2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
28 #include "block/block-io.h"
29 #include "qapi/error.h"
31 #include "qemu/bswap.h"
32 #include "qemu/memalign.h"
35 int coroutine_fn
qcow2_shrink_l1_table(BlockDriverState
*bs
,
38 BDRVQcow2State
*s
= bs
->opaque
;
39 int new_l1_size
, i
, ret
;
41 if (exact_size
>= s
->l1_size
) {
45 new_l1_size
= exact_size
;
48 fprintf(stderr
, "shrink l1_table from %d to %d\n", s
->l1_size
, new_l1_size
);
51 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_SHRINK_WRITE_TABLE
);
52 ret
= bdrv_co_pwrite_zeroes(bs
->file
,
53 s
->l1_table_offset
+ new_l1_size
* L1E_SIZE
,
54 (s
->l1_size
- new_l1_size
) * L1E_SIZE
, 0);
59 ret
= bdrv_co_flush(bs
->file
->bs
);
64 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS
);
65 for (i
= s
->l1_size
- 1; i
> new_l1_size
- 1; i
--) {
66 if ((s
->l1_table
[i
] & L1E_OFFSET_MASK
) == 0) {
69 qcow2_free_clusters(bs
, s
->l1_table
[i
] & L1E_OFFSET_MASK
,
70 s
->cluster_size
, QCOW2_DISCARD_ALWAYS
);
77 * If the write in the l1_table failed the image may contain a partially
78 * overwritten l1_table. In this case it would be better to clear the
79 * l1_table in memory to avoid possible image corruption.
81 memset(s
->l1_table
+ new_l1_size
, 0,
82 (s
->l1_size
- new_l1_size
) * L1E_SIZE
);
86 int qcow2_grow_l1_table(BlockDriverState
*bs
, uint64_t min_size
,
89 BDRVQcow2State
*s
= bs
->opaque
;
90 int new_l1_size2
, ret
, i
;
91 uint64_t *new_l1_table
;
92 int64_t old_l1_table_offset
, old_l1_size
;
93 int64_t new_l1_table_offset
, new_l1_size
;
96 if (min_size
<= s
->l1_size
)
99 /* Do a sanity check on min_size before trying to calculate new_l1_size
100 * (this prevents overflows during the while loop for the calculation of
102 if (min_size
> INT_MAX
/ L1E_SIZE
) {
107 new_l1_size
= min_size
;
109 /* Bump size up to reduce the number of times we have to grow */
110 new_l1_size
= s
->l1_size
;
111 if (new_l1_size
== 0) {
114 while (min_size
> new_l1_size
) {
115 new_l1_size
= DIV_ROUND_UP(new_l1_size
* 3, 2);
119 QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE
> INT_MAX
);
120 if (new_l1_size
> QCOW_MAX_L1_SIZE
/ L1E_SIZE
) {
125 fprintf(stderr
, "grow l1_table from %d to %" PRId64
"\n",
126 s
->l1_size
, new_l1_size
);
129 new_l1_size2
= L1E_SIZE
* new_l1_size
;
130 new_l1_table
= qemu_try_blockalign(bs
->file
->bs
, new_l1_size2
);
131 if (new_l1_table
== NULL
) {
134 memset(new_l1_table
, 0, new_l1_size2
);
137 memcpy(new_l1_table
, s
->l1_table
, s
->l1_size
* L1E_SIZE
);
140 /* write new table (align to cluster) */
141 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ALLOC_TABLE
);
142 new_l1_table_offset
= qcow2_alloc_clusters(bs
, new_l1_size2
);
143 if (new_l1_table_offset
< 0) {
144 qemu_vfree(new_l1_table
);
145 return new_l1_table_offset
;
148 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
153 /* the L1 position has not yet been updated, so these clusters must
154 * indeed be completely free */
155 ret
= qcow2_pre_write_overlap_check(bs
, 0, new_l1_table_offset
,
156 new_l1_size2
, false);
161 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_WRITE_TABLE
);
162 for(i
= 0; i
< s
->l1_size
; i
++)
163 new_l1_table
[i
] = cpu_to_be64(new_l1_table
[i
]);
164 ret
= bdrv_pwrite_sync(bs
->file
, new_l1_table_offset
, new_l1_size2
,
168 for(i
= 0; i
< s
->l1_size
; i
++)
169 new_l1_table
[i
] = be64_to_cpu(new_l1_table
[i
]);
172 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ACTIVATE_TABLE
);
173 stl_be_p(data
, new_l1_size
);
174 stq_be_p(data
+ 4, new_l1_table_offset
);
175 ret
= bdrv_pwrite_sync(bs
->file
, offsetof(QCowHeader
, l1_size
),
176 sizeof(data
), data
, 0);
180 qemu_vfree(s
->l1_table
);
181 old_l1_table_offset
= s
->l1_table_offset
;
182 s
->l1_table_offset
= new_l1_table_offset
;
183 s
->l1_table
= new_l1_table
;
184 old_l1_size
= s
->l1_size
;
185 s
->l1_size
= new_l1_size
;
186 qcow2_free_clusters(bs
, old_l1_table_offset
, old_l1_size
* L1E_SIZE
,
187 QCOW2_DISCARD_OTHER
);
190 qemu_vfree(new_l1_table
);
191 qcow2_free_clusters(bs
, new_l1_table_offset
, new_l1_size2
,
192 QCOW2_DISCARD_OTHER
);
199 * @bs: The BlockDriverState
200 * @offset: A guest offset, used to calculate what slice of the L2
202 * @l2_offset: Offset to the L2 table in the image file.
203 * @l2_slice: Location to store the pointer to the L2 slice.
205 * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
206 * that are loaded by the qcow2 cache). If the slice is in the cache,
207 * the cache is used; otherwise the L2 slice is loaded from the image
210 static int l2_load(BlockDriverState
*bs
, uint64_t offset
,
211 uint64_t l2_offset
, uint64_t **l2_slice
)
213 BDRVQcow2State
*s
= bs
->opaque
;
214 int start_of_slice
= l2_entry_size(s
) *
215 (offset_to_l2_index(s
, offset
) - offset_to_l2_slice_index(s
, offset
));
217 return qcow2_cache_get(bs
, s
->l2_table_cache
, l2_offset
+ start_of_slice
,
222 * Writes an L1 entry to disk (note that depending on the alignment
223 * requirements this function may write more that just one entry in
224 * order to prevent bdrv_pwrite from performing a read-modify-write)
226 int qcow2_write_l1_entry(BlockDriverState
*bs
, int l1_index
)
228 BDRVQcow2State
*s
= bs
->opaque
;
231 int bufsize
= MAX(L1E_SIZE
,
232 MIN(bs
->file
->bs
->bl
.request_alignment
, s
->cluster_size
));
233 int nentries
= bufsize
/ L1E_SIZE
;
234 g_autofree
uint64_t *buf
= g_try_new0(uint64_t, nentries
);
240 l1_start_index
= QEMU_ALIGN_DOWN(l1_index
, nentries
);
241 for (i
= 0; i
< MIN(nentries
, s
->l1_size
- l1_start_index
); i
++) {
242 buf
[i
] = cpu_to_be64(s
->l1_table
[l1_start_index
+ i
]);
245 ret
= qcow2_pre_write_overlap_check(bs
, QCOW2_OL_ACTIVE_L1
,
246 s
->l1_table_offset
+ L1E_SIZE
* l1_start_index
, bufsize
, false);
251 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_UPDATE
);
252 ret
= bdrv_pwrite_sync(bs
->file
,
253 s
->l1_table_offset
+ L1E_SIZE
* l1_start_index
,
265 * Allocate a new l2 entry in the file. If l1_index points to an already
266 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
267 * table) copy the contents of the old L2 table into the newly allocated one.
268 * Otherwise the new table is initialized with zeros.
272 static int l2_allocate(BlockDriverState
*bs
, int l1_index
)
274 BDRVQcow2State
*s
= bs
->opaque
;
275 uint64_t old_l2_offset
;
276 uint64_t *l2_slice
= NULL
;
277 unsigned slice
, slice_size2
, n_slices
;
281 old_l2_offset
= s
->l1_table
[l1_index
];
283 trace_qcow2_l2_allocate(bs
, l1_index
);
285 /* allocate a new l2 entry */
287 l2_offset
= qcow2_alloc_clusters(bs
, s
->l2_size
* l2_entry_size(s
));
293 /* The offset must fit in the offset field of the L1 table entry */
294 assert((l2_offset
& L1E_OFFSET_MASK
) == l2_offset
);
296 /* If we're allocating the table at offset 0 then something is wrong */
297 if (l2_offset
== 0) {
298 qcow2_signal_corruption(bs
, true, -1, -1, "Preventing invalid "
299 "allocation of L2 table at offset 0");
304 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
309 /* allocate a new entry in the l2 cache */
311 slice_size2
= s
->l2_slice_size
* l2_entry_size(s
);
312 n_slices
= s
->cluster_size
/ slice_size2
;
314 trace_qcow2_l2_allocate_get_empty(bs
, l1_index
);
315 for (slice
= 0; slice
< n_slices
; slice
++) {
316 ret
= qcow2_cache_get_empty(bs
, s
->l2_table_cache
,
317 l2_offset
+ slice
* slice_size2
,
318 (void **) &l2_slice
);
323 if ((old_l2_offset
& L1E_OFFSET_MASK
) == 0) {
324 /* if there was no old l2 table, clear the new slice */
325 memset(l2_slice
, 0, slice_size2
);
328 uint64_t old_l2_slice_offset
=
329 (old_l2_offset
& L1E_OFFSET_MASK
) + slice
* slice_size2
;
331 /* if there was an old l2 table, read a slice from the disk */
332 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_COW_READ
);
333 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, old_l2_slice_offset
,
334 (void **) &old_slice
);
339 memcpy(l2_slice
, old_slice
, slice_size2
);
341 qcow2_cache_put(s
->l2_table_cache
, (void **) &old_slice
);
344 /* write the l2 slice to the file */
345 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_WRITE
);
347 trace_qcow2_l2_allocate_write_l2(bs
, l1_index
);
348 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
349 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
352 ret
= qcow2_cache_flush(bs
, s
->l2_table_cache
);
357 /* update the L1 entry */
358 trace_qcow2_l2_allocate_write_l1(bs
, l1_index
);
359 s
->l1_table
[l1_index
] = l2_offset
| QCOW_OFLAG_COPIED
;
360 ret
= qcow2_write_l1_entry(bs
, l1_index
);
365 trace_qcow2_l2_allocate_done(bs
, l1_index
, 0);
369 trace_qcow2_l2_allocate_done(bs
, l1_index
, ret
);
370 if (l2_slice
!= NULL
) {
371 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
373 s
->l1_table
[l1_index
] = old_l2_offset
;
375 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* l2_entry_size(s
),
376 QCOW2_DISCARD_ALWAYS
);
382 * For a given L2 entry, count the number of contiguous subclusters of
383 * the same type starting from @sc_from. Compressed clusters are
384 * treated as if they were divided into subclusters of size
385 * s->subcluster_size.
387 * Return the number of contiguous subclusters and set @type to the
390 * If the L2 entry is invalid return -errno and set @type to
391 * QCOW2_SUBCLUSTER_INVALID.
393 static int qcow2_get_subcluster_range_type(BlockDriverState
*bs
,
397 QCow2SubclusterType
*type
)
399 BDRVQcow2State
*s
= bs
->opaque
;
402 *type
= qcow2_get_subcluster_type(bs
, l2_entry
, l2_bitmap
, sc_from
);
404 if (*type
== QCOW2_SUBCLUSTER_INVALID
) {
406 } else if (!has_subclusters(s
) || *type
== QCOW2_SUBCLUSTER_COMPRESSED
) {
407 return s
->subclusters_per_cluster
- sc_from
;
411 case QCOW2_SUBCLUSTER_NORMAL
:
412 val
= l2_bitmap
| QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from
);
413 return cto32(val
) - sc_from
;
415 case QCOW2_SUBCLUSTER_ZERO_PLAIN
:
416 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
417 val
= (l2_bitmap
| QCOW_OFLAG_SUB_ZERO_RANGE(0, sc_from
)) >> 32;
418 return cto32(val
) - sc_from
;
420 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
:
421 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
:
422 val
= ((l2_bitmap
>> 32) | l2_bitmap
)
423 & ~QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from
);
424 return ctz32(val
) - sc_from
;
427 g_assert_not_reached();
432 * Return the number of contiguous subclusters of the exact same type
433 * in a given L2 slice, starting from cluster @l2_index, subcluster
434 * @sc_index. Allocated subclusters are required to be contiguous in
436 * At most @nb_clusters are checked (note that this means clusters,
438 * Compressed clusters are always processed one by one but for the
439 * purpose of this count they are treated as if they were divided into
440 * subclusters of size s->subcluster_size.
441 * On failure return -errno and update @l2_index to point to the
444 static int count_contiguous_subclusters(BlockDriverState
*bs
, int nb_clusters
,
445 unsigned sc_index
, uint64_t *l2_slice
,
448 BDRVQcow2State
*s
= bs
->opaque
;
450 bool check_offset
= false;
451 uint64_t expected_offset
= 0;
452 QCow2SubclusterType expected_type
= QCOW2_SUBCLUSTER_NORMAL
, type
;
454 assert(*l2_index
+ nb_clusters
<= s
->l2_slice_size
);
456 for (i
= 0; i
< nb_clusters
; i
++) {
457 unsigned first_sc
= (i
== 0) ? sc_index
: 0;
458 uint64_t l2_entry
= get_l2_entry(s
, l2_slice
, *l2_index
+ i
);
459 uint64_t l2_bitmap
= get_l2_bitmap(s
, l2_slice
, *l2_index
+ i
);
460 int ret
= qcow2_get_subcluster_range_type(bs
, l2_entry
, l2_bitmap
,
463 *l2_index
+= i
; /* Point to the invalid entry */
467 if (type
== QCOW2_SUBCLUSTER_COMPRESSED
) {
468 /* Compressed clusters are always processed one by one */
471 expected_type
= type
;
472 expected_offset
= l2_entry
& L2E_OFFSET_MASK
;
473 check_offset
= (type
== QCOW2_SUBCLUSTER_NORMAL
||
474 type
== QCOW2_SUBCLUSTER_ZERO_ALLOC
||
475 type
== QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
);
476 } else if (type
!= expected_type
) {
478 } else if (check_offset
) {
479 expected_offset
+= s
->cluster_size
;
480 if (expected_offset
!= (l2_entry
& L2E_OFFSET_MASK
)) {
485 /* Stop if there are type changes before the end of the cluster */
486 if (first_sc
+ ret
< s
->subclusters_per_cluster
) {
494 static int coroutine_fn GRAPH_RDLOCK
495 do_perform_cow_read(BlockDriverState
*bs
, uint64_t src_cluster_offset
,
496 unsigned offset_in_cluster
, QEMUIOVector
*qiov
)
500 if (qiov
->size
== 0) {
504 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_READ
);
511 * We never deal with requests that don't satisfy
512 * bdrv_check_qiov_request(), and aligning requests to clusters never
513 * breaks this condition. So, do some assertions before calling
514 * bs->drv->bdrv_co_preadv_part() which has int64_t arguments.
516 assert(src_cluster_offset
<= INT64_MAX
);
517 assert(src_cluster_offset
+ offset_in_cluster
<= INT64_MAX
);
518 /* Cast qiov->size to uint64_t to silence a compiler warning on -m32 */
519 assert((uint64_t)qiov
->size
<= INT64_MAX
);
520 bdrv_check_qiov_request(src_cluster_offset
+ offset_in_cluster
, qiov
->size
,
521 qiov
, 0, &error_abort
);
523 * Call .bdrv_co_readv() directly instead of using the public block-layer
524 * interface. This avoids double I/O throttling and request tracking,
525 * which can lead to deadlock when block layer copy-on-read is enabled.
527 ret
= bs
->drv
->bdrv_co_preadv_part(bs
,
528 src_cluster_offset
+ offset_in_cluster
,
529 qiov
->size
, qiov
, 0, 0);
537 static int coroutine_fn GRAPH_RDLOCK
538 do_perform_cow_write(BlockDriverState
*bs
, uint64_t cluster_offset
,
539 unsigned offset_in_cluster
, QEMUIOVector
*qiov
)
541 BDRVQcow2State
*s
= bs
->opaque
;
544 if (qiov
->size
== 0) {
548 ret
= qcow2_pre_write_overlap_check(bs
, 0,
549 cluster_offset
+ offset_in_cluster
, qiov
->size
, true);
554 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_WRITE
);
555 ret
= bdrv_co_pwritev(s
->data_file
, cluster_offset
+ offset_in_cluster
,
556 qiov
->size
, qiov
, 0);
568 * For a given offset of the virtual disk find the equivalent host
569 * offset in the qcow2 file and store it in *host_offset. Neither
570 * offset needs to be aligned to a cluster boundary.
572 * If the cluster is unallocated then *host_offset will be 0.
573 * If the cluster is compressed then *host_offset will contain the l2 entry.
575 * On entry, *bytes is the maximum number of contiguous bytes starting at
576 * offset that we are interested in.
578 * On exit, *bytes is the number of bytes starting at offset that have the same
579 * subcluster type and (if applicable) are stored contiguously in the image
580 * file. The subcluster type is stored in *subcluster_type.
581 * Compressed clusters are always processed one by one.
583 * Returns 0 on success, -errno in error cases.
585 int qcow2_get_host_offset(BlockDriverState
*bs
, uint64_t offset
,
586 unsigned int *bytes
, uint64_t *host_offset
,
587 QCow2SubclusterType
*subcluster_type
)
589 BDRVQcow2State
*s
= bs
->opaque
;
590 unsigned int l2_index
, sc_index
;
591 uint64_t l1_index
, l2_offset
, *l2_slice
, l2_entry
, l2_bitmap
;
593 unsigned int offset_in_cluster
;
594 uint64_t bytes_available
, bytes_needed
, nb_clusters
;
595 QCow2SubclusterType type
;
598 offset_in_cluster
= offset_into_cluster(s
, offset
);
599 bytes_needed
= (uint64_t) *bytes
+ offset_in_cluster
;
601 /* compute how many bytes there are between the start of the cluster
602 * containing offset and the end of the l2 slice that contains
603 * the entry pointing to it */
605 ((uint64_t) (s
->l2_slice_size
- offset_to_l2_slice_index(s
, offset
)))
608 if (bytes_needed
> bytes_available
) {
609 bytes_needed
= bytes_available
;
614 /* seek to the l2 offset in the l1 table */
616 l1_index
= offset_to_l1_index(s
, offset
);
617 if (l1_index
>= s
->l1_size
) {
618 type
= QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
;
622 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
624 type
= QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
;
628 if (offset_into_cluster(s
, l2_offset
)) {
629 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#" PRIx64
630 " unaligned (L1 index: %#" PRIx64
")",
631 l2_offset
, l1_index
);
635 /* load the l2 slice in memory */
637 ret
= l2_load(bs
, offset
, l2_offset
, &l2_slice
);
642 /* find the cluster offset for the given disk offset */
644 l2_index
= offset_to_l2_slice_index(s
, offset
);
645 sc_index
= offset_to_sc_index(s
, offset
);
646 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
);
647 l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
);
649 nb_clusters
= size_to_clusters(s
, bytes_needed
);
650 /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
651 * integers; the minimum cluster size is 512, so this assertion is always
653 assert(nb_clusters
<= INT_MAX
);
655 type
= qcow2_get_subcluster_type(bs
, l2_entry
, l2_bitmap
, sc_index
);
656 if (s
->qcow_version
< 3 && (type
== QCOW2_SUBCLUSTER_ZERO_PLAIN
||
657 type
== QCOW2_SUBCLUSTER_ZERO_ALLOC
)) {
658 qcow2_signal_corruption(bs
, true, -1, -1, "Zero cluster entry found"
659 " in pre-v3 image (L2 offset: %#" PRIx64
660 ", L2 index: %#x)", l2_offset
, l2_index
);
665 case QCOW2_SUBCLUSTER_INVALID
:
666 break; /* This is handled by count_contiguous_subclusters() below */
667 case QCOW2_SUBCLUSTER_COMPRESSED
:
668 if (has_data_file(bs
)) {
669 qcow2_signal_corruption(bs
, true, -1, -1, "Compressed cluster "
670 "entry found in image with external data "
671 "file (L2 offset: %#" PRIx64
", L2 index: "
672 "%#x)", l2_offset
, l2_index
);
676 *host_offset
= l2_entry
;
678 case QCOW2_SUBCLUSTER_ZERO_PLAIN
:
679 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
:
681 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
682 case QCOW2_SUBCLUSTER_NORMAL
:
683 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
: {
684 uint64_t host_cluster_offset
= l2_entry
& L2E_OFFSET_MASK
;
685 *host_offset
= host_cluster_offset
+ offset_in_cluster
;
686 if (offset_into_cluster(s
, host_cluster_offset
)) {
687 qcow2_signal_corruption(bs
, true, -1, -1,
688 "Cluster allocation offset %#"
689 PRIx64
" unaligned (L2 offset: %#" PRIx64
690 ", L2 index: %#x)", host_cluster_offset
,
691 l2_offset
, l2_index
);
695 if (has_data_file(bs
) && *host_offset
!= offset
) {
696 qcow2_signal_corruption(bs
, true, -1, -1,
697 "External data file host cluster offset %#"
698 PRIx64
" does not match guest cluster "
700 ", L2 index: %#x)", host_cluster_offset
,
701 offset
- offset_in_cluster
, l2_index
);
711 sc
= count_contiguous_subclusters(bs
, nb_clusters
, sc_index
,
712 l2_slice
, &l2_index
);
714 qcow2_signal_corruption(bs
, true, -1, -1, "Invalid cluster entry found "
715 " (L2 offset: %#" PRIx64
", L2 index: %#x)",
716 l2_offset
, l2_index
);
720 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
722 bytes_available
= ((int64_t)sc
+ sc_index
) << s
->subcluster_bits
;
725 if (bytes_available
> bytes_needed
) {
726 bytes_available
= bytes_needed
;
729 /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
730 * subtracting offset_in_cluster will therefore definitely yield something
731 * not exceeding UINT_MAX */
732 assert(bytes_available
- offset_in_cluster
<= UINT_MAX
);
733 *bytes
= bytes_available
- offset_in_cluster
;
735 *subcluster_type
= type
;
740 qcow2_cache_put(s
->l2_table_cache
, (void **)&l2_slice
);
747 * for a given disk offset, load (and allocate if needed)
748 * the appropriate slice of its l2 table.
750 * the cluster index in the l2 slice is given to the caller.
752 * Returns 0 on success, -errno in failure case
754 static int get_cluster_table(BlockDriverState
*bs
, uint64_t offset
,
755 uint64_t **new_l2_slice
,
758 BDRVQcow2State
*s
= bs
->opaque
;
759 unsigned int l2_index
;
760 uint64_t l1_index
, l2_offset
;
761 uint64_t *l2_slice
= NULL
;
764 /* seek to the l2 offset in the l1 table */
766 l1_index
= offset_to_l1_index(s
, offset
);
767 if (l1_index
>= s
->l1_size
) {
768 ret
= qcow2_grow_l1_table(bs
, l1_index
+ 1, false);
774 assert(l1_index
< s
->l1_size
);
775 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
776 if (offset_into_cluster(s
, l2_offset
)) {
777 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#" PRIx64
778 " unaligned (L1 index: %#" PRIx64
")",
779 l2_offset
, l1_index
);
783 if (!(s
->l1_table
[l1_index
] & QCOW_OFLAG_COPIED
)) {
784 /* First allocate a new L2 table (and do COW if needed) */
785 ret
= l2_allocate(bs
, l1_index
);
790 /* Then decrease the refcount of the old table */
792 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* l2_entry_size(s
),
793 QCOW2_DISCARD_OTHER
);
796 /* Get the offset of the newly-allocated l2 table */
797 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
798 assert(offset_into_cluster(s
, l2_offset
) == 0);
801 /* load the l2 slice in memory */
802 ret
= l2_load(bs
, offset
, l2_offset
, &l2_slice
);
807 /* find the cluster offset for the given disk offset */
809 l2_index
= offset_to_l2_slice_index(s
, offset
);
811 *new_l2_slice
= l2_slice
;
812 *new_l2_index
= l2_index
;
818 * alloc_compressed_cluster_offset
820 * For a given offset on the virtual disk, allocate a new compressed cluster
821 * and put the host offset of the cluster into *host_offset. If a cluster is
822 * already allocated at the offset, return an error.
824 * Return 0 on success and -errno in error cases
826 int coroutine_fn
qcow2_alloc_compressed_cluster_offset(BlockDriverState
*bs
,
829 uint64_t *host_offset
)
831 BDRVQcow2State
*s
= bs
->opaque
;
834 int64_t cluster_offset
;
837 if (has_data_file(bs
)) {
841 ret
= get_cluster_table(bs
, offset
, &l2_slice
, &l2_index
);
846 /* Compression can't overwrite anything. Fail if the cluster was already
848 cluster_offset
= get_l2_entry(s
, l2_slice
, l2_index
);
849 if (cluster_offset
& L2E_OFFSET_MASK
) {
850 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
854 cluster_offset
= qcow2_alloc_bytes(bs
, compressed_size
);
855 if (cluster_offset
< 0) {
856 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
857 return cluster_offset
;
861 (cluster_offset
+ compressed_size
- 1) / QCOW2_COMPRESSED_SECTOR_SIZE
-
862 (cluster_offset
/ QCOW2_COMPRESSED_SECTOR_SIZE
);
864 /* The offset and size must fit in their fields of the L2 table entry */
865 assert((cluster_offset
& s
->cluster_offset_mask
) == cluster_offset
);
866 assert((nb_csectors
& s
->csize_mask
) == nb_csectors
);
868 cluster_offset
|= QCOW_OFLAG_COMPRESSED
|
869 ((uint64_t)nb_csectors
<< s
->csize_shift
);
871 /* update L2 table */
873 /* compressed clusters never have the copied flag */
875 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_UPDATE_COMPRESSED
);
876 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
877 set_l2_entry(s
, l2_slice
, l2_index
, cluster_offset
);
878 if (has_subclusters(s
)) {
879 set_l2_bitmap(s
, l2_slice
, l2_index
, 0);
881 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
883 *host_offset
= cluster_offset
& s
->cluster_offset_mask
;
887 static int coroutine_fn GRAPH_RDLOCK
888 perform_cow(BlockDriverState
*bs
, QCowL2Meta
*m
)
890 BDRVQcow2State
*s
= bs
->opaque
;
891 Qcow2COWRegion
*start
= &m
->cow_start
;
892 Qcow2COWRegion
*end
= &m
->cow_end
;
893 unsigned buffer_size
;
894 unsigned data_bytes
= end
->offset
- (start
->offset
+ start
->nb_bytes
);
896 uint8_t *start_buffer
, *end_buffer
;
900 assert(start
->nb_bytes
<= UINT_MAX
- end
->nb_bytes
);
901 assert(start
->nb_bytes
+ end
->nb_bytes
<= UINT_MAX
- data_bytes
);
902 assert(start
->offset
+ start
->nb_bytes
<= end
->offset
);
904 if ((start
->nb_bytes
== 0 && end
->nb_bytes
== 0) || m
->skip_cow
) {
908 /* If we have to read both the start and end COW regions and the
909 * middle region is not too large then perform just one read
911 merge_reads
= start
->nb_bytes
&& end
->nb_bytes
&& data_bytes
<= 16384;
913 buffer_size
= start
->nb_bytes
+ data_bytes
+ end
->nb_bytes
;
915 /* If we have to do two reads, add some padding in the middle
916 * if necessary to make sure that the end region is optimally
918 size_t align
= bdrv_opt_mem_align(bs
);
919 assert(align
> 0 && align
<= UINT_MAX
);
920 assert(QEMU_ALIGN_UP(start
->nb_bytes
, align
) <=
921 UINT_MAX
- end
->nb_bytes
);
922 buffer_size
= QEMU_ALIGN_UP(start
->nb_bytes
, align
) + end
->nb_bytes
;
925 /* Reserve a buffer large enough to store all the data that we're
927 start_buffer
= qemu_try_blockalign(bs
, buffer_size
);
928 if (start_buffer
== NULL
) {
931 /* The part of the buffer where the end region is located */
932 end_buffer
= start_buffer
+ buffer_size
- end
->nb_bytes
;
934 qemu_iovec_init(&qiov
, 2 + (m
->data_qiov
?
935 qemu_iovec_subvec_niov(m
->data_qiov
,
940 qemu_co_mutex_unlock(&s
->lock
);
941 /* First we read the existing data from both COW regions. We
942 * either read the whole region in one go, or the start and end
943 * regions separately. */
945 qemu_iovec_add(&qiov
, start_buffer
, buffer_size
);
946 ret
= do_perform_cow_read(bs
, m
->offset
, start
->offset
, &qiov
);
948 qemu_iovec_add(&qiov
, start_buffer
, start
->nb_bytes
);
949 ret
= do_perform_cow_read(bs
, m
->offset
, start
->offset
, &qiov
);
954 qemu_iovec_reset(&qiov
);
955 qemu_iovec_add(&qiov
, end_buffer
, end
->nb_bytes
);
956 ret
= do_perform_cow_read(bs
, m
->offset
, end
->offset
, &qiov
);
962 /* Encrypt the data if necessary before writing it */
964 ret
= qcow2_co_encrypt(bs
,
965 m
->alloc_offset
+ start
->offset
,
966 m
->offset
+ start
->offset
,
967 start_buffer
, start
->nb_bytes
);
972 ret
= qcow2_co_encrypt(bs
,
973 m
->alloc_offset
+ end
->offset
,
974 m
->offset
+ end
->offset
,
975 end_buffer
, end
->nb_bytes
);
981 /* And now we can write everything. If we have the guest data we
982 * can write everything in one single operation */
984 qemu_iovec_reset(&qiov
);
985 if (start
->nb_bytes
) {
986 qemu_iovec_add(&qiov
, start_buffer
, start
->nb_bytes
);
988 qemu_iovec_concat(&qiov
, m
->data_qiov
, m
->data_qiov_offset
, data_bytes
);
990 qemu_iovec_add(&qiov
, end_buffer
, end
->nb_bytes
);
992 /* NOTE: we have a write_aio blkdebug event here followed by
993 * a cow_write one in do_perform_cow_write(), but there's only
994 * one single I/O operation */
995 BLKDBG_EVENT(bs
->file
, BLKDBG_WRITE_AIO
);
996 ret
= do_perform_cow_write(bs
, m
->alloc_offset
, start
->offset
, &qiov
);
998 /* If there's no guest data then write both COW regions separately */
999 qemu_iovec_reset(&qiov
);
1000 qemu_iovec_add(&qiov
, start_buffer
, start
->nb_bytes
);
1001 ret
= do_perform_cow_write(bs
, m
->alloc_offset
, start
->offset
, &qiov
);
1006 qemu_iovec_reset(&qiov
);
1007 qemu_iovec_add(&qiov
, end_buffer
, end
->nb_bytes
);
1008 ret
= do_perform_cow_write(bs
, m
->alloc_offset
, end
->offset
, &qiov
);
1012 qemu_co_mutex_lock(&s
->lock
);
1015 * Before we update the L2 table to actually point to the new cluster, we
1016 * need to be sure that the refcounts have been increased and COW was
1020 qcow2_cache_depends_on_flush(s
->l2_table_cache
);
1023 qemu_vfree(start_buffer
);
1024 qemu_iovec_destroy(&qiov
);
1028 int coroutine_fn
qcow2_alloc_cluster_link_l2(BlockDriverState
*bs
,
1031 BDRVQcow2State
*s
= bs
->opaque
;
1032 int i
, j
= 0, l2_index
, ret
;
1033 uint64_t *old_cluster
, *l2_slice
;
1034 uint64_t cluster_offset
= m
->alloc_offset
;
1036 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m
->nb_clusters
);
1037 assert(m
->nb_clusters
> 0);
1039 old_cluster
= g_try_new(uint64_t, m
->nb_clusters
);
1040 if (old_cluster
== NULL
) {
1045 /* copy content of unmodified sectors */
1046 ret
= perform_cow(bs
, m
);
1051 /* Update L2 table. */
1052 if (s
->use_lazy_refcounts
) {
1053 qcow2_mark_dirty(bs
);
1055 if (qcow2_need_accurate_refcounts(s
)) {
1056 qcow2_cache_set_dependency(bs
, s
->l2_table_cache
,
1057 s
->refcount_block_cache
);
1060 ret
= get_cluster_table(bs
, m
->offset
, &l2_slice
, &l2_index
);
1064 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
1066 assert(l2_index
+ m
->nb_clusters
<= s
->l2_slice_size
);
1067 assert(m
->cow_end
.offset
+ m
->cow_end
.nb_bytes
<=
1068 m
->nb_clusters
<< s
->cluster_bits
);
1069 for (i
= 0; i
< m
->nb_clusters
; i
++) {
1070 uint64_t offset
= cluster_offset
+ ((uint64_t)i
<< s
->cluster_bits
);
1071 /* if two concurrent writes happen to the same unallocated cluster
1072 * each write allocates separate cluster and writes data concurrently.
1073 * The first one to complete updates l2 table with pointer to its
1074 * cluster the second one has to do RMW (which is done above by
1075 * perform_cow()), update l2 table with its cluster pointer and free
1076 * old cluster. This is what this loop does */
1077 if (get_l2_entry(s
, l2_slice
, l2_index
+ i
) != 0) {
1078 old_cluster
[j
++] = get_l2_entry(s
, l2_slice
, l2_index
+ i
);
1081 /* The offset must fit in the offset field of the L2 table entry */
1082 assert((offset
& L2E_OFFSET_MASK
) == offset
);
1084 set_l2_entry(s
, l2_slice
, l2_index
+ i
, offset
| QCOW_OFLAG_COPIED
);
1086 /* Update bitmap with the subclusters that were just written */
1087 if (has_subclusters(s
) && !m
->prealloc
) {
1088 uint64_t l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
+ i
);
1089 unsigned written_from
= m
->cow_start
.offset
;
1090 unsigned written_to
= m
->cow_end
.offset
+ m
->cow_end
.nb_bytes
;
1091 int first_sc
, last_sc
;
1092 /* Narrow written_from and written_to down to the current cluster */
1093 written_from
= MAX(written_from
, i
<< s
->cluster_bits
);
1094 written_to
= MIN(written_to
, (i
+ 1) << s
->cluster_bits
);
1095 assert(written_from
< written_to
);
1096 first_sc
= offset_to_sc_index(s
, written_from
);
1097 last_sc
= offset_to_sc_index(s
, written_to
- 1);
1098 l2_bitmap
|= QCOW_OFLAG_SUB_ALLOC_RANGE(first_sc
, last_sc
+ 1);
1099 l2_bitmap
&= ~QCOW_OFLAG_SUB_ZERO_RANGE(first_sc
, last_sc
+ 1);
1100 set_l2_bitmap(s
, l2_slice
, l2_index
+ i
, l2_bitmap
);
1105 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
1108 * If this was a COW, we need to decrease the refcount of the old cluster.
1110 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
1111 * clusters), the next write will reuse them anyway.
1113 if (!m
->keep_old_clusters
&& j
!= 0) {
1114 for (i
= 0; i
< j
; i
++) {
1115 qcow2_free_any_cluster(bs
, old_cluster
[i
], QCOW2_DISCARD_NEVER
);
1121 g_free(old_cluster
);
1126 * Frees the allocated clusters because the request failed and they won't
1127 * actually be linked.
1129 void qcow2_alloc_cluster_abort(BlockDriverState
*bs
, QCowL2Meta
*m
)
1131 BDRVQcow2State
*s
= bs
->opaque
;
1132 if (!has_data_file(bs
) && !m
->keep_old_clusters
) {
1133 qcow2_free_clusters(bs
, m
->alloc_offset
,
1134 m
->nb_clusters
<< s
->cluster_bits
,
1135 QCOW2_DISCARD_NEVER
);
1140 * For a given write request, create a new QCowL2Meta structure, add
1141 * it to @m and the BDRVQcow2State.cluster_allocs list. If the write
1142 * request does not need copy-on-write or changes to the L2 metadata
1143 * then this function does nothing.
1145 * @host_cluster_offset points to the beginning of the first cluster.
1147 * @guest_offset and @bytes indicate the offset and length of the
1150 * @l2_slice contains the L2 entries of all clusters involved in this
1153 * If @keep_old is true it means that the clusters were already
1154 * allocated and will be overwritten. If false then the clusters are
1155 * new and we have to decrease the reference count of the old ones.
1157 * Returns 0 on success, -errno on failure.
1159 static int calculate_l2_meta(BlockDriverState
*bs
, uint64_t host_cluster_offset
,
1160 uint64_t guest_offset
, unsigned bytes
,
1161 uint64_t *l2_slice
, QCowL2Meta
**m
, bool keep_old
)
1163 BDRVQcow2State
*s
= bs
->opaque
;
1164 int sc_index
, l2_index
= offset_to_l2_slice_index(s
, guest_offset
);
1165 uint64_t l2_entry
, l2_bitmap
;
1166 unsigned cow_start_from
, cow_end_to
;
1167 unsigned cow_start_to
= offset_into_cluster(s
, guest_offset
);
1168 unsigned cow_end_from
= cow_start_to
+ bytes
;
1169 unsigned nb_clusters
= size_to_clusters(s
, cow_end_from
);
1170 QCowL2Meta
*old_m
= *m
;
1171 QCow2SubclusterType type
;
1173 bool skip_cow
= keep_old
;
1175 assert(nb_clusters
<= s
->l2_slice_size
- l2_index
);
1177 /* Check the type of all affected subclusters */
1178 for (i
= 0; i
< nb_clusters
; i
++) {
1179 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
+ i
);
1180 l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
+ i
);
1182 unsigned write_from
= MAX(cow_start_to
, i
<< s
->cluster_bits
);
1183 unsigned write_to
= MIN(cow_end_from
, (i
+ 1) << s
->cluster_bits
);
1184 int first_sc
= offset_to_sc_index(s
, write_from
);
1185 int last_sc
= offset_to_sc_index(s
, write_to
- 1);
1186 int cnt
= qcow2_get_subcluster_range_type(bs
, l2_entry
, l2_bitmap
,
1188 /* Is any of the subclusters of type != QCOW2_SUBCLUSTER_NORMAL ? */
1189 if (type
!= QCOW2_SUBCLUSTER_NORMAL
|| first_sc
+ cnt
<= last_sc
) {
1193 /* If we can't skip the cow we can still look for invalid entries */
1194 type
= qcow2_get_subcluster_type(bs
, l2_entry
, l2_bitmap
, 0);
1196 if (type
== QCOW2_SUBCLUSTER_INVALID
) {
1197 int l1_index
= offset_to_l1_index(s
, guest_offset
);
1198 uint64_t l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
1199 qcow2_signal_corruption(bs
, true, -1, -1, "Invalid cluster "
1200 "entry found (L2 offset: %#" PRIx64
1202 l2_offset
, l2_index
+ i
);
1211 /* Get the L2 entry of the first cluster */
1212 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
);
1213 l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
);
1214 sc_index
= offset_to_sc_index(s
, guest_offset
);
1215 type
= qcow2_get_subcluster_type(bs
, l2_entry
, l2_bitmap
, sc_index
);
1219 case QCOW2_SUBCLUSTER_COMPRESSED
:
1222 case QCOW2_SUBCLUSTER_NORMAL
:
1223 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
1224 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
:
1225 if (has_subclusters(s
)) {
1226 /* Skip all leading zero and unallocated subclusters */
1227 uint32_t alloc_bitmap
= l2_bitmap
& QCOW_L2_BITMAP_ALL_ALLOC
;
1229 MIN(sc_index
, ctz32(alloc_bitmap
)) << s
->subcluster_bits
;
1234 case QCOW2_SUBCLUSTER_ZERO_PLAIN
:
1235 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
:
1236 cow_start_from
= sc_index
<< s
->subcluster_bits
;
1239 g_assert_not_reached();
1243 case QCOW2_SUBCLUSTER_NORMAL
:
1244 cow_start_from
= cow_start_to
;
1246 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
1247 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
:
1248 cow_start_from
= sc_index
<< s
->subcluster_bits
;
1251 g_assert_not_reached();
1255 /* Get the L2 entry of the last cluster */
1256 l2_index
+= nb_clusters
- 1;
1257 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
);
1258 l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
);
1259 sc_index
= offset_to_sc_index(s
, guest_offset
+ bytes
- 1);
1260 type
= qcow2_get_subcluster_type(bs
, l2_entry
, l2_bitmap
, sc_index
);
1264 case QCOW2_SUBCLUSTER_COMPRESSED
:
1265 cow_end_to
= ROUND_UP(cow_end_from
, s
->cluster_size
);
1267 case QCOW2_SUBCLUSTER_NORMAL
:
1268 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
1269 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
:
1270 cow_end_to
= ROUND_UP(cow_end_from
, s
->cluster_size
);
1271 if (has_subclusters(s
)) {
1272 /* Skip all trailing zero and unallocated subclusters */
1273 uint32_t alloc_bitmap
= l2_bitmap
& QCOW_L2_BITMAP_ALL_ALLOC
;
1275 MIN(s
->subclusters_per_cluster
- sc_index
- 1,
1276 clz32(alloc_bitmap
)) << s
->subcluster_bits
;
1279 case QCOW2_SUBCLUSTER_ZERO_PLAIN
:
1280 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
:
1281 cow_end_to
= ROUND_UP(cow_end_from
, s
->subcluster_size
);
1284 g_assert_not_reached();
1288 case QCOW2_SUBCLUSTER_NORMAL
:
1289 cow_end_to
= cow_end_from
;
1291 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
1292 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
:
1293 cow_end_to
= ROUND_UP(cow_end_from
, s
->subcluster_size
);
1296 g_assert_not_reached();
1300 *m
= g_malloc0(sizeof(**m
));
1301 **m
= (QCowL2Meta
) {
1304 .alloc_offset
= host_cluster_offset
,
1305 .offset
= start_of_cluster(s
, guest_offset
),
1306 .nb_clusters
= nb_clusters
,
1308 .keep_old_clusters
= keep_old
,
1311 .offset
= cow_start_from
,
1312 .nb_bytes
= cow_start_to
- cow_start_from
,
1315 .offset
= cow_end_from
,
1316 .nb_bytes
= cow_end_to
- cow_end_from
,
1320 qemu_co_queue_init(&(*m
)->dependent_requests
);
1321 QLIST_INSERT_HEAD(&s
->cluster_allocs
, *m
, next_in_flight
);
1327 * Returns true if writing to the cluster pointed to by @l2_entry
1328 * requires a new allocation (that is, if the cluster is unallocated
1329 * or has refcount > 1 and therefore cannot be written in-place).
1331 static bool cluster_needs_new_alloc(BlockDriverState
*bs
, uint64_t l2_entry
)
1333 switch (qcow2_get_cluster_type(bs
, l2_entry
)) {
1334 case QCOW2_CLUSTER_NORMAL
:
1335 case QCOW2_CLUSTER_ZERO_ALLOC
:
1336 if (l2_entry
& QCOW_OFLAG_COPIED
) {
1340 case QCOW2_CLUSTER_UNALLOCATED
:
1341 case QCOW2_CLUSTER_COMPRESSED
:
1342 case QCOW2_CLUSTER_ZERO_PLAIN
:
1350 * Returns the number of contiguous clusters that can be written to
1351 * using one single write request, starting from @l2_index.
1352 * At most @nb_clusters are checked.
1354 * If @new_alloc is true this counts clusters that are either
1355 * unallocated, or allocated but with refcount > 1 (so they need to be
1356 * newly allocated and COWed).
1358 * If @new_alloc is false this counts clusters that are already
1359 * allocated and can be overwritten in-place (this includes clusters
1360 * of type QCOW2_CLUSTER_ZERO_ALLOC).
1362 static int count_single_write_clusters(BlockDriverState
*bs
, int nb_clusters
,
1363 uint64_t *l2_slice
, int l2_index
,
1366 BDRVQcow2State
*s
= bs
->opaque
;
1367 uint64_t l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
);
1368 uint64_t expected_offset
= l2_entry
& L2E_OFFSET_MASK
;
1371 for (i
= 0; i
< nb_clusters
; i
++) {
1372 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
+ i
);
1373 if (cluster_needs_new_alloc(bs
, l2_entry
) != new_alloc
) {
1377 if (expected_offset
!= (l2_entry
& L2E_OFFSET_MASK
)) {
1380 expected_offset
+= s
->cluster_size
;
1384 assert(i
<= nb_clusters
);
1389 * Check if there already is an AIO write request in flight which allocates
1390 * the same cluster. In this case we need to wait until the previous
1391 * request has completed and updated the L2 table accordingly.
1394 * 0 if there was no dependency. *cur_bytes indicates the number of
1395 * bytes from guest_offset that can be read before the next
1396 * dependency must be processed (or the request is complete)
1398 * -EAGAIN if we had to wait for another request, previously gathered
1399 * information on cluster allocation may be invalid now. The caller
1400 * must start over anyway, so consider *cur_bytes undefined.
1402 static int coroutine_fn
handle_dependencies(BlockDriverState
*bs
,
1403 uint64_t guest_offset
,
1404 uint64_t *cur_bytes
, QCowL2Meta
**m
)
1406 BDRVQcow2State
*s
= bs
->opaque
;
1407 QCowL2Meta
*old_alloc
;
1408 uint64_t bytes
= *cur_bytes
;
1410 QLIST_FOREACH(old_alloc
, &s
->cluster_allocs
, next_in_flight
) {
1412 uint64_t start
= guest_offset
;
1413 uint64_t end
= start
+ bytes
;
1414 uint64_t old_start
= start_of_cluster(s
, l2meta_cow_start(old_alloc
));
1415 uint64_t old_end
= ROUND_UP(l2meta_cow_end(old_alloc
), s
->cluster_size
);
1417 if (end
<= old_start
|| start
>= old_end
) {
1418 /* No intersection */
1422 if (old_alloc
->keep_old_clusters
&&
1423 (end
<= l2meta_cow_start(old_alloc
) ||
1424 start
>= l2meta_cow_end(old_alloc
)))
1427 * Clusters intersect but COW areas don't. And cluster itself is
1428 * already allocated. So, there is no actual conflict.
1435 if (start
< old_start
) {
1436 /* Stop at the start of a running allocation */
1437 bytes
= old_start
- start
;
1443 * Stop if an l2meta already exists. After yielding, it wouldn't
1444 * be valid any more, so we'd have to clean up the old L2Metas
1445 * and deal with requests depending on them before starting to
1446 * gather new ones. Not worth the trouble.
1448 if (bytes
== 0 && *m
) {
1455 * Wait for the dependency to complete. We need to recheck
1456 * the free/allocated clusters when we continue.
1458 qemu_co_queue_wait(&old_alloc
->dependent_requests
, &s
->lock
);
1463 /* Make sure that existing clusters and new allocations are only used up to
1464 * the next dependency if we shortened the request above */
1471 * Checks how many already allocated clusters that don't require a new
1472 * allocation there are at the given guest_offset (up to *bytes).
1473 * If *host_offset is not INV_OFFSET, only physically contiguous clusters
1474 * beginning at this host offset are counted.
1476 * Note that guest_offset may not be cluster aligned. In this case, the
1477 * returned *host_offset points to exact byte referenced by guest_offset and
1478 * therefore isn't cluster aligned as well.
1481 * 0: if no allocated clusters are available at the given offset.
1482 * *bytes is normally unchanged. It is set to 0 if the cluster
1483 * is allocated and can be overwritten in-place but doesn't have
1484 * the right physical offset.
1486 * 1: if allocated clusters that can be overwritten in place are
1487 * available at the requested offset. *bytes may have decreased
1488 * and describes the length of the area that can be written to.
1490 * -errno: in error cases
1492 static int coroutine_fn
handle_copied(BlockDriverState
*bs
,
1493 uint64_t guest_offset
, uint64_t *host_offset
, uint64_t *bytes
,
1496 BDRVQcow2State
*s
= bs
->opaque
;
1498 uint64_t l2_entry
, cluster_offset
;
1500 uint64_t nb_clusters
;
1501 unsigned int keep_clusters
;
1504 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset
, *host_offset
,
1507 assert(*host_offset
== INV_OFFSET
|| offset_into_cluster(s
, guest_offset
)
1508 == offset_into_cluster(s
, *host_offset
));
1511 * Calculate the number of clusters to look for. We stop at L2 slice
1512 * boundaries to keep things simple.
1515 size_to_clusters(s
, offset_into_cluster(s
, guest_offset
) + *bytes
);
1517 l2_index
= offset_to_l2_slice_index(s
, guest_offset
);
1518 nb_clusters
= MIN(nb_clusters
, s
->l2_slice_size
- l2_index
);
1519 /* Limit total byte count to BDRV_REQUEST_MAX_BYTES */
1520 nb_clusters
= MIN(nb_clusters
, BDRV_REQUEST_MAX_BYTES
>> s
->cluster_bits
);
1522 /* Find L2 entry for the first involved cluster */
1523 ret
= get_cluster_table(bs
, guest_offset
, &l2_slice
, &l2_index
);
1528 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
);
1529 cluster_offset
= l2_entry
& L2E_OFFSET_MASK
;
1531 if (!cluster_needs_new_alloc(bs
, l2_entry
)) {
1532 if (offset_into_cluster(s
, cluster_offset
)) {
1533 qcow2_signal_corruption(bs
, true, -1, -1, "%s cluster offset "
1534 "%#" PRIx64
" unaligned (guest offset: %#"
1535 PRIx64
")", l2_entry
& QCOW_OFLAG_ZERO
?
1536 "Preallocated zero" : "Data",
1537 cluster_offset
, guest_offset
);
1542 /* If a specific host_offset is required, check it */
1543 if (*host_offset
!= INV_OFFSET
&& cluster_offset
!= *host_offset
) {
1549 /* We keep all QCOW_OFLAG_COPIED clusters */
1550 keep_clusters
= count_single_write_clusters(bs
, nb_clusters
, l2_slice
,
1552 assert(keep_clusters
<= nb_clusters
);
1554 *bytes
= MIN(*bytes
,
1555 keep_clusters
* s
->cluster_size
1556 - offset_into_cluster(s
, guest_offset
));
1557 assert(*bytes
!= 0);
1559 ret
= calculate_l2_meta(bs
, cluster_offset
, guest_offset
,
1560 *bytes
, l2_slice
, m
, true);
1572 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
1574 /* Only return a host offset if we actually made progress. Otherwise we
1575 * would make requirements for handle_alloc() that it can't fulfill */
1577 *host_offset
= cluster_offset
+ offset_into_cluster(s
, guest_offset
);
1584 * Allocates new clusters for the given guest_offset.
1586 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1587 * contain the number of clusters that have been allocated and are contiguous
1588 * in the image file.
1590 * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1591 * at which the new clusters must start. *nb_clusters can be 0 on return in
1592 * this case if the cluster at host_offset is already in use. If *host_offset
1593 * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
1595 * *host_offset is updated to contain the offset into the image file at which
1596 * the first allocated cluster starts.
1598 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1599 * function has been waiting for another request and the allocation must be
1600 * restarted, but the whole request should not be failed.
1602 static int do_alloc_cluster_offset(BlockDriverState
*bs
, uint64_t guest_offset
,
1603 uint64_t *host_offset
, uint64_t *nb_clusters
)
1605 BDRVQcow2State
*s
= bs
->opaque
;
1607 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset
,
1608 *host_offset
, *nb_clusters
);
1610 if (has_data_file(bs
)) {
1611 assert(*host_offset
== INV_OFFSET
||
1612 *host_offset
== start_of_cluster(s
, guest_offset
));
1613 *host_offset
= start_of_cluster(s
, guest_offset
);
1617 /* Allocate new clusters */
1618 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1619 if (*host_offset
== INV_OFFSET
) {
1620 int64_t cluster_offset
=
1621 qcow2_alloc_clusters(bs
, *nb_clusters
* s
->cluster_size
);
1622 if (cluster_offset
< 0) {
1623 return cluster_offset
;
1625 *host_offset
= cluster_offset
;
1628 int64_t ret
= qcow2_alloc_clusters_at(bs
, *host_offset
, *nb_clusters
);
1638 * Allocates new clusters for an area that is either still unallocated or
1639 * cannot be overwritten in-place. If *host_offset is not INV_OFFSET,
1640 * clusters are only allocated if the new allocation can match the specified
1643 * Note that guest_offset may not be cluster aligned. In this case, the
1644 * returned *host_offset points to exact byte referenced by guest_offset and
1645 * therefore isn't cluster aligned as well.
1648 * 0: if no clusters could be allocated. *bytes is set to 0,
1649 * *host_offset is left unchanged.
1651 * 1: if new clusters were allocated. *bytes may be decreased if the
1652 * new allocation doesn't cover all of the requested area.
1653 * *host_offset is updated to contain the host offset of the first
1654 * newly allocated cluster.
1656 * -errno: in error cases
1658 static int coroutine_fn
handle_alloc(BlockDriverState
*bs
,
1659 uint64_t guest_offset
, uint64_t *host_offset
, uint64_t *bytes
,
1662 BDRVQcow2State
*s
= bs
->opaque
;
1665 uint64_t nb_clusters
;
1668 uint64_t alloc_cluster_offset
;
1670 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset
, *host_offset
,
1675 * Calculate the number of clusters to look for. We stop at L2 slice
1676 * boundaries to keep things simple.
1679 size_to_clusters(s
, offset_into_cluster(s
, guest_offset
) + *bytes
);
1681 l2_index
= offset_to_l2_slice_index(s
, guest_offset
);
1682 nb_clusters
= MIN(nb_clusters
, s
->l2_slice_size
- l2_index
);
1683 /* Limit total allocation byte count to BDRV_REQUEST_MAX_BYTES */
1684 nb_clusters
= MIN(nb_clusters
, BDRV_REQUEST_MAX_BYTES
>> s
->cluster_bits
);
1686 /* Find L2 entry for the first involved cluster */
1687 ret
= get_cluster_table(bs
, guest_offset
, &l2_slice
, &l2_index
);
1692 nb_clusters
= count_single_write_clusters(bs
, nb_clusters
,
1693 l2_slice
, l2_index
, true);
1695 /* This function is only called when there were no non-COW clusters, so if
1696 * we can't find any unallocated or COW clusters either, something is
1697 * wrong with our code. */
1698 assert(nb_clusters
> 0);
1700 /* Allocate at a given offset in the image file */
1701 alloc_cluster_offset
= *host_offset
== INV_OFFSET
? INV_OFFSET
:
1702 start_of_cluster(s
, *host_offset
);
1703 ret
= do_alloc_cluster_offset(bs
, guest_offset
, &alloc_cluster_offset
,
1709 /* Can't extend contiguous allocation */
1710 if (nb_clusters
== 0) {
1716 assert(alloc_cluster_offset
!= INV_OFFSET
);
1719 * Save info needed for meta data update.
1721 * requested_bytes: Number of bytes from the start of the first
1722 * newly allocated cluster to the end of the (possibly shortened
1723 * before) write request.
1725 * avail_bytes: Number of bytes from the start of the first
1726 * newly allocated to the end of the last newly allocated cluster.
1728 * nb_bytes: The number of bytes from the start of the first
1729 * newly allocated cluster to the end of the area that the write
1730 * request actually writes to (excluding COW at the end)
1732 uint64_t requested_bytes
= *bytes
+ offset_into_cluster(s
, guest_offset
);
1733 int avail_bytes
= nb_clusters
<< s
->cluster_bits
;
1734 int nb_bytes
= MIN(requested_bytes
, avail_bytes
);
1736 *host_offset
= alloc_cluster_offset
+ offset_into_cluster(s
, guest_offset
);
1737 *bytes
= MIN(*bytes
, nb_bytes
- offset_into_cluster(s
, guest_offset
));
1738 assert(*bytes
!= 0);
1740 ret
= calculate_l2_meta(bs
, alloc_cluster_offset
, guest_offset
, *bytes
,
1741 l2_slice
, m
, false);
1749 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
1754 * For a given area on the virtual disk defined by @offset and @bytes,
1755 * find the corresponding area on the qcow2 image, allocating new
1756 * clusters (or subclusters) if necessary. The result can span a
1757 * combination of allocated and previously unallocated clusters.
1759 * Note that offset may not be cluster aligned. In this case, the returned
1760 * *host_offset points to exact byte referenced by offset and therefore
1761 * isn't cluster aligned as well.
1763 * On return, @host_offset is set to the beginning of the requested
1764 * area. This area is guaranteed to be contiguous on the qcow2 file
1765 * but it can be smaller than initially requested. In this case @bytes
1766 * is updated with the actual size.
1768 * If any clusters or subclusters were allocated then @m contains a
1769 * list with the information of all the affected regions. Note that
1770 * this can happen regardless of whether this function succeeds or
1771 * not. The caller is responsible for updating the L2 metadata of the
1772 * allocated clusters (on success) or freeing them (on failure), and
1773 * for clearing the contents of @m afterwards in both cases.
1775 * If the request conflicts with another write request in flight, the coroutine
1776 * is queued and will be reentered when the dependency has completed.
1778 * Return 0 on success and -errno in error cases
1780 int coroutine_fn
qcow2_alloc_host_offset(BlockDriverState
*bs
, uint64_t offset
,
1781 unsigned int *bytes
,
1782 uint64_t *host_offset
,
1785 BDRVQcow2State
*s
= bs
->opaque
;
1786 uint64_t start
, remaining
;
1787 uint64_t cluster_offset
;
1791 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset
, *bytes
);
1796 cluster_offset
= INV_OFFSET
;
1797 *host_offset
= INV_OFFSET
;
1803 if (*host_offset
== INV_OFFSET
&& cluster_offset
!= INV_OFFSET
) {
1804 *host_offset
= cluster_offset
;
1807 assert(remaining
>= cur_bytes
);
1810 remaining
-= cur_bytes
;
1812 if (cluster_offset
!= INV_OFFSET
) {
1813 cluster_offset
+= cur_bytes
;
1816 if (remaining
== 0) {
1820 cur_bytes
= remaining
;
1823 * Now start gathering as many contiguous clusters as possible:
1825 * 1. Check for overlaps with in-flight allocations
1827 * a) Overlap not in the first cluster -> shorten this request and
1828 * let the caller handle the rest in its next loop iteration.
1830 * b) Real overlaps of two requests. Yield and restart the search
1831 * for contiguous clusters (the situation could have changed
1832 * while we were sleeping)
1834 * c) TODO: Request starts in the same cluster as the in-flight
1835 * allocation ends. Shorten the COW of the in-fight allocation,
1836 * set cluster_offset to write to the same cluster and set up
1837 * the right synchronisation between the in-flight request and
1840 ret
= handle_dependencies(bs
, start
, &cur_bytes
, m
);
1841 if (ret
== -EAGAIN
) {
1842 /* Currently handle_dependencies() doesn't yield if we already had
1843 * an allocation. If it did, we would have to clean up the L2Meta
1844 * structs before starting over. */
1847 } else if (ret
< 0) {
1849 } else if (cur_bytes
== 0) {
1852 /* handle_dependencies() may have decreased cur_bytes (shortened
1853 * the allocations below) so that the next dependency is processed
1854 * correctly during the next loop iteration. */
1858 * 2. Count contiguous COPIED clusters.
1860 ret
= handle_copied(bs
, start
, &cluster_offset
, &cur_bytes
, m
);
1865 } else if (cur_bytes
== 0) {
1870 * 3. If the request still hasn't completed, allocate new clusters,
1871 * considering any cluster_offset of steps 1c or 2.
1873 ret
= handle_alloc(bs
, start
, &cluster_offset
, &cur_bytes
, m
);
1879 assert(cur_bytes
== 0);
1884 *bytes
-= remaining
;
1886 assert(*host_offset
!= INV_OFFSET
);
1887 assert(offset_into_cluster(s
, *host_offset
) ==
1888 offset_into_cluster(s
, offset
));
1894 * This discards as many clusters of nb_clusters as possible at once (i.e.
1895 * all clusters in the same L2 slice) and returns the number of discarded
1898 static int discard_in_l2_slice(BlockDriverState
*bs
, uint64_t offset
,
1899 uint64_t nb_clusters
,
1900 enum qcow2_discard_type type
, bool full_discard
)
1902 BDRVQcow2State
*s
= bs
->opaque
;
1908 ret
= get_cluster_table(bs
, offset
, &l2_slice
, &l2_index
);
1913 /* Limit nb_clusters to one L2 slice */
1914 nb_clusters
= MIN(nb_clusters
, s
->l2_slice_size
- l2_index
);
1915 assert(nb_clusters
<= INT_MAX
);
1917 for (i
= 0; i
< nb_clusters
; i
++) {
1918 uint64_t old_l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
+ i
);
1919 uint64_t old_l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
+ i
);
1920 uint64_t new_l2_entry
= old_l2_entry
;
1921 uint64_t new_l2_bitmap
= old_l2_bitmap
;
1922 QCow2ClusterType cluster_type
=
1923 qcow2_get_cluster_type(bs
, old_l2_entry
);
1926 * If full_discard is true, the cluster should not read back as zeroes,
1927 * but rather fall through to the backing file.
1929 * If full_discard is false, make sure that a discarded area reads back
1930 * as zeroes for v3 images (we cannot do it for v2 without actually
1931 * writing a zero-filled buffer). We can skip the operation if the
1932 * cluster is already marked as zero, or if it's unallocated and we
1933 * don't have a backing file.
1935 * TODO We might want to use bdrv_block_status(bs) here, but we're
1936 * holding s->lock, so that doesn't work today.
1939 new_l2_entry
= new_l2_bitmap
= 0;
1940 } else if (bs
->backing
|| qcow2_cluster_is_allocated(cluster_type
)) {
1941 if (has_subclusters(s
)) {
1943 new_l2_bitmap
= QCOW_L2_BITMAP_ALL_ZEROES
;
1945 new_l2_entry
= s
->qcow_version
>= 3 ? QCOW_OFLAG_ZERO
: 0;
1949 if (old_l2_entry
== new_l2_entry
&& old_l2_bitmap
== new_l2_bitmap
) {
1953 /* First remove L2 entries */
1954 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
1955 set_l2_entry(s
, l2_slice
, l2_index
+ i
, new_l2_entry
);
1956 if (has_subclusters(s
)) {
1957 set_l2_bitmap(s
, l2_slice
, l2_index
+ i
, new_l2_bitmap
);
1959 /* Then decrease the refcount */
1960 qcow2_free_any_cluster(bs
, old_l2_entry
, type
);
1963 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
1968 int qcow2_cluster_discard(BlockDriverState
*bs
, uint64_t offset
,
1969 uint64_t bytes
, enum qcow2_discard_type type
,
1972 BDRVQcow2State
*s
= bs
->opaque
;
1973 uint64_t end_offset
= offset
+ bytes
;
1974 uint64_t nb_clusters
;
1978 /* Caller must pass aligned values, except at image end */
1979 assert(QEMU_IS_ALIGNED(offset
, s
->cluster_size
));
1980 assert(QEMU_IS_ALIGNED(end_offset
, s
->cluster_size
) ||
1981 end_offset
== bs
->total_sectors
<< BDRV_SECTOR_BITS
);
1983 nb_clusters
= size_to_clusters(s
, bytes
);
1985 s
->cache_discards
= true;
1987 /* Each L2 slice is handled by its own loop iteration */
1988 while (nb_clusters
> 0) {
1989 cleared
= discard_in_l2_slice(bs
, offset
, nb_clusters
, type
,
1996 nb_clusters
-= cleared
;
1997 offset
+= (cleared
* s
->cluster_size
);
2002 s
->cache_discards
= false;
2003 qcow2_process_discards(bs
, ret
);
2009 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
2010 * all clusters in the same L2 slice) and returns the number of zeroed
2013 static int zero_in_l2_slice(BlockDriverState
*bs
, uint64_t offset
,
2014 uint64_t nb_clusters
, int flags
)
2016 BDRVQcow2State
*s
= bs
->opaque
;
2022 ret
= get_cluster_table(bs
, offset
, &l2_slice
, &l2_index
);
2027 /* Limit nb_clusters to one L2 slice */
2028 nb_clusters
= MIN(nb_clusters
, s
->l2_slice_size
- l2_index
);
2029 assert(nb_clusters
<= INT_MAX
);
2031 for (i
= 0; i
< nb_clusters
; i
++) {
2032 uint64_t old_l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
+ i
);
2033 uint64_t old_l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
+ i
);
2034 QCow2ClusterType type
= qcow2_get_cluster_type(bs
, old_l2_entry
);
2035 bool unmap
= (type
== QCOW2_CLUSTER_COMPRESSED
) ||
2036 ((flags
& BDRV_REQ_MAY_UNMAP
) && qcow2_cluster_is_allocated(type
));
2037 uint64_t new_l2_entry
= unmap
? 0 : old_l2_entry
;
2038 uint64_t new_l2_bitmap
= old_l2_bitmap
;
2040 if (has_subclusters(s
)) {
2041 new_l2_bitmap
= QCOW_L2_BITMAP_ALL_ZEROES
;
2043 new_l2_entry
|= QCOW_OFLAG_ZERO
;
2046 if (old_l2_entry
== new_l2_entry
&& old_l2_bitmap
== new_l2_bitmap
) {
2050 /* First update L2 entries */
2051 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
2052 set_l2_entry(s
, l2_slice
, l2_index
+ i
, new_l2_entry
);
2053 if (has_subclusters(s
)) {
2054 set_l2_bitmap(s
, l2_slice
, l2_index
+ i
, new_l2_bitmap
);
2057 /* Then decrease the refcount */
2059 qcow2_free_any_cluster(bs
, old_l2_entry
, QCOW2_DISCARD_REQUEST
);
2063 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
2068 static int zero_l2_subclusters(BlockDriverState
*bs
, uint64_t offset
,
2069 unsigned nb_subclusters
)
2071 BDRVQcow2State
*s
= bs
->opaque
;
2073 uint64_t old_l2_bitmap
, l2_bitmap
;
2074 int l2_index
, ret
, sc
= offset_to_sc_index(s
, offset
);
2076 /* For full clusters use zero_in_l2_slice() instead */
2077 assert(nb_subclusters
> 0 && nb_subclusters
< s
->subclusters_per_cluster
);
2078 assert(sc
+ nb_subclusters
<= s
->subclusters_per_cluster
);
2079 assert(offset_into_subcluster(s
, offset
) == 0);
2081 ret
= get_cluster_table(bs
, offset
, &l2_slice
, &l2_index
);
2086 switch (qcow2_get_cluster_type(bs
, get_l2_entry(s
, l2_slice
, l2_index
))) {
2087 case QCOW2_CLUSTER_COMPRESSED
:
2088 ret
= -ENOTSUP
; /* We cannot partially zeroize compressed clusters */
2090 case QCOW2_CLUSTER_NORMAL
:
2091 case QCOW2_CLUSTER_UNALLOCATED
:
2094 g_assert_not_reached();
2097 old_l2_bitmap
= l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
);
2099 l2_bitmap
|= QCOW_OFLAG_SUB_ZERO_RANGE(sc
, sc
+ nb_subclusters
);
2100 l2_bitmap
&= ~QCOW_OFLAG_SUB_ALLOC_RANGE(sc
, sc
+ nb_subclusters
);
2102 if (old_l2_bitmap
!= l2_bitmap
) {
2103 set_l2_bitmap(s
, l2_slice
, l2_index
, l2_bitmap
);
2104 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
2109 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
2114 int coroutine_fn
qcow2_subcluster_zeroize(BlockDriverState
*bs
, uint64_t offset
,
2115 uint64_t bytes
, int flags
)
2117 BDRVQcow2State
*s
= bs
->opaque
;
2118 uint64_t end_offset
= offset
+ bytes
;
2119 uint64_t nb_clusters
;
2120 unsigned head
, tail
;
2124 /* If we have to stay in sync with an external data file, zero out
2125 * s->data_file first. */
2126 if (data_file_is_raw(bs
)) {
2127 assert(has_data_file(bs
));
2128 ret
= bdrv_co_pwrite_zeroes(s
->data_file
, offset
, bytes
, flags
);
2134 /* Caller must pass aligned values, except at image end */
2135 assert(offset_into_subcluster(s
, offset
) == 0);
2136 assert(offset_into_subcluster(s
, end_offset
) == 0 ||
2137 end_offset
>= bs
->total_sectors
<< BDRV_SECTOR_BITS
);
2140 * The zero flag is only supported by version 3 and newer. However, if we
2141 * have no backing file, we can resort to discard in version 2.
2143 if (s
->qcow_version
< 3) {
2145 return qcow2_cluster_discard(bs
, offset
, bytes
,
2146 QCOW2_DISCARD_REQUEST
, false);
2151 head
= MIN(end_offset
, ROUND_UP(offset
, s
->cluster_size
)) - offset
;
2154 tail
= (end_offset
>= bs
->total_sectors
<< BDRV_SECTOR_BITS
) ? 0 :
2155 end_offset
- MAX(offset
, start_of_cluster(s
, end_offset
));
2158 s
->cache_discards
= true;
2161 ret
= zero_l2_subclusters(bs
, offset
- head
,
2162 size_to_subclusters(s
, head
));
2168 /* Each L2 slice is handled by its own loop iteration */
2169 nb_clusters
= size_to_clusters(s
, end_offset
- offset
);
2171 while (nb_clusters
> 0) {
2172 cleared
= zero_in_l2_slice(bs
, offset
, nb_clusters
, flags
);
2178 nb_clusters
-= cleared
;
2179 offset
+= (cleared
* s
->cluster_size
);
2183 ret
= zero_l2_subclusters(bs
, end_offset
, size_to_subclusters(s
, tail
));
2191 s
->cache_discards
= false;
2192 qcow2_process_discards(bs
, ret
);
2198 * Expands all zero clusters in a specific L1 table (or deallocates them, for
2199 * non-backed non-pre-allocated zero clusters).
2201 * l1_entries and *visited_l1_entries are used to keep track of progress for
2202 * status_cb(). l1_entries contains the total number of L1 entries and
2203 * *visited_l1_entries counts all visited L1 entries.
2205 static int expand_zero_clusters_in_l1(BlockDriverState
*bs
, uint64_t *l1_table
,
2206 int l1_size
, int64_t *visited_l1_entries
,
2208 BlockDriverAmendStatusCB
*status_cb
,
2211 BDRVQcow2State
*s
= bs
->opaque
;
2212 bool is_active_l1
= (l1_table
== s
->l1_table
);
2213 uint64_t *l2_slice
= NULL
;
2214 unsigned slice
, slice_size2
, n_slices
;
2218 /* qcow2_downgrade() is not allowed in images with subclusters */
2219 assert(!has_subclusters(s
));
2221 slice_size2
= s
->l2_slice_size
* l2_entry_size(s
);
2222 n_slices
= s
->cluster_size
/ slice_size2
;
2224 if (!is_active_l1
) {
2225 /* inactive L2 tables require a buffer to be stored in when loading
2227 l2_slice
= qemu_try_blockalign(bs
->file
->bs
, slice_size2
);
2228 if (l2_slice
== NULL
) {
2233 for (i
= 0; i
< l1_size
; i
++) {
2234 uint64_t l2_offset
= l1_table
[i
] & L1E_OFFSET_MASK
;
2235 uint64_t l2_refcount
;
2239 (*visited_l1_entries
)++;
2241 status_cb(bs
, *visited_l1_entries
, l1_entries
, cb_opaque
);
2246 if (offset_into_cluster(s
, l2_offset
)) {
2247 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#"
2248 PRIx64
" unaligned (L1 index: %#x)",
2254 ret
= qcow2_get_refcount(bs
, l2_offset
>> s
->cluster_bits
,
2260 for (slice
= 0; slice
< n_slices
; slice
++) {
2261 uint64_t slice_offset
= l2_offset
+ slice
* slice_size2
;
2262 bool l2_dirty
= false;
2264 /* get active L2 tables from cache */
2265 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, slice_offset
,
2266 (void **)&l2_slice
);
2268 /* load inactive L2 tables from disk */
2269 ret
= bdrv_pread(bs
->file
, slice_offset
, slice_size2
,
2276 for (j
= 0; j
< s
->l2_slice_size
; j
++) {
2277 uint64_t l2_entry
= get_l2_entry(s
, l2_slice
, j
);
2278 int64_t offset
= l2_entry
& L2E_OFFSET_MASK
;
2279 QCow2ClusterType cluster_type
=
2280 qcow2_get_cluster_type(bs
, l2_entry
);
2282 if (cluster_type
!= QCOW2_CLUSTER_ZERO_PLAIN
&&
2283 cluster_type
!= QCOW2_CLUSTER_ZERO_ALLOC
) {
2287 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
2290 * not backed; therefore we can simply deallocate the
2291 * cluster. No need to call set_l2_bitmap(), this
2292 * function doesn't support images with subclusters.
2294 set_l2_entry(s
, l2_slice
, j
, 0);
2299 offset
= qcow2_alloc_clusters(bs
, s
->cluster_size
);
2305 /* The offset must fit in the offset field */
2306 assert((offset
& L2E_OFFSET_MASK
) == offset
);
2308 if (l2_refcount
> 1) {
2309 /* For shared L2 tables, set the refcount accordingly
2310 * (it is already 1 and needs to be l2_refcount) */
2311 ret
= qcow2_update_cluster_refcount(
2312 bs
, offset
>> s
->cluster_bits
,
2313 refcount_diff(1, l2_refcount
), false,
2314 QCOW2_DISCARD_OTHER
);
2316 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
2317 QCOW2_DISCARD_OTHER
);
2323 if (offset_into_cluster(s
, offset
)) {
2324 int l2_index
= slice
* s
->l2_slice_size
+ j
;
2325 qcow2_signal_corruption(
2327 "Cluster allocation offset "
2328 "%#" PRIx64
" unaligned (L2 offset: %#"
2329 PRIx64
", L2 index: %#x)", offset
,
2330 l2_offset
, l2_index
);
2331 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
2332 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
2333 QCOW2_DISCARD_ALWAYS
);
2339 ret
= qcow2_pre_write_overlap_check(bs
, 0, offset
,
2340 s
->cluster_size
, true);
2342 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
2343 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
2344 QCOW2_DISCARD_ALWAYS
);
2349 ret
= bdrv_pwrite_zeroes(s
->data_file
, offset
,
2350 s
->cluster_size
, 0);
2352 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
2353 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
2354 QCOW2_DISCARD_ALWAYS
);
2359 if (l2_refcount
== 1) {
2360 set_l2_entry(s
, l2_slice
, j
, offset
| QCOW_OFLAG_COPIED
);
2362 set_l2_entry(s
, l2_slice
, j
, offset
);
2365 * No need to call set_l2_bitmap() after set_l2_entry() because
2366 * this function doesn't support images with subclusters.
2373 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
2374 qcow2_cache_depends_on_flush(s
->l2_table_cache
);
2376 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
2379 ret
= qcow2_pre_write_overlap_check(
2380 bs
, QCOW2_OL_INACTIVE_L2
| QCOW2_OL_ACTIVE_L2
,
2381 slice_offset
, slice_size2
, false);
2386 ret
= bdrv_pwrite(bs
->file
, slice_offset
, slice_size2
,
2395 (*visited_l1_entries
)++;
2397 status_cb(bs
, *visited_l1_entries
, l1_entries
, cb_opaque
);
2405 if (!is_active_l1
) {
2406 qemu_vfree(l2_slice
);
2408 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
2415 * For backed images, expands all zero clusters on the image. For non-backed
2416 * images, deallocates all non-pre-allocated zero clusters (and claims the
2417 * allocation for pre-allocated ones). This is important for downgrading to a
2418 * qcow2 version which doesn't yet support metadata zero clusters.
2420 int qcow2_expand_zero_clusters(BlockDriverState
*bs
,
2421 BlockDriverAmendStatusCB
*status_cb
,
2424 BDRVQcow2State
*s
= bs
->opaque
;
2425 uint64_t *l1_table
= NULL
;
2426 int64_t l1_entries
= 0, visited_l1_entries
= 0;
2431 l1_entries
= s
->l1_size
;
2432 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
2433 l1_entries
+= s
->snapshots
[i
].l1_size
;
2437 ret
= expand_zero_clusters_in_l1(bs
, s
->l1_table
, s
->l1_size
,
2438 &visited_l1_entries
, l1_entries
,
2439 status_cb
, cb_opaque
);
2444 /* Inactive L1 tables may point to active L2 tables - therefore it is
2445 * necessary to flush the L2 table cache before trying to access the L2
2446 * tables pointed to by inactive L1 entries (else we might try to expand
2447 * zero clusters that have already been expanded); furthermore, it is also
2448 * necessary to empty the L2 table cache, since it may contain tables which
2449 * are now going to be modified directly on disk, bypassing the cache.
2450 * qcow2_cache_empty() does both for us. */
2451 ret
= qcow2_cache_empty(bs
, s
->l2_table_cache
);
2456 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
2458 uint64_t *new_l1_table
;
2459 Error
*local_err
= NULL
;
2461 ret
= qcow2_validate_table(bs
, s
->snapshots
[i
].l1_table_offset
,
2462 s
->snapshots
[i
].l1_size
, L1E_SIZE
,
2463 QCOW_MAX_L1_SIZE
, "Snapshot L1 table",
2466 error_report_err(local_err
);
2470 l1_size2
= s
->snapshots
[i
].l1_size
* L1E_SIZE
;
2471 new_l1_table
= g_try_realloc(l1_table
, l1_size2
);
2473 if (!new_l1_table
) {
2478 l1_table
= new_l1_table
;
2480 ret
= bdrv_pread(bs
->file
, s
->snapshots
[i
].l1_table_offset
, l1_size2
,
2486 for (j
= 0; j
< s
->snapshots
[i
].l1_size
; j
++) {
2487 be64_to_cpus(&l1_table
[j
]);
2490 ret
= expand_zero_clusters_in_l1(bs
, l1_table
, s
->snapshots
[i
].l1_size
,
2491 &visited_l1_entries
, l1_entries
,
2492 status_cb
, cb_opaque
);
2505 void qcow2_parse_compressed_l2_entry(BlockDriverState
*bs
, uint64_t l2_entry
,
2506 uint64_t *coffset
, int *csize
)
2508 BDRVQcow2State
*s
= bs
->opaque
;
2511 assert(qcow2_get_cluster_type(bs
, l2_entry
) == QCOW2_CLUSTER_COMPRESSED
);
2513 *coffset
= l2_entry
& s
->cluster_offset_mask
;
2515 nb_csectors
= ((l2_entry
>> s
->csize_shift
) & s
->csize_mask
) + 1;
2516 *csize
= nb_csectors
* QCOW2_COMPRESSED_SECTOR_SIZE
-
2517 (*coffset
& (QCOW2_COMPRESSED_SECTOR_SIZE
- 1));