4 * Copyright (c) 2021 Western Digital Corporation or its affiliates.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
23 #include "sysemu/cpu-timers.h"
24 #include "sysemu/device_tree.h"
26 #define RISCV_TIMEBASE_FREQ 1000000000 /* 1Ghz */
27 #define MAKE_32BIT_MASK(shift, length) \
28 (((uint32_t)(~0UL) >> (32 - (length))) << (shift))
31 * To keep it simple, any event can be mapped to any programmable counters in
32 * QEMU. The generic cycle & instruction count events can also be monitored
33 * using programmable counters. In that case, mcycle & minstret must continue
34 * to provide the correct value as well. Heterogeneous PMU per hart is not
35 * supported yet. Thus, number of counters are same across all harts.
37 void riscv_pmu_generate_fdt_node(void *fdt
, int num_ctrs
, char *pmu_name
)
39 uint32_t fdt_event_ctr_map
[15] = {};
42 /* All the programmable counters can map to any event */
43 cmask
= MAKE_32BIT_MASK(3, num_ctrs
);
46 * The event encoding is specified in the SBI specification
47 * Event idx is a 20bits wide number encoded as follows:
48 * event_idx[19:16] = type
49 * event_idx[15:0] = code
50 * The code field in cache events are encoded as follows:
51 * event_idx.code[15:3] = cache_id
52 * event_idx.code[2:1] = op_id
53 * event_idx.code[0:0] = result_id
56 /* SBI_PMU_HW_CPU_CYCLES: 0x01 : type(0x00) */
57 fdt_event_ctr_map
[0] = cpu_to_be32(0x00000001);
58 fdt_event_ctr_map
[1] = cpu_to_be32(0x00000001);
59 fdt_event_ctr_map
[2] = cpu_to_be32(cmask
| 1 << 0);
61 /* SBI_PMU_HW_INSTRUCTIONS: 0x02 : type(0x00) */
62 fdt_event_ctr_map
[3] = cpu_to_be32(0x00000002);
63 fdt_event_ctr_map
[4] = cpu_to_be32(0x00000002);
64 fdt_event_ctr_map
[5] = cpu_to_be32(cmask
| 1 << 2);
66 /* SBI_PMU_HW_CACHE_DTLB : 0x03 READ : 0x00 MISS : 0x00 type(0x01) */
67 fdt_event_ctr_map
[6] = cpu_to_be32(0x00010019);
68 fdt_event_ctr_map
[7] = cpu_to_be32(0x00010019);
69 fdt_event_ctr_map
[8] = cpu_to_be32(cmask
);
71 /* SBI_PMU_HW_CACHE_DTLB : 0x03 WRITE : 0x01 MISS : 0x00 type(0x01) */
72 fdt_event_ctr_map
[9] = cpu_to_be32(0x0001001B);
73 fdt_event_ctr_map
[10] = cpu_to_be32(0x0001001B);
74 fdt_event_ctr_map
[11] = cpu_to_be32(cmask
);
76 /* SBI_PMU_HW_CACHE_ITLB : 0x04 READ : 0x00 MISS : 0x00 type(0x01) */
77 fdt_event_ctr_map
[12] = cpu_to_be32(0x00010021);
78 fdt_event_ctr_map
[13] = cpu_to_be32(0x00010021);
79 fdt_event_ctr_map
[14] = cpu_to_be32(cmask
);
81 /* This a OpenSBI specific DT property documented in OpenSBI docs */
82 qemu_fdt_setprop(fdt
, pmu_name
, "riscv,event-to-mhpmcounters",
83 fdt_event_ctr_map
, sizeof(fdt_event_ctr_map
));
86 static bool riscv_pmu_counter_valid(RISCVCPU
*cpu
, uint32_t ctr_idx
)
88 if (ctr_idx
< 3 || ctr_idx
>= RV_MAX_MHPMCOUNTERS
||
89 !(cpu
->pmu_avail_ctrs
& BIT(ctr_idx
))) {
96 static bool riscv_pmu_counter_enabled(RISCVCPU
*cpu
, uint32_t ctr_idx
)
98 CPURISCVState
*env
= &cpu
->env
;
100 if (riscv_pmu_counter_valid(cpu
, ctr_idx
) &&
101 !get_field(env
->mcountinhibit
, BIT(ctr_idx
))) {
108 static int riscv_pmu_incr_ctr_rv32(RISCVCPU
*cpu
, uint32_t ctr_idx
)
110 CPURISCVState
*env
= &cpu
->env
;
111 target_ulong max_val
= UINT32_MAX
;
112 PMUCTRState
*counter
= &env
->pmu_ctrs
[ctr_idx
];
113 bool virt_on
= env
->virt_enabled
;
115 /* Privilege mode filtering */
116 if ((env
->priv
== PRV_M
&&
117 (env
->mhpmeventh_val
[ctr_idx
] & MHPMEVENTH_BIT_MINH
)) ||
118 (env
->priv
== PRV_S
&& virt_on
&&
119 (env
->mhpmeventh_val
[ctr_idx
] & MHPMEVENTH_BIT_VSINH
)) ||
120 (env
->priv
== PRV_U
&& virt_on
&&
121 (env
->mhpmeventh_val
[ctr_idx
] & MHPMEVENTH_BIT_VUINH
)) ||
122 (env
->priv
== PRV_S
&& !virt_on
&&
123 (env
->mhpmeventh_val
[ctr_idx
] & MHPMEVENTH_BIT_SINH
)) ||
124 (env
->priv
== PRV_U
&& !virt_on
&&
125 (env
->mhpmeventh_val
[ctr_idx
] & MHPMEVENTH_BIT_UINH
))) {
129 /* Handle the overflow scenario */
130 if (counter
->mhpmcounter_val
== max_val
) {
131 if (counter
->mhpmcounterh_val
== max_val
) {
132 counter
->mhpmcounter_val
= 0;
133 counter
->mhpmcounterh_val
= 0;
134 /* Generate interrupt only if OF bit is clear */
135 if (!(env
->mhpmeventh_val
[ctr_idx
] & MHPMEVENTH_BIT_OF
)) {
136 env
->mhpmeventh_val
[ctr_idx
] |= MHPMEVENTH_BIT_OF
;
137 riscv_cpu_update_mip(env
, MIP_LCOFIP
, BOOL_TO_MASK(1));
140 counter
->mhpmcounterh_val
++;
143 counter
->mhpmcounter_val
++;
149 static int riscv_pmu_incr_ctr_rv64(RISCVCPU
*cpu
, uint32_t ctr_idx
)
151 CPURISCVState
*env
= &cpu
->env
;
152 PMUCTRState
*counter
= &env
->pmu_ctrs
[ctr_idx
];
153 uint64_t max_val
= UINT64_MAX
;
154 bool virt_on
= env
->virt_enabled
;
156 /* Privilege mode filtering */
157 if ((env
->priv
== PRV_M
&&
158 (env
->mhpmevent_val
[ctr_idx
] & MHPMEVENT_BIT_MINH
)) ||
159 (env
->priv
== PRV_S
&& virt_on
&&
160 (env
->mhpmevent_val
[ctr_idx
] & MHPMEVENT_BIT_VSINH
)) ||
161 (env
->priv
== PRV_U
&& virt_on
&&
162 (env
->mhpmevent_val
[ctr_idx
] & MHPMEVENT_BIT_VUINH
)) ||
163 (env
->priv
== PRV_S
&& !virt_on
&&
164 (env
->mhpmevent_val
[ctr_idx
] & MHPMEVENT_BIT_SINH
)) ||
165 (env
->priv
== PRV_U
&& !virt_on
&&
166 (env
->mhpmevent_val
[ctr_idx
] & MHPMEVENT_BIT_UINH
))) {
170 /* Handle the overflow scenario */
171 if (counter
->mhpmcounter_val
== max_val
) {
172 counter
->mhpmcounter_val
= 0;
173 /* Generate interrupt only if OF bit is clear */
174 if (!(env
->mhpmevent_val
[ctr_idx
] & MHPMEVENT_BIT_OF
)) {
175 env
->mhpmevent_val
[ctr_idx
] |= MHPMEVENT_BIT_OF
;
176 riscv_cpu_update_mip(env
, MIP_LCOFIP
, BOOL_TO_MASK(1));
179 counter
->mhpmcounter_val
++;
184 int riscv_pmu_incr_ctr(RISCVCPU
*cpu
, enum riscv_pmu_event_idx event_idx
)
188 CPURISCVState
*env
= &cpu
->env
;
191 if (!cpu
->cfg
.pmu_num
) {
194 value
= g_hash_table_lookup(cpu
->pmu_event_ctr_map
,
195 GUINT_TO_POINTER(event_idx
));
200 ctr_idx
= GPOINTER_TO_UINT(value
);
201 if (!riscv_pmu_counter_enabled(cpu
, ctr_idx
) ||
202 get_field(env
->mcountinhibit
, BIT(ctr_idx
))) {
206 if (riscv_cpu_mxl(env
) == MXL_RV32
) {
207 ret
= riscv_pmu_incr_ctr_rv32(cpu
, ctr_idx
);
209 ret
= riscv_pmu_incr_ctr_rv64(cpu
, ctr_idx
);
215 bool riscv_pmu_ctr_monitor_instructions(CPURISCVState
*env
,
222 /* Fixed instret counter */
223 if (target_ctr
== 2) {
227 cpu
= env_archcpu(env
);
228 if (!cpu
->pmu_event_ctr_map
) {
232 event_idx
= RISCV_PMU_EVENT_HW_INSTRUCTIONS
;
233 ctr_idx
= GPOINTER_TO_UINT(g_hash_table_lookup(cpu
->pmu_event_ctr_map
,
234 GUINT_TO_POINTER(event_idx
)));
239 return target_ctr
== ctr_idx
? true : false;
242 bool riscv_pmu_ctr_monitor_cycles(CPURISCVState
*env
, uint32_t target_ctr
)
248 /* Fixed mcycle counter */
249 if (target_ctr
== 0) {
253 cpu
= env_archcpu(env
);
254 if (!cpu
->pmu_event_ctr_map
) {
258 event_idx
= RISCV_PMU_EVENT_HW_CPU_CYCLES
;
259 ctr_idx
= GPOINTER_TO_UINT(g_hash_table_lookup(cpu
->pmu_event_ctr_map
,
260 GUINT_TO_POINTER(event_idx
)));
262 /* Counter zero is not used for event_ctr_map */
267 return (target_ctr
== ctr_idx
) ? true : false;
270 static gboolean
pmu_remove_event_map(gpointer key
, gpointer value
,
273 return (GPOINTER_TO_UINT(value
) == GPOINTER_TO_UINT(udata
)) ? true : false;
276 static int64_t pmu_icount_ticks_to_ns(int64_t value
)
280 if (icount_enabled()) {
281 ret
= icount_to_ns(value
);
283 ret
= (NANOSECONDS_PER_SECOND
/ RISCV_TIMEBASE_FREQ
) * value
;
289 int riscv_pmu_update_event_map(CPURISCVState
*env
, uint64_t value
,
293 RISCVCPU
*cpu
= env_archcpu(env
);
295 if (!riscv_pmu_counter_valid(cpu
, ctr_idx
) || !cpu
->pmu_event_ctr_map
) {
300 * Expected mhpmevent value is zero for reset case. Remove the current
304 g_hash_table_foreach_remove(cpu
->pmu_event_ctr_map
,
305 pmu_remove_event_map
,
306 GUINT_TO_POINTER(ctr_idx
));
310 event_idx
= value
& MHPMEVENT_IDX_MASK
;
311 if (g_hash_table_lookup(cpu
->pmu_event_ctr_map
,
312 GUINT_TO_POINTER(event_idx
))) {
317 case RISCV_PMU_EVENT_HW_CPU_CYCLES
:
318 case RISCV_PMU_EVENT_HW_INSTRUCTIONS
:
319 case RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS
:
320 case RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS
:
321 case RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS
:
324 /* We don't support any raw events right now */
327 g_hash_table_insert(cpu
->pmu_event_ctr_map
, GUINT_TO_POINTER(event_idx
),
328 GUINT_TO_POINTER(ctr_idx
));
333 static void pmu_timer_trigger_irq(RISCVCPU
*cpu
,
334 enum riscv_pmu_event_idx evt_idx
)
337 CPURISCVState
*env
= &cpu
->env
;
338 PMUCTRState
*counter
;
339 target_ulong
*mhpmevent_val
;
340 uint64_t of_bit_mask
;
341 int64_t irq_trigger_at
;
343 if (evt_idx
!= RISCV_PMU_EVENT_HW_CPU_CYCLES
&&
344 evt_idx
!= RISCV_PMU_EVENT_HW_INSTRUCTIONS
) {
348 ctr_idx
= GPOINTER_TO_UINT(g_hash_table_lookup(cpu
->pmu_event_ctr_map
,
349 GUINT_TO_POINTER(evt_idx
)));
350 if (!riscv_pmu_counter_enabled(cpu
, ctr_idx
)) {
354 if (riscv_cpu_mxl(env
) == MXL_RV32
) {
355 mhpmevent_val
= &env
->mhpmeventh_val
[ctr_idx
];
356 of_bit_mask
= MHPMEVENTH_BIT_OF
;
358 mhpmevent_val
= &env
->mhpmevent_val
[ctr_idx
];
359 of_bit_mask
= MHPMEVENT_BIT_OF
;
362 counter
= &env
->pmu_ctrs
[ctr_idx
];
363 if (counter
->irq_overflow_left
> 0) {
364 irq_trigger_at
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) +
365 counter
->irq_overflow_left
;
366 timer_mod_anticipate_ns(cpu
->pmu_timer
, irq_trigger_at
);
367 counter
->irq_overflow_left
= 0;
371 if (cpu
->pmu_avail_ctrs
& BIT(ctr_idx
)) {
372 /* Generate interrupt only if OF bit is clear */
373 if (!(*mhpmevent_val
& of_bit_mask
)) {
374 *mhpmevent_val
|= of_bit_mask
;
375 riscv_cpu_update_mip(env
, MIP_LCOFIP
, BOOL_TO_MASK(1));
380 /* Timer callback for instret and cycle counter overflow */
381 void riscv_pmu_timer_cb(void *priv
)
383 RISCVCPU
*cpu
= priv
;
385 /* Timer event was triggered only for these events */
386 pmu_timer_trigger_irq(cpu
, RISCV_PMU_EVENT_HW_CPU_CYCLES
);
387 pmu_timer_trigger_irq(cpu
, RISCV_PMU_EVENT_HW_INSTRUCTIONS
);
390 int riscv_pmu_setup_timer(CPURISCVState
*env
, uint64_t value
, uint32_t ctr_idx
)
392 uint64_t overflow_delta
, overflow_at
;
393 int64_t overflow_ns
, overflow_left
= 0;
394 RISCVCPU
*cpu
= env_archcpu(env
);
395 PMUCTRState
*counter
= &env
->pmu_ctrs
[ctr_idx
];
397 if (!riscv_pmu_counter_valid(cpu
, ctr_idx
) || !cpu
->cfg
.ext_sscofpmf
) {
402 overflow_delta
= UINT64_MAX
- value
+ 1;
404 overflow_delta
= UINT64_MAX
;
408 * QEMU supports only int64_t timers while RISC-V counters are uint64_t.
409 * Compute the leftover and save it so that it can be reprogrammed again
410 * when timer expires.
412 if (overflow_delta
> INT64_MAX
) {
413 overflow_left
= overflow_delta
- INT64_MAX
;
416 if (riscv_pmu_ctr_monitor_cycles(env
, ctr_idx
) ||
417 riscv_pmu_ctr_monitor_instructions(env
, ctr_idx
)) {
418 overflow_ns
= pmu_icount_ticks_to_ns((int64_t)overflow_delta
);
419 overflow_left
= pmu_icount_ticks_to_ns(overflow_left
) ;
423 overflow_at
= (uint64_t)qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) +
426 if (overflow_at
> INT64_MAX
) {
427 overflow_left
+= overflow_at
- INT64_MAX
;
428 counter
->irq_overflow_left
= overflow_left
;
429 overflow_at
= INT64_MAX
;
431 timer_mod_anticipate_ns(cpu
->pmu_timer
, overflow_at
);
437 int riscv_pmu_init(RISCVCPU
*cpu
, int num_counters
)
439 if (num_counters
> (RV_MAX_MHPMCOUNTERS
- 3)) {
443 cpu
->pmu_event_ctr_map
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
444 if (!cpu
->pmu_event_ctr_map
) {
445 /* PMU support can not be enabled */
446 qemu_log_mask(LOG_UNIMP
, "PMU events can't be supported\n");
447 cpu
->cfg
.pmu_num
= 0;
451 /* Create a bitmask of available programmable counters */
452 cpu
->pmu_avail_ctrs
= MAKE_32BIT_MASK(3, num_counters
);