python: support pylint 2.16
[qemu/armbru.git] / util / host-utils.c
blobfb91bcba823de5bdb6da822af31803cbc5c0f238
1 /*
2 * Utility compute operations used by translated code.
4 * Copyright (c) 2003 Fabrice Bellard
5 * Copyright (c) 2007 Aurelien Jarno
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
26 #include "qemu/osdep.h"
27 #include "qemu/host-utils.h"
29 #ifndef CONFIG_INT128
30 /* Long integer helpers */
31 static inline void mul64(uint64_t *plow, uint64_t *phigh,
32 uint64_t a, uint64_t b)
34 typedef union {
35 uint64_t ll;
36 struct {
37 #if HOST_BIG_ENDIAN
38 uint32_t high, low;
39 #else
40 uint32_t low, high;
41 #endif
42 } l;
43 } LL;
44 LL rl, rm, rn, rh, a0, b0;
45 uint64_t c;
47 a0.ll = a;
48 b0.ll = b;
50 rl.ll = (uint64_t)a0.l.low * b0.l.low;
51 rm.ll = (uint64_t)a0.l.low * b0.l.high;
52 rn.ll = (uint64_t)a0.l.high * b0.l.low;
53 rh.ll = (uint64_t)a0.l.high * b0.l.high;
55 c = (uint64_t)rl.l.high + rm.l.low + rn.l.low;
56 rl.l.high = c;
57 c >>= 32;
58 c = c + rm.l.high + rn.l.high + rh.l.low;
59 rh.l.low = c;
60 rh.l.high += (uint32_t)(c >> 32);
62 *plow = rl.ll;
63 *phigh = rh.ll;
66 /* Unsigned 64x64 -> 128 multiplication */
67 void mulu64 (uint64_t *plow, uint64_t *phigh, uint64_t a, uint64_t b)
69 mul64(plow, phigh, a, b);
72 /* Signed 64x64 -> 128 multiplication */
73 void muls64 (uint64_t *plow, uint64_t *phigh, int64_t a, int64_t b)
75 uint64_t rh;
77 mul64(plow, &rh, a, b);
79 /* Adjust for signs. */
80 if (b < 0) {
81 rh -= a;
83 if (a < 0) {
84 rh -= b;
86 *phigh = rh;
90 * Unsigned 128-by-64 division.
91 * Returns the remainder.
92 * Returns quotient via plow and phigh.
93 * Also returns the remainder via the function return value.
95 uint64_t divu128(uint64_t *plow, uint64_t *phigh, uint64_t divisor)
97 uint64_t dhi = *phigh;
98 uint64_t dlo = *plow;
99 uint64_t rem, dhighest;
100 int sh;
102 if (divisor == 0 || dhi == 0) {
103 *plow = dlo / divisor;
104 *phigh = 0;
105 return dlo % divisor;
106 } else {
107 sh = clz64(divisor);
109 if (dhi < divisor) {
110 if (sh != 0) {
111 /* normalize the divisor, shifting the dividend accordingly */
112 divisor <<= sh;
113 dhi = (dhi << sh) | (dlo >> (64 - sh));
114 dlo <<= sh;
117 *phigh = 0;
118 *plow = udiv_qrnnd(&rem, dhi, dlo, divisor);
119 } else {
120 if (sh != 0) {
121 /* normalize the divisor, shifting the dividend accordingly */
122 divisor <<= sh;
123 dhighest = dhi >> (64 - sh);
124 dhi = (dhi << sh) | (dlo >> (64 - sh));
125 dlo <<= sh;
127 *phigh = udiv_qrnnd(&dhi, dhighest, dhi, divisor);
128 } else {
130 * dhi >= divisor
131 * Since the MSB of divisor is set (sh == 0),
132 * (dhi - divisor) < divisor
134 * Thus, the high part of the quotient is 1, and we can
135 * calculate the low part with a single call to udiv_qrnnd
136 * after subtracting divisor from dhi
138 dhi -= divisor;
139 *phigh = 1;
142 *plow = udiv_qrnnd(&rem, dhi, dlo, divisor);
146 * since the dividend/divisor might have been normalized,
147 * the remainder might also have to be shifted back
149 return rem >> sh;
154 * Signed 128-by-64 division.
155 * Returns quotient via plow and phigh.
156 * Also returns the remainder via the function return value.
158 int64_t divs128(uint64_t *plow, int64_t *phigh, int64_t divisor)
160 bool neg_quotient = false, neg_remainder = false;
161 uint64_t unsig_hi = *phigh, unsig_lo = *plow;
162 uint64_t rem;
164 if (*phigh < 0) {
165 neg_quotient = !neg_quotient;
166 neg_remainder = !neg_remainder;
168 if (unsig_lo == 0) {
169 unsig_hi = -unsig_hi;
170 } else {
171 unsig_hi = ~unsig_hi;
172 unsig_lo = -unsig_lo;
176 if (divisor < 0) {
177 neg_quotient = !neg_quotient;
179 divisor = -divisor;
182 rem = divu128(&unsig_lo, &unsig_hi, (uint64_t)divisor);
184 if (neg_quotient) {
185 if (unsig_lo == 0) {
186 *phigh = -unsig_hi;
187 *plow = 0;
188 } else {
189 *phigh = ~unsig_hi;
190 *plow = -unsig_lo;
192 } else {
193 *phigh = unsig_hi;
194 *plow = unsig_lo;
197 if (neg_remainder) {
198 return -rem;
199 } else {
200 return rem;
203 #endif
206 * urshift - 128-bit Unsigned Right Shift.
207 * @plow: in/out - lower 64-bit integer.
208 * @phigh: in/out - higher 64-bit integer.
209 * @shift: in - bytes to shift, between 0 and 127.
211 * Result is zero-extended and stored in plow/phigh, which are
212 * input/output variables. Shift values outside the range will
213 * be mod to 128. In other words, the caller is responsible to
214 * verify/assert both the shift range and plow/phigh pointers.
216 void urshift(uint64_t *plow, uint64_t *phigh, int32_t shift)
218 shift &= 127;
219 if (shift == 0) {
220 return;
223 uint64_t h = *phigh >> (shift & 63);
224 if (shift >= 64) {
225 *plow = h;
226 *phigh = 0;
227 } else {
228 *plow = (*plow >> (shift & 63)) | (*phigh << (64 - (shift & 63)));
229 *phigh = h;
234 * ulshift - 128-bit Unsigned Left Shift.
235 * @plow: in/out - lower 64-bit integer.
236 * @phigh: in/out - higher 64-bit integer.
237 * @shift: in - bytes to shift, between 0 and 127.
238 * @overflow: out - true if any 1-bit is shifted out.
240 * Result is zero-extended and stored in plow/phigh, which are
241 * input/output variables. Shift values outside the range will
242 * be mod to 128. In other words, the caller is responsible to
243 * verify/assert both the shift range and plow/phigh pointers.
245 void ulshift(uint64_t *plow, uint64_t *phigh, int32_t shift, bool *overflow)
247 uint64_t low = *plow;
248 uint64_t high = *phigh;
250 shift &= 127;
251 if (shift == 0) {
252 return;
255 /* check if any bit will be shifted out */
256 urshift(&low, &high, 128 - shift);
257 if (low | high) {
258 *overflow = true;
261 if (shift >= 64) {
262 *phigh = *plow << (shift & 63);
263 *plow = 0;
264 } else {
265 *phigh = (*plow >> (64 - (shift & 63))) | (*phigh << (shift & 63));
266 *plow = *plow << shift;
271 * Unsigned 256-by-128 division.
272 * Returns the remainder via r.
273 * Returns lower 128 bit of quotient.
274 * Needs a normalized divisor (most significant bit set to 1).
276 * Adapted from include/qemu/host-utils.h udiv_qrnnd,
277 * from the GNU Multi Precision Library - longlong.h __udiv_qrnnd
278 * (https://gmplib.org/repo/gmp/file/tip/longlong.h)
280 * Licensed under the GPLv2/LGPLv3
282 static Int128 udiv256_qrnnd(Int128 *r, Int128 n1, Int128 n0, Int128 d)
284 Int128 d0, d1, q0, q1, r1, r0, m;
285 uint64_t mp0, mp1;
287 d0 = int128_make64(int128_getlo(d));
288 d1 = int128_make64(int128_gethi(d));
290 r1 = int128_remu(n1, d1);
291 q1 = int128_divu(n1, d1);
292 mp0 = int128_getlo(q1);
293 mp1 = int128_gethi(q1);
294 mulu128(&mp0, &mp1, int128_getlo(d0));
295 m = int128_make128(mp0, mp1);
296 r1 = int128_make128(int128_gethi(n0), int128_getlo(r1));
297 if (int128_ult(r1, m)) {
298 q1 = int128_sub(q1, int128_one());
299 r1 = int128_add(r1, d);
300 if (int128_uge(r1, d)) {
301 if (int128_ult(r1, m)) {
302 q1 = int128_sub(q1, int128_one());
303 r1 = int128_add(r1, d);
307 r1 = int128_sub(r1, m);
309 r0 = int128_remu(r1, d1);
310 q0 = int128_divu(r1, d1);
311 mp0 = int128_getlo(q0);
312 mp1 = int128_gethi(q0);
313 mulu128(&mp0, &mp1, int128_getlo(d0));
314 m = int128_make128(mp0, mp1);
315 r0 = int128_make128(int128_getlo(n0), int128_getlo(r0));
316 if (int128_ult(r0, m)) {
317 q0 = int128_sub(q0, int128_one());
318 r0 = int128_add(r0, d);
319 if (int128_uge(r0, d)) {
320 if (int128_ult(r0, m)) {
321 q0 = int128_sub(q0, int128_one());
322 r0 = int128_add(r0, d);
326 r0 = int128_sub(r0, m);
328 *r = r0;
329 return int128_or(int128_lshift(q1, 64), q0);
333 * Unsigned 256-by-128 division.
334 * Returns the remainder.
335 * Returns quotient via plow and phigh.
336 * Also returns the remainder via the function return value.
338 Int128 divu256(Int128 *plow, Int128 *phigh, Int128 divisor)
340 Int128 dhi = *phigh;
341 Int128 dlo = *plow;
342 Int128 rem, dhighest;
343 int sh;
345 if (!int128_nz(divisor) || !int128_nz(dhi)) {
346 *plow = int128_divu(dlo, divisor);
347 *phigh = int128_zero();
348 return int128_remu(dlo, divisor);
349 } else {
350 sh = clz128(divisor);
352 if (int128_ult(dhi, divisor)) {
353 if (sh != 0) {
354 /* normalize the divisor, shifting the dividend accordingly */
355 divisor = int128_lshift(divisor, sh);
356 dhi = int128_or(int128_lshift(dhi, sh),
357 int128_urshift(dlo, (128 - sh)));
358 dlo = int128_lshift(dlo, sh);
361 *phigh = int128_zero();
362 *plow = udiv256_qrnnd(&rem, dhi, dlo, divisor);
363 } else {
364 if (sh != 0) {
365 /* normalize the divisor, shifting the dividend accordingly */
366 divisor = int128_lshift(divisor, sh);
367 dhighest = int128_rshift(dhi, (128 - sh));
368 dhi = int128_or(int128_lshift(dhi, sh),
369 int128_urshift(dlo, (128 - sh)));
370 dlo = int128_lshift(dlo, sh);
372 *phigh = udiv256_qrnnd(&dhi, dhighest, dhi, divisor);
373 } else {
375 * dhi >= divisor
376 * Since the MSB of divisor is set (sh == 0),
377 * (dhi - divisor) < divisor
379 * Thus, the high part of the quotient is 1, and we can
380 * calculate the low part with a single call to udiv_qrnnd
381 * after subtracting divisor from dhi
383 dhi = int128_sub(dhi, divisor);
384 *phigh = int128_one();
387 *plow = udiv256_qrnnd(&rem, dhi, dlo, divisor);
391 * since the dividend/divisor might have been normalized,
392 * the remainder might also have to be shifted back
394 rem = int128_urshift(rem, sh);
395 return rem;
400 * Signed 256-by-128 division.
401 * Returns quotient via plow and phigh.
402 * Also returns the remainder via the function return value.
404 Int128 divs256(Int128 *plow, Int128 *phigh, Int128 divisor)
406 bool neg_quotient = false, neg_remainder = false;
407 Int128 unsig_hi = *phigh, unsig_lo = *plow;
408 Int128 rem;
410 if (!int128_nonneg(*phigh)) {
411 neg_quotient = !neg_quotient;
412 neg_remainder = !neg_remainder;
414 if (!int128_nz(unsig_lo)) {
415 unsig_hi = int128_neg(unsig_hi);
416 } else {
417 unsig_hi = int128_not(unsig_hi);
418 unsig_lo = int128_neg(unsig_lo);
422 if (!int128_nonneg(divisor)) {
423 neg_quotient = !neg_quotient;
425 divisor = int128_neg(divisor);
428 rem = divu256(&unsig_lo, &unsig_hi, divisor);
430 if (neg_quotient) {
431 if (!int128_nz(unsig_lo)) {
432 *phigh = int128_neg(unsig_hi);
433 *plow = int128_zero();
434 } else {
435 *phigh = int128_not(unsig_hi);
436 *plow = int128_neg(unsig_lo);
438 } else {
439 *phigh = unsig_hi;
440 *plow = unsig_lo;
443 if (neg_remainder) {
444 return int128_neg(rem);
445 } else {
446 return rem;