2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
28 #include "block/block-io.h"
29 #include "qapi/error.h"
31 #include "qemu/bswap.h"
32 #include "qemu/memalign.h"
35 int coroutine_fn
qcow2_shrink_l1_table(BlockDriverState
*bs
,
38 BDRVQcow2State
*s
= bs
->opaque
;
39 int new_l1_size
, i
, ret
;
41 if (exact_size
>= s
->l1_size
) {
45 new_l1_size
= exact_size
;
48 fprintf(stderr
, "shrink l1_table from %d to %d\n", s
->l1_size
, new_l1_size
);
51 BLKDBG_CO_EVENT(bs
->file
, BLKDBG_L1_SHRINK_WRITE_TABLE
);
52 ret
= bdrv_co_pwrite_zeroes(bs
->file
,
53 s
->l1_table_offset
+ new_l1_size
* L1E_SIZE
,
54 (s
->l1_size
- new_l1_size
) * L1E_SIZE
, 0);
59 ret
= bdrv_co_flush(bs
->file
->bs
);
64 BLKDBG_CO_EVENT(bs
->file
, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS
);
65 for (i
= s
->l1_size
- 1; i
> new_l1_size
- 1; i
--) {
66 if ((s
->l1_table
[i
] & L1E_OFFSET_MASK
) == 0) {
69 qcow2_free_clusters(bs
, s
->l1_table
[i
] & L1E_OFFSET_MASK
,
70 s
->cluster_size
, QCOW2_DISCARD_ALWAYS
);
77 * If the write in the l1_table failed the image may contain a partially
78 * overwritten l1_table. In this case it would be better to clear the
79 * l1_table in memory to avoid possible image corruption.
81 memset(s
->l1_table
+ new_l1_size
, 0,
82 (s
->l1_size
- new_l1_size
) * L1E_SIZE
);
86 int qcow2_grow_l1_table(BlockDriverState
*bs
, uint64_t min_size
,
89 BDRVQcow2State
*s
= bs
->opaque
;
90 int new_l1_size2
, ret
, i
;
91 uint64_t *new_l1_table
;
92 int64_t old_l1_table_offset
, old_l1_size
;
93 int64_t new_l1_table_offset
, new_l1_size
;
96 if (min_size
<= s
->l1_size
)
99 /* Do a sanity check on min_size before trying to calculate new_l1_size
100 * (this prevents overflows during the while loop for the calculation of
102 if (min_size
> INT_MAX
/ L1E_SIZE
) {
107 new_l1_size
= min_size
;
109 /* Bump size up to reduce the number of times we have to grow */
110 new_l1_size
= s
->l1_size
;
111 if (new_l1_size
== 0) {
114 while (min_size
> new_l1_size
) {
115 new_l1_size
= DIV_ROUND_UP(new_l1_size
* 3, 2);
119 QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE
> INT_MAX
);
120 if (new_l1_size
> QCOW_MAX_L1_SIZE
/ L1E_SIZE
) {
125 fprintf(stderr
, "grow l1_table from %d to %" PRId64
"\n",
126 s
->l1_size
, new_l1_size
);
129 new_l1_size2
= L1E_SIZE
* new_l1_size
;
130 new_l1_table
= qemu_try_blockalign(bs
->file
->bs
, new_l1_size2
);
131 if (new_l1_table
== NULL
) {
134 memset(new_l1_table
, 0, new_l1_size2
);
137 memcpy(new_l1_table
, s
->l1_table
, s
->l1_size
* L1E_SIZE
);
140 /* write new table (align to cluster) */
141 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ALLOC_TABLE
);
142 new_l1_table_offset
= qcow2_alloc_clusters(bs
, new_l1_size2
);
143 if (new_l1_table_offset
< 0) {
144 qemu_vfree(new_l1_table
);
145 return new_l1_table_offset
;
148 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
153 /* the L1 position has not yet been updated, so these clusters must
154 * indeed be completely free */
155 ret
= qcow2_pre_write_overlap_check(bs
, 0, new_l1_table_offset
,
156 new_l1_size2
, false);
161 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_WRITE_TABLE
);
162 for(i
= 0; i
< s
->l1_size
; i
++)
163 new_l1_table
[i
] = cpu_to_be64(new_l1_table
[i
]);
164 ret
= bdrv_pwrite_sync(bs
->file
, new_l1_table_offset
, new_l1_size2
,
168 for(i
= 0; i
< s
->l1_size
; i
++)
169 new_l1_table
[i
] = be64_to_cpu(new_l1_table
[i
]);
172 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ACTIVATE_TABLE
);
173 stl_be_p(data
, new_l1_size
);
174 stq_be_p(data
+ 4, new_l1_table_offset
);
175 ret
= bdrv_pwrite_sync(bs
->file
, offsetof(QCowHeader
, l1_size
),
176 sizeof(data
), data
, 0);
180 qemu_vfree(s
->l1_table
);
181 old_l1_table_offset
= s
->l1_table_offset
;
182 s
->l1_table_offset
= new_l1_table_offset
;
183 s
->l1_table
= new_l1_table
;
184 old_l1_size
= s
->l1_size
;
185 s
->l1_size
= new_l1_size
;
186 qcow2_free_clusters(bs
, old_l1_table_offset
, old_l1_size
* L1E_SIZE
,
187 QCOW2_DISCARD_OTHER
);
190 qemu_vfree(new_l1_table
);
191 qcow2_free_clusters(bs
, new_l1_table_offset
, new_l1_size2
,
192 QCOW2_DISCARD_OTHER
);
199 * @bs: The BlockDriverState
200 * @offset: A guest offset, used to calculate what slice of the L2
202 * @l2_offset: Offset to the L2 table in the image file.
203 * @l2_slice: Location to store the pointer to the L2 slice.
205 * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
206 * that are loaded by the qcow2 cache). If the slice is in the cache,
207 * the cache is used; otherwise the L2 slice is loaded from the image
210 static int GRAPH_RDLOCK
211 l2_load(BlockDriverState
*bs
, uint64_t offset
,
212 uint64_t l2_offset
, uint64_t **l2_slice
)
214 BDRVQcow2State
*s
= bs
->opaque
;
215 int start_of_slice
= l2_entry_size(s
) *
216 (offset_to_l2_index(s
, offset
) - offset_to_l2_slice_index(s
, offset
));
218 return qcow2_cache_get(bs
, s
->l2_table_cache
, l2_offset
+ start_of_slice
,
223 * Writes an L1 entry to disk (note that depending on the alignment
224 * requirements this function may write more that just one entry in
225 * order to prevent bdrv_pwrite from performing a read-modify-write)
227 int qcow2_write_l1_entry(BlockDriverState
*bs
, int l1_index
)
229 BDRVQcow2State
*s
= bs
->opaque
;
232 int bufsize
= MAX(L1E_SIZE
,
233 MIN(bs
->file
->bs
->bl
.request_alignment
, s
->cluster_size
));
234 int nentries
= bufsize
/ L1E_SIZE
;
235 g_autofree
uint64_t *buf
= g_try_new0(uint64_t, nentries
);
241 l1_start_index
= QEMU_ALIGN_DOWN(l1_index
, nentries
);
242 for (i
= 0; i
< MIN(nentries
, s
->l1_size
- l1_start_index
); i
++) {
243 buf
[i
] = cpu_to_be64(s
->l1_table
[l1_start_index
+ i
]);
246 ret
= qcow2_pre_write_overlap_check(bs
, QCOW2_OL_ACTIVE_L1
,
247 s
->l1_table_offset
+ L1E_SIZE
* l1_start_index
, bufsize
, false);
252 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_UPDATE
);
253 ret
= bdrv_pwrite_sync(bs
->file
,
254 s
->l1_table_offset
+ L1E_SIZE
* l1_start_index
,
266 * Allocate a new l2 entry in the file. If l1_index points to an already
267 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
268 * table) copy the contents of the old L2 table into the newly allocated one.
269 * Otherwise the new table is initialized with zeros.
273 static int GRAPH_RDLOCK
l2_allocate(BlockDriverState
*bs
, int l1_index
)
275 BDRVQcow2State
*s
= bs
->opaque
;
276 uint64_t old_l2_offset
;
277 uint64_t *l2_slice
= NULL
;
278 unsigned slice
, slice_size2
, n_slices
;
282 old_l2_offset
= s
->l1_table
[l1_index
];
284 trace_qcow2_l2_allocate(bs
, l1_index
);
286 /* allocate a new l2 entry */
288 l2_offset
= qcow2_alloc_clusters(bs
, s
->l2_size
* l2_entry_size(s
));
294 /* The offset must fit in the offset field of the L1 table entry */
295 assert((l2_offset
& L1E_OFFSET_MASK
) == l2_offset
);
297 /* If we're allocating the table at offset 0 then something is wrong */
298 if (l2_offset
== 0) {
299 qcow2_signal_corruption(bs
, true, -1, -1, "Preventing invalid "
300 "allocation of L2 table at offset 0");
305 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
310 /* allocate a new entry in the l2 cache */
312 slice_size2
= s
->l2_slice_size
* l2_entry_size(s
);
313 n_slices
= s
->cluster_size
/ slice_size2
;
315 trace_qcow2_l2_allocate_get_empty(bs
, l1_index
);
316 for (slice
= 0; slice
< n_slices
; slice
++) {
317 ret
= qcow2_cache_get_empty(bs
, s
->l2_table_cache
,
318 l2_offset
+ slice
* slice_size2
,
319 (void **) &l2_slice
);
324 if ((old_l2_offset
& L1E_OFFSET_MASK
) == 0) {
325 /* if there was no old l2 table, clear the new slice */
326 memset(l2_slice
, 0, slice_size2
);
329 uint64_t old_l2_slice_offset
=
330 (old_l2_offset
& L1E_OFFSET_MASK
) + slice
* slice_size2
;
332 /* if there was an old l2 table, read a slice from the disk */
333 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_COW_READ
);
334 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, old_l2_slice_offset
,
335 (void **) &old_slice
);
340 memcpy(l2_slice
, old_slice
, slice_size2
);
342 qcow2_cache_put(s
->l2_table_cache
, (void **) &old_slice
);
345 /* write the l2 slice to the file */
346 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_WRITE
);
348 trace_qcow2_l2_allocate_write_l2(bs
, l1_index
);
349 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
350 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
353 ret
= qcow2_cache_flush(bs
, s
->l2_table_cache
);
358 /* update the L1 entry */
359 trace_qcow2_l2_allocate_write_l1(bs
, l1_index
);
360 s
->l1_table
[l1_index
] = l2_offset
| QCOW_OFLAG_COPIED
;
361 ret
= qcow2_write_l1_entry(bs
, l1_index
);
366 trace_qcow2_l2_allocate_done(bs
, l1_index
, 0);
370 trace_qcow2_l2_allocate_done(bs
, l1_index
, ret
);
371 if (l2_slice
!= NULL
) {
372 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
374 s
->l1_table
[l1_index
] = old_l2_offset
;
376 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* l2_entry_size(s
),
377 QCOW2_DISCARD_ALWAYS
);
383 * For a given L2 entry, count the number of contiguous subclusters of
384 * the same type starting from @sc_from. Compressed clusters are
385 * treated as if they were divided into subclusters of size
386 * s->subcluster_size.
388 * Return the number of contiguous subclusters and set @type to the
391 * If the L2 entry is invalid return -errno and set @type to
392 * QCOW2_SUBCLUSTER_INVALID.
394 static int GRAPH_RDLOCK
395 qcow2_get_subcluster_range_type(BlockDriverState
*bs
, uint64_t l2_entry
,
396 uint64_t l2_bitmap
, unsigned sc_from
,
397 QCow2SubclusterType
*type
)
399 BDRVQcow2State
*s
= bs
->opaque
;
402 *type
= qcow2_get_subcluster_type(bs
, l2_entry
, l2_bitmap
, sc_from
);
404 if (*type
== QCOW2_SUBCLUSTER_INVALID
) {
406 } else if (!has_subclusters(s
) || *type
== QCOW2_SUBCLUSTER_COMPRESSED
) {
407 return s
->subclusters_per_cluster
- sc_from
;
411 case QCOW2_SUBCLUSTER_NORMAL
:
412 val
= l2_bitmap
| QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from
);
413 return cto32(val
) - sc_from
;
415 case QCOW2_SUBCLUSTER_ZERO_PLAIN
:
416 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
417 val
= (l2_bitmap
| QCOW_OFLAG_SUB_ZERO_RANGE(0, sc_from
)) >> 32;
418 return cto32(val
) - sc_from
;
420 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
:
421 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
:
422 val
= ((l2_bitmap
>> 32) | l2_bitmap
)
423 & ~QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from
);
424 return ctz32(val
) - sc_from
;
427 g_assert_not_reached();
432 * Return the number of contiguous subclusters of the exact same type
433 * in a given L2 slice, starting from cluster @l2_index, subcluster
434 * @sc_index. Allocated subclusters are required to be contiguous in
436 * At most @nb_clusters are checked (note that this means clusters,
438 * Compressed clusters are always processed one by one but for the
439 * purpose of this count they are treated as if they were divided into
440 * subclusters of size s->subcluster_size.
441 * On failure return -errno and update @l2_index to point to the
444 static int GRAPH_RDLOCK
445 count_contiguous_subclusters(BlockDriverState
*bs
, int nb_clusters
,
446 unsigned sc_index
, uint64_t *l2_slice
,
449 BDRVQcow2State
*s
= bs
->opaque
;
451 bool check_offset
= false;
452 uint64_t expected_offset
= 0;
453 QCow2SubclusterType expected_type
= QCOW2_SUBCLUSTER_NORMAL
, type
;
455 assert(*l2_index
+ nb_clusters
<= s
->l2_slice_size
);
457 for (i
= 0; i
< nb_clusters
; i
++) {
458 unsigned first_sc
= (i
== 0) ? sc_index
: 0;
459 uint64_t l2_entry
= get_l2_entry(s
, l2_slice
, *l2_index
+ i
);
460 uint64_t l2_bitmap
= get_l2_bitmap(s
, l2_slice
, *l2_index
+ i
);
461 int ret
= qcow2_get_subcluster_range_type(bs
, l2_entry
, l2_bitmap
,
464 *l2_index
+= i
; /* Point to the invalid entry */
468 if (type
== QCOW2_SUBCLUSTER_COMPRESSED
) {
469 /* Compressed clusters are always processed one by one */
472 expected_type
= type
;
473 expected_offset
= l2_entry
& L2E_OFFSET_MASK
;
474 check_offset
= (type
== QCOW2_SUBCLUSTER_NORMAL
||
475 type
== QCOW2_SUBCLUSTER_ZERO_ALLOC
||
476 type
== QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
);
477 } else if (type
!= expected_type
) {
479 } else if (check_offset
) {
480 expected_offset
+= s
->cluster_size
;
481 if (expected_offset
!= (l2_entry
& L2E_OFFSET_MASK
)) {
486 /* Stop if there are type changes before the end of the cluster */
487 if (first_sc
+ ret
< s
->subclusters_per_cluster
) {
495 static int coroutine_fn GRAPH_RDLOCK
496 do_perform_cow_read(BlockDriverState
*bs
, uint64_t src_cluster_offset
,
497 unsigned offset_in_cluster
, QEMUIOVector
*qiov
)
501 if (qiov
->size
== 0) {
505 BLKDBG_CO_EVENT(bs
->file
, BLKDBG_COW_READ
);
512 * We never deal with requests that don't satisfy
513 * bdrv_check_qiov_request(), and aligning requests to clusters never
514 * breaks this condition. So, do some assertions before calling
515 * bs->drv->bdrv_co_preadv_part() which has int64_t arguments.
517 assert(src_cluster_offset
<= INT64_MAX
);
518 assert(src_cluster_offset
+ offset_in_cluster
<= INT64_MAX
);
519 /* Cast qiov->size to uint64_t to silence a compiler warning on -m32 */
520 assert((uint64_t)qiov
->size
<= INT64_MAX
);
521 bdrv_check_qiov_request(src_cluster_offset
+ offset_in_cluster
, qiov
->size
,
522 qiov
, 0, &error_abort
);
524 * Call .bdrv_co_readv() directly instead of using the public block-layer
525 * interface. This avoids double I/O throttling and request tracking,
526 * which can lead to deadlock when block layer copy-on-read is enabled.
528 ret
= bs
->drv
->bdrv_co_preadv_part(bs
,
529 src_cluster_offset
+ offset_in_cluster
,
530 qiov
->size
, qiov
, 0, 0);
538 static int coroutine_fn GRAPH_RDLOCK
539 do_perform_cow_write(BlockDriverState
*bs
, uint64_t cluster_offset
,
540 unsigned offset_in_cluster
, QEMUIOVector
*qiov
)
542 BDRVQcow2State
*s
= bs
->opaque
;
545 if (qiov
->size
== 0) {
549 ret
= qcow2_pre_write_overlap_check(bs
, 0,
550 cluster_offset
+ offset_in_cluster
, qiov
->size
, true);
555 BLKDBG_CO_EVENT(bs
->file
, BLKDBG_COW_WRITE
);
556 ret
= bdrv_co_pwritev(s
->data_file
, cluster_offset
+ offset_in_cluster
,
557 qiov
->size
, qiov
, 0);
569 * For a given offset of the virtual disk find the equivalent host
570 * offset in the qcow2 file and store it in *host_offset. Neither
571 * offset needs to be aligned to a cluster boundary.
573 * If the cluster is unallocated then *host_offset will be 0.
574 * If the cluster is compressed then *host_offset will contain the l2 entry.
576 * On entry, *bytes is the maximum number of contiguous bytes starting at
577 * offset that we are interested in.
579 * On exit, *bytes is the number of bytes starting at offset that have the same
580 * subcluster type and (if applicable) are stored contiguously in the image
581 * file. The subcluster type is stored in *subcluster_type.
582 * Compressed clusters are always processed one by one.
584 * Returns 0 on success, -errno in error cases.
586 int qcow2_get_host_offset(BlockDriverState
*bs
, uint64_t offset
,
587 unsigned int *bytes
, uint64_t *host_offset
,
588 QCow2SubclusterType
*subcluster_type
)
590 BDRVQcow2State
*s
= bs
->opaque
;
591 unsigned int l2_index
, sc_index
;
592 uint64_t l1_index
, l2_offset
, *l2_slice
, l2_entry
, l2_bitmap
;
594 unsigned int offset_in_cluster
;
595 uint64_t bytes_available
, bytes_needed
, nb_clusters
;
596 QCow2SubclusterType type
;
599 offset_in_cluster
= offset_into_cluster(s
, offset
);
600 bytes_needed
= (uint64_t) *bytes
+ offset_in_cluster
;
602 /* compute how many bytes there are between the start of the cluster
603 * containing offset and the end of the l2 slice that contains
604 * the entry pointing to it */
606 ((uint64_t) (s
->l2_slice_size
- offset_to_l2_slice_index(s
, offset
)))
609 if (bytes_needed
> bytes_available
) {
610 bytes_needed
= bytes_available
;
615 /* seek to the l2 offset in the l1 table */
617 l1_index
= offset_to_l1_index(s
, offset
);
618 if (l1_index
>= s
->l1_size
) {
619 type
= QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
;
623 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
625 type
= QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
;
629 if (offset_into_cluster(s
, l2_offset
)) {
630 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#" PRIx64
631 " unaligned (L1 index: %#" PRIx64
")",
632 l2_offset
, l1_index
);
636 /* load the l2 slice in memory */
638 ret
= l2_load(bs
, offset
, l2_offset
, &l2_slice
);
643 /* find the cluster offset for the given disk offset */
645 l2_index
= offset_to_l2_slice_index(s
, offset
);
646 sc_index
= offset_to_sc_index(s
, offset
);
647 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
);
648 l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
);
650 nb_clusters
= size_to_clusters(s
, bytes_needed
);
651 /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
652 * integers; the minimum cluster size is 512, so this assertion is always
654 assert(nb_clusters
<= INT_MAX
);
656 type
= qcow2_get_subcluster_type(bs
, l2_entry
, l2_bitmap
, sc_index
);
657 if (s
->qcow_version
< 3 && (type
== QCOW2_SUBCLUSTER_ZERO_PLAIN
||
658 type
== QCOW2_SUBCLUSTER_ZERO_ALLOC
)) {
659 qcow2_signal_corruption(bs
, true, -1, -1, "Zero cluster entry found"
660 " in pre-v3 image (L2 offset: %#" PRIx64
661 ", L2 index: %#x)", l2_offset
, l2_index
);
666 case QCOW2_SUBCLUSTER_INVALID
:
667 break; /* This is handled by count_contiguous_subclusters() below */
668 case QCOW2_SUBCLUSTER_COMPRESSED
:
669 if (has_data_file(bs
)) {
670 qcow2_signal_corruption(bs
, true, -1, -1, "Compressed cluster "
671 "entry found in image with external data "
672 "file (L2 offset: %#" PRIx64
", L2 index: "
673 "%#x)", l2_offset
, l2_index
);
677 *host_offset
= l2_entry
;
679 case QCOW2_SUBCLUSTER_ZERO_PLAIN
:
680 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
:
682 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
683 case QCOW2_SUBCLUSTER_NORMAL
:
684 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
: {
685 uint64_t host_cluster_offset
= l2_entry
& L2E_OFFSET_MASK
;
686 *host_offset
= host_cluster_offset
+ offset_in_cluster
;
687 if (offset_into_cluster(s
, host_cluster_offset
)) {
688 qcow2_signal_corruption(bs
, true, -1, -1,
689 "Cluster allocation offset %#"
690 PRIx64
" unaligned (L2 offset: %#" PRIx64
691 ", L2 index: %#x)", host_cluster_offset
,
692 l2_offset
, l2_index
);
696 if (has_data_file(bs
) && *host_offset
!= offset
) {
697 qcow2_signal_corruption(bs
, true, -1, -1,
698 "External data file host cluster offset %#"
699 PRIx64
" does not match guest cluster "
701 ", L2 index: %#x)", host_cluster_offset
,
702 offset
- offset_in_cluster
, l2_index
);
712 sc
= count_contiguous_subclusters(bs
, nb_clusters
, sc_index
,
713 l2_slice
, &l2_index
);
715 qcow2_signal_corruption(bs
, true, -1, -1, "Invalid cluster entry found "
716 " (L2 offset: %#" PRIx64
", L2 index: %#x)",
717 l2_offset
, l2_index
);
721 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
723 bytes_available
= ((int64_t)sc
+ sc_index
) << s
->subcluster_bits
;
726 if (bytes_available
> bytes_needed
) {
727 bytes_available
= bytes_needed
;
730 /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
731 * subtracting offset_in_cluster will therefore definitely yield something
732 * not exceeding UINT_MAX */
733 assert(bytes_available
- offset_in_cluster
<= UINT_MAX
);
734 *bytes
= bytes_available
- offset_in_cluster
;
736 *subcluster_type
= type
;
741 qcow2_cache_put(s
->l2_table_cache
, (void **)&l2_slice
);
748 * for a given disk offset, load (and allocate if needed)
749 * the appropriate slice of its l2 table.
751 * the cluster index in the l2 slice is given to the caller.
753 * Returns 0 on success, -errno in failure case
755 static int GRAPH_RDLOCK
756 get_cluster_table(BlockDriverState
*bs
, uint64_t offset
,
757 uint64_t **new_l2_slice
, int *new_l2_index
)
759 BDRVQcow2State
*s
= bs
->opaque
;
760 unsigned int l2_index
;
761 uint64_t l1_index
, l2_offset
;
762 uint64_t *l2_slice
= NULL
;
765 /* seek to the l2 offset in the l1 table */
767 l1_index
= offset_to_l1_index(s
, offset
);
768 if (l1_index
>= s
->l1_size
) {
769 ret
= qcow2_grow_l1_table(bs
, l1_index
+ 1, false);
775 assert(l1_index
< s
->l1_size
);
776 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
777 if (offset_into_cluster(s
, l2_offset
)) {
778 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#" PRIx64
779 " unaligned (L1 index: %#" PRIx64
")",
780 l2_offset
, l1_index
);
784 if (!(s
->l1_table
[l1_index
] & QCOW_OFLAG_COPIED
)) {
785 /* First allocate a new L2 table (and do COW if needed) */
786 ret
= l2_allocate(bs
, l1_index
);
791 /* Then decrease the refcount of the old table */
793 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* l2_entry_size(s
),
794 QCOW2_DISCARD_OTHER
);
797 /* Get the offset of the newly-allocated l2 table */
798 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
799 assert(offset_into_cluster(s
, l2_offset
) == 0);
802 /* load the l2 slice in memory */
803 ret
= l2_load(bs
, offset
, l2_offset
, &l2_slice
);
808 /* find the cluster offset for the given disk offset */
810 l2_index
= offset_to_l2_slice_index(s
, offset
);
812 *new_l2_slice
= l2_slice
;
813 *new_l2_index
= l2_index
;
819 * alloc_compressed_cluster_offset
821 * For a given offset on the virtual disk, allocate a new compressed cluster
822 * and put the host offset of the cluster into *host_offset. If a cluster is
823 * already allocated at the offset, return an error.
825 * Return 0 on success and -errno in error cases
827 int coroutine_fn GRAPH_RDLOCK
828 qcow2_alloc_compressed_cluster_offset(BlockDriverState
*bs
, uint64_t offset
,
829 int compressed_size
, uint64_t *host_offset
)
831 BDRVQcow2State
*s
= bs
->opaque
;
834 int64_t cluster_offset
;
837 if (has_data_file(bs
)) {
841 ret
= get_cluster_table(bs
, offset
, &l2_slice
, &l2_index
);
846 /* Compression can't overwrite anything. Fail if the cluster was already
848 cluster_offset
= get_l2_entry(s
, l2_slice
, l2_index
);
849 if (cluster_offset
& L2E_OFFSET_MASK
) {
850 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
854 cluster_offset
= qcow2_alloc_bytes(bs
, compressed_size
);
855 if (cluster_offset
< 0) {
856 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
857 return cluster_offset
;
861 (cluster_offset
+ compressed_size
- 1) / QCOW2_COMPRESSED_SECTOR_SIZE
-
862 (cluster_offset
/ QCOW2_COMPRESSED_SECTOR_SIZE
);
864 /* The offset and size must fit in their fields of the L2 table entry */
865 assert((cluster_offset
& s
->cluster_offset_mask
) == cluster_offset
);
866 assert((nb_csectors
& s
->csize_mask
) == nb_csectors
);
868 cluster_offset
|= QCOW_OFLAG_COMPRESSED
|
869 ((uint64_t)nb_csectors
<< s
->csize_shift
);
871 /* update L2 table */
873 /* compressed clusters never have the copied flag */
875 BLKDBG_CO_EVENT(bs
->file
, BLKDBG_L2_UPDATE_COMPRESSED
);
876 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
877 set_l2_entry(s
, l2_slice
, l2_index
, cluster_offset
);
878 if (has_subclusters(s
)) {
879 set_l2_bitmap(s
, l2_slice
, l2_index
, 0);
881 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
883 *host_offset
= cluster_offset
& s
->cluster_offset_mask
;
887 static int coroutine_fn GRAPH_RDLOCK
888 perform_cow(BlockDriverState
*bs
, QCowL2Meta
*m
)
890 BDRVQcow2State
*s
= bs
->opaque
;
891 Qcow2COWRegion
*start
= &m
->cow_start
;
892 Qcow2COWRegion
*end
= &m
->cow_end
;
893 unsigned buffer_size
;
894 unsigned data_bytes
= end
->offset
- (start
->offset
+ start
->nb_bytes
);
896 uint8_t *start_buffer
, *end_buffer
;
900 assert(start
->nb_bytes
<= UINT_MAX
- end
->nb_bytes
);
901 assert(start
->nb_bytes
+ end
->nb_bytes
<= UINT_MAX
- data_bytes
);
902 assert(start
->offset
+ start
->nb_bytes
<= end
->offset
);
904 if ((start
->nb_bytes
== 0 && end
->nb_bytes
== 0) || m
->skip_cow
) {
908 /* If we have to read both the start and end COW regions and the
909 * middle region is not too large then perform just one read
911 merge_reads
= start
->nb_bytes
&& end
->nb_bytes
&& data_bytes
<= 16384;
913 buffer_size
= start
->nb_bytes
+ data_bytes
+ end
->nb_bytes
;
915 /* If we have to do two reads, add some padding in the middle
916 * if necessary to make sure that the end region is optimally
918 size_t align
= bdrv_opt_mem_align(bs
);
919 assert(align
> 0 && align
<= UINT_MAX
);
920 assert(QEMU_ALIGN_UP(start
->nb_bytes
, align
) <=
921 UINT_MAX
- end
->nb_bytes
);
922 buffer_size
= QEMU_ALIGN_UP(start
->nb_bytes
, align
) + end
->nb_bytes
;
925 /* Reserve a buffer large enough to store all the data that we're
927 start_buffer
= qemu_try_blockalign(bs
, buffer_size
);
928 if (start_buffer
== NULL
) {
931 /* The part of the buffer where the end region is located */
932 end_buffer
= start_buffer
+ buffer_size
- end
->nb_bytes
;
934 qemu_iovec_init(&qiov
, 2 + (m
->data_qiov
?
935 qemu_iovec_subvec_niov(m
->data_qiov
,
940 qemu_co_mutex_unlock(&s
->lock
);
941 /* First we read the existing data from both COW regions. We
942 * either read the whole region in one go, or the start and end
943 * regions separately. */
945 qemu_iovec_add(&qiov
, start_buffer
, buffer_size
);
946 ret
= do_perform_cow_read(bs
, m
->offset
, start
->offset
, &qiov
);
948 qemu_iovec_add(&qiov
, start_buffer
, start
->nb_bytes
);
949 ret
= do_perform_cow_read(bs
, m
->offset
, start
->offset
, &qiov
);
954 qemu_iovec_reset(&qiov
);
955 qemu_iovec_add(&qiov
, end_buffer
, end
->nb_bytes
);
956 ret
= do_perform_cow_read(bs
, m
->offset
, end
->offset
, &qiov
);
962 /* Encrypt the data if necessary before writing it */
964 ret
= qcow2_co_encrypt(bs
,
965 m
->alloc_offset
+ start
->offset
,
966 m
->offset
+ start
->offset
,
967 start_buffer
, start
->nb_bytes
);
972 ret
= qcow2_co_encrypt(bs
,
973 m
->alloc_offset
+ end
->offset
,
974 m
->offset
+ end
->offset
,
975 end_buffer
, end
->nb_bytes
);
981 /* And now we can write everything. If we have the guest data we
982 * can write everything in one single operation */
984 qemu_iovec_reset(&qiov
);
985 if (start
->nb_bytes
) {
986 qemu_iovec_add(&qiov
, start_buffer
, start
->nb_bytes
);
988 qemu_iovec_concat(&qiov
, m
->data_qiov
, m
->data_qiov_offset
, data_bytes
);
990 qemu_iovec_add(&qiov
, end_buffer
, end
->nb_bytes
);
992 /* NOTE: we have a write_aio blkdebug event here followed by
993 * a cow_write one in do_perform_cow_write(), but there's only
994 * one single I/O operation */
995 BLKDBG_CO_EVENT(bs
->file
, BLKDBG_WRITE_AIO
);
996 ret
= do_perform_cow_write(bs
, m
->alloc_offset
, start
->offset
, &qiov
);
998 /* If there's no guest data then write both COW regions separately */
999 qemu_iovec_reset(&qiov
);
1000 qemu_iovec_add(&qiov
, start_buffer
, start
->nb_bytes
);
1001 ret
= do_perform_cow_write(bs
, m
->alloc_offset
, start
->offset
, &qiov
);
1006 qemu_iovec_reset(&qiov
);
1007 qemu_iovec_add(&qiov
, end_buffer
, end
->nb_bytes
);
1008 ret
= do_perform_cow_write(bs
, m
->alloc_offset
, end
->offset
, &qiov
);
1012 qemu_co_mutex_lock(&s
->lock
);
1015 * Before we update the L2 table to actually point to the new cluster, we
1016 * need to be sure that the refcounts have been increased and COW was
1020 qcow2_cache_depends_on_flush(s
->l2_table_cache
);
1023 qemu_vfree(start_buffer
);
1024 qemu_iovec_destroy(&qiov
);
1028 int coroutine_fn
qcow2_alloc_cluster_link_l2(BlockDriverState
*bs
,
1031 BDRVQcow2State
*s
= bs
->opaque
;
1032 int i
, j
= 0, l2_index
, ret
;
1033 uint64_t *old_cluster
, *l2_slice
;
1034 uint64_t cluster_offset
= m
->alloc_offset
;
1036 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m
->nb_clusters
);
1037 assert(m
->nb_clusters
> 0);
1039 old_cluster
= g_try_new(uint64_t, m
->nb_clusters
);
1040 if (old_cluster
== NULL
) {
1045 /* copy content of unmodified sectors */
1046 ret
= perform_cow(bs
, m
);
1051 /* Update L2 table. */
1052 if (s
->use_lazy_refcounts
) {
1053 qcow2_mark_dirty(bs
);
1055 if (qcow2_need_accurate_refcounts(s
)) {
1056 qcow2_cache_set_dependency(bs
, s
->l2_table_cache
,
1057 s
->refcount_block_cache
);
1060 ret
= get_cluster_table(bs
, m
->offset
, &l2_slice
, &l2_index
);
1064 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
1066 assert(l2_index
+ m
->nb_clusters
<= s
->l2_slice_size
);
1067 assert(m
->cow_end
.offset
+ m
->cow_end
.nb_bytes
<=
1068 m
->nb_clusters
<< s
->cluster_bits
);
1069 for (i
= 0; i
< m
->nb_clusters
; i
++) {
1070 uint64_t offset
= cluster_offset
+ ((uint64_t)i
<< s
->cluster_bits
);
1071 /* if two concurrent writes happen to the same unallocated cluster
1072 * each write allocates separate cluster and writes data concurrently.
1073 * The first one to complete updates l2 table with pointer to its
1074 * cluster the second one has to do RMW (which is done above by
1075 * perform_cow()), update l2 table with its cluster pointer and free
1076 * old cluster. This is what this loop does */
1077 if (get_l2_entry(s
, l2_slice
, l2_index
+ i
) != 0) {
1078 old_cluster
[j
++] = get_l2_entry(s
, l2_slice
, l2_index
+ i
);
1081 /* The offset must fit in the offset field of the L2 table entry */
1082 assert((offset
& L2E_OFFSET_MASK
) == offset
);
1084 set_l2_entry(s
, l2_slice
, l2_index
+ i
, offset
| QCOW_OFLAG_COPIED
);
1086 /* Update bitmap with the subclusters that were just written */
1087 if (has_subclusters(s
) && !m
->prealloc
) {
1088 uint64_t l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
+ i
);
1089 unsigned written_from
= m
->cow_start
.offset
;
1090 unsigned written_to
= m
->cow_end
.offset
+ m
->cow_end
.nb_bytes
;
1091 int first_sc
, last_sc
;
1092 /* Narrow written_from and written_to down to the current cluster */
1093 written_from
= MAX(written_from
, i
<< s
->cluster_bits
);
1094 written_to
= MIN(written_to
, (i
+ 1) << s
->cluster_bits
);
1095 assert(written_from
< written_to
);
1096 first_sc
= offset_to_sc_index(s
, written_from
);
1097 last_sc
= offset_to_sc_index(s
, written_to
- 1);
1098 l2_bitmap
|= QCOW_OFLAG_SUB_ALLOC_RANGE(first_sc
, last_sc
+ 1);
1099 l2_bitmap
&= ~QCOW_OFLAG_SUB_ZERO_RANGE(first_sc
, last_sc
+ 1);
1100 set_l2_bitmap(s
, l2_slice
, l2_index
+ i
, l2_bitmap
);
1105 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
1108 * If this was a COW, we need to decrease the refcount of the old cluster.
1110 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
1111 * clusters), the next write will reuse them anyway.
1113 if (!m
->keep_old_clusters
&& j
!= 0) {
1114 for (i
= 0; i
< j
; i
++) {
1115 qcow2_free_any_cluster(bs
, old_cluster
[i
], QCOW2_DISCARD_NEVER
);
1121 g_free(old_cluster
);
1126 * Frees the allocated clusters because the request failed and they won't
1127 * actually be linked.
1129 void coroutine_fn
qcow2_alloc_cluster_abort(BlockDriverState
*bs
, QCowL2Meta
*m
)
1131 BDRVQcow2State
*s
= bs
->opaque
;
1132 if (!has_data_file(bs
) && !m
->keep_old_clusters
) {
1133 qcow2_free_clusters(bs
, m
->alloc_offset
,
1134 m
->nb_clusters
<< s
->cluster_bits
,
1135 QCOW2_DISCARD_NEVER
);
1140 * For a given write request, create a new QCowL2Meta structure, add
1141 * it to @m and the BDRVQcow2State.cluster_allocs list. If the write
1142 * request does not need copy-on-write or changes to the L2 metadata
1143 * then this function does nothing.
1145 * @host_cluster_offset points to the beginning of the first cluster.
1147 * @guest_offset and @bytes indicate the offset and length of the
1150 * @l2_slice contains the L2 entries of all clusters involved in this
1153 * If @keep_old is true it means that the clusters were already
1154 * allocated and will be overwritten. If false then the clusters are
1155 * new and we have to decrease the reference count of the old ones.
1157 * Returns 0 on success, -errno on failure.
1159 static int coroutine_fn GRAPH_RDLOCK
1160 calculate_l2_meta(BlockDriverState
*bs
, uint64_t host_cluster_offset
,
1161 uint64_t guest_offset
, unsigned bytes
, uint64_t *l2_slice
,
1162 QCowL2Meta
**m
, bool keep_old
)
1164 BDRVQcow2State
*s
= bs
->opaque
;
1165 int sc_index
, l2_index
= offset_to_l2_slice_index(s
, guest_offset
);
1166 uint64_t l2_entry
, l2_bitmap
;
1167 unsigned cow_start_from
, cow_end_to
;
1168 unsigned cow_start_to
= offset_into_cluster(s
, guest_offset
);
1169 unsigned cow_end_from
= cow_start_to
+ bytes
;
1170 unsigned nb_clusters
= size_to_clusters(s
, cow_end_from
);
1171 QCowL2Meta
*old_m
= *m
;
1172 QCow2SubclusterType type
;
1174 bool skip_cow
= keep_old
;
1176 assert(nb_clusters
<= s
->l2_slice_size
- l2_index
);
1178 /* Check the type of all affected subclusters */
1179 for (i
= 0; i
< nb_clusters
; i
++) {
1180 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
+ i
);
1181 l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
+ i
);
1183 unsigned write_from
= MAX(cow_start_to
, i
<< s
->cluster_bits
);
1184 unsigned write_to
= MIN(cow_end_from
, (i
+ 1) << s
->cluster_bits
);
1185 int first_sc
= offset_to_sc_index(s
, write_from
);
1186 int last_sc
= offset_to_sc_index(s
, write_to
- 1);
1187 int cnt
= qcow2_get_subcluster_range_type(bs
, l2_entry
, l2_bitmap
,
1189 /* Is any of the subclusters of type != QCOW2_SUBCLUSTER_NORMAL ? */
1190 if (type
!= QCOW2_SUBCLUSTER_NORMAL
|| first_sc
+ cnt
<= last_sc
) {
1194 /* If we can't skip the cow we can still look for invalid entries */
1195 type
= qcow2_get_subcluster_type(bs
, l2_entry
, l2_bitmap
, 0);
1197 if (type
== QCOW2_SUBCLUSTER_INVALID
) {
1198 int l1_index
= offset_to_l1_index(s
, guest_offset
);
1199 uint64_t l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
1200 qcow2_signal_corruption(bs
, true, -1, -1, "Invalid cluster "
1201 "entry found (L2 offset: %#" PRIx64
1203 l2_offset
, l2_index
+ i
);
1212 /* Get the L2 entry of the first cluster */
1213 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
);
1214 l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
);
1215 sc_index
= offset_to_sc_index(s
, guest_offset
);
1216 type
= qcow2_get_subcluster_type(bs
, l2_entry
, l2_bitmap
, sc_index
);
1220 case QCOW2_SUBCLUSTER_COMPRESSED
:
1223 case QCOW2_SUBCLUSTER_NORMAL
:
1224 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
1225 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
:
1226 if (has_subclusters(s
)) {
1227 /* Skip all leading zero and unallocated subclusters */
1228 uint32_t alloc_bitmap
= l2_bitmap
& QCOW_L2_BITMAP_ALL_ALLOC
;
1230 MIN(sc_index
, ctz32(alloc_bitmap
)) << s
->subcluster_bits
;
1235 case QCOW2_SUBCLUSTER_ZERO_PLAIN
:
1236 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
:
1237 cow_start_from
= sc_index
<< s
->subcluster_bits
;
1240 g_assert_not_reached();
1244 case QCOW2_SUBCLUSTER_NORMAL
:
1245 cow_start_from
= cow_start_to
;
1247 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
1248 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
:
1249 cow_start_from
= sc_index
<< s
->subcluster_bits
;
1252 g_assert_not_reached();
1256 /* Get the L2 entry of the last cluster */
1257 l2_index
+= nb_clusters
- 1;
1258 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
);
1259 l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
);
1260 sc_index
= offset_to_sc_index(s
, guest_offset
+ bytes
- 1);
1261 type
= qcow2_get_subcluster_type(bs
, l2_entry
, l2_bitmap
, sc_index
);
1265 case QCOW2_SUBCLUSTER_COMPRESSED
:
1266 cow_end_to
= ROUND_UP(cow_end_from
, s
->cluster_size
);
1268 case QCOW2_SUBCLUSTER_NORMAL
:
1269 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
1270 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
:
1271 cow_end_to
= ROUND_UP(cow_end_from
, s
->cluster_size
);
1272 if (has_subclusters(s
)) {
1273 /* Skip all trailing zero and unallocated subclusters */
1274 uint32_t alloc_bitmap
= l2_bitmap
& QCOW_L2_BITMAP_ALL_ALLOC
;
1276 MIN(s
->subclusters_per_cluster
- sc_index
- 1,
1277 clz32(alloc_bitmap
)) << s
->subcluster_bits
;
1280 case QCOW2_SUBCLUSTER_ZERO_PLAIN
:
1281 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
:
1282 cow_end_to
= ROUND_UP(cow_end_from
, s
->subcluster_size
);
1285 g_assert_not_reached();
1289 case QCOW2_SUBCLUSTER_NORMAL
:
1290 cow_end_to
= cow_end_from
;
1292 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
1293 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
:
1294 cow_end_to
= ROUND_UP(cow_end_from
, s
->subcluster_size
);
1297 g_assert_not_reached();
1301 *m
= g_malloc0(sizeof(**m
));
1302 **m
= (QCowL2Meta
) {
1305 .alloc_offset
= host_cluster_offset
,
1306 .offset
= start_of_cluster(s
, guest_offset
),
1307 .nb_clusters
= nb_clusters
,
1309 .keep_old_clusters
= keep_old
,
1312 .offset
= cow_start_from
,
1313 .nb_bytes
= cow_start_to
- cow_start_from
,
1316 .offset
= cow_end_from
,
1317 .nb_bytes
= cow_end_to
- cow_end_from
,
1321 qemu_co_queue_init(&(*m
)->dependent_requests
);
1322 QLIST_INSERT_HEAD(&s
->cluster_allocs
, *m
, next_in_flight
);
1328 * Returns true if writing to the cluster pointed to by @l2_entry
1329 * requires a new allocation (that is, if the cluster is unallocated
1330 * or has refcount > 1 and therefore cannot be written in-place).
1332 static bool GRAPH_RDLOCK
1333 cluster_needs_new_alloc(BlockDriverState
*bs
, uint64_t l2_entry
)
1335 switch (qcow2_get_cluster_type(bs
, l2_entry
)) {
1336 case QCOW2_CLUSTER_NORMAL
:
1337 case QCOW2_CLUSTER_ZERO_ALLOC
:
1338 if (l2_entry
& QCOW_OFLAG_COPIED
) {
1342 case QCOW2_CLUSTER_UNALLOCATED
:
1343 case QCOW2_CLUSTER_COMPRESSED
:
1344 case QCOW2_CLUSTER_ZERO_PLAIN
:
1352 * Returns the number of contiguous clusters that can be written to
1353 * using one single write request, starting from @l2_index.
1354 * At most @nb_clusters are checked.
1356 * If @new_alloc is true this counts clusters that are either
1357 * unallocated, or allocated but with refcount > 1 (so they need to be
1358 * newly allocated and COWed).
1360 * If @new_alloc is false this counts clusters that are already
1361 * allocated and can be overwritten in-place (this includes clusters
1362 * of type QCOW2_CLUSTER_ZERO_ALLOC).
1364 static int GRAPH_RDLOCK
1365 count_single_write_clusters(BlockDriverState
*bs
, int nb_clusters
,
1366 uint64_t *l2_slice
, int l2_index
, bool new_alloc
)
1368 BDRVQcow2State
*s
= bs
->opaque
;
1369 uint64_t l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
);
1370 uint64_t expected_offset
= l2_entry
& L2E_OFFSET_MASK
;
1373 for (i
= 0; i
< nb_clusters
; i
++) {
1374 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
+ i
);
1375 if (cluster_needs_new_alloc(bs
, l2_entry
) != new_alloc
) {
1379 if (expected_offset
!= (l2_entry
& L2E_OFFSET_MASK
)) {
1382 expected_offset
+= s
->cluster_size
;
1386 assert(i
<= nb_clusters
);
1391 * Check if there already is an AIO write request in flight which allocates
1392 * the same cluster. In this case we need to wait until the previous
1393 * request has completed and updated the L2 table accordingly.
1396 * 0 if there was no dependency. *cur_bytes indicates the number of
1397 * bytes from guest_offset that can be read before the next
1398 * dependency must be processed (or the request is complete)
1400 * -EAGAIN if we had to wait for another request, previously gathered
1401 * information on cluster allocation may be invalid now. The caller
1402 * must start over anyway, so consider *cur_bytes undefined.
1404 static int coroutine_fn
handle_dependencies(BlockDriverState
*bs
,
1405 uint64_t guest_offset
,
1406 uint64_t *cur_bytes
, QCowL2Meta
**m
)
1408 BDRVQcow2State
*s
= bs
->opaque
;
1409 QCowL2Meta
*old_alloc
;
1410 uint64_t bytes
= *cur_bytes
;
1412 QLIST_FOREACH(old_alloc
, &s
->cluster_allocs
, next_in_flight
) {
1414 uint64_t start
= guest_offset
;
1415 uint64_t end
= start
+ bytes
;
1416 uint64_t old_start
= start_of_cluster(s
, l2meta_cow_start(old_alloc
));
1417 uint64_t old_end
= ROUND_UP(l2meta_cow_end(old_alloc
), s
->cluster_size
);
1419 if (end
<= old_start
|| start
>= old_end
) {
1420 /* No intersection */
1424 if (old_alloc
->keep_old_clusters
&&
1425 (end
<= l2meta_cow_start(old_alloc
) ||
1426 start
>= l2meta_cow_end(old_alloc
)))
1429 * Clusters intersect but COW areas don't. And cluster itself is
1430 * already allocated. So, there is no actual conflict.
1437 if (start
< old_start
) {
1438 /* Stop at the start of a running allocation */
1439 bytes
= old_start
- start
;
1445 * Stop if an l2meta already exists. After yielding, it wouldn't
1446 * be valid any more, so we'd have to clean up the old L2Metas
1447 * and deal with requests depending on them before starting to
1448 * gather new ones. Not worth the trouble.
1450 if (bytes
== 0 && *m
) {
1457 * Wait for the dependency to complete. We need to recheck
1458 * the free/allocated clusters when we continue.
1460 qemu_co_queue_wait(&old_alloc
->dependent_requests
, &s
->lock
);
1465 /* Make sure that existing clusters and new allocations are only used up to
1466 * the next dependency if we shortened the request above */
1473 * Checks how many already allocated clusters that don't require a new
1474 * allocation there are at the given guest_offset (up to *bytes).
1475 * If *host_offset is not INV_OFFSET, only physically contiguous clusters
1476 * beginning at this host offset are counted.
1478 * Note that guest_offset may not be cluster aligned. In this case, the
1479 * returned *host_offset points to exact byte referenced by guest_offset and
1480 * therefore isn't cluster aligned as well.
1483 * 0: if no allocated clusters are available at the given offset.
1484 * *bytes is normally unchanged. It is set to 0 if the cluster
1485 * is allocated and can be overwritten in-place but doesn't have
1486 * the right physical offset.
1488 * 1: if allocated clusters that can be overwritten in place are
1489 * available at the requested offset. *bytes may have decreased
1490 * and describes the length of the area that can be written to.
1492 * -errno: in error cases
1494 static int coroutine_fn GRAPH_RDLOCK
1495 handle_copied(BlockDriverState
*bs
, uint64_t guest_offset
,
1496 uint64_t *host_offset
, uint64_t *bytes
, QCowL2Meta
**m
)
1498 BDRVQcow2State
*s
= bs
->opaque
;
1500 uint64_t l2_entry
, cluster_offset
;
1502 uint64_t nb_clusters
;
1503 unsigned int keep_clusters
;
1506 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset
, *host_offset
,
1509 assert(*host_offset
== INV_OFFSET
|| offset_into_cluster(s
, guest_offset
)
1510 == offset_into_cluster(s
, *host_offset
));
1513 * Calculate the number of clusters to look for. We stop at L2 slice
1514 * boundaries to keep things simple.
1517 size_to_clusters(s
, offset_into_cluster(s
, guest_offset
) + *bytes
);
1519 l2_index
= offset_to_l2_slice_index(s
, guest_offset
);
1520 nb_clusters
= MIN(nb_clusters
, s
->l2_slice_size
- l2_index
);
1521 /* Limit total byte count to BDRV_REQUEST_MAX_BYTES */
1522 nb_clusters
= MIN(nb_clusters
, BDRV_REQUEST_MAX_BYTES
>> s
->cluster_bits
);
1524 /* Find L2 entry for the first involved cluster */
1525 ret
= get_cluster_table(bs
, guest_offset
, &l2_slice
, &l2_index
);
1530 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
);
1531 cluster_offset
= l2_entry
& L2E_OFFSET_MASK
;
1533 if (!cluster_needs_new_alloc(bs
, l2_entry
)) {
1534 if (offset_into_cluster(s
, cluster_offset
)) {
1535 qcow2_signal_corruption(bs
, true, -1, -1, "%s cluster offset "
1536 "%#" PRIx64
" unaligned (guest offset: %#"
1537 PRIx64
")", l2_entry
& QCOW_OFLAG_ZERO
?
1538 "Preallocated zero" : "Data",
1539 cluster_offset
, guest_offset
);
1544 /* If a specific host_offset is required, check it */
1545 if (*host_offset
!= INV_OFFSET
&& cluster_offset
!= *host_offset
) {
1551 /* We keep all QCOW_OFLAG_COPIED clusters */
1552 keep_clusters
= count_single_write_clusters(bs
, nb_clusters
, l2_slice
,
1554 assert(keep_clusters
<= nb_clusters
);
1556 *bytes
= MIN(*bytes
,
1557 keep_clusters
* s
->cluster_size
1558 - offset_into_cluster(s
, guest_offset
));
1559 assert(*bytes
!= 0);
1561 ret
= calculate_l2_meta(bs
, cluster_offset
, guest_offset
,
1562 *bytes
, l2_slice
, m
, true);
1574 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
1576 /* Only return a host offset if we actually made progress. Otherwise we
1577 * would make requirements for handle_alloc() that it can't fulfill */
1579 *host_offset
= cluster_offset
+ offset_into_cluster(s
, guest_offset
);
1586 * Allocates new clusters for the given guest_offset.
1588 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1589 * contain the number of clusters that have been allocated and are contiguous
1590 * in the image file.
1592 * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1593 * at which the new clusters must start. *nb_clusters can be 0 on return in
1594 * this case if the cluster at host_offset is already in use. If *host_offset
1595 * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
1597 * *host_offset is updated to contain the offset into the image file at which
1598 * the first allocated cluster starts.
1600 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1601 * function has been waiting for another request and the allocation must be
1602 * restarted, but the whole request should not be failed.
1604 static int coroutine_fn GRAPH_RDLOCK
1605 do_alloc_cluster_offset(BlockDriverState
*bs
, uint64_t guest_offset
,
1606 uint64_t *host_offset
, uint64_t *nb_clusters
)
1608 BDRVQcow2State
*s
= bs
->opaque
;
1610 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset
,
1611 *host_offset
, *nb_clusters
);
1613 if (has_data_file(bs
)) {
1614 assert(*host_offset
== INV_OFFSET
||
1615 *host_offset
== start_of_cluster(s
, guest_offset
));
1616 *host_offset
= start_of_cluster(s
, guest_offset
);
1620 /* Allocate new clusters */
1621 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1622 if (*host_offset
== INV_OFFSET
) {
1623 int64_t cluster_offset
=
1624 qcow2_alloc_clusters(bs
, *nb_clusters
* s
->cluster_size
);
1625 if (cluster_offset
< 0) {
1626 return cluster_offset
;
1628 *host_offset
= cluster_offset
;
1631 int64_t ret
= qcow2_alloc_clusters_at(bs
, *host_offset
, *nb_clusters
);
1641 * Allocates new clusters for an area that is either still unallocated or
1642 * cannot be overwritten in-place. If *host_offset is not INV_OFFSET,
1643 * clusters are only allocated if the new allocation can match the specified
1646 * Note that guest_offset may not be cluster aligned. In this case, the
1647 * returned *host_offset points to exact byte referenced by guest_offset and
1648 * therefore isn't cluster aligned as well.
1651 * 0: if no clusters could be allocated. *bytes is set to 0,
1652 * *host_offset is left unchanged.
1654 * 1: if new clusters were allocated. *bytes may be decreased if the
1655 * new allocation doesn't cover all of the requested area.
1656 * *host_offset is updated to contain the host offset of the first
1657 * newly allocated cluster.
1659 * -errno: in error cases
1661 static int coroutine_fn GRAPH_RDLOCK
1662 handle_alloc(BlockDriverState
*bs
, uint64_t guest_offset
,
1663 uint64_t *host_offset
, uint64_t *bytes
, QCowL2Meta
**m
)
1665 BDRVQcow2State
*s
= bs
->opaque
;
1668 uint64_t nb_clusters
;
1671 uint64_t alloc_cluster_offset
;
1673 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset
, *host_offset
,
1678 * Calculate the number of clusters to look for. We stop at L2 slice
1679 * boundaries to keep things simple.
1682 size_to_clusters(s
, offset_into_cluster(s
, guest_offset
) + *bytes
);
1684 l2_index
= offset_to_l2_slice_index(s
, guest_offset
);
1685 nb_clusters
= MIN(nb_clusters
, s
->l2_slice_size
- l2_index
);
1686 /* Limit total allocation byte count to BDRV_REQUEST_MAX_BYTES */
1687 nb_clusters
= MIN(nb_clusters
, BDRV_REQUEST_MAX_BYTES
>> s
->cluster_bits
);
1689 /* Find L2 entry for the first involved cluster */
1690 ret
= get_cluster_table(bs
, guest_offset
, &l2_slice
, &l2_index
);
1695 nb_clusters
= count_single_write_clusters(bs
, nb_clusters
,
1696 l2_slice
, l2_index
, true);
1698 /* This function is only called when there were no non-COW clusters, so if
1699 * we can't find any unallocated or COW clusters either, something is
1700 * wrong with our code. */
1701 assert(nb_clusters
> 0);
1703 /* Allocate at a given offset in the image file */
1704 alloc_cluster_offset
= *host_offset
== INV_OFFSET
? INV_OFFSET
:
1705 start_of_cluster(s
, *host_offset
);
1706 ret
= do_alloc_cluster_offset(bs
, guest_offset
, &alloc_cluster_offset
,
1712 /* Can't extend contiguous allocation */
1713 if (nb_clusters
== 0) {
1719 assert(alloc_cluster_offset
!= INV_OFFSET
);
1722 * Save info needed for meta data update.
1724 * requested_bytes: Number of bytes from the start of the first
1725 * newly allocated cluster to the end of the (possibly shortened
1726 * before) write request.
1728 * avail_bytes: Number of bytes from the start of the first
1729 * newly allocated to the end of the last newly allocated cluster.
1731 * nb_bytes: The number of bytes from the start of the first
1732 * newly allocated cluster to the end of the area that the write
1733 * request actually writes to (excluding COW at the end)
1735 uint64_t requested_bytes
= *bytes
+ offset_into_cluster(s
, guest_offset
);
1736 int avail_bytes
= nb_clusters
<< s
->cluster_bits
;
1737 int nb_bytes
= MIN(requested_bytes
, avail_bytes
);
1739 *host_offset
= alloc_cluster_offset
+ offset_into_cluster(s
, guest_offset
);
1740 *bytes
= MIN(*bytes
, nb_bytes
- offset_into_cluster(s
, guest_offset
));
1741 assert(*bytes
!= 0);
1743 ret
= calculate_l2_meta(bs
, alloc_cluster_offset
, guest_offset
, *bytes
,
1744 l2_slice
, m
, false);
1752 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
1757 * For a given area on the virtual disk defined by @offset and @bytes,
1758 * find the corresponding area on the qcow2 image, allocating new
1759 * clusters (or subclusters) if necessary. The result can span a
1760 * combination of allocated and previously unallocated clusters.
1762 * Note that offset may not be cluster aligned. In this case, the returned
1763 * *host_offset points to exact byte referenced by offset and therefore
1764 * isn't cluster aligned as well.
1766 * On return, @host_offset is set to the beginning of the requested
1767 * area. This area is guaranteed to be contiguous on the qcow2 file
1768 * but it can be smaller than initially requested. In this case @bytes
1769 * is updated with the actual size.
1771 * If any clusters or subclusters were allocated then @m contains a
1772 * list with the information of all the affected regions. Note that
1773 * this can happen regardless of whether this function succeeds or
1774 * not. The caller is responsible for updating the L2 metadata of the
1775 * allocated clusters (on success) or freeing them (on failure), and
1776 * for clearing the contents of @m afterwards in both cases.
1778 * If the request conflicts with another write request in flight, the coroutine
1779 * is queued and will be reentered when the dependency has completed.
1781 * Return 0 on success and -errno in error cases
1783 int coroutine_fn
qcow2_alloc_host_offset(BlockDriverState
*bs
, uint64_t offset
,
1784 unsigned int *bytes
,
1785 uint64_t *host_offset
,
1788 BDRVQcow2State
*s
= bs
->opaque
;
1789 uint64_t start
, remaining
;
1790 uint64_t cluster_offset
;
1794 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset
, *bytes
);
1799 cluster_offset
= INV_OFFSET
;
1800 *host_offset
= INV_OFFSET
;
1806 if (*host_offset
== INV_OFFSET
&& cluster_offset
!= INV_OFFSET
) {
1807 *host_offset
= cluster_offset
;
1810 assert(remaining
>= cur_bytes
);
1813 remaining
-= cur_bytes
;
1815 if (cluster_offset
!= INV_OFFSET
) {
1816 cluster_offset
+= cur_bytes
;
1819 if (remaining
== 0) {
1823 cur_bytes
= remaining
;
1826 * Now start gathering as many contiguous clusters as possible:
1828 * 1. Check for overlaps with in-flight allocations
1830 * a) Overlap not in the first cluster -> shorten this request and
1831 * let the caller handle the rest in its next loop iteration.
1833 * b) Real overlaps of two requests. Yield and restart the search
1834 * for contiguous clusters (the situation could have changed
1835 * while we were sleeping)
1837 * c) TODO: Request starts in the same cluster as the in-flight
1838 * allocation ends. Shorten the COW of the in-fight allocation,
1839 * set cluster_offset to write to the same cluster and set up
1840 * the right synchronisation between the in-flight request and
1843 ret
= handle_dependencies(bs
, start
, &cur_bytes
, m
);
1844 if (ret
== -EAGAIN
) {
1845 /* Currently handle_dependencies() doesn't yield if we already had
1846 * an allocation. If it did, we would have to clean up the L2Meta
1847 * structs before starting over. */
1850 } else if (ret
< 0) {
1852 } else if (cur_bytes
== 0) {
1855 /* handle_dependencies() may have decreased cur_bytes (shortened
1856 * the allocations below) so that the next dependency is processed
1857 * correctly during the next loop iteration. */
1861 * 2. Count contiguous COPIED clusters.
1863 ret
= handle_copied(bs
, start
, &cluster_offset
, &cur_bytes
, m
);
1868 } else if (cur_bytes
== 0) {
1873 * 3. If the request still hasn't completed, allocate new clusters,
1874 * considering any cluster_offset of steps 1c or 2.
1876 ret
= handle_alloc(bs
, start
, &cluster_offset
, &cur_bytes
, m
);
1882 assert(cur_bytes
== 0);
1887 *bytes
-= remaining
;
1889 assert(*host_offset
!= INV_OFFSET
);
1890 assert(offset_into_cluster(s
, *host_offset
) ==
1891 offset_into_cluster(s
, offset
));
1897 * This discards as many clusters of nb_clusters as possible at once (i.e.
1898 * all clusters in the same L2 slice) and returns the number of discarded
1901 static int GRAPH_RDLOCK
1902 discard_in_l2_slice(BlockDriverState
*bs
, uint64_t offset
, uint64_t nb_clusters
,
1903 enum qcow2_discard_type type
, bool full_discard
)
1905 BDRVQcow2State
*s
= bs
->opaque
;
1911 ret
= get_cluster_table(bs
, offset
, &l2_slice
, &l2_index
);
1916 /* Limit nb_clusters to one L2 slice */
1917 nb_clusters
= MIN(nb_clusters
, s
->l2_slice_size
- l2_index
);
1918 assert(nb_clusters
<= INT_MAX
);
1920 for (i
= 0; i
< nb_clusters
; i
++) {
1921 uint64_t old_l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
+ i
);
1922 uint64_t old_l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
+ i
);
1923 uint64_t new_l2_entry
= old_l2_entry
;
1924 uint64_t new_l2_bitmap
= old_l2_bitmap
;
1925 QCow2ClusterType cluster_type
=
1926 qcow2_get_cluster_type(bs
, old_l2_entry
);
1927 bool keep_reference
= (cluster_type
!= QCOW2_CLUSTER_COMPRESSED
) &&
1929 (s
->discard_no_unref
&&
1930 type
== QCOW2_DISCARD_REQUEST
);
1933 * If full_discard is true, the cluster should not read back as zeroes,
1934 * but rather fall through to the backing file.
1936 * If full_discard is false, make sure that a discarded area reads back
1937 * as zeroes for v3 images (we cannot do it for v2 without actually
1938 * writing a zero-filled buffer). We can skip the operation if the
1939 * cluster is already marked as zero, or if it's unallocated and we
1940 * don't have a backing file.
1942 * TODO We might want to use bdrv_block_status(bs) here, but we're
1943 * holding s->lock, so that doesn't work today.
1946 new_l2_entry
= new_l2_bitmap
= 0;
1947 } else if (bs
->backing
|| qcow2_cluster_is_allocated(cluster_type
)) {
1948 if (has_subclusters(s
)) {
1949 if (keep_reference
) {
1950 new_l2_entry
= old_l2_entry
;
1954 new_l2_bitmap
= QCOW_L2_BITMAP_ALL_ZEROES
;
1956 if (s
->qcow_version
>= 3) {
1957 if (keep_reference
) {
1958 new_l2_entry
|= QCOW_OFLAG_ZERO
;
1960 new_l2_entry
= QCOW_OFLAG_ZERO
;
1968 if (old_l2_entry
== new_l2_entry
&& old_l2_bitmap
== new_l2_bitmap
) {
1972 /* First remove L2 entries */
1973 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
1974 set_l2_entry(s
, l2_slice
, l2_index
+ i
, new_l2_entry
);
1975 if (has_subclusters(s
)) {
1976 set_l2_bitmap(s
, l2_slice
, l2_index
+ i
, new_l2_bitmap
);
1978 if (!keep_reference
) {
1979 /* Then decrease the refcount */
1980 qcow2_free_any_cluster(bs
, old_l2_entry
, type
);
1981 } else if (s
->discard_passthrough
[type
] &&
1982 (cluster_type
== QCOW2_CLUSTER_NORMAL
||
1983 cluster_type
== QCOW2_CLUSTER_ZERO_ALLOC
)) {
1984 /* If we keep the reference, pass on the discard still */
1985 bdrv_pdiscard(s
->data_file
, old_l2_entry
& L2E_OFFSET_MASK
,
1990 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
1995 int qcow2_cluster_discard(BlockDriverState
*bs
, uint64_t offset
,
1996 uint64_t bytes
, enum qcow2_discard_type type
,
1999 BDRVQcow2State
*s
= bs
->opaque
;
2000 uint64_t end_offset
= offset
+ bytes
;
2001 uint64_t nb_clusters
;
2005 /* Caller must pass aligned values, except at image end */
2006 assert(QEMU_IS_ALIGNED(offset
, s
->cluster_size
));
2007 assert(QEMU_IS_ALIGNED(end_offset
, s
->cluster_size
) ||
2008 end_offset
== bs
->total_sectors
<< BDRV_SECTOR_BITS
);
2010 nb_clusters
= size_to_clusters(s
, bytes
);
2012 s
->cache_discards
= true;
2014 /* Each L2 slice is handled by its own loop iteration */
2015 while (nb_clusters
> 0) {
2016 cleared
= discard_in_l2_slice(bs
, offset
, nb_clusters
, type
,
2023 nb_clusters
-= cleared
;
2024 offset
+= (cleared
* s
->cluster_size
);
2029 s
->cache_discards
= false;
2030 qcow2_process_discards(bs
, ret
);
2036 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
2037 * all clusters in the same L2 slice) and returns the number of zeroed
2040 static int coroutine_fn GRAPH_RDLOCK
2041 zero_in_l2_slice(BlockDriverState
*bs
, uint64_t offset
,
2042 uint64_t nb_clusters
, int flags
)
2044 BDRVQcow2State
*s
= bs
->opaque
;
2050 ret
= get_cluster_table(bs
, offset
, &l2_slice
, &l2_index
);
2055 /* Limit nb_clusters to one L2 slice */
2056 nb_clusters
= MIN(nb_clusters
, s
->l2_slice_size
- l2_index
);
2057 assert(nb_clusters
<= INT_MAX
);
2059 for (i
= 0; i
< nb_clusters
; i
++) {
2060 uint64_t old_l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
+ i
);
2061 uint64_t old_l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
+ i
);
2062 QCow2ClusterType type
= qcow2_get_cluster_type(bs
, old_l2_entry
);
2063 bool unmap
= (type
== QCOW2_CLUSTER_COMPRESSED
) ||
2064 ((flags
& BDRV_REQ_MAY_UNMAP
) && qcow2_cluster_is_allocated(type
));
2065 bool keep_reference
=
2066 (s
->discard_no_unref
&& type
!= QCOW2_CLUSTER_COMPRESSED
);
2067 uint64_t new_l2_entry
= old_l2_entry
;
2068 uint64_t new_l2_bitmap
= old_l2_bitmap
;
2070 if (unmap
&& !keep_reference
) {
2074 if (has_subclusters(s
)) {
2075 new_l2_bitmap
= QCOW_L2_BITMAP_ALL_ZEROES
;
2077 new_l2_entry
|= QCOW_OFLAG_ZERO
;
2080 if (old_l2_entry
== new_l2_entry
&& old_l2_bitmap
== new_l2_bitmap
) {
2084 /* First update L2 entries */
2085 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
2086 set_l2_entry(s
, l2_slice
, l2_index
+ i
, new_l2_entry
);
2087 if (has_subclusters(s
)) {
2088 set_l2_bitmap(s
, l2_slice
, l2_index
+ i
, new_l2_bitmap
);
2092 if (!keep_reference
) {
2093 /* Then decrease the refcount */
2094 qcow2_free_any_cluster(bs
, old_l2_entry
, QCOW2_DISCARD_REQUEST
);
2095 } else if (s
->discard_passthrough
[QCOW2_DISCARD_REQUEST
] &&
2096 (type
== QCOW2_CLUSTER_NORMAL
||
2097 type
== QCOW2_CLUSTER_ZERO_ALLOC
)) {
2098 /* If we keep the reference, pass on the discard still */
2099 bdrv_pdiscard(s
->data_file
, old_l2_entry
& L2E_OFFSET_MASK
,
2105 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
2110 static int coroutine_fn GRAPH_RDLOCK
2111 zero_l2_subclusters(BlockDriverState
*bs
, uint64_t offset
,
2112 unsigned nb_subclusters
)
2114 BDRVQcow2State
*s
= bs
->opaque
;
2116 uint64_t old_l2_bitmap
, l2_bitmap
;
2117 int l2_index
, ret
, sc
= offset_to_sc_index(s
, offset
);
2119 /* For full clusters use zero_in_l2_slice() instead */
2120 assert(nb_subclusters
> 0 && nb_subclusters
< s
->subclusters_per_cluster
);
2121 assert(sc
+ nb_subclusters
<= s
->subclusters_per_cluster
);
2122 assert(offset_into_subcluster(s
, offset
) == 0);
2124 ret
= get_cluster_table(bs
, offset
, &l2_slice
, &l2_index
);
2129 switch (qcow2_get_cluster_type(bs
, get_l2_entry(s
, l2_slice
, l2_index
))) {
2130 case QCOW2_CLUSTER_COMPRESSED
:
2131 ret
= -ENOTSUP
; /* We cannot partially zeroize compressed clusters */
2133 case QCOW2_CLUSTER_NORMAL
:
2134 case QCOW2_CLUSTER_UNALLOCATED
:
2137 g_assert_not_reached();
2140 old_l2_bitmap
= l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
);
2142 l2_bitmap
|= QCOW_OFLAG_SUB_ZERO_RANGE(sc
, sc
+ nb_subclusters
);
2143 l2_bitmap
&= ~QCOW_OFLAG_SUB_ALLOC_RANGE(sc
, sc
+ nb_subclusters
);
2145 if (old_l2_bitmap
!= l2_bitmap
) {
2146 set_l2_bitmap(s
, l2_slice
, l2_index
, l2_bitmap
);
2147 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
2152 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
2157 int coroutine_fn
qcow2_subcluster_zeroize(BlockDriverState
*bs
, uint64_t offset
,
2158 uint64_t bytes
, int flags
)
2160 BDRVQcow2State
*s
= bs
->opaque
;
2161 uint64_t end_offset
= offset
+ bytes
;
2162 uint64_t nb_clusters
;
2163 unsigned head
, tail
;
2167 /* If we have to stay in sync with an external data file, zero out
2168 * s->data_file first. */
2169 if (data_file_is_raw(bs
)) {
2170 assert(has_data_file(bs
));
2171 ret
= bdrv_co_pwrite_zeroes(s
->data_file
, offset
, bytes
, flags
);
2177 /* Caller must pass aligned values, except at image end */
2178 assert(offset_into_subcluster(s
, offset
) == 0);
2179 assert(offset_into_subcluster(s
, end_offset
) == 0 ||
2180 end_offset
>= bs
->total_sectors
<< BDRV_SECTOR_BITS
);
2183 * The zero flag is only supported by version 3 and newer. However, if we
2184 * have no backing file, we can resort to discard in version 2.
2186 if (s
->qcow_version
< 3) {
2188 return qcow2_cluster_discard(bs
, offset
, bytes
,
2189 QCOW2_DISCARD_REQUEST
, false);
2194 head
= MIN(end_offset
, ROUND_UP(offset
, s
->cluster_size
)) - offset
;
2197 tail
= (end_offset
>= bs
->total_sectors
<< BDRV_SECTOR_BITS
) ? 0 :
2198 end_offset
- MAX(offset
, start_of_cluster(s
, end_offset
));
2201 s
->cache_discards
= true;
2204 ret
= zero_l2_subclusters(bs
, offset
- head
,
2205 size_to_subclusters(s
, head
));
2211 /* Each L2 slice is handled by its own loop iteration */
2212 nb_clusters
= size_to_clusters(s
, end_offset
- offset
);
2214 while (nb_clusters
> 0) {
2215 cleared
= zero_in_l2_slice(bs
, offset
, nb_clusters
, flags
);
2221 nb_clusters
-= cleared
;
2222 offset
+= (cleared
* s
->cluster_size
);
2226 ret
= zero_l2_subclusters(bs
, end_offset
, size_to_subclusters(s
, tail
));
2234 s
->cache_discards
= false;
2235 qcow2_process_discards(bs
, ret
);
2241 * Expands all zero clusters in a specific L1 table (or deallocates them, for
2242 * non-backed non-pre-allocated zero clusters).
2244 * l1_entries and *visited_l1_entries are used to keep track of progress for
2245 * status_cb(). l1_entries contains the total number of L1 entries and
2246 * *visited_l1_entries counts all visited L1 entries.
2248 static int GRAPH_RDLOCK
2249 expand_zero_clusters_in_l1(BlockDriverState
*bs
, uint64_t *l1_table
,
2250 int l1_size
, int64_t *visited_l1_entries
,
2252 BlockDriverAmendStatusCB
*status_cb
,
2255 BDRVQcow2State
*s
= bs
->opaque
;
2256 bool is_active_l1
= (l1_table
== s
->l1_table
);
2257 uint64_t *l2_slice
= NULL
;
2258 unsigned slice
, slice_size2
, n_slices
;
2262 /* qcow2_downgrade() is not allowed in images with subclusters */
2263 assert(!has_subclusters(s
));
2265 slice_size2
= s
->l2_slice_size
* l2_entry_size(s
);
2266 n_slices
= s
->cluster_size
/ slice_size2
;
2268 if (!is_active_l1
) {
2269 /* inactive L2 tables require a buffer to be stored in when loading
2271 l2_slice
= qemu_try_blockalign(bs
->file
->bs
, slice_size2
);
2272 if (l2_slice
== NULL
) {
2277 for (i
= 0; i
< l1_size
; i
++) {
2278 uint64_t l2_offset
= l1_table
[i
] & L1E_OFFSET_MASK
;
2279 uint64_t l2_refcount
;
2283 (*visited_l1_entries
)++;
2285 status_cb(bs
, *visited_l1_entries
, l1_entries
, cb_opaque
);
2290 if (offset_into_cluster(s
, l2_offset
)) {
2291 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#"
2292 PRIx64
" unaligned (L1 index: %#x)",
2298 ret
= qcow2_get_refcount(bs
, l2_offset
>> s
->cluster_bits
,
2304 for (slice
= 0; slice
< n_slices
; slice
++) {
2305 uint64_t slice_offset
= l2_offset
+ slice
* slice_size2
;
2306 bool l2_dirty
= false;
2308 /* get active L2 tables from cache */
2309 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, slice_offset
,
2310 (void **)&l2_slice
);
2312 /* load inactive L2 tables from disk */
2313 ret
= bdrv_pread(bs
->file
, slice_offset
, slice_size2
,
2320 for (j
= 0; j
< s
->l2_slice_size
; j
++) {
2321 uint64_t l2_entry
= get_l2_entry(s
, l2_slice
, j
);
2322 int64_t offset
= l2_entry
& L2E_OFFSET_MASK
;
2323 QCow2ClusterType cluster_type
=
2324 qcow2_get_cluster_type(bs
, l2_entry
);
2326 if (cluster_type
!= QCOW2_CLUSTER_ZERO_PLAIN
&&
2327 cluster_type
!= QCOW2_CLUSTER_ZERO_ALLOC
) {
2331 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
2334 * not backed; therefore we can simply deallocate the
2335 * cluster. No need to call set_l2_bitmap(), this
2336 * function doesn't support images with subclusters.
2338 set_l2_entry(s
, l2_slice
, j
, 0);
2343 offset
= qcow2_alloc_clusters(bs
, s
->cluster_size
);
2349 /* The offset must fit in the offset field */
2350 assert((offset
& L2E_OFFSET_MASK
) == offset
);
2352 if (l2_refcount
> 1) {
2353 /* For shared L2 tables, set the refcount accordingly
2354 * (it is already 1 and needs to be l2_refcount) */
2355 ret
= qcow2_update_cluster_refcount(
2356 bs
, offset
>> s
->cluster_bits
,
2357 refcount_diff(1, l2_refcount
), false,
2358 QCOW2_DISCARD_OTHER
);
2360 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
2361 QCOW2_DISCARD_OTHER
);
2367 if (offset_into_cluster(s
, offset
)) {
2368 int l2_index
= slice
* s
->l2_slice_size
+ j
;
2369 qcow2_signal_corruption(
2371 "Cluster allocation offset "
2372 "%#" PRIx64
" unaligned (L2 offset: %#"
2373 PRIx64
", L2 index: %#x)", offset
,
2374 l2_offset
, l2_index
);
2375 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
2376 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
2377 QCOW2_DISCARD_ALWAYS
);
2383 ret
= qcow2_pre_write_overlap_check(bs
, 0, offset
,
2384 s
->cluster_size
, true);
2386 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
2387 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
2388 QCOW2_DISCARD_ALWAYS
);
2393 ret
= bdrv_pwrite_zeroes(s
->data_file
, offset
,
2394 s
->cluster_size
, 0);
2396 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
2397 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
2398 QCOW2_DISCARD_ALWAYS
);
2403 if (l2_refcount
== 1) {
2404 set_l2_entry(s
, l2_slice
, j
, offset
| QCOW_OFLAG_COPIED
);
2406 set_l2_entry(s
, l2_slice
, j
, offset
);
2409 * No need to call set_l2_bitmap() after set_l2_entry() because
2410 * this function doesn't support images with subclusters.
2417 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
2418 qcow2_cache_depends_on_flush(s
->l2_table_cache
);
2420 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
2423 ret
= qcow2_pre_write_overlap_check(
2424 bs
, QCOW2_OL_INACTIVE_L2
| QCOW2_OL_ACTIVE_L2
,
2425 slice_offset
, slice_size2
, false);
2430 ret
= bdrv_pwrite(bs
->file
, slice_offset
, slice_size2
,
2439 (*visited_l1_entries
)++;
2441 status_cb(bs
, *visited_l1_entries
, l1_entries
, cb_opaque
);
2449 if (!is_active_l1
) {
2450 qemu_vfree(l2_slice
);
2452 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
2459 * For backed images, expands all zero clusters on the image. For non-backed
2460 * images, deallocates all non-pre-allocated zero clusters (and claims the
2461 * allocation for pre-allocated ones). This is important for downgrading to a
2462 * qcow2 version which doesn't yet support metadata zero clusters.
2464 int qcow2_expand_zero_clusters(BlockDriverState
*bs
,
2465 BlockDriverAmendStatusCB
*status_cb
,
2468 BDRVQcow2State
*s
= bs
->opaque
;
2469 uint64_t *l1_table
= NULL
;
2470 int64_t l1_entries
= 0, visited_l1_entries
= 0;
2475 l1_entries
= s
->l1_size
;
2476 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
2477 l1_entries
+= s
->snapshots
[i
].l1_size
;
2481 ret
= expand_zero_clusters_in_l1(bs
, s
->l1_table
, s
->l1_size
,
2482 &visited_l1_entries
, l1_entries
,
2483 status_cb
, cb_opaque
);
2488 /* Inactive L1 tables may point to active L2 tables - therefore it is
2489 * necessary to flush the L2 table cache before trying to access the L2
2490 * tables pointed to by inactive L1 entries (else we might try to expand
2491 * zero clusters that have already been expanded); furthermore, it is also
2492 * necessary to empty the L2 table cache, since it may contain tables which
2493 * are now going to be modified directly on disk, bypassing the cache.
2494 * qcow2_cache_empty() does both for us. */
2495 ret
= qcow2_cache_empty(bs
, s
->l2_table_cache
);
2500 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
2502 uint64_t *new_l1_table
;
2503 Error
*local_err
= NULL
;
2505 ret
= qcow2_validate_table(bs
, s
->snapshots
[i
].l1_table_offset
,
2506 s
->snapshots
[i
].l1_size
, L1E_SIZE
,
2507 QCOW_MAX_L1_SIZE
, "Snapshot L1 table",
2510 error_report_err(local_err
);
2514 l1_size2
= s
->snapshots
[i
].l1_size
* L1E_SIZE
;
2515 new_l1_table
= g_try_realloc(l1_table
, l1_size2
);
2517 if (!new_l1_table
) {
2522 l1_table
= new_l1_table
;
2524 ret
= bdrv_pread(bs
->file
, s
->snapshots
[i
].l1_table_offset
, l1_size2
,
2530 for (j
= 0; j
< s
->snapshots
[i
].l1_size
; j
++) {
2531 be64_to_cpus(&l1_table
[j
]);
2534 ret
= expand_zero_clusters_in_l1(bs
, l1_table
, s
->snapshots
[i
].l1_size
,
2535 &visited_l1_entries
, l1_entries
,
2536 status_cb
, cb_opaque
);
2549 void qcow2_parse_compressed_l2_entry(BlockDriverState
*bs
, uint64_t l2_entry
,
2550 uint64_t *coffset
, int *csize
)
2552 BDRVQcow2State
*s
= bs
->opaque
;
2555 assert(qcow2_get_cluster_type(bs
, l2_entry
) == QCOW2_CLUSTER_COMPRESSED
);
2557 *coffset
= l2_entry
& s
->cluster_offset_mask
;
2559 nb_csectors
= ((l2_entry
>> s
->csize_shift
) & s
->csize_mask
) + 1;
2560 *csize
= nb_csectors
* QCOW2_COMPRESSED_SECTOR_SIZE
-
2561 (*coffset
& (QCOW2_COMPRESSED_SECTOR_SIZE
- 1));