target/ppc: Implement vclzdm/vctzdm instructions
[qemu/armbru.git] / target / riscv / cpu_helper.c
blob9eeed38c7e5ea1088fd440b8d4ac9b1cbc908c33
1 /*
2 * RISC-V CPU helpers for qemu.
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "tcg/tcg-op.h"
26 #include "trace.h"
27 #include "semihosting/common-semi.h"
29 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
31 #ifdef CONFIG_USER_ONLY
32 return 0;
33 #else
34 return env->priv;
35 #endif
38 static RISCVMXL cpu_get_xl(CPURISCVState *env)
40 #if defined(TARGET_RISCV32)
41 return MXL_RV32;
42 #elif defined(CONFIG_USER_ONLY)
43 return MXL_RV64;
44 #else
45 RISCVMXL xl = riscv_cpu_mxl(env);
48 * When emulating a 32-bit-only cpu, use RV32.
49 * When emulating a 64-bit cpu, and MXL has been reduced to RV32,
50 * MSTATUSH doesn't have UXL/SXL, therefore XLEN cannot be widened
51 * back to RV64 for lower privs.
53 if (xl != MXL_RV32) {
54 switch (env->priv) {
55 case PRV_M:
56 break;
57 case PRV_U:
58 xl = get_field(env->mstatus, MSTATUS64_UXL);
59 break;
60 default: /* PRV_S | PRV_H */
61 xl = get_field(env->mstatus, MSTATUS64_SXL);
62 break;
65 return xl;
66 #endif
69 void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc,
70 target_ulong *cs_base, uint32_t *pflags)
72 uint32_t flags = 0;
74 *pc = env->pc;
75 *cs_base = 0;
77 if (riscv_has_ext(env, RVV)) {
78 uint32_t vlmax = vext_get_vlmax(env_archcpu(env), env->vtype);
79 bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl);
80 flags = FIELD_DP32(flags, TB_FLAGS, VILL,
81 FIELD_EX64(env->vtype, VTYPE, VILL));
82 flags = FIELD_DP32(flags, TB_FLAGS, SEW,
83 FIELD_EX64(env->vtype, VTYPE, VSEW));
84 flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
85 FIELD_EX64(env->vtype, VTYPE, VLMUL));
86 flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
87 } else {
88 flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
91 #ifdef CONFIG_USER_ONLY
92 flags |= TB_FLAGS_MSTATUS_FS;
93 #else
94 flags |= cpu_mmu_index(env, 0);
95 if (riscv_cpu_fp_enabled(env)) {
96 flags |= env->mstatus & MSTATUS_FS;
99 if (riscv_has_ext(env, RVH)) {
100 if (env->priv == PRV_M ||
101 (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) ||
102 (env->priv == PRV_U && !riscv_cpu_virt_enabled(env) &&
103 get_field(env->hstatus, HSTATUS_HU))) {
104 flags = FIELD_DP32(flags, TB_FLAGS, HLSX, 1);
107 flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_FS,
108 get_field(env->mstatus_hs, MSTATUS_FS));
110 if (riscv_has_ext(env, RVJ)) {
111 int priv = flags & TB_FLAGS_PRIV_MMU_MASK;
112 bool pm_enabled = false;
113 switch (priv) {
114 case PRV_U:
115 pm_enabled = env->mmte & U_PM_ENABLE;
116 break;
117 case PRV_S:
118 pm_enabled = env->mmte & S_PM_ENABLE;
119 break;
120 case PRV_M:
121 pm_enabled = env->mmte & M_PM_ENABLE;
122 break;
123 default:
124 g_assert_not_reached();
126 flags = FIELD_DP32(flags, TB_FLAGS, PM_ENABLED, pm_enabled);
128 #endif
130 flags = FIELD_DP32(flags, TB_FLAGS, XL, cpu_get_xl(env));
132 *pflags = flags;
135 #ifndef CONFIG_USER_ONLY
136 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
138 target_ulong virt_enabled = riscv_cpu_virt_enabled(env);
140 target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
141 target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
143 target_ulong pending = env->mip & env->mie;
145 target_ulong mie = env->priv < PRV_M ||
146 (env->priv == PRV_M && mstatus_mie);
147 target_ulong sie = env->priv < PRV_S ||
148 (env->priv == PRV_S && mstatus_sie);
149 target_ulong hsie = virt_enabled || sie;
150 target_ulong vsie = virt_enabled && sie;
152 target_ulong irqs =
153 (pending & ~env->mideleg & -mie) |
154 (pending & env->mideleg & ~env->hideleg & -hsie) |
155 (pending & env->mideleg & env->hideleg & -vsie);
157 if (irqs) {
158 return ctz64(irqs); /* since non-zero */
159 } else {
160 return RISCV_EXCP_NONE; /* indicates no pending interrupt */
164 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
166 if (interrupt_request & CPU_INTERRUPT_HARD) {
167 RISCVCPU *cpu = RISCV_CPU(cs);
168 CPURISCVState *env = &cpu->env;
169 int interruptno = riscv_cpu_local_irq_pending(env);
170 if (interruptno >= 0) {
171 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
172 riscv_cpu_do_interrupt(cs);
173 return true;
176 return false;
179 /* Return true is floating point support is currently enabled */
180 bool riscv_cpu_fp_enabled(CPURISCVState *env)
182 if (env->mstatus & MSTATUS_FS) {
183 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) {
184 return false;
186 return true;
189 return false;
192 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
194 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | MSTATUS_FS |
195 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
196 MSTATUS64_UXL;
197 bool current_virt = riscv_cpu_virt_enabled(env);
199 g_assert(riscv_has_ext(env, RVH));
201 if (current_virt) {
202 /* Current V=1 and we are about to change to V=0 */
203 env->vsstatus = env->mstatus & mstatus_mask;
204 env->mstatus &= ~mstatus_mask;
205 env->mstatus |= env->mstatus_hs;
207 env->vstvec = env->stvec;
208 env->stvec = env->stvec_hs;
210 env->vsscratch = env->sscratch;
211 env->sscratch = env->sscratch_hs;
213 env->vsepc = env->sepc;
214 env->sepc = env->sepc_hs;
216 env->vscause = env->scause;
217 env->scause = env->scause_hs;
219 env->vstval = env->stval;
220 env->stval = env->stval_hs;
222 env->vsatp = env->satp;
223 env->satp = env->satp_hs;
224 } else {
225 /* Current V=0 and we are about to change to V=1 */
226 env->mstatus_hs = env->mstatus & mstatus_mask;
227 env->mstatus &= ~mstatus_mask;
228 env->mstatus |= env->vsstatus;
230 env->stvec_hs = env->stvec;
231 env->stvec = env->vstvec;
233 env->sscratch_hs = env->sscratch;
234 env->sscratch = env->vsscratch;
236 env->sepc_hs = env->sepc;
237 env->sepc = env->vsepc;
239 env->scause_hs = env->scause;
240 env->scause = env->vscause;
242 env->stval_hs = env->stval;
243 env->stval = env->vstval;
245 env->satp_hs = env->satp;
246 env->satp = env->vsatp;
250 bool riscv_cpu_virt_enabled(CPURISCVState *env)
252 if (!riscv_has_ext(env, RVH)) {
253 return false;
256 return get_field(env->virt, VIRT_ONOFF);
259 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
261 if (!riscv_has_ext(env, RVH)) {
262 return;
265 /* Flush the TLB on all virt mode changes. */
266 if (get_field(env->virt, VIRT_ONOFF) != enable) {
267 tlb_flush(env_cpu(env));
270 env->virt = set_field(env->virt, VIRT_ONOFF, enable);
273 bool riscv_cpu_two_stage_lookup(int mmu_idx)
275 return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK;
278 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
280 CPURISCVState *env = &cpu->env;
281 if (env->miclaim & interrupts) {
282 return -1;
283 } else {
284 env->miclaim |= interrupts;
285 return 0;
289 uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
291 CPURISCVState *env = &cpu->env;
292 CPUState *cs = CPU(cpu);
293 uint32_t old = env->mip;
294 bool locked = false;
296 if (!qemu_mutex_iothread_locked()) {
297 locked = true;
298 qemu_mutex_lock_iothread();
301 env->mip = (env->mip & ~mask) | (value & mask);
303 if (env->mip) {
304 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
305 } else {
306 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
309 if (locked) {
310 qemu_mutex_unlock_iothread();
313 return old;
316 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(uint32_t),
317 uint32_t arg)
319 env->rdtime_fn = fn;
320 env->rdtime_fn_arg = arg;
323 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
325 if (newpriv > PRV_M) {
326 g_assert_not_reached();
328 if (newpriv == PRV_H) {
329 newpriv = PRV_U;
331 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
332 env->priv = newpriv;
335 * Clear the load reservation - otherwise a reservation placed in one
336 * context/process can be used by another, resulting in an SC succeeding
337 * incorrectly. Version 2.2 of the ISA specification explicitly requires
338 * this behaviour, while later revisions say that the kernel "should" use
339 * an SC instruction to force the yielding of a load reservation on a
340 * preemptive context switch. As a result, do both.
342 env->load_res = -1;
346 * get_physical_address_pmp - check PMP permission for this physical address
348 * Match the PMP region and check permission for this physical address and it's
349 * TLB page. Returns 0 if the permission checking was successful
351 * @env: CPURISCVState
352 * @prot: The returned protection attributes
353 * @tlb_size: TLB page size containing addr. It could be modified after PMP
354 * permission checking. NULL if not set TLB page for addr.
355 * @addr: The physical address to be checked permission
356 * @access_type: The type of MMU access
357 * @mode: Indicates current privilege level.
359 static int get_physical_address_pmp(CPURISCVState *env, int *prot,
360 target_ulong *tlb_size, hwaddr addr,
361 int size, MMUAccessType access_type,
362 int mode)
364 pmp_priv_t pmp_priv;
365 target_ulong tlb_size_pmp = 0;
367 if (!riscv_feature(env, RISCV_FEATURE_PMP)) {
368 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
369 return TRANSLATE_SUCCESS;
372 if (!pmp_hart_has_privs(env, addr, size, 1 << access_type, &pmp_priv,
373 mode)) {
374 *prot = 0;
375 return TRANSLATE_PMP_FAIL;
378 *prot = pmp_priv_to_page_prot(pmp_priv);
379 if (tlb_size != NULL) {
380 if (pmp_is_range_in_tlb(env, addr & ~(*tlb_size - 1), &tlb_size_pmp)) {
381 *tlb_size = tlb_size_pmp;
385 return TRANSLATE_SUCCESS;
388 /* get_physical_address - get the physical address for this virtual address
390 * Do a page table walk to obtain the physical address corresponding to a
391 * virtual address. Returns 0 if the translation was successful
393 * Adapted from Spike's mmu_t::translate and mmu_t::walk
395 * @env: CPURISCVState
396 * @physical: This will be set to the calculated physical address
397 * @prot: The returned protection attributes
398 * @addr: The virtual address to be translated
399 * @fault_pte_addr: If not NULL, this will be set to fault pte address
400 * when a error occurs on pte address translation.
401 * This will already be shifted to match htval.
402 * @access_type: The type of MMU access
403 * @mmu_idx: Indicates current privilege level
404 * @first_stage: Are we in first stage translation?
405 * Second stage is used for hypervisor guest translation
406 * @two_stage: Are we going to perform two stage translation
407 * @is_debug: Is this access from a debugger or the monitor?
409 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
410 int *prot, target_ulong addr,
411 target_ulong *fault_pte_addr,
412 int access_type, int mmu_idx,
413 bool first_stage, bool two_stage,
414 bool is_debug)
416 /* NOTE: the env->pc value visible here will not be
417 * correct, but the value visible to the exception handler
418 * (riscv_cpu_do_interrupt) is correct */
419 MemTxResult res;
420 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
421 int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK;
422 bool use_background = false;
425 * Check if we should use the background registers for the two
426 * stage translation. We don't need to check if we actually need
427 * two stage translation as that happened before this function
428 * was called. Background registers will be used if the guest has
429 * forced a two stage translation to be on (in HS or M mode).
431 if (!riscv_cpu_virt_enabled(env) && two_stage) {
432 use_background = true;
435 /* MPRV does not affect the virtual-machine load/store
436 instructions, HLV, HLVX, and HSV. */
437 if (riscv_cpu_two_stage_lookup(mmu_idx)) {
438 mode = get_field(env->hstatus, HSTATUS_SPVP);
439 } else if (mode == PRV_M && access_type != MMU_INST_FETCH) {
440 if (get_field(env->mstatus, MSTATUS_MPRV)) {
441 mode = get_field(env->mstatus, MSTATUS_MPP);
445 if (first_stage == false) {
446 /* We are in stage 2 translation, this is similar to stage 1. */
447 /* Stage 2 is always taken as U-mode */
448 mode = PRV_U;
451 if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
452 *physical = addr;
453 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
454 return TRANSLATE_SUCCESS;
457 *prot = 0;
459 hwaddr base;
460 int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
462 if (first_stage == true) {
463 mxr = get_field(env->mstatus, MSTATUS_MXR);
464 } else {
465 mxr = get_field(env->vsstatus, MSTATUS_MXR);
468 if (first_stage == true) {
469 if (use_background) {
470 if (riscv_cpu_mxl(env) == MXL_RV32) {
471 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
472 vm = get_field(env->vsatp, SATP32_MODE);
473 } else {
474 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
475 vm = get_field(env->vsatp, SATP64_MODE);
477 } else {
478 if (riscv_cpu_mxl(env) == MXL_RV32) {
479 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
480 vm = get_field(env->satp, SATP32_MODE);
481 } else {
482 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
483 vm = get_field(env->satp, SATP64_MODE);
486 widened = 0;
487 } else {
488 if (riscv_cpu_mxl(env) == MXL_RV32) {
489 base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
490 vm = get_field(env->hgatp, SATP32_MODE);
491 } else {
492 base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
493 vm = get_field(env->hgatp, SATP64_MODE);
495 widened = 2;
497 /* status.SUM will be ignored if execute on background */
498 sum = get_field(env->mstatus, MSTATUS_SUM) || use_background || is_debug;
499 switch (vm) {
500 case VM_1_10_SV32:
501 levels = 2; ptidxbits = 10; ptesize = 4; break;
502 case VM_1_10_SV39:
503 levels = 3; ptidxbits = 9; ptesize = 8; break;
504 case VM_1_10_SV48:
505 levels = 4; ptidxbits = 9; ptesize = 8; break;
506 case VM_1_10_SV57:
507 levels = 5; ptidxbits = 9; ptesize = 8; break;
508 case VM_1_10_MBARE:
509 *physical = addr;
510 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
511 return TRANSLATE_SUCCESS;
512 default:
513 g_assert_not_reached();
516 CPUState *cs = env_cpu(env);
517 int va_bits = PGSHIFT + levels * ptidxbits + widened;
518 target_ulong mask, masked_msbs;
520 if (TARGET_LONG_BITS > (va_bits - 1)) {
521 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
522 } else {
523 mask = 0;
525 masked_msbs = (addr >> (va_bits - 1)) & mask;
527 if (masked_msbs != 0 && masked_msbs != mask) {
528 return TRANSLATE_FAIL;
531 int ptshift = (levels - 1) * ptidxbits;
532 int i;
534 #if !TCG_OVERSIZED_GUEST
535 restart:
536 #endif
537 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
538 target_ulong idx;
539 if (i == 0) {
540 idx = (addr >> (PGSHIFT + ptshift)) &
541 ((1 << (ptidxbits + widened)) - 1);
542 } else {
543 idx = (addr >> (PGSHIFT + ptshift)) &
544 ((1 << ptidxbits) - 1);
547 /* check that physical address of PTE is legal */
548 hwaddr pte_addr;
550 if (two_stage && first_stage) {
551 int vbase_prot;
552 hwaddr vbase;
554 /* Do the second stage translation on the base PTE address. */
555 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
556 base, NULL, MMU_DATA_LOAD,
557 mmu_idx, false, true,
558 is_debug);
560 if (vbase_ret != TRANSLATE_SUCCESS) {
561 if (fault_pte_addr) {
562 *fault_pte_addr = (base + idx * ptesize) >> 2;
564 return TRANSLATE_G_STAGE_FAIL;
567 pte_addr = vbase + idx * ptesize;
568 } else {
569 pte_addr = base + idx * ptesize;
572 int pmp_prot;
573 int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
574 sizeof(target_ulong),
575 MMU_DATA_LOAD, PRV_S);
576 if (pmp_ret != TRANSLATE_SUCCESS) {
577 return TRANSLATE_PMP_FAIL;
580 target_ulong pte;
581 if (riscv_cpu_mxl(env) == MXL_RV32) {
582 pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
583 } else {
584 pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
587 if (res != MEMTX_OK) {
588 return TRANSLATE_FAIL;
591 hwaddr ppn = pte >> PTE_PPN_SHIFT;
593 if (!(pte & PTE_V)) {
594 /* Invalid PTE */
595 return TRANSLATE_FAIL;
596 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
597 /* Inner PTE, continue walking */
598 base = ppn << PGSHIFT;
599 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
600 /* Reserved leaf PTE flags: PTE_W */
601 return TRANSLATE_FAIL;
602 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
603 /* Reserved leaf PTE flags: PTE_W + PTE_X */
604 return TRANSLATE_FAIL;
605 } else if ((pte & PTE_U) && ((mode != PRV_U) &&
606 (!sum || access_type == MMU_INST_FETCH))) {
607 /* User PTE flags when not U mode and mstatus.SUM is not set,
608 or the access type is an instruction fetch */
609 return TRANSLATE_FAIL;
610 } else if (!(pte & PTE_U) && (mode != PRV_S)) {
611 /* Supervisor PTE flags when not S mode */
612 return TRANSLATE_FAIL;
613 } else if (ppn & ((1ULL << ptshift) - 1)) {
614 /* Misaligned PPN */
615 return TRANSLATE_FAIL;
616 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
617 ((pte & PTE_X) && mxr))) {
618 /* Read access check failed */
619 return TRANSLATE_FAIL;
620 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
621 /* Write access check failed */
622 return TRANSLATE_FAIL;
623 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
624 /* Fetch access check failed */
625 return TRANSLATE_FAIL;
626 } else {
627 /* if necessary, set accessed and dirty bits. */
628 target_ulong updated_pte = pte | PTE_A |
629 (access_type == MMU_DATA_STORE ? PTE_D : 0);
631 /* Page table updates need to be atomic with MTTCG enabled */
632 if (updated_pte != pte) {
634 * - if accessed or dirty bits need updating, and the PTE is
635 * in RAM, then we do so atomically with a compare and swap.
636 * - if the PTE is in IO space or ROM, then it can't be updated
637 * and we return TRANSLATE_FAIL.
638 * - if the PTE changed by the time we went to update it, then
639 * it is no longer valid and we must re-walk the page table.
641 MemoryRegion *mr;
642 hwaddr l = sizeof(target_ulong), addr1;
643 mr = address_space_translate(cs->as, pte_addr,
644 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
645 if (memory_region_is_ram(mr)) {
646 target_ulong *pte_pa =
647 qemu_map_ram_ptr(mr->ram_block, addr1);
648 #if TCG_OVERSIZED_GUEST
649 /* MTTCG is not enabled on oversized TCG guests so
650 * page table updates do not need to be atomic */
651 *pte_pa = pte = updated_pte;
652 #else
653 target_ulong old_pte =
654 qatomic_cmpxchg(pte_pa, pte, updated_pte);
655 if (old_pte != pte) {
656 goto restart;
657 } else {
658 pte = updated_pte;
660 #endif
661 } else {
662 /* misconfigured PTE in ROM (AD bits are not preset) or
663 * PTE is in IO space and can't be updated atomically */
664 return TRANSLATE_FAIL;
668 /* for superpage mappings, make a fake leaf PTE for the TLB's
669 benefit. */
670 target_ulong vpn = addr >> PGSHIFT;
671 *physical = ((ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT) |
672 (addr & ~TARGET_PAGE_MASK);
674 /* set permissions on the TLB entry */
675 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
676 *prot |= PAGE_READ;
678 if ((pte & PTE_X)) {
679 *prot |= PAGE_EXEC;
681 /* add write permission on stores or if the page is already dirty,
682 so that we TLB miss on later writes to update the dirty bit */
683 if ((pte & PTE_W) &&
684 (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
685 *prot |= PAGE_WRITE;
687 return TRANSLATE_SUCCESS;
690 return TRANSLATE_FAIL;
693 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
694 MMUAccessType access_type, bool pmp_violation,
695 bool first_stage, bool two_stage)
697 CPUState *cs = env_cpu(env);
698 int page_fault_exceptions, vm;
699 uint64_t stap_mode;
701 if (riscv_cpu_mxl(env) == MXL_RV32) {
702 stap_mode = SATP32_MODE;
703 } else {
704 stap_mode = SATP64_MODE;
707 if (first_stage) {
708 vm = get_field(env->satp, stap_mode);
709 } else {
710 vm = get_field(env->hgatp, stap_mode);
713 page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
715 switch (access_type) {
716 case MMU_INST_FETCH:
717 if (riscv_cpu_virt_enabled(env) && !first_stage) {
718 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
719 } else {
720 cs->exception_index = page_fault_exceptions ?
721 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
723 break;
724 case MMU_DATA_LOAD:
725 if (two_stage && !first_stage) {
726 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
727 } else {
728 cs->exception_index = page_fault_exceptions ?
729 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
731 break;
732 case MMU_DATA_STORE:
733 if (two_stage && !first_stage) {
734 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
735 } else {
736 cs->exception_index = page_fault_exceptions ?
737 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
739 break;
740 default:
741 g_assert_not_reached();
743 env->badaddr = address;
744 env->two_stage_lookup = two_stage;
747 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
749 RISCVCPU *cpu = RISCV_CPU(cs);
750 CPURISCVState *env = &cpu->env;
751 hwaddr phys_addr;
752 int prot;
753 int mmu_idx = cpu_mmu_index(&cpu->env, false);
755 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
756 true, riscv_cpu_virt_enabled(env), true)) {
757 return -1;
760 if (riscv_cpu_virt_enabled(env)) {
761 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
762 0, mmu_idx, false, true, true)) {
763 return -1;
767 return phys_addr & TARGET_PAGE_MASK;
770 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
771 vaddr addr, unsigned size,
772 MMUAccessType access_type,
773 int mmu_idx, MemTxAttrs attrs,
774 MemTxResult response, uintptr_t retaddr)
776 RISCVCPU *cpu = RISCV_CPU(cs);
777 CPURISCVState *env = &cpu->env;
779 if (access_type == MMU_DATA_STORE) {
780 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
781 } else if (access_type == MMU_DATA_LOAD) {
782 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
783 } else {
784 cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
787 env->badaddr = addr;
788 env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
789 riscv_cpu_two_stage_lookup(mmu_idx);
790 riscv_raise_exception(&cpu->env, cs->exception_index, retaddr);
793 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
794 MMUAccessType access_type, int mmu_idx,
795 uintptr_t retaddr)
797 RISCVCPU *cpu = RISCV_CPU(cs);
798 CPURISCVState *env = &cpu->env;
799 switch (access_type) {
800 case MMU_INST_FETCH:
801 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
802 break;
803 case MMU_DATA_LOAD:
804 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
805 break;
806 case MMU_DATA_STORE:
807 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
808 break;
809 default:
810 g_assert_not_reached();
812 env->badaddr = addr;
813 env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
814 riscv_cpu_two_stage_lookup(mmu_idx);
815 riscv_raise_exception(env, cs->exception_index, retaddr);
818 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
819 MMUAccessType access_type, int mmu_idx,
820 bool probe, uintptr_t retaddr)
822 RISCVCPU *cpu = RISCV_CPU(cs);
823 CPURISCVState *env = &cpu->env;
824 vaddr im_address;
825 hwaddr pa = 0;
826 int prot, prot2, prot_pmp;
827 bool pmp_violation = false;
828 bool first_stage_error = true;
829 bool two_stage_lookup = false;
830 int ret = TRANSLATE_FAIL;
831 int mode = mmu_idx;
832 /* default TLB page size */
833 target_ulong tlb_size = TARGET_PAGE_SIZE;
835 env->guest_phys_fault_addr = 0;
837 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
838 __func__, address, access_type, mmu_idx);
840 /* MPRV does not affect the virtual-machine load/store
841 instructions, HLV, HLVX, and HSV. */
842 if (riscv_cpu_two_stage_lookup(mmu_idx)) {
843 mode = get_field(env->hstatus, HSTATUS_SPVP);
844 } else if (mode == PRV_M && access_type != MMU_INST_FETCH &&
845 get_field(env->mstatus, MSTATUS_MPRV)) {
846 mode = get_field(env->mstatus, MSTATUS_MPP);
847 if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) {
848 two_stage_lookup = true;
852 if (riscv_cpu_virt_enabled(env) ||
853 ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) &&
854 access_type != MMU_INST_FETCH)) {
855 /* Two stage lookup */
856 ret = get_physical_address(env, &pa, &prot, address,
857 &env->guest_phys_fault_addr, access_type,
858 mmu_idx, true, true, false);
861 * A G-stage exception may be triggered during two state lookup.
862 * And the env->guest_phys_fault_addr has already been set in
863 * get_physical_address().
865 if (ret == TRANSLATE_G_STAGE_FAIL) {
866 first_stage_error = false;
867 access_type = MMU_DATA_LOAD;
870 qemu_log_mask(CPU_LOG_MMU,
871 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
872 TARGET_FMT_plx " prot %d\n",
873 __func__, address, ret, pa, prot);
875 if (ret == TRANSLATE_SUCCESS) {
876 /* Second stage lookup */
877 im_address = pa;
879 ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
880 access_type, mmu_idx, false, true,
881 false);
883 qemu_log_mask(CPU_LOG_MMU,
884 "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical "
885 TARGET_FMT_plx " prot %d\n",
886 __func__, im_address, ret, pa, prot2);
888 prot &= prot2;
890 if (ret == TRANSLATE_SUCCESS) {
891 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
892 size, access_type, mode);
894 qemu_log_mask(CPU_LOG_MMU,
895 "%s PMP address=" TARGET_FMT_plx " ret %d prot"
896 " %d tlb_size " TARGET_FMT_lu "\n",
897 __func__, pa, ret, prot_pmp, tlb_size);
899 prot &= prot_pmp;
902 if (ret != TRANSLATE_SUCCESS) {
904 * Guest physical address translation failed, this is a HS
905 * level exception
907 first_stage_error = false;
908 env->guest_phys_fault_addr = (im_address |
909 (address &
910 (TARGET_PAGE_SIZE - 1))) >> 2;
913 } else {
914 /* Single stage lookup */
915 ret = get_physical_address(env, &pa, &prot, address, NULL,
916 access_type, mmu_idx, true, false, false);
918 qemu_log_mask(CPU_LOG_MMU,
919 "%s address=%" VADDR_PRIx " ret %d physical "
920 TARGET_FMT_plx " prot %d\n",
921 __func__, address, ret, pa, prot);
923 if (ret == TRANSLATE_SUCCESS) {
924 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
925 size, access_type, mode);
927 qemu_log_mask(CPU_LOG_MMU,
928 "%s PMP address=" TARGET_FMT_plx " ret %d prot"
929 " %d tlb_size " TARGET_FMT_lu "\n",
930 __func__, pa, ret, prot_pmp, tlb_size);
932 prot &= prot_pmp;
936 if (ret == TRANSLATE_PMP_FAIL) {
937 pmp_violation = true;
940 if (ret == TRANSLATE_SUCCESS) {
941 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
942 prot, mmu_idx, tlb_size);
943 return true;
944 } else if (probe) {
945 return false;
946 } else {
947 raise_mmu_exception(env, address, access_type, pmp_violation,
948 first_stage_error,
949 riscv_cpu_virt_enabled(env) ||
950 riscv_cpu_two_stage_lookup(mmu_idx));
951 riscv_raise_exception(env, cs->exception_index, retaddr);
954 return true;
956 #endif /* !CONFIG_USER_ONLY */
959 * Handle Traps
961 * Adapted from Spike's processor_t::take_trap.
964 void riscv_cpu_do_interrupt(CPUState *cs)
966 #if !defined(CONFIG_USER_ONLY)
968 RISCVCPU *cpu = RISCV_CPU(cs);
969 CPURISCVState *env = &cpu->env;
970 uint64_t s;
972 /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
973 * so we mask off the MSB and separate into trap type and cause.
975 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
976 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
977 target_ulong deleg = async ? env->mideleg : env->medeleg;
978 bool write_tval = false;
979 target_ulong tval = 0;
980 target_ulong htval = 0;
981 target_ulong mtval2 = 0;
983 if (cause == RISCV_EXCP_SEMIHOST) {
984 if (env->priv >= PRV_S) {
985 env->gpr[xA0] = do_common_semihosting(cs);
986 env->pc += 4;
987 return;
989 cause = RISCV_EXCP_BREAKPOINT;
992 if (!async) {
993 /* set tval to badaddr for traps with address information */
994 switch (cause) {
995 case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
996 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
997 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
998 case RISCV_EXCP_INST_ADDR_MIS:
999 case RISCV_EXCP_INST_ACCESS_FAULT:
1000 case RISCV_EXCP_LOAD_ADDR_MIS:
1001 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1002 case RISCV_EXCP_LOAD_ACCESS_FAULT:
1003 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
1004 case RISCV_EXCP_INST_PAGE_FAULT:
1005 case RISCV_EXCP_LOAD_PAGE_FAULT:
1006 case RISCV_EXCP_STORE_PAGE_FAULT:
1007 write_tval = true;
1008 tval = env->badaddr;
1009 break;
1010 default:
1011 break;
1013 /* ecall is dispatched as one cause so translate based on mode */
1014 if (cause == RISCV_EXCP_U_ECALL) {
1015 assert(env->priv <= 3);
1017 if (env->priv == PRV_M) {
1018 cause = RISCV_EXCP_M_ECALL;
1019 } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) {
1020 cause = RISCV_EXCP_VS_ECALL;
1021 } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) {
1022 cause = RISCV_EXCP_S_ECALL;
1023 } else if (env->priv == PRV_U) {
1024 cause = RISCV_EXCP_U_ECALL;
1029 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
1030 riscv_cpu_get_trap_name(cause, async));
1032 qemu_log_mask(CPU_LOG_INT,
1033 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1034 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1035 __func__, env->mhartid, async, cause, env->pc, tval,
1036 riscv_cpu_get_trap_name(cause, async));
1038 if (env->priv <= PRV_S &&
1039 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
1040 /* handle the trap in S-mode */
1041 if (riscv_has_ext(env, RVH)) {
1042 target_ulong hdeleg = async ? env->hideleg : env->hedeleg;
1044 if (env->two_stage_lookup && write_tval) {
1046 * If we are writing a guest virtual address to stval, set
1047 * this to 1. If we are trapping to VS we will set this to 0
1048 * later.
1050 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 1);
1051 } else {
1052 /* For other HS-mode traps, we set this to 0. */
1053 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0);
1056 if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1)) {
1057 /* Trap to VS mode */
1059 * See if we need to adjust cause. Yes if its VS mode interrupt
1060 * no if hypervisor has delegated one of hs mode's interrupt
1062 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1063 cause == IRQ_VS_EXT) {
1064 cause = cause - 1;
1066 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0);
1067 } else if (riscv_cpu_virt_enabled(env)) {
1068 /* Trap into HS mode, from virt */
1069 riscv_cpu_swap_hypervisor_regs(env);
1070 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1071 env->priv);
1072 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
1073 riscv_cpu_virt_enabled(env));
1075 htval = env->guest_phys_fault_addr;
1077 riscv_cpu_set_virt_enabled(env, 0);
1078 } else {
1079 /* Trap into HS mode */
1080 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1081 htval = env->guest_phys_fault_addr;
1085 s = env->mstatus;
1086 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1087 s = set_field(s, MSTATUS_SPP, env->priv);
1088 s = set_field(s, MSTATUS_SIE, 0);
1089 env->mstatus = s;
1090 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1091 env->sepc = env->pc;
1092 env->stval = tval;
1093 env->htval = htval;
1094 env->pc = (env->stvec >> 2 << 2) +
1095 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1096 riscv_cpu_set_mode(env, PRV_S);
1097 } else {
1098 /* handle the trap in M-mode */
1099 if (riscv_has_ext(env, RVH)) {
1100 if (riscv_cpu_virt_enabled(env)) {
1101 riscv_cpu_swap_hypervisor_regs(env);
1103 env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1104 riscv_cpu_virt_enabled(env));
1105 if (riscv_cpu_virt_enabled(env) && tval) {
1106 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1109 mtval2 = env->guest_phys_fault_addr;
1111 /* Trapping to M mode, virt is disabled */
1112 riscv_cpu_set_virt_enabled(env, 0);
1115 s = env->mstatus;
1116 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1117 s = set_field(s, MSTATUS_MPP, env->priv);
1118 s = set_field(s, MSTATUS_MIE, 0);
1119 env->mstatus = s;
1120 env->mcause = cause | ~(((target_ulong)-1) >> async);
1121 env->mepc = env->pc;
1122 env->mtval = tval;
1123 env->mtval2 = mtval2;
1124 env->pc = (env->mtvec >> 2 << 2) +
1125 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1126 riscv_cpu_set_mode(env, PRV_M);
1129 /* NOTE: it is not necessary to yield load reservations here. It is only
1130 * necessary for an SC from "another hart" to cause a load reservation
1131 * to be yielded. Refer to the memory consistency model section of the
1132 * RISC-V ISA Specification.
1135 env->two_stage_lookup = false;
1136 #endif
1137 cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */