
1525 /* Full set, ship it! */
1526 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1527 pds.ramblock_name,
1528 pds.cur_entry,
1529 pds.start_list,
1530 pds.length_list);
1531 pds.nsentcmds++;
1532 pds.cur_entry = 0;
1537 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
1538 * bitmap code. Sends any outstanding discard messages, frees the PDS
1540 * @ms: Current migration state.
1542 void postcopy_discard_send_finish(MigrationState *ms)
1544 /* Anything unsent? */
1545 if (pds.cur_entry) {
1546 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1547 pds.ramblock_name,
1548 pds.cur_entry,
1549 pds.start_list,
1550 pds.length_list);
1551 pds.nsentcmds++;
1554 trace_postcopy_discard_send_finish(pds.ramblock_name, pds.nsentwords,
1555 pds.nsentcmds);
1559 * Current state of incoming postcopy; note this is not part of
1560 * MigrationIncomingState since it's state is used during cleanup
1561 * at the end as MIS is being freed.
1563 static PostcopyState incoming_postcopy_state;
1565 PostcopyState postcopy_state_get(void)
1567 return qatomic_load_acquire(&incoming_postcopy_state);
1570 /* Set the state and return the old state */
1571 PostcopyState postcopy_state_set(PostcopyState new_state)
1573 return qatomic_xchg(&incoming_postcopy_state, new_state);
1576 /* Register a handler for external shared memory postcopy
1577 * called on the destination.
1579 void postcopy_register_shared_ufd(struct PostCopyFD *pcfd)
1581 MigrationIncomingState *mis = migration_incoming_get_current();
1583 mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds,
1584 *pcfd);
1587 /* Unregister a handler for external shared memory postcopy
1589 void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd)
1591 guint i;
1592 MigrationIncomingState *mis = migration_incoming_get_current();
1593 GArray *pcrfds = mis->postcopy_remote_fds;
1595 if (!pcrfds) {
1596 /* migration has already finished and freed the array */
1597 return;
1599 for (i = 0; i < pcrfds->len; i++) {
1600 struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1601 if (cur->fd == pcfd->fd) {
1602 mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i);
1603 return;
1608 void postcopy_preempt_new_channel(MigrationIncomingState *mis, QEMUFile *file)
1611 * The new loading channel has its own threads, so it needs to be
1612 * blocked too. It's by default true, just be explicit.
1614 qemu_file_set_blocking(file, true);
1615 mis->postcopy_qemufile_dst = file;
1616 qemu_sem_post(&mis->postcopy_qemufile_dst_done);
1617 trace_postcopy_preempt_new_channel();
1621 * Setup the postcopy preempt channel with the IOC. If ERROR is specified,
1622 * setup the error instead. This helper will free the ERROR if specified.
1624 static void
1625 postcopy_preempt_send_channel_done(MigrationState *s,
1626 QIOChannel *ioc, Error *local_err)
1628 if (local_err) {
1629 migrate_set_error(s, local_err);
1630 error_free(local_err);
1631 } else {
1632 migration_ioc_register_yank(ioc);
1633 s->postcopy_qemufile_src = qemu_file_new_output(ioc);
1634 trace_postcopy_preempt_new_channel();
1638 * Kick the waiter in all cases. The waiter should check upon
1639 * postcopy_qemufile_src to know whether it failed or not.
1641 qemu_sem_post(&s->postcopy_qemufile_src_sem);
1644 static void
1645 postcopy_preempt_tls_handshake(QIOTask *task, gpointer opaque)
1647 g_autoptr(QIOChannel) ioc = QIO_CHANNEL(qio_task_get_source(task));
1648 MigrationState *s = opaque;
1649 Error *local_err = NULL;
1651 qio_task_propagate_error(task, &local_err);
1652 postcopy_preempt_send_channel_done(s, ioc, local_err);
1655 static void
1656 postcopy_preempt_send_channel_new(QIOTask *task, gpointer opaque)
1658 g_autoptr(QIOChannel) ioc = QIO_CHANNEL(qio_task_get_source(task));
1659 MigrationState *s = opaque;
1660 QIOChannelTLS *tioc;
1661 Error *local_err = NULL;
1663 if (qio_task_propagate_error(task, &local_err)) {
1664 goto out;
1667 if (migrate_channel_requires_tls_upgrade(ioc)) {
1668 tioc = migration_tls_client_create(ioc, s->hostname, &local_err);
1669 if (!tioc) {
1670 goto out;
1672 trace_postcopy_preempt_tls_handshake();
1673 qio_channel_set_name(QIO_CHANNEL(tioc), "migration-tls-preempt");
1674 qio_channel_tls_handshake(tioc, postcopy_preempt_tls_handshake,
1675 s, NULL, NULL);
1676 /* Setup the channel until TLS handshake finished */
1677 return;
1680 out:
1681 /* This handles both good and error cases */
1682 postcopy_preempt_send_channel_done(s, ioc, local_err);
1686 * This function will kick off an async task to establish the preempt
1687 * channel, and wait until the connection setup completed. Returns 0 if
1688 * channel established, -1 for error.
1690 int postcopy_preempt_establish_channel(MigrationState *s)
1692 /* If preempt not enabled, no need to wait */
1693 if (!migrate_postcopy_preempt()) {
1694 return 0;
1698 * Kick off async task to establish preempt channel. Only do so with
1699 * 8.0+ machines, because 7.1/7.2 require the channel to be created in
1700 * setup phase of migration (even if racy in an unreliable network).
1702 if (!s->preempt_pre_7_2) {
1703 postcopy_preempt_setup(s);
1707 * We need the postcopy preempt channel to be established before
1708 * starting doing anything.
1710 qemu_sem_wait(&s->postcopy_qemufile_src_sem);
1712 return s->postcopy_qemufile_src ? 0 : -1;
1715 void postcopy_preempt_setup(MigrationState *s)
1717 /* Kick an async task to connect */
1718 socket_send_channel_create(postcopy_preempt_send_channel_new, s);
1721 static void postcopy_pause_ram_fast_load(MigrationIncomingState *mis)
1723 trace_postcopy_pause_fast_load();
1724 qemu_mutex_unlock(&mis->postcopy_prio_thread_mutex);
1725 qemu_sem_wait(&mis->postcopy_pause_sem_fast_load);
1726 qemu_mutex_lock(&mis->postcopy_prio_thread_mutex);
1727 trace_postcopy_pause_fast_load_continued();
1730 static bool preempt_thread_should_run(MigrationIncomingState *mis)
1732 return mis->preempt_thread_status != PREEMPT_THREAD_QUIT;
1735 void *postcopy_preempt_thread(void *opaque)
1737 MigrationIncomingState *mis = opaque;
1738 int ret;
1740 trace_postcopy_preempt_thread_entry();
1742 rcu_register_thread();
1744 qemu_sem_post(&mis->thread_sync_sem);
1747 * The preempt channel is established in asynchronous way. Wait
1748 * for its completion.
1750 qemu_sem_wait(&mis->postcopy_qemufile_dst_done);
1752 /* Sending RAM_SAVE_FLAG_EOS to terminate this thread */
1753 qemu_mutex_lock(&mis->postcopy_prio_thread_mutex);
1754 while (preempt_thread_should_run(mis)) {
1755 ret = ram_load_postcopy(mis->postcopy_qemufile_dst,
1756 RAM_CHANNEL_POSTCOPY);
1757 /* If error happened, go into recovery routine */
1758 if (ret && preempt_thread_should_run(mis)) {
1759 postcopy_pause_ram_fast_load(mis);
1760 } else {
1761 /* We're done */
1762 break;
1765 qemu_mutex_unlock(&mis->postcopy_prio_thread_mutex);
1767 rcu_unregister_thread();
1769 trace_postcopy_preempt_thread_exit();
1771 return NULL;