2 * Emulation of Linux signals
4 * Copyright (c) 2003 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "user-internals.h"
22 #include "signal-common.h"
23 #include "linux-user/trace.h"
25 struct target_sigcontext
{
26 uint64_t fault_address
;
27 /* AArch64 registers */
32 /* 4K reserved for FP/SIMD state and future expansion */
33 char __reserved
[4096] __attribute__((__aligned__(16)));
36 struct target_ucontext
{
39 target_stack_t tuc_stack
;
40 target_sigset_t tuc_sigmask
;
41 /* glibc uses a 1024-bit sigset_t */
42 char __unused
[1024 / 8 - sizeof(target_sigset_t
)];
43 /* last for future expansion */
44 struct target_sigcontext tuc_mcontext
;
48 * Header to be used at the beginning of structures extending the user
49 * context. Such structures must be placed after the rt_sigframe on the stack
50 * and be 16-byte aligned. The last structure must be a dummy one with the
51 * magic and size set to 0.
53 struct target_aarch64_ctx
{
58 #define TARGET_FPSIMD_MAGIC 0x46508001
60 struct target_fpsimd_context
{
61 struct target_aarch64_ctx head
;
64 uint64_t vregs
[32 * 2]; /* really uint128_t vregs[32] */
67 #define TARGET_EXTRA_MAGIC 0x45585401
69 struct target_extra_context
{
70 struct target_aarch64_ctx head
;
71 uint64_t datap
; /* 16-byte aligned pointer to extra space cast to __u64 */
72 uint32_t size
; /* size in bytes of the extra space */
76 #define TARGET_SVE_MAGIC 0x53564501
78 struct target_sve_context
{
79 struct target_aarch64_ctx head
;
83 /* The actual SVE data immediately follows. It is laid out
84 * according to TARGET_SVE_SIG_{Z,P}REG_OFFSET, based off of
85 * the original struct pointer.
89 #define TARGET_SVE_VQ_BYTES 16
91 #define TARGET_SVE_SIG_ZREG_SIZE(VQ) ((VQ) * TARGET_SVE_VQ_BYTES)
92 #define TARGET_SVE_SIG_PREG_SIZE(VQ) ((VQ) * (TARGET_SVE_VQ_BYTES / 8))
94 #define TARGET_SVE_SIG_REGS_OFFSET \
95 QEMU_ALIGN_UP(sizeof(struct target_sve_context), TARGET_SVE_VQ_BYTES)
96 #define TARGET_SVE_SIG_ZREG_OFFSET(VQ, N) \
97 (TARGET_SVE_SIG_REGS_OFFSET + TARGET_SVE_SIG_ZREG_SIZE(VQ) * (N))
98 #define TARGET_SVE_SIG_PREG_OFFSET(VQ, N) \
99 (TARGET_SVE_SIG_ZREG_OFFSET(VQ, 32) + TARGET_SVE_SIG_PREG_SIZE(VQ) * (N))
100 #define TARGET_SVE_SIG_FFR_OFFSET(VQ) \
101 (TARGET_SVE_SIG_PREG_OFFSET(VQ, 16))
102 #define TARGET_SVE_SIG_CONTEXT_SIZE(VQ) \
103 (TARGET_SVE_SIG_PREG_OFFSET(VQ, 17))
105 #define TARGET_SVE_SIG_FLAG_SM 1
107 #define TARGET_ZA_MAGIC 0x54366345
109 struct target_za_context
{
110 struct target_aarch64_ctx head
;
112 uint16_t reserved
[3];
113 /* The actual ZA data immediately follows. */
116 #define TARGET_ZA_SIG_REGS_OFFSET \
117 QEMU_ALIGN_UP(sizeof(struct target_za_context), TARGET_SVE_VQ_BYTES)
118 #define TARGET_ZA_SIG_ZAV_OFFSET(VQ, N) \
119 (TARGET_ZA_SIG_REGS_OFFSET + (VQ) * TARGET_SVE_VQ_BYTES * (N))
120 #define TARGET_ZA_SIG_CONTEXT_SIZE(VQ) \
121 TARGET_ZA_SIG_ZAV_OFFSET(VQ, VQ * TARGET_SVE_VQ_BYTES)
123 struct target_rt_sigframe
{
124 struct target_siginfo info
;
125 struct target_ucontext uc
;
128 struct target_rt_frame_record
{
133 static void target_setup_general_frame(struct target_rt_sigframe
*sf
,
134 CPUARMState
*env
, target_sigset_t
*set
)
138 __put_user(0, &sf
->uc
.tuc_flags
);
139 __put_user(0, &sf
->uc
.tuc_link
);
141 target_save_altstack(&sf
->uc
.tuc_stack
, env
);
143 for (i
= 0; i
< 31; i
++) {
144 __put_user(env
->xregs
[i
], &sf
->uc
.tuc_mcontext
.regs
[i
]);
146 __put_user(env
->xregs
[31], &sf
->uc
.tuc_mcontext
.sp
);
147 __put_user(env
->pc
, &sf
->uc
.tuc_mcontext
.pc
);
148 __put_user(pstate_read(env
), &sf
->uc
.tuc_mcontext
.pstate
);
150 __put_user(env
->exception
.vaddress
, &sf
->uc
.tuc_mcontext
.fault_address
);
152 for (i
= 0; i
< TARGET_NSIG_WORDS
; i
++) {
153 __put_user(set
->sig
[i
], &sf
->uc
.tuc_sigmask
.sig
[i
]);
157 static void target_setup_fpsimd_record(struct target_fpsimd_context
*fpsimd
,
162 __put_user(TARGET_FPSIMD_MAGIC
, &fpsimd
->head
.magic
);
163 __put_user(sizeof(struct target_fpsimd_context
), &fpsimd
->head
.size
);
164 __put_user(vfp_get_fpsr(env
), &fpsimd
->fpsr
);
165 __put_user(vfp_get_fpcr(env
), &fpsimd
->fpcr
);
167 for (i
= 0; i
< 32; i
++) {
168 uint64_t *q
= aa64_vfp_qreg(env
, i
);
169 #if TARGET_BIG_ENDIAN
170 __put_user(q
[0], &fpsimd
->vregs
[i
* 2 + 1]);
171 __put_user(q
[1], &fpsimd
->vregs
[i
* 2]);
173 __put_user(q
[0], &fpsimd
->vregs
[i
* 2]);
174 __put_user(q
[1], &fpsimd
->vregs
[i
* 2 + 1]);
179 static void target_setup_extra_record(struct target_extra_context
*extra
,
180 uint64_t datap
, uint32_t extra_size
)
182 __put_user(TARGET_EXTRA_MAGIC
, &extra
->head
.magic
);
183 __put_user(sizeof(struct target_extra_context
), &extra
->head
.size
);
184 __put_user(datap
, &extra
->datap
);
185 __put_user(extra_size
, &extra
->size
);
188 static void target_setup_end_record(struct target_aarch64_ctx
*end
)
190 __put_user(0, &end
->magic
);
191 __put_user(0, &end
->size
);
194 static void target_setup_sve_record(struct target_sve_context
*sve
,
195 CPUARMState
*env
, int size
)
197 int i
, j
, vq
= sve_vq(env
);
199 memset(sve
, 0, sizeof(*sve
));
200 __put_user(TARGET_SVE_MAGIC
, &sve
->head
.magic
);
201 __put_user(size
, &sve
->head
.size
);
202 __put_user(vq
* TARGET_SVE_VQ_BYTES
, &sve
->vl
);
203 if (FIELD_EX64(env
->svcr
, SVCR
, SM
)) {
204 __put_user(TARGET_SVE_SIG_FLAG_SM
, &sve
->flags
);
207 /* Note that SVE regs are stored as a byte stream, with each byte element
208 * at a subsequent address. This corresponds to a little-endian store
209 * of our 64-bit hunks.
211 for (i
= 0; i
< 32; ++i
) {
212 uint64_t *z
= (void *)sve
+ TARGET_SVE_SIG_ZREG_OFFSET(vq
, i
);
213 for (j
= 0; j
< vq
* 2; ++j
) {
214 __put_user_e(env
->vfp
.zregs
[i
].d
[j
], z
+ j
, le
);
217 for (i
= 0; i
<= 16; ++i
) {
218 uint16_t *p
= (void *)sve
+ TARGET_SVE_SIG_PREG_OFFSET(vq
, i
);
219 for (j
= 0; j
< vq
; ++j
) {
220 uint64_t r
= env
->vfp
.pregs
[i
].p
[j
>> 2];
221 __put_user_e(r
>> ((j
& 3) * 16), p
+ j
, le
);
226 static void target_setup_za_record(struct target_za_context
*za
,
227 CPUARMState
*env
, int size
)
229 int vq
= sme_vq(env
);
230 int vl
= vq
* TARGET_SVE_VQ_BYTES
;
233 memset(za
, 0, sizeof(*za
));
234 __put_user(TARGET_ZA_MAGIC
, &za
->head
.magic
);
235 __put_user(size
, &za
->head
.size
);
236 __put_user(vl
, &za
->vl
);
238 if (size
== TARGET_ZA_SIG_CONTEXT_SIZE(0)) {
241 assert(size
== TARGET_ZA_SIG_CONTEXT_SIZE(vq
));
244 * Note that ZA vectors are stored as a byte stream,
245 * with each byte element at a subsequent address.
247 for (i
= 0; i
< vl
; ++i
) {
248 uint64_t *z
= (void *)za
+ TARGET_ZA_SIG_ZAV_OFFSET(vq
, i
);
249 for (j
= 0; j
< vq
* 2; ++j
) {
250 __put_user_e(env
->zarray
[i
].d
[j
], z
+ j
, le
);
255 static void target_restore_general_frame(CPUARMState
*env
,
256 struct target_rt_sigframe
*sf
)
262 target_to_host_sigset(&set
, &sf
->uc
.tuc_sigmask
);
265 for (i
= 0; i
< 31; i
++) {
266 __get_user(env
->xregs
[i
], &sf
->uc
.tuc_mcontext
.regs
[i
]);
269 __get_user(env
->xregs
[31], &sf
->uc
.tuc_mcontext
.sp
);
270 __get_user(env
->pc
, &sf
->uc
.tuc_mcontext
.pc
);
271 __get_user(pstate
, &sf
->uc
.tuc_mcontext
.pstate
);
272 pstate_write(env
, pstate
);
275 static void target_restore_fpsimd_record(CPUARMState
*env
,
276 struct target_fpsimd_context
*fpsimd
)
281 __get_user(fpsr
, &fpsimd
->fpsr
);
282 vfp_set_fpsr(env
, fpsr
);
283 __get_user(fpcr
, &fpsimd
->fpcr
);
284 vfp_set_fpcr(env
, fpcr
);
286 for (i
= 0; i
< 32; i
++) {
287 uint64_t *q
= aa64_vfp_qreg(env
, i
);
288 #if TARGET_BIG_ENDIAN
289 __get_user(q
[0], &fpsimd
->vregs
[i
* 2 + 1]);
290 __get_user(q
[1], &fpsimd
->vregs
[i
* 2]);
292 __get_user(q
[0], &fpsimd
->vregs
[i
* 2]);
293 __get_user(q
[1], &fpsimd
->vregs
[i
* 2 + 1]);
298 static bool target_restore_sve_record(CPUARMState
*env
,
299 struct target_sve_context
*sve
,
302 int i
, j
, vl
, vq
, flags
;
305 __get_user(vl
, &sve
->vl
);
306 __get_user(flags
, &sve
->flags
);
308 sm
= flags
& TARGET_SVE_SIG_FLAG_SM
;
310 /* The cpu must support Streaming or Non-streaming SVE. */
312 ? !cpu_isar_feature(aa64_sme
, env_archcpu(env
))
313 : !cpu_isar_feature(aa64_sve
, env_archcpu(env
))) {
318 * Note that we cannot use sve_vq() because that depends on the
319 * current setting of PSTATE.SM, not the state to be restored.
321 vq
= sve_vqm1_for_el_sm(env
, 0, sm
) + 1;
323 /* Reject mismatched VL. */
324 if (vl
!= vq
* TARGET_SVE_VQ_BYTES
) {
328 /* Accept empty record -- used to clear PSTATE.SM. */
329 if (size
<= sizeof(*sve
)) {
333 /* Reject non-empty but incomplete record. */
334 if (size
< TARGET_SVE_SIG_CONTEXT_SIZE(vq
)) {
338 *svcr
= FIELD_DP64(*svcr
, SVCR
, SM
, sm
);
341 * Note that SVE regs are stored as a byte stream, with each byte element
342 * at a subsequent address. This corresponds to a little-endian load
343 * of our 64-bit hunks.
345 for (i
= 0; i
< 32; ++i
) {
346 uint64_t *z
= (void *)sve
+ TARGET_SVE_SIG_ZREG_OFFSET(vq
, i
);
347 for (j
= 0; j
< vq
* 2; ++j
) {
348 __get_user_e(env
->vfp
.zregs
[i
].d
[j
], z
+ j
, le
);
351 for (i
= 0; i
<= 16; ++i
) {
352 uint16_t *p
= (void *)sve
+ TARGET_SVE_SIG_PREG_OFFSET(vq
, i
);
353 for (j
= 0; j
< vq
; ++j
) {
355 __get_user_e(r
, p
+ j
, le
);
357 env
->vfp
.pregs
[i
].p
[j
>> 2] |= (uint64_t)r
<< ((j
& 3) * 16);
359 env
->vfp
.pregs
[i
].p
[j
>> 2] = r
;
366 static bool target_restore_za_record(CPUARMState
*env
,
367 struct target_za_context
*za
,
372 if (!cpu_isar_feature(aa64_sme
, env_archcpu(env
))) {
376 __get_user(vl
, &za
->vl
);
379 /* Reject mismatched VL. */
380 if (vl
!= vq
* TARGET_SVE_VQ_BYTES
) {
384 /* Accept empty record -- used to clear PSTATE.ZA. */
385 if (size
<= TARGET_ZA_SIG_CONTEXT_SIZE(0)) {
389 /* Reject non-empty but incomplete record. */
390 if (size
< TARGET_ZA_SIG_CONTEXT_SIZE(vq
)) {
394 *svcr
= FIELD_DP64(*svcr
, SVCR
, ZA
, 1);
396 for (i
= 0; i
< vl
; ++i
) {
397 uint64_t *z
= (void *)za
+ TARGET_ZA_SIG_ZAV_OFFSET(vq
, i
);
398 for (j
= 0; j
< vq
* 2; ++j
) {
399 __get_user_e(env
->zarray
[i
].d
[j
], z
+ j
, le
);
405 static int target_restore_sigframe(CPUARMState
*env
,
406 struct target_rt_sigframe
*sf
)
408 struct target_aarch64_ctx
*ctx
, *extra
= NULL
;
409 struct target_fpsimd_context
*fpsimd
= NULL
;
410 struct target_sve_context
*sve
= NULL
;
411 struct target_za_context
*za
= NULL
;
412 uint64_t extra_datap
= 0;
413 bool used_extra
= false;
418 target_restore_general_frame(env
, sf
);
420 ctx
= (struct target_aarch64_ctx
*)sf
->uc
.tuc_mcontext
.__reserved
;
422 uint32_t magic
, size
, extra_size
;
424 __get_user(magic
, &ctx
->magic
);
425 __get_user(size
, &ctx
->size
);
439 case TARGET_FPSIMD_MAGIC
:
440 if (fpsimd
|| size
!= sizeof(struct target_fpsimd_context
)) {
443 fpsimd
= (struct target_fpsimd_context
*)ctx
;
446 case TARGET_SVE_MAGIC
:
447 if (sve
|| size
< sizeof(struct target_sve_context
)) {
450 sve
= (struct target_sve_context
*)ctx
;
454 case TARGET_ZA_MAGIC
:
455 if (za
|| size
< sizeof(struct target_za_context
)) {
458 za
= (struct target_za_context
*)ctx
;
462 case TARGET_EXTRA_MAGIC
:
463 if (extra
|| size
!= sizeof(struct target_extra_context
)) {
466 __get_user(extra_datap
,
467 &((struct target_extra_context
*)ctx
)->datap
);
468 __get_user(extra_size
,
469 &((struct target_extra_context
*)ctx
)->size
);
470 extra
= lock_user(VERIFY_READ
, extra_datap
, extra_size
, 0);
477 /* Unknown record -- we certainly didn't generate it.
478 * Did we in fact get out of sync?
482 ctx
= (void *)ctx
+ size
;
485 /* Require FPSIMD always. */
487 target_restore_fpsimd_record(env
, fpsimd
);
492 /* SVE data, if present, overwrites FPSIMD data. */
493 if (sve
&& !target_restore_sve_record(env
, sve
, sve_size
, &svcr
)) {
496 if (za
&& !target_restore_za_record(env
, za
, za_size
, &svcr
)) {
499 if (env
->svcr
!= svcr
) {
501 arm_rebuild_hflags(env
);
503 unlock_user(extra
, extra_datap
, 0);
507 unlock_user(extra
, extra_datap
, 0);
511 static abi_ulong
get_sigframe(struct target_sigaction
*ka
,
512 CPUARMState
*env
, int size
)
516 sp
= target_sigsp(get_sp_from_cpustate(env
), ka
);
518 sp
= (sp
- size
) & ~15;
530 } target_sigframe_layout
;
532 static int alloc_sigframe_space(int this_size
, target_sigframe_layout
*l
)
534 /* Make sure there will always be space for the end marker. */
535 const int std_size
= sizeof(struct target_rt_sigframe
)
536 - sizeof(struct target_aarch64_ctx
);
537 int this_loc
= l
->total_size
;
540 /* Once we have begun an extra space, all allocations go there. */
541 l
->extra_size
+= this_size
;
542 } else if (this_size
+ this_loc
> std_size
) {
543 /* This allocation does not fit in the standard space. */
544 /* Allocate the extra record. */
545 l
->extra_ofs
= this_loc
;
546 l
->total_size
+= sizeof(struct target_extra_context
);
548 /* Allocate the standard end record. */
549 l
->std_end_ofs
= l
->total_size
;
550 l
->total_size
+= sizeof(struct target_aarch64_ctx
);
552 /* Allocate the requested record. */
553 l
->extra_base
= this_loc
= l
->total_size
;
554 l
->extra_size
= this_size
;
556 l
->total_size
+= this_size
;
561 static void target_setup_frame(int usig
, struct target_sigaction
*ka
,
562 target_siginfo_t
*info
, target_sigset_t
*set
,
565 target_sigframe_layout layout
= {
566 /* Begin with the size pointing to the reserved space. */
567 .total_size
= offsetof(struct target_rt_sigframe
,
568 uc
.tuc_mcontext
.__reserved
),
570 int fpsimd_ofs
, fr_ofs
, sve_ofs
= 0, za_ofs
= 0;
571 int sve_size
= 0, za_size
= 0;
572 struct target_rt_sigframe
*frame
;
573 struct target_rt_frame_record
*fr
;
574 abi_ulong frame_addr
, return_addr
;
576 /* FPSIMD record is always in the standard space. */
577 fpsimd_ofs
= alloc_sigframe_space(sizeof(struct target_fpsimd_context
),
580 /* SVE state needs saving only if it exists. */
581 if (cpu_isar_feature(aa64_sve
, env_archcpu(env
)) ||
582 cpu_isar_feature(aa64_sme
, env_archcpu(env
))) {
583 sve_size
= QEMU_ALIGN_UP(TARGET_SVE_SIG_CONTEXT_SIZE(sve_vq(env
)), 16);
584 sve_ofs
= alloc_sigframe_space(sve_size
, &layout
);
586 if (cpu_isar_feature(aa64_sme
, env_archcpu(env
))) {
587 /* ZA state needs saving only if it is enabled. */
588 if (FIELD_EX64(env
->svcr
, SVCR
, ZA
)) {
589 za_size
= TARGET_ZA_SIG_CONTEXT_SIZE(sme_vq(env
));
591 za_size
= TARGET_ZA_SIG_CONTEXT_SIZE(0);
593 za_ofs
= alloc_sigframe_space(za_size
, &layout
);
596 if (layout
.extra_ofs
) {
597 /* Reserve space for the extra end marker. The standard end marker
598 * will have been allocated when we allocated the extra record.
601 = alloc_sigframe_space(sizeof(struct target_aarch64_ctx
), &layout
);
603 /* Reserve space for the standard end marker.
604 * Do not use alloc_sigframe_space because we cheat
605 * std_size therein to reserve space for this.
607 layout
.std_end_ofs
= layout
.total_size
;
608 layout
.total_size
+= sizeof(struct target_aarch64_ctx
);
611 /* We must always provide at least the standard 4K reserved space,
612 * even if we don't use all of it (this is part of the ABI)
614 layout
.total_size
= MAX(layout
.total_size
,
615 sizeof(struct target_rt_sigframe
));
618 * Reserve space for the standard frame unwind pair: fp, lr.
619 * Despite the name this is not a "real" record within the frame.
621 fr_ofs
= layout
.total_size
;
622 layout
.total_size
+= sizeof(struct target_rt_frame_record
);
624 frame_addr
= get_sigframe(ka
, env
, layout
.total_size
);
625 trace_user_setup_frame(env
, frame_addr
);
626 frame
= lock_user(VERIFY_WRITE
, frame_addr
, layout
.total_size
, 0);
631 target_setup_general_frame(frame
, env
, set
);
632 target_setup_fpsimd_record((void *)frame
+ fpsimd_ofs
, env
);
633 target_setup_end_record((void *)frame
+ layout
.std_end_ofs
);
634 if (layout
.extra_ofs
) {
635 target_setup_extra_record((void *)frame
+ layout
.extra_ofs
,
636 frame_addr
+ layout
.extra_base
,
638 target_setup_end_record((void *)frame
+ layout
.extra_end_ofs
);
641 target_setup_sve_record((void *)frame
+ sve_ofs
, env
, sve_size
);
644 target_setup_za_record((void *)frame
+ za_ofs
, env
, za_size
);
647 /* Set up the stack frame for unwinding. */
648 fr
= (void *)frame
+ fr_ofs
;
649 __put_user(env
->xregs
[29], &fr
->fp
);
650 __put_user(env
->xregs
[30], &fr
->lr
);
652 if (ka
->sa_flags
& TARGET_SA_RESTORER
) {
653 return_addr
= ka
->sa_restorer
;
655 return_addr
= default_rt_sigreturn
;
657 env
->xregs
[0] = usig
;
658 env
->xregs
[29] = frame_addr
+ fr_ofs
;
659 env
->xregs
[30] = return_addr
;
660 env
->xregs
[31] = frame_addr
;
661 env
->pc
= ka
->_sa_handler
;
663 /* Invoke the signal handler as if by indirect call. */
664 if (cpu_isar_feature(aa64_bti
, env_archcpu(env
))) {
668 /* Invoke the signal handler with both SM and ZA disabled. */
669 aarch64_set_svcr(env
, 0, R_SVCR_SM_MASK
| R_SVCR_ZA_MASK
);
672 tswap_siginfo(&frame
->info
, info
);
673 env
->xregs
[1] = frame_addr
+ offsetof(struct target_rt_sigframe
, info
);
674 env
->xregs
[2] = frame_addr
+ offsetof(struct target_rt_sigframe
, uc
);
677 unlock_user(frame
, frame_addr
, layout
.total_size
);
681 unlock_user(frame
, frame_addr
, layout
.total_size
);
685 void setup_rt_frame(int sig
, struct target_sigaction
*ka
,
686 target_siginfo_t
*info
, target_sigset_t
*set
,
689 target_setup_frame(sig
, ka
, info
, set
, env
);
692 void setup_frame(int sig
, struct target_sigaction
*ka
,
693 target_sigset_t
*set
, CPUARMState
*env
)
695 target_setup_frame(sig
, ka
, 0, set
, env
);
698 long do_rt_sigreturn(CPUARMState
*env
)
700 struct target_rt_sigframe
*frame
= NULL
;
701 abi_ulong frame_addr
= env
->xregs
[31];
703 trace_user_do_rt_sigreturn(env
, frame_addr
);
704 if (frame_addr
& 15) {
708 if (!lock_user_struct(VERIFY_READ
, frame
, frame_addr
, 1)) {
712 if (target_restore_sigframe(env
, frame
)) {
716 target_restore_altstack(&frame
->uc
.tuc_stack
, env
);
718 unlock_user_struct(frame
, frame_addr
, 0);
719 return -QEMU_ESIGRETURN
;
722 unlock_user_struct(frame
, frame_addr
, 0);
723 force_sig(TARGET_SIGSEGV
);
724 return -QEMU_ESIGRETURN
;
727 long do_sigreturn(CPUARMState
*env
)
729 return do_rt_sigreturn(env
);
732 void setup_sigtramp(abi_ulong sigtramp_page
)
734 uint32_t *tramp
= lock_user(VERIFY_WRITE
, sigtramp_page
, 8, 0);
735 assert(tramp
!= NULL
);
738 * mov x8,#__NR_rt_sigreturn; svc #0
739 * Since these are instructions they need to be put as little-endian
740 * regardless of target default or current CPU endianness.
742 __put_user_e(0xd2801168, &tramp
[0], le
);
743 __put_user_e(0xd4000001, &tramp
[1], le
);
745 default_rt_sigreturn
= sigtramp_page
;
746 unlock_user(tramp
, sigtramp_page
, 8);