hw/ppc: Avoid using Monitor in xive_end_queue_pic_print_info()
[qemu/armbru.git] / hw / intc / spapr_xive.c
blob3357f6325fb1db758cbc3bcfdc4b081e843a38c7
1 /*
2 * QEMU PowerPC sPAPR XIVE interrupt controller model
4 * Copyright (c) 2017-2018, IBM Corporation.
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "qapi/type-helpers.h"
15 #include "qemu/error-report.h"
16 #include "target/ppc/cpu.h"
17 #include "sysemu/cpus.h"
18 #include "sysemu/reset.h"
19 #include "migration/vmstate.h"
20 #include "monitor/monitor.h"
21 #include "hw/ppc/fdt.h"
22 #include "hw/ppc/spapr.h"
23 #include "hw/ppc/spapr_cpu_core.h"
24 #include "hw/ppc/spapr_xive.h"
25 #include "hw/ppc/xive.h"
26 #include "hw/ppc/xive_regs.h"
27 #include "hw/qdev-properties.h"
28 #include "trace.h"
31 * XIVE Virtualization Controller BAR and Thread Management BAR that we
32 * use for the ESB pages and the TIMA pages
34 #define SPAPR_XIVE_VC_BASE 0x0006010000000000ull
35 #define SPAPR_XIVE_TM_BASE 0x0006030203180000ull
38 * The allocation of VP blocks is a complex operation in OPAL and the
39 * VP identifiers have a relation with the number of HW chips, the
40 * size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE
41 * controller model does not have the same constraints and can use a
42 * simple mapping scheme of the CPU vcpu_id
44 * These identifiers are never returned to the OS.
47 #define SPAPR_XIVE_NVT_BASE 0x400
50 * sPAPR NVT and END indexing helpers
52 static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx)
54 return nvt_idx - SPAPR_XIVE_NVT_BASE;
57 static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu,
58 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
60 assert(cpu);
62 if (out_nvt_blk) {
63 *out_nvt_blk = SPAPR_XIVE_BLOCK_ID;
66 if (out_nvt_blk) {
67 *out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id;
71 static int spapr_xive_target_to_nvt(uint32_t target,
72 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
74 PowerPCCPU *cpu = spapr_find_cpu(target);
76 if (!cpu) {
77 return -1;
80 spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx);
81 return 0;
85 * sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8
86 * priorities per CPU
88 int spapr_xive_end_to_target(uint8_t end_blk, uint32_t end_idx,
89 uint32_t *out_server, uint8_t *out_prio)
92 assert(end_blk == SPAPR_XIVE_BLOCK_ID);
94 if (out_server) {
95 *out_server = end_idx >> 3;
98 if (out_prio) {
99 *out_prio = end_idx & 0x7;
101 return 0;
104 static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio,
105 uint8_t *out_end_blk, uint32_t *out_end_idx)
107 assert(cpu);
109 if (out_end_blk) {
110 *out_end_blk = SPAPR_XIVE_BLOCK_ID;
113 if (out_end_idx) {
114 *out_end_idx = (cpu->vcpu_id << 3) + prio;
118 static int spapr_xive_target_to_end(uint32_t target, uint8_t prio,
119 uint8_t *out_end_blk, uint32_t *out_end_idx)
121 PowerPCCPU *cpu = spapr_find_cpu(target);
123 if (!cpu) {
124 return -1;
127 spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx);
128 return 0;
132 * On sPAPR machines, use a simplified output for the XIVE END
133 * structure dumping only the information related to the OS EQ.
135 static void spapr_xive_end_pic_print_info(SpaprXive *xive, XiveEND *end,
136 Monitor *mon)
138 uint64_t qaddr_base = xive_end_qaddr(end);
139 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
140 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
141 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
142 uint32_t qentries = 1 << (qsize + 10);
143 uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
144 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
145 g_autoptr(GString) buf = g_string_new("");
146 g_autoptr(HumanReadableText) info = NULL;
148 monitor_printf(mon, "%3d/%d % 6d/%5d @%"PRIx64" ^%d",
149 spapr_xive_nvt_to_target(0, nvt),
150 priority, qindex, qentries, qaddr_base, qgen);
152 xive_end_queue_pic_print_info(end, 6, buf);
154 info = human_readable_text_from_str(buf);
155 monitor_puts(mon, info->human_readable_text);
159 * kvm_irqchip_in_kernel() will cause the compiler to turn this
160 * info a nop if CONFIG_KVM isn't defined.
162 #define spapr_xive_in_kernel(xive) \
163 (kvm_irqchip_in_kernel() && (xive)->fd != -1)
165 static void spapr_xive_pic_print_info(SpaprXive *xive, Monitor *mon)
167 XiveSource *xsrc = &xive->source;
168 int i;
170 if (spapr_xive_in_kernel(xive)) {
171 Error *local_err = NULL;
173 kvmppc_xive_synchronize_state(xive, &local_err);
174 if (local_err) {
175 error_report_err(local_err);
176 return;
180 monitor_printf(mon, " LISN PQ EISN CPU/PRIO EQ\n");
182 for (i = 0; i < xive->nr_irqs; i++) {
183 uint8_t pq = xive_source_esb_get(xsrc, i);
184 XiveEAS *eas = &xive->eat[i];
186 if (!xive_eas_is_valid(eas)) {
187 continue;
190 monitor_printf(mon, " %08x %s %c%c%c %s %08x ", i,
191 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
192 pq & XIVE_ESB_VAL_P ? 'P' : '-',
193 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
194 xive_source_is_asserted(xsrc, i) ? 'A' : ' ',
195 xive_eas_is_masked(eas) ? "M" : " ",
196 (int) xive_get_field64(EAS_END_DATA, eas->w));
198 if (!xive_eas_is_masked(eas)) {
199 uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
200 XiveEND *end;
202 assert(end_idx < xive->nr_ends);
203 end = &xive->endt[end_idx];
205 if (xive_end_is_valid(end)) {
206 spapr_xive_end_pic_print_info(xive, end, mon);
209 monitor_printf(mon, "\n");
213 void spapr_xive_mmio_set_enabled(SpaprXive *xive, bool enable)
215 memory_region_set_enabled(&xive->source.esb_mmio, enable);
216 memory_region_set_enabled(&xive->tm_mmio, enable);
218 /* Disable the END ESBs until a guest OS makes use of them */
219 memory_region_set_enabled(&xive->end_source.esb_mmio, false);
222 static void spapr_xive_tm_write(void *opaque, hwaddr offset,
223 uint64_t value, unsigned size)
225 XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx;
227 xive_tctx_tm_write(XIVE_PRESENTER(opaque), tctx, offset, value, size);
230 static uint64_t spapr_xive_tm_read(void *opaque, hwaddr offset, unsigned size)
232 XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx;
234 return xive_tctx_tm_read(XIVE_PRESENTER(opaque), tctx, offset, size);
237 const MemoryRegionOps spapr_xive_tm_ops = {
238 .read = spapr_xive_tm_read,
239 .write = spapr_xive_tm_write,
240 .endianness = DEVICE_BIG_ENDIAN,
241 .valid = {
242 .min_access_size = 1,
243 .max_access_size = 8,
245 .impl = {
246 .min_access_size = 1,
247 .max_access_size = 8,
251 static void spapr_xive_end_reset(XiveEND *end)
253 memset(end, 0, sizeof(*end));
255 /* switch off the escalation and notification ESBs */
256 end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q);
259 static void spapr_xive_reset(void *dev)
261 SpaprXive *xive = SPAPR_XIVE(dev);
262 int i;
265 * The XiveSource has its own reset handler, which mask off all
266 * IRQs (!P|Q)
269 /* Mask all valid EASs in the IRQ number space. */
270 for (i = 0; i < xive->nr_irqs; i++) {
271 XiveEAS *eas = &xive->eat[i];
272 if (xive_eas_is_valid(eas)) {
273 eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED);
274 } else {
275 eas->w = 0;
279 /* Clear all ENDs */
280 for (i = 0; i < xive->nr_ends; i++) {
281 spapr_xive_end_reset(&xive->endt[i]);
285 static void spapr_xive_instance_init(Object *obj)
287 SpaprXive *xive = SPAPR_XIVE(obj);
289 object_initialize_child(obj, "source", &xive->source, TYPE_XIVE_SOURCE);
291 object_initialize_child(obj, "end_source", &xive->end_source,
292 TYPE_XIVE_END_SOURCE);
294 /* Not connected to the KVM XIVE device */
295 xive->fd = -1;
298 static void spapr_xive_realize(DeviceState *dev, Error **errp)
300 SpaprXive *xive = SPAPR_XIVE(dev);
301 SpaprXiveClass *sxc = SPAPR_XIVE_GET_CLASS(xive);
302 XiveSource *xsrc = &xive->source;
303 XiveENDSource *end_xsrc = &xive->end_source;
304 Error *local_err = NULL;
306 /* Set by spapr_irq_init() */
307 g_assert(xive->nr_irqs);
308 g_assert(xive->nr_ends);
310 sxc->parent_realize(dev, &local_err);
311 if (local_err) {
312 error_propagate(errp, local_err);
313 return;
317 * Initialize the internal sources, for IPIs and virtual devices.
319 object_property_set_int(OBJECT(xsrc), "nr-irqs", xive->nr_irqs,
320 &error_fatal);
321 object_property_set_link(OBJECT(xsrc), "xive", OBJECT(xive), &error_abort);
322 if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
323 return;
327 * Initialize the END ESB source
329 object_property_set_int(OBJECT(end_xsrc), "nr-ends", xive->nr_irqs,
330 &error_fatal);
331 object_property_set_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
332 &error_abort);
333 if (!qdev_realize(DEVICE(end_xsrc), NULL, errp)) {
334 return;
337 /* Set the mapping address of the END ESB pages after the source ESBs */
338 xive->end_base = xive->vc_base + xive_source_esb_len(xsrc);
341 * Allocate the routing tables
343 xive->eat = g_new0(XiveEAS, xive->nr_irqs);
344 xive->endt = g_new0(XiveEND, xive->nr_ends);
346 xive->nodename = g_strdup_printf("interrupt-controller@%" PRIx64,
347 xive->tm_base + XIVE_TM_USER_PAGE * (1 << TM_SHIFT));
349 qemu_register_reset(spapr_xive_reset, dev);
351 /* TIMA initialization */
352 memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &spapr_xive_tm_ops,
353 xive, "xive.tima", 4ull << TM_SHIFT);
356 * Map all regions. These will be enabled or disabled at reset and
357 * can also be overridden by KVM memory regions if active
359 memory_region_add_subregion(get_system_memory(), xive->vc_base,
360 &xsrc->esb_mmio);
361 memory_region_add_subregion(get_system_memory(), xive->end_base,
362 &end_xsrc->esb_mmio);
363 memory_region_add_subregion(get_system_memory(), xive->tm_base,
364 &xive->tm_mmio);
367 static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk,
368 uint32_t eas_idx, XiveEAS *eas)
370 SpaprXive *xive = SPAPR_XIVE(xrtr);
372 if (eas_idx >= xive->nr_irqs) {
373 return -1;
376 *eas = xive->eat[eas_idx];
377 return 0;
380 static int spapr_xive_get_end(XiveRouter *xrtr,
381 uint8_t end_blk, uint32_t end_idx, XiveEND *end)
383 SpaprXive *xive = SPAPR_XIVE(xrtr);
385 if (end_idx >= xive->nr_ends) {
386 return -1;
389 memcpy(end, &xive->endt[end_idx], sizeof(XiveEND));
390 return 0;
393 static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk,
394 uint32_t end_idx, XiveEND *end,
395 uint8_t word_number)
397 SpaprXive *xive = SPAPR_XIVE(xrtr);
399 if (end_idx >= xive->nr_ends) {
400 return -1;
403 memcpy(&xive->endt[end_idx], end, sizeof(XiveEND));
404 return 0;
407 static int spapr_xive_get_nvt(XiveRouter *xrtr,
408 uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt)
410 uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
411 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
413 if (!cpu) {
414 /* TODO: should we assert() if we can find a NVT ? */
415 return -1;
419 * sPAPR does not maintain a NVT table. Return that the NVT is
420 * valid if we have found a matching CPU
422 nvt->w0 = cpu_to_be32(NVT_W0_VALID);
423 return 0;
426 static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk,
427 uint32_t nvt_idx, XiveNVT *nvt,
428 uint8_t word_number)
431 * We don't need to write back to the NVTs because the sPAPR
432 * machine should never hit a non-scheduled NVT. It should never
433 * get called.
435 g_assert_not_reached();
438 static int spapr_xive_match_nvt(XivePresenter *xptr, uint8_t format,
439 uint8_t nvt_blk, uint32_t nvt_idx,
440 bool cam_ignore, uint8_t priority,
441 uint32_t logic_serv, XiveTCTXMatch *match)
443 CPUState *cs;
444 int count = 0;
446 CPU_FOREACH(cs) {
447 PowerPCCPU *cpu = POWERPC_CPU(cs);
448 XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
449 int ring;
452 * Skip partially initialized vCPUs. This can happen when
453 * vCPUs are hotplugged.
455 if (!tctx) {
456 continue;
460 * Check the thread context CAM lines and record matches.
462 ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk, nvt_idx,
463 cam_ignore, logic_serv);
465 * Save the matching thread interrupt context and follow on to
466 * check for duplicates which are invalid.
468 if (ring != -1) {
469 if (match->tctx) {
470 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread "
471 "context NVT %x/%x\n", nvt_blk, nvt_idx);
472 return -1;
475 match->ring = ring;
476 match->tctx = tctx;
477 count++;
481 return count;
484 static uint32_t spapr_xive_presenter_get_config(XivePresenter *xptr)
486 uint32_t cfg = 0;
489 * Let's claim GEN1 TIMA format. If running with KVM on P10, the
490 * correct answer is deep in the hardware and not accessible to
491 * us. But it shouldn't matter as it only affects the presenter
492 * as seen by a guest OS.
494 cfg |= XIVE_PRESENTER_GEN1_TIMA_OS;
496 return cfg;
499 static uint8_t spapr_xive_get_block_id(XiveRouter *xrtr)
501 return SPAPR_XIVE_BLOCK_ID;
504 static int spapr_xive_get_pq(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
505 uint8_t *pq)
507 SpaprXive *xive = SPAPR_XIVE(xrtr);
509 assert(SPAPR_XIVE_BLOCK_ID == blk);
511 *pq = xive_source_esb_get(&xive->source, idx);
512 return 0;
515 static int spapr_xive_set_pq(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
516 uint8_t *pq)
518 SpaprXive *xive = SPAPR_XIVE(xrtr);
520 assert(SPAPR_XIVE_BLOCK_ID == blk);
522 *pq = xive_source_esb_set(&xive->source, idx, *pq);
523 return 0;
527 static const VMStateDescription vmstate_spapr_xive_end = {
528 .name = TYPE_SPAPR_XIVE "/end",
529 .version_id = 1,
530 .minimum_version_id = 1,
531 .fields = (const VMStateField []) {
532 VMSTATE_UINT32(w0, XiveEND),
533 VMSTATE_UINT32(w1, XiveEND),
534 VMSTATE_UINT32(w2, XiveEND),
535 VMSTATE_UINT32(w3, XiveEND),
536 VMSTATE_UINT32(w4, XiveEND),
537 VMSTATE_UINT32(w5, XiveEND),
538 VMSTATE_UINT32(w6, XiveEND),
539 VMSTATE_UINT32(w7, XiveEND),
540 VMSTATE_END_OF_LIST()
544 static const VMStateDescription vmstate_spapr_xive_eas = {
545 .name = TYPE_SPAPR_XIVE "/eas",
546 .version_id = 1,
547 .minimum_version_id = 1,
548 .fields = (const VMStateField []) {
549 VMSTATE_UINT64(w, XiveEAS),
550 VMSTATE_END_OF_LIST()
554 static int vmstate_spapr_xive_pre_save(void *opaque)
556 SpaprXive *xive = SPAPR_XIVE(opaque);
558 if (spapr_xive_in_kernel(xive)) {
559 return kvmppc_xive_pre_save(xive);
562 return 0;
566 * Called by the sPAPR IRQ backend 'post_load' method at the machine
567 * level.
569 static int spapr_xive_post_load(SpaprInterruptController *intc, int version_id)
571 SpaprXive *xive = SPAPR_XIVE(intc);
573 if (spapr_xive_in_kernel(xive)) {
574 return kvmppc_xive_post_load(xive, version_id);
577 return 0;
580 static const VMStateDescription vmstate_spapr_xive = {
581 .name = TYPE_SPAPR_XIVE,
582 .version_id = 1,
583 .minimum_version_id = 1,
584 .pre_save = vmstate_spapr_xive_pre_save,
585 .post_load = NULL, /* handled at the machine level */
586 .fields = (const VMStateField[]) {
587 VMSTATE_UINT32_EQUAL(nr_irqs, SpaprXive, NULL),
588 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, SpaprXive, nr_irqs,
589 vmstate_spapr_xive_eas, XiveEAS),
590 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, SpaprXive, nr_ends,
591 vmstate_spapr_xive_end, XiveEND),
592 VMSTATE_END_OF_LIST()
596 static int spapr_xive_claim_irq(SpaprInterruptController *intc, int lisn,
597 bool lsi, Error **errp)
599 SpaprXive *xive = SPAPR_XIVE(intc);
600 XiveSource *xsrc = &xive->source;
602 assert(lisn < xive->nr_irqs);
604 trace_spapr_xive_claim_irq(lisn, lsi);
606 if (xive_eas_is_valid(&xive->eat[lisn])) {
607 error_setg(errp, "IRQ %d is not free", lisn);
608 return -EBUSY;
612 * Set default values when allocating an IRQ number
614 xive->eat[lisn].w |= cpu_to_be64(EAS_VALID | EAS_MASKED);
615 if (lsi) {
616 xive_source_irq_set_lsi(xsrc, lisn);
619 if (spapr_xive_in_kernel(xive)) {
620 return kvmppc_xive_source_reset_one(xsrc, lisn, errp);
623 return 0;
626 static void spapr_xive_free_irq(SpaprInterruptController *intc, int lisn)
628 SpaprXive *xive = SPAPR_XIVE(intc);
629 assert(lisn < xive->nr_irqs);
631 trace_spapr_xive_free_irq(lisn);
633 xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID);
636 static Property spapr_xive_properties[] = {
637 DEFINE_PROP_UINT32("nr-irqs", SpaprXive, nr_irqs, 0),
638 DEFINE_PROP_UINT32("nr-ends", SpaprXive, nr_ends, 0),
639 DEFINE_PROP_UINT64("vc-base", SpaprXive, vc_base, SPAPR_XIVE_VC_BASE),
640 DEFINE_PROP_UINT64("tm-base", SpaprXive, tm_base, SPAPR_XIVE_TM_BASE),
641 DEFINE_PROP_UINT8("hv-prio", SpaprXive, hv_prio, 7),
642 DEFINE_PROP_END_OF_LIST(),
645 static int spapr_xive_cpu_intc_create(SpaprInterruptController *intc,
646 PowerPCCPU *cpu, Error **errp)
648 SpaprXive *xive = SPAPR_XIVE(intc);
649 Object *obj;
650 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
652 obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(xive), errp);
653 if (!obj) {
654 return -1;
657 spapr_cpu->tctx = XIVE_TCTX(obj);
658 return 0;
661 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t os_cam)
663 uint32_t qw1w2 = cpu_to_be32(TM_QW1W2_VO | os_cam);
664 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
667 static void spapr_xive_cpu_intc_reset(SpaprInterruptController *intc,
668 PowerPCCPU *cpu)
670 XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
671 uint8_t nvt_blk;
672 uint32_t nvt_idx;
674 xive_tctx_reset(tctx);
677 * When a Virtual Processor is scheduled to run on a HW thread,
678 * the hypervisor pushes its identifier in the OS CAM line.
679 * Emulate the same behavior under QEMU.
681 spapr_xive_cpu_to_nvt(cpu, &nvt_blk, &nvt_idx);
683 xive_tctx_set_os_cam(tctx, xive_nvt_cam_line(nvt_blk, nvt_idx));
686 static void spapr_xive_cpu_intc_destroy(SpaprInterruptController *intc,
687 PowerPCCPU *cpu)
689 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
691 xive_tctx_destroy(spapr_cpu->tctx);
692 spapr_cpu->tctx = NULL;
695 static void spapr_xive_set_irq(SpaprInterruptController *intc, int irq, int val)
697 SpaprXive *xive = SPAPR_XIVE(intc);
699 trace_spapr_xive_set_irq(irq, val);
701 if (spapr_xive_in_kernel(xive)) {
702 kvmppc_xive_source_set_irq(&xive->source, irq, val);
703 } else {
704 xive_source_set_irq(&xive->source, irq, val);
708 static void spapr_xive_print_info(SpaprInterruptController *intc, Monitor *mon)
710 SpaprXive *xive = SPAPR_XIVE(intc);
711 CPUState *cs;
712 g_autoptr(GString) buf = g_string_new("");
713 g_autoptr(HumanReadableText) info = NULL;
715 CPU_FOREACH(cs) {
716 PowerPCCPU *cpu = POWERPC_CPU(cs);
718 xive_tctx_pic_print_info(spapr_cpu_state(cpu)->tctx, buf);
720 info = human_readable_text_from_str(buf);
721 monitor_puts(mon, info->human_readable_text);
723 spapr_xive_pic_print_info(xive, mon);
726 static void spapr_xive_dt(SpaprInterruptController *intc, uint32_t nr_servers,
727 void *fdt, uint32_t phandle)
729 SpaprXive *xive = SPAPR_XIVE(intc);
730 int node;
731 uint64_t timas[2 * 2];
732 /* Interrupt number ranges for the IPIs */
733 uint32_t lisn_ranges[] = {
734 cpu_to_be32(SPAPR_IRQ_IPI),
735 cpu_to_be32(SPAPR_IRQ_IPI + nr_servers),
738 * EQ size - the sizes of pages supported by the system 4K, 64K,
739 * 2M, 16M. We only advertise 64K for the moment.
741 uint32_t eq_sizes[] = {
742 cpu_to_be32(16), /* 64K */
745 * QEMU/KVM only needs to define a single range to reserve the
746 * escalation priority. A priority bitmask would have been more
747 * appropriate.
749 uint32_t plat_res_int_priorities[] = {
750 cpu_to_be32(xive->hv_prio), /* start */
751 cpu_to_be32(0xff - xive->hv_prio), /* count */
754 /* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */
755 timas[0] = cpu_to_be64(xive->tm_base +
756 XIVE_TM_USER_PAGE * (1ull << TM_SHIFT));
757 timas[1] = cpu_to_be64(1ull << TM_SHIFT);
758 timas[2] = cpu_to_be64(xive->tm_base +
759 XIVE_TM_OS_PAGE * (1ull << TM_SHIFT));
760 timas[3] = cpu_to_be64(1ull << TM_SHIFT);
762 _FDT(node = fdt_add_subnode(fdt, 0, xive->nodename));
764 _FDT(fdt_setprop_string(fdt, node, "device_type", "power-ivpe"));
765 _FDT(fdt_setprop(fdt, node, "reg", timas, sizeof(timas)));
767 _FDT(fdt_setprop_string(fdt, node, "compatible", "ibm,power-ivpe"));
768 _FDT(fdt_setprop(fdt, node, "ibm,xive-eq-sizes", eq_sizes,
769 sizeof(eq_sizes)));
770 _FDT(fdt_setprop(fdt, node, "ibm,xive-lisn-ranges", lisn_ranges,
771 sizeof(lisn_ranges)));
773 /* For Linux to link the LSIs to the interrupt controller. */
774 _FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0));
775 _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2));
777 /* For SLOF */
778 _FDT(fdt_setprop_cell(fdt, node, "linux,phandle", phandle));
779 _FDT(fdt_setprop_cell(fdt, node, "phandle", phandle));
782 * The "ibm,plat-res-int-priorities" property defines the priority
783 * ranges reserved by the hypervisor
785 _FDT(fdt_setprop(fdt, 0, "ibm,plat-res-int-priorities",
786 plat_res_int_priorities, sizeof(plat_res_int_priorities)));
789 static int spapr_xive_activate(SpaprInterruptController *intc,
790 uint32_t nr_servers, Error **errp)
792 SpaprXive *xive = SPAPR_XIVE(intc);
794 if (kvm_enabled()) {
795 int rc = spapr_irq_init_kvm(kvmppc_xive_connect, intc, nr_servers,
796 errp);
797 if (rc < 0) {
798 return rc;
802 /* Activate the XIVE MMIOs */
803 spapr_xive_mmio_set_enabled(xive, true);
805 return 0;
808 static void spapr_xive_deactivate(SpaprInterruptController *intc)
810 SpaprXive *xive = SPAPR_XIVE(intc);
812 spapr_xive_mmio_set_enabled(xive, false);
814 if (spapr_xive_in_kernel(xive)) {
815 kvmppc_xive_disconnect(intc);
819 static bool spapr_xive_in_kernel_xptr(const XivePresenter *xptr)
821 return spapr_xive_in_kernel(SPAPR_XIVE(xptr));
824 static void spapr_xive_class_init(ObjectClass *klass, void *data)
826 DeviceClass *dc = DEVICE_CLASS(klass);
827 XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
828 SpaprInterruptControllerClass *sicc = SPAPR_INTC_CLASS(klass);
829 XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass);
830 SpaprXiveClass *sxc = SPAPR_XIVE_CLASS(klass);
832 dc->desc = "sPAPR XIVE Interrupt Controller";
833 device_class_set_props(dc, spapr_xive_properties);
834 device_class_set_parent_realize(dc, spapr_xive_realize,
835 &sxc->parent_realize);
836 dc->vmsd = &vmstate_spapr_xive;
838 xrc->get_eas = spapr_xive_get_eas;
839 xrc->get_pq = spapr_xive_get_pq;
840 xrc->set_pq = spapr_xive_set_pq;
841 xrc->get_end = spapr_xive_get_end;
842 xrc->write_end = spapr_xive_write_end;
843 xrc->get_nvt = spapr_xive_get_nvt;
844 xrc->write_nvt = spapr_xive_write_nvt;
845 xrc->get_block_id = spapr_xive_get_block_id;
847 sicc->activate = spapr_xive_activate;
848 sicc->deactivate = spapr_xive_deactivate;
849 sicc->cpu_intc_create = spapr_xive_cpu_intc_create;
850 sicc->cpu_intc_reset = spapr_xive_cpu_intc_reset;
851 sicc->cpu_intc_destroy = spapr_xive_cpu_intc_destroy;
852 sicc->claim_irq = spapr_xive_claim_irq;
853 sicc->free_irq = spapr_xive_free_irq;
854 sicc->set_irq = spapr_xive_set_irq;
855 sicc->print_info = spapr_xive_print_info;
856 sicc->dt = spapr_xive_dt;
857 sicc->post_load = spapr_xive_post_load;
859 xpc->match_nvt = spapr_xive_match_nvt;
860 xpc->get_config = spapr_xive_presenter_get_config;
861 xpc->in_kernel = spapr_xive_in_kernel_xptr;
864 static const TypeInfo spapr_xive_info = {
865 .name = TYPE_SPAPR_XIVE,
866 .parent = TYPE_XIVE_ROUTER,
867 .instance_init = spapr_xive_instance_init,
868 .instance_size = sizeof(SpaprXive),
869 .class_init = spapr_xive_class_init,
870 .class_size = sizeof(SpaprXiveClass),
871 .interfaces = (InterfaceInfo[]) {
872 { TYPE_SPAPR_INTC },
877 static void spapr_xive_register_types(void)
879 type_register_static(&spapr_xive_info);
882 type_init(spapr_xive_register_types)
885 * XIVE hcalls
887 * The terminology used by the XIVE hcalls is the following :
889 * TARGET vCPU number
890 * EQ Event Queue assigned by OS to receive event data
891 * ESB page for source interrupt management
892 * LISN Logical Interrupt Source Number identifying a source in the
893 * machine
894 * EISN Effective Interrupt Source Number used by guest OS to
895 * identify source in the guest
897 * The EAS, END, NVT structures are not exposed.
901 * On POWER9, the KVM XIVE device uses priority 7 for the escalation
902 * interrupts. So we only allow the guest to use priorities [0..6].
904 static bool spapr_xive_priority_is_reserved(SpaprXive *xive, uint8_t priority)
906 return priority >= xive->hv_prio;
910 * The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical
911 * real address of the MMIO page through which the Event State Buffer
912 * entry associated with the value of the "lisn" parameter is managed.
914 * Parameters:
915 * Input
916 * - R4: "flags"
917 * Bits 0-63 reserved
918 * - R5: "lisn" is per "interrupts", "interrupt-map", or
919 * "ibm,xive-lisn-ranges" properties, or as returned by the
920 * ibm,query-interrupt-source-number RTAS call, or as returned
921 * by the H_ALLOCATE_VAS_WINDOW hcall
923 * Output
924 * - R4: "flags"
925 * Bits 0-59: Reserved
926 * Bit 60: H_INT_ESB must be used for Event State Buffer
927 * management
928 * Bit 61: 1 == LSI 0 == MSI
929 * Bit 62: the full function page supports trigger
930 * Bit 63: Store EOI Supported
931 * - R5: Logical Real address of full function Event State Buffer
932 * management page, -1 if H_INT_ESB hcall flag is set to 1.
933 * - R6: Logical Real Address of trigger only Event State Buffer
934 * management page or -1.
935 * - R7: Power of 2 page size for the ESB management pages returned in
936 * R5 and R6.
939 #define SPAPR_XIVE_SRC_H_INT_ESB PPC_BIT(60) /* ESB manage with H_INT_ESB */
940 #define SPAPR_XIVE_SRC_LSI PPC_BIT(61) /* Virtual LSI type */
941 #define SPAPR_XIVE_SRC_TRIGGER PPC_BIT(62) /* Trigger and management
942 on same page */
943 #define SPAPR_XIVE_SRC_STORE_EOI PPC_BIT(63) /* Store EOI support */
945 static target_ulong h_int_get_source_info(PowerPCCPU *cpu,
946 SpaprMachineState *spapr,
947 target_ulong opcode,
948 target_ulong *args)
950 SpaprXive *xive = spapr->xive;
951 XiveSource *xsrc = &xive->source;
952 target_ulong flags = args[0];
953 target_ulong lisn = args[1];
955 trace_spapr_xive_get_source_info(flags, lisn);
957 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
958 return H_FUNCTION;
961 if (flags) {
962 return H_PARAMETER;
965 if (lisn >= xive->nr_irqs) {
966 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
967 lisn);
968 return H_P2;
971 if (!xive_eas_is_valid(&xive->eat[lisn])) {
972 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
973 lisn);
974 return H_P2;
978 * All sources are emulated under the main XIVE object and share
979 * the same characteristics.
981 args[0] = 0;
982 if (!xive_source_esb_has_2page(xsrc)) {
983 args[0] |= SPAPR_XIVE_SRC_TRIGGER;
985 if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) {
986 args[0] |= SPAPR_XIVE_SRC_STORE_EOI;
990 * Force the use of the H_INT_ESB hcall in case of an LSI
991 * interrupt. This is necessary under KVM to re-trigger the
992 * interrupt if the level is still asserted
994 if (xive_source_irq_is_lsi(xsrc, lisn)) {
995 args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI;
998 if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
999 args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn);
1000 } else {
1001 args[1] = -1;
1004 if (xive_source_esb_has_2page(xsrc) &&
1005 !(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
1006 args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn);
1007 } else {
1008 args[2] = -1;
1011 if (xive_source_esb_has_2page(xsrc)) {
1012 args[3] = xsrc->esb_shift - 1;
1013 } else {
1014 args[3] = xsrc->esb_shift;
1017 return H_SUCCESS;
1021 * The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical
1022 * Interrupt Source to a target. The Logical Interrupt Source is
1023 * designated with the "lisn" parameter and the target is designated
1024 * with the "target" and "priority" parameters. Upon return from the
1025 * hcall(), no additional interrupts will be directed to the old EQ.
1027 * Parameters:
1028 * Input:
1029 * - R4: "flags"
1030 * Bits 0-61: Reserved
1031 * Bit 62: set the "eisn" in the EAS
1032 * Bit 63: masks the interrupt source in the hardware interrupt
1033 * control structure. An interrupt masked by this mechanism will
1034 * be dropped, but it's source state bits will still be
1035 * set. There is no race-free way of unmasking and restoring the
1036 * source. Thus this should only be used in interrupts that are
1037 * also masked at the source, and only in cases where the
1038 * interrupt is not meant to be used for a large amount of time
1039 * because no valid target exists for it for example
1040 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1041 * "ibm,xive-lisn-ranges" properties, or as returned by the
1042 * ibm,query-interrupt-source-number RTAS call, or as returned by
1043 * the H_ALLOCATE_VAS_WINDOW hcall
1044 * - R6: "target" is per "ibm,ppc-interrupt-server#s" or
1045 * "ibm,ppc-interrupt-gserver#s"
1046 * - R7: "priority" is a valid priority not in
1047 * "ibm,plat-res-int-priorities"
1048 * - R8: "eisn" is the guest EISN associated with the "lisn"
1050 * Output:
1051 * - None
1054 #define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62)
1055 #define SPAPR_XIVE_SRC_MASK PPC_BIT(63)
1057 static target_ulong h_int_set_source_config(PowerPCCPU *cpu,
1058 SpaprMachineState *spapr,
1059 target_ulong opcode,
1060 target_ulong *args)
1062 SpaprXive *xive = spapr->xive;
1063 XiveEAS eas, new_eas;
1064 target_ulong flags = args[0];
1065 target_ulong lisn = args[1];
1066 target_ulong target = args[2];
1067 target_ulong priority = args[3];
1068 target_ulong eisn = args[4];
1069 uint8_t end_blk;
1070 uint32_t end_idx;
1072 trace_spapr_xive_set_source_config(flags, lisn, target, priority, eisn);
1074 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1075 return H_FUNCTION;
1078 if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) {
1079 return H_PARAMETER;
1082 if (lisn >= xive->nr_irqs) {
1083 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1084 lisn);
1085 return H_P2;
1088 eas = xive->eat[lisn];
1089 if (!xive_eas_is_valid(&eas)) {
1090 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1091 lisn);
1092 return H_P2;
1095 /* priority 0xff is used to reset the EAS */
1096 if (priority == 0xff) {
1097 new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED);
1098 goto out;
1101 if (flags & SPAPR_XIVE_SRC_MASK) {
1102 new_eas.w = eas.w | cpu_to_be64(EAS_MASKED);
1103 } else {
1104 new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED);
1107 if (spapr_xive_priority_is_reserved(xive, priority)) {
1108 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1109 " is reserved\n", priority);
1110 return H_P4;
1114 * Validate that "target" is part of the list of threads allocated
1115 * to the partition. For that, find the END corresponding to the
1116 * target.
1118 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1119 return H_P3;
1122 new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk);
1123 new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx);
1125 if (flags & SPAPR_XIVE_SRC_SET_EISN) {
1126 new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn);
1129 if (spapr_xive_in_kernel(xive)) {
1130 Error *local_err = NULL;
1132 kvmppc_xive_set_source_config(xive, lisn, &new_eas, &local_err);
1133 if (local_err) {
1134 error_report_err(local_err);
1135 return H_HARDWARE;
1139 out:
1140 xive->eat[lisn] = new_eas;
1141 return H_SUCCESS;
1145 * The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which
1146 * target/priority pair is assigned to the specified Logical Interrupt
1147 * Source.
1149 * Parameters:
1150 * Input:
1151 * - R4: "flags"
1152 * Bits 0-63 Reserved
1153 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1154 * "ibm,xive-lisn-ranges" properties, or as returned by the
1155 * ibm,query-interrupt-source-number RTAS call, or as
1156 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1158 * Output:
1159 * - R4: Target to which the specified Logical Interrupt Source is
1160 * assigned
1161 * - R5: Priority to which the specified Logical Interrupt Source is
1162 * assigned
1163 * - R6: EISN for the specified Logical Interrupt Source (this will be
1164 * equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG)
1166 static target_ulong h_int_get_source_config(PowerPCCPU *cpu,
1167 SpaprMachineState *spapr,
1168 target_ulong opcode,
1169 target_ulong *args)
1171 SpaprXive *xive = spapr->xive;
1172 target_ulong flags = args[0];
1173 target_ulong lisn = args[1];
1174 XiveEAS eas;
1175 XiveEND *end;
1176 uint8_t nvt_blk;
1177 uint32_t end_idx, nvt_idx;
1179 trace_spapr_xive_get_source_config(flags, lisn);
1181 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1182 return H_FUNCTION;
1185 if (flags) {
1186 return H_PARAMETER;
1189 if (lisn >= xive->nr_irqs) {
1190 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1191 lisn);
1192 return H_P2;
1195 eas = xive->eat[lisn];
1196 if (!xive_eas_is_valid(&eas)) {
1197 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1198 lisn);
1199 return H_P2;
1202 /* EAS_END_BLOCK is unused on sPAPR */
1203 end_idx = xive_get_field64(EAS_END_INDEX, eas.w);
1205 assert(end_idx < xive->nr_ends);
1206 end = &xive->endt[end_idx];
1208 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1209 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1210 args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
1212 if (xive_eas_is_masked(&eas)) {
1213 args[1] = 0xff;
1214 } else {
1215 args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1218 args[2] = xive_get_field64(EAS_END_DATA, eas.w);
1220 return H_SUCCESS;
1224 * The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real
1225 * address of the notification management page associated with the
1226 * specified target and priority.
1228 * Parameters:
1229 * Input:
1230 * - R4: "flags"
1231 * Bits 0-63 Reserved
1232 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1233 * "ibm,ppc-interrupt-gserver#s"
1234 * - R6: "priority" is a valid priority not in
1235 * "ibm,plat-res-int-priorities"
1237 * Output:
1238 * - R4: Logical real address of notification page
1239 * - R5: Power of 2 page size of the notification page
1241 static target_ulong h_int_get_queue_info(PowerPCCPU *cpu,
1242 SpaprMachineState *spapr,
1243 target_ulong opcode,
1244 target_ulong *args)
1246 SpaprXive *xive = spapr->xive;
1247 XiveENDSource *end_xsrc = &xive->end_source;
1248 target_ulong flags = args[0];
1249 target_ulong target = args[1];
1250 target_ulong priority = args[2];
1251 XiveEND *end;
1252 uint8_t end_blk;
1253 uint32_t end_idx;
1255 trace_spapr_xive_get_queue_info(flags, target, priority);
1257 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1258 return H_FUNCTION;
1261 if (flags) {
1262 return H_PARAMETER;
1266 * H_STATE should be returned if a H_INT_RESET is in progress.
1267 * This is not needed when running the emulation under QEMU
1270 if (spapr_xive_priority_is_reserved(xive, priority)) {
1271 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1272 " is reserved\n", priority);
1273 return H_P3;
1277 * Validate that "target" is part of the list of threads allocated
1278 * to the partition. For that, find the END corresponding to the
1279 * target.
1281 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1282 return H_P2;
1285 assert(end_idx < xive->nr_ends);
1286 end = &xive->endt[end_idx];
1288 args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx;
1289 if (xive_end_is_enqueue(end)) {
1290 args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1291 } else {
1292 args[1] = 0;
1295 return H_SUCCESS;
1299 * The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for
1300 * a given "target" and "priority". It is also used to set the
1301 * notification config associated with the EQ. An EQ size of 0 is
1302 * used to reset the EQ config for a given target and priority. If
1303 * resetting the EQ config, the END associated with the given "target"
1304 * and "priority" will be changed to disable queueing.
1306 * Upon return from the hcall(), no additional interrupts will be
1307 * directed to the old EQ (if one was set). The old EQ (if one was
1308 * set) should be investigated for interrupts that occurred prior to
1309 * or during the hcall().
1311 * Parameters:
1312 * Input:
1313 * - R4: "flags"
1314 * Bits 0-62: Reserved
1315 * Bit 63: Unconditional Notify (n) per the XIVE spec
1316 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1317 * "ibm,ppc-interrupt-gserver#s"
1318 * - R6: "priority" is a valid priority not in
1319 * "ibm,plat-res-int-priorities"
1320 * - R7: "eventQueue": The logical real address of the start of the EQ
1321 * - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes"
1323 * Output:
1324 * - None
1327 #define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63)
1329 static target_ulong h_int_set_queue_config(PowerPCCPU *cpu,
1330 SpaprMachineState *spapr,
1331 target_ulong opcode,
1332 target_ulong *args)
1334 SpaprXive *xive = spapr->xive;
1335 target_ulong flags = args[0];
1336 target_ulong target = args[1];
1337 target_ulong priority = args[2];
1338 target_ulong qpage = args[3];
1339 target_ulong qsize = args[4];
1340 XiveEND end;
1341 uint8_t end_blk, nvt_blk;
1342 uint32_t end_idx, nvt_idx;
1344 trace_spapr_xive_set_queue_config(flags, target, priority, qpage, qsize);
1346 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1347 return H_FUNCTION;
1350 if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1351 return H_PARAMETER;
1355 * H_STATE should be returned if a H_INT_RESET is in progress.
1356 * This is not needed when running the emulation under QEMU
1359 if (spapr_xive_priority_is_reserved(xive, priority)) {
1360 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1361 " is reserved\n", priority);
1362 return H_P3;
1366 * Validate that "target" is part of the list of threads allocated
1367 * to the partition. For that, find the END corresponding to the
1368 * target.
1371 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1372 return H_P2;
1375 assert(end_idx < xive->nr_ends);
1376 memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND));
1378 switch (qsize) {
1379 case 12:
1380 case 16:
1381 case 21:
1382 case 24:
1383 if (!QEMU_IS_ALIGNED(qpage, 1ul << qsize)) {
1384 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: EQ @0x%" HWADDR_PRIx
1385 " is not naturally aligned with %" HWADDR_PRIx "\n",
1386 qpage, (hwaddr)1 << qsize);
1387 return H_P4;
1389 end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff);
1390 end.w3 = cpu_to_be32(qpage & 0xffffffff);
1391 end.w0 |= cpu_to_be32(END_W0_ENQUEUE);
1392 end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12);
1393 break;
1394 case 0:
1395 /* reset queue and disable queueing */
1396 spapr_xive_end_reset(&end);
1397 goto out;
1399 default:
1400 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %"PRIx64"\n",
1401 qsize);
1402 return H_P5;
1405 if (qsize) {
1406 hwaddr plen = 1 << qsize;
1407 void *eq;
1410 * Validate the guest EQ. We should also check that the queue
1411 * has been zeroed by the OS.
1413 eq = address_space_map(CPU(cpu)->as, qpage, &plen, true,
1414 MEMTXATTRS_UNSPECIFIED);
1415 if (plen != 1 << qsize) {
1416 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%"
1417 HWADDR_PRIx "\n", qpage);
1418 return H_P4;
1420 address_space_unmap(CPU(cpu)->as, eq, plen, true, plen);
1423 /* "target" should have been validated above */
1424 if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) {
1425 g_assert_not_reached();
1429 * Ensure the priority and target are correctly set (they will not
1430 * be right after allocation)
1432 end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) |
1433 xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx);
1434 end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority);
1436 if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1437 end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY);
1438 } else {
1439 end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY);
1443 * The generation bit for the END starts at 1 and The END page
1444 * offset counter starts at 0.
1446 end.w1 = cpu_to_be32(END_W1_GENERATION) |
1447 xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul);
1448 end.w0 |= cpu_to_be32(END_W0_VALID);
1451 * TODO: issue syncs required to ensure all in-flight interrupts
1452 * are complete on the old END
1455 out:
1456 if (spapr_xive_in_kernel(xive)) {
1457 Error *local_err = NULL;
1459 kvmppc_xive_set_queue_config(xive, end_blk, end_idx, &end, &local_err);
1460 if (local_err) {
1461 error_report_err(local_err);
1462 return H_HARDWARE;
1466 /* Update END */
1467 memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND));
1468 return H_SUCCESS;
1472 * The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given
1473 * target and priority.
1475 * Parameters:
1476 * Input:
1477 * - R4: "flags"
1478 * Bits 0-62: Reserved
1479 * Bit 63: Debug: Return debug data
1480 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1481 * "ibm,ppc-interrupt-gserver#s"
1482 * - R6: "priority" is a valid priority not in
1483 * "ibm,plat-res-int-priorities"
1485 * Output:
1486 * - R4: "flags":
1487 * Bits 0-61: Reserved
1488 * Bit 62: The value of Event Queue Generation Number (g) per
1489 * the XIVE spec if "Debug" = 1
1490 * Bit 63: The value of Unconditional Notify (n) per the XIVE spec
1491 * - R5: The logical real address of the start of the EQ
1492 * - R6: The power of 2 EQ size per "ibm,xive-eq-sizes"
1493 * - R7: The value of Event Queue Offset Counter per XIVE spec
1494 * if "Debug" = 1, else 0
1498 #define SPAPR_XIVE_END_DEBUG PPC_BIT(63)
1500 static target_ulong h_int_get_queue_config(PowerPCCPU *cpu,
1501 SpaprMachineState *spapr,
1502 target_ulong opcode,
1503 target_ulong *args)
1505 SpaprXive *xive = spapr->xive;
1506 target_ulong flags = args[0];
1507 target_ulong target = args[1];
1508 target_ulong priority = args[2];
1509 XiveEND *end;
1510 uint8_t end_blk;
1511 uint32_t end_idx;
1513 trace_spapr_xive_get_queue_config(flags, target, priority);
1515 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1516 return H_FUNCTION;
1519 if (flags & ~SPAPR_XIVE_END_DEBUG) {
1520 return H_PARAMETER;
1524 * H_STATE should be returned if a H_INT_RESET is in progress.
1525 * This is not needed when running the emulation under QEMU
1528 if (spapr_xive_priority_is_reserved(xive, priority)) {
1529 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1530 " is reserved\n", priority);
1531 return H_P3;
1535 * Validate that "target" is part of the list of threads allocated
1536 * to the partition. For that, find the END corresponding to the
1537 * target.
1539 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1540 return H_P2;
1543 assert(end_idx < xive->nr_ends);
1544 end = &xive->endt[end_idx];
1546 args[0] = 0;
1547 if (xive_end_is_notify(end)) {
1548 args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY;
1551 if (xive_end_is_enqueue(end)) {
1552 args[1] = xive_end_qaddr(end);
1553 args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1554 } else {
1555 args[1] = 0;
1556 args[2] = 0;
1559 if (spapr_xive_in_kernel(xive)) {
1560 Error *local_err = NULL;
1562 kvmppc_xive_get_queue_config(xive, end_blk, end_idx, end, &local_err);
1563 if (local_err) {
1564 error_report_err(local_err);
1565 return H_HARDWARE;
1569 /* TODO: do we need any locking on the END ? */
1570 if (flags & SPAPR_XIVE_END_DEBUG) {
1571 /* Load the event queue generation number into the return flags */
1572 args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62;
1574 /* Load R7 with the event queue offset counter */
1575 args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1576 } else {
1577 args[3] = 0;
1580 return H_SUCCESS;
1584 * The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the
1585 * reporting cache line pair for the calling thread. The reporting
1586 * cache lines will contain the OS interrupt context when the OS
1587 * issues a CI store byte to @TIMA+0xC10 to acknowledge the OS
1588 * interrupt. The reporting cache lines can be reset by inputting -1
1589 * in "reportingLine". Issuing the CI store byte without reporting
1590 * cache lines registered will result in the data not being accessible
1591 * to the OS.
1593 * Parameters:
1594 * Input:
1595 * - R4: "flags"
1596 * Bits 0-63: Reserved
1597 * - R5: "reportingLine": The logical real address of the reporting cache
1598 * line pair
1600 * Output:
1601 * - None
1603 static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu,
1604 SpaprMachineState *spapr,
1605 target_ulong opcode,
1606 target_ulong *args)
1608 target_ulong flags = args[0];
1610 trace_spapr_xive_set_os_reporting_line(flags);
1612 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1613 return H_FUNCTION;
1617 * H_STATE should be returned if a H_INT_RESET is in progress.
1618 * This is not needed when running the emulation under QEMU
1621 /* TODO: H_INT_SET_OS_REPORTING_LINE */
1622 return H_FUNCTION;
1626 * The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical
1627 * real address of the reporting cache line pair set for the input
1628 * "target". If no reporting cache line pair has been set, -1 is
1629 * returned.
1631 * Parameters:
1632 * Input:
1633 * - R4: "flags"
1634 * Bits 0-63: Reserved
1635 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1636 * "ibm,ppc-interrupt-gserver#s"
1637 * - R6: "reportingLine": The logical real address of the reporting
1638 * cache line pair
1640 * Output:
1641 * - R4: The logical real address of the reporting line if set, else -1
1643 static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu,
1644 SpaprMachineState *spapr,
1645 target_ulong opcode,
1646 target_ulong *args)
1648 target_ulong flags = args[0];
1650 trace_spapr_xive_get_os_reporting_line(flags);
1652 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1653 return H_FUNCTION;
1657 * H_STATE should be returned if a H_INT_RESET is in progress.
1658 * This is not needed when running the emulation under QEMU
1661 /* TODO: H_INT_GET_OS_REPORTING_LINE */
1662 return H_FUNCTION;
1666 * The H_INT_ESB hcall() is used to issue a load or store to the ESB
1667 * page for the input "lisn". This hcall is only supported for LISNs
1668 * that have the ESB hcall flag set to 1 when returned from hcall()
1669 * H_INT_GET_SOURCE_INFO.
1671 * Parameters:
1672 * Input:
1673 * - R4: "flags"
1674 * Bits 0-62: Reserved
1675 * bit 63: Store: Store=1, store operation, else load operation
1676 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1677 * "ibm,xive-lisn-ranges" properties, or as returned by the
1678 * ibm,query-interrupt-source-number RTAS call, or as
1679 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1680 * - R6: "esbOffset" is the offset into the ESB page for the load or
1681 * store operation
1682 * - R7: "storeData" is the data to write for a store operation
1684 * Output:
1685 * - R4: The value of the load if load operation, else -1
1688 #define SPAPR_XIVE_ESB_STORE PPC_BIT(63)
1690 static target_ulong h_int_esb(PowerPCCPU *cpu,
1691 SpaprMachineState *spapr,
1692 target_ulong opcode,
1693 target_ulong *args)
1695 SpaprXive *xive = spapr->xive;
1696 XiveEAS eas;
1697 target_ulong flags = args[0];
1698 target_ulong lisn = args[1];
1699 target_ulong offset = args[2];
1700 target_ulong data = args[3];
1701 hwaddr mmio_addr;
1702 XiveSource *xsrc = &xive->source;
1704 trace_spapr_xive_esb(flags, lisn, offset, data);
1706 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1707 return H_FUNCTION;
1710 if (flags & ~SPAPR_XIVE_ESB_STORE) {
1711 return H_PARAMETER;
1714 if (lisn >= xive->nr_irqs) {
1715 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1716 lisn);
1717 return H_P2;
1720 eas = xive->eat[lisn];
1721 if (!xive_eas_is_valid(&eas)) {
1722 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1723 lisn);
1724 return H_P2;
1727 if (offset > (1ull << xsrc->esb_shift)) {
1728 return H_P3;
1731 if (spapr_xive_in_kernel(xive)) {
1732 args[0] = kvmppc_xive_esb_rw(xsrc, lisn, offset, data,
1733 flags & SPAPR_XIVE_ESB_STORE);
1734 } else {
1735 mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset;
1737 if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8,
1738 (flags & SPAPR_XIVE_ESB_STORE),
1739 MEMTXATTRS_UNSPECIFIED)) {
1740 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%"
1741 HWADDR_PRIx "\n", mmio_addr);
1742 return H_HARDWARE;
1744 args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data;
1746 return H_SUCCESS;
1750 * The H_INT_SYNC hcall() is used to issue hardware syncs that will
1751 * ensure any in flight events for the input lisn are in the event
1752 * queue.
1754 * Parameters:
1755 * Input:
1756 * - R4: "flags"
1757 * Bits 0-63: Reserved
1758 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1759 * "ibm,xive-lisn-ranges" properties, or as returned by the
1760 * ibm,query-interrupt-source-number RTAS call, or as
1761 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1763 * Output:
1764 * - None
1766 static target_ulong h_int_sync(PowerPCCPU *cpu,
1767 SpaprMachineState *spapr,
1768 target_ulong opcode,
1769 target_ulong *args)
1771 SpaprXive *xive = spapr->xive;
1772 XiveEAS eas;
1773 target_ulong flags = args[0];
1774 target_ulong lisn = args[1];
1776 trace_spapr_xive_sync(flags, lisn);
1778 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1779 return H_FUNCTION;
1782 if (flags) {
1783 return H_PARAMETER;
1786 if (lisn >= xive->nr_irqs) {
1787 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1788 lisn);
1789 return H_P2;
1792 eas = xive->eat[lisn];
1793 if (!xive_eas_is_valid(&eas)) {
1794 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1795 lisn);
1796 return H_P2;
1800 * H_STATE should be returned if a H_INT_RESET is in progress.
1801 * This is not needed when running the emulation under QEMU
1805 * This is not real hardware. Nothing to be done unless when
1806 * under KVM
1809 if (spapr_xive_in_kernel(xive)) {
1810 Error *local_err = NULL;
1812 kvmppc_xive_sync_source(xive, lisn, &local_err);
1813 if (local_err) {
1814 error_report_err(local_err);
1815 return H_HARDWARE;
1818 return H_SUCCESS;
1822 * The H_INT_RESET hcall() is used to reset all of the partition's
1823 * interrupt exploitation structures to their initial state. This
1824 * means losing all previously set interrupt state set via
1825 * H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG.
1827 * Parameters:
1828 * Input:
1829 * - R4: "flags"
1830 * Bits 0-63: Reserved
1832 * Output:
1833 * - None
1835 static target_ulong h_int_reset(PowerPCCPU *cpu,
1836 SpaprMachineState *spapr,
1837 target_ulong opcode,
1838 target_ulong *args)
1840 SpaprXive *xive = spapr->xive;
1841 target_ulong flags = args[0];
1843 trace_spapr_xive_reset(flags);
1845 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1846 return H_FUNCTION;
1849 if (flags) {
1850 return H_PARAMETER;
1853 device_cold_reset(DEVICE(xive));
1855 if (spapr_xive_in_kernel(xive)) {
1856 Error *local_err = NULL;
1858 kvmppc_xive_reset(xive, &local_err);
1859 if (local_err) {
1860 error_report_err(local_err);
1861 return H_HARDWARE;
1864 return H_SUCCESS;
1867 void spapr_xive_hcall_init(SpaprMachineState *spapr)
1869 spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info);
1870 spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config);
1871 spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config);
1872 spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info);
1873 spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config);
1874 spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config);
1875 spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE,
1876 h_int_set_os_reporting_line);
1877 spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE,
1878 h_int_get_os_reporting_line);
1879 spapr_register_hypercall(H_INT_ESB, h_int_esb);
1880 spapr_register_hypercall(H_INT_SYNC, h_int_sync);
1881 spapr_register_hypercall(H_INT_RESET, h_int_reset);