Merge tag 'pull-nvme-20241001' of https://gitlab.com/birkelund/qemu into staging
[qemu/armbru.git] / target / arm / gdbstub64.c
blob1a4dbec567983f1e5d624c7e69224f35288e7000
1 /*
2 * ARM gdb server stub: AArch64 specific functions.
4 * Copyright (c) 2013 SUSE LINUX Products GmbH
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qemu/log.h"
21 #include "cpu.h"
22 #include "internals.h"
23 #include "gdbstub/helpers.h"
24 #include "gdbstub/commands.h"
25 #include "tcg/mte_helper.h"
26 #if defined(CONFIG_USER_ONLY) && defined(CONFIG_LINUX)
27 #include <sys/prctl.h>
28 #include "mte_user_helper.h"
29 #endif
31 int aarch64_cpu_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n)
33 ARMCPU *cpu = ARM_CPU(cs);
34 CPUARMState *env = &cpu->env;
36 if (n < 31) {
37 /* Core integer register. */
38 return gdb_get_reg64(mem_buf, env->xregs[n]);
40 switch (n) {
41 case 31:
42 return gdb_get_reg64(mem_buf, env->xregs[31]);
43 case 32:
44 return gdb_get_reg64(mem_buf, env->pc);
45 case 33:
46 return gdb_get_reg32(mem_buf, pstate_read(env));
48 /* Unknown register. */
49 return 0;
52 int aarch64_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
54 ARMCPU *cpu = ARM_CPU(cs);
55 CPUARMState *env = &cpu->env;
56 uint64_t tmp;
58 tmp = ldq_p(mem_buf);
60 if (n < 31) {
61 /* Core integer register. */
62 env->xregs[n] = tmp;
63 return 8;
65 switch (n) {
66 case 31:
67 env->xregs[31] = tmp;
68 return 8;
69 case 32:
70 env->pc = tmp;
71 return 8;
72 case 33:
73 /* CPSR */
74 pstate_write(env, tmp);
75 return 4;
77 /* Unknown register. */
78 return 0;
81 int aarch64_gdb_get_fpu_reg(CPUState *cs, GByteArray *buf, int reg)
83 ARMCPU *cpu = ARM_CPU(cs);
84 CPUARMState *env = &cpu->env;
86 switch (reg) {
87 case 0 ... 31:
89 /* 128 bit FP register - quads are in LE order */
90 uint64_t *q = aa64_vfp_qreg(env, reg);
91 return gdb_get_reg128(buf, q[1], q[0]);
93 case 32:
94 /* FPSR */
95 return gdb_get_reg32(buf, vfp_get_fpsr(env));
96 case 33:
97 /* FPCR */
98 return gdb_get_reg32(buf, vfp_get_fpcr(env));
99 default:
100 return 0;
104 int aarch64_gdb_set_fpu_reg(CPUState *cs, uint8_t *buf, int reg)
106 ARMCPU *cpu = ARM_CPU(cs);
107 CPUARMState *env = &cpu->env;
109 switch (reg) {
110 case 0 ... 31:
111 /* 128 bit FP register */
113 uint64_t *q = aa64_vfp_qreg(env, reg);
114 q[0] = ldq_le_p(buf);
115 q[1] = ldq_le_p(buf + 8);
116 return 16;
118 case 32:
119 /* FPSR */
120 vfp_set_fpsr(env, ldl_p(buf));
121 return 4;
122 case 33:
123 /* FPCR */
124 vfp_set_fpcr(env, ldl_p(buf));
125 return 4;
126 default:
127 return 0;
131 int aarch64_gdb_get_sve_reg(CPUState *cs, GByteArray *buf, int reg)
133 ARMCPU *cpu = ARM_CPU(cs);
134 CPUARMState *env = &cpu->env;
136 switch (reg) {
137 /* The first 32 registers are the zregs */
138 case 0 ... 31:
140 int vq, len = 0;
141 for (vq = 0; vq < cpu->sve_max_vq; vq++) {
142 len += gdb_get_reg128(buf,
143 env->vfp.zregs[reg].d[vq * 2 + 1],
144 env->vfp.zregs[reg].d[vq * 2]);
146 return len;
148 case 32:
149 return gdb_get_reg32(buf, vfp_get_fpsr(env));
150 case 33:
151 return gdb_get_reg32(buf, vfp_get_fpcr(env));
152 /* then 16 predicates and the ffr */
153 case 34 ... 50:
155 int preg = reg - 34;
156 int vq, len = 0;
157 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
158 len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]);
160 return len;
162 case 51:
165 * We report in Vector Granules (VG) which is 64bit in a Z reg
166 * while the ZCR works in Vector Quads (VQ) which is 128bit chunks.
168 int vq = sve_vqm1_for_el(env, arm_current_el(env)) + 1;
169 return gdb_get_reg64(buf, vq * 2);
171 default:
172 /* gdbstub asked for something out our range */
173 qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg);
174 break;
177 return 0;
180 int aarch64_gdb_set_sve_reg(CPUState *cs, uint8_t *buf, int reg)
182 ARMCPU *cpu = ARM_CPU(cs);
183 CPUARMState *env = &cpu->env;
185 /* The first 32 registers are the zregs */
186 switch (reg) {
187 /* The first 32 registers are the zregs */
188 case 0 ... 31:
190 int vq, len = 0;
191 uint64_t *p = (uint64_t *) buf;
192 for (vq = 0; vq < cpu->sve_max_vq; vq++) {
193 env->vfp.zregs[reg].d[vq * 2 + 1] = *p++;
194 env->vfp.zregs[reg].d[vq * 2] = *p++;
195 len += 16;
197 return len;
199 case 32:
200 vfp_set_fpsr(env, *(uint32_t *)buf);
201 return 4;
202 case 33:
203 vfp_set_fpcr(env, *(uint32_t *)buf);
204 return 4;
205 case 34 ... 50:
207 int preg = reg - 34;
208 int vq, len = 0;
209 uint64_t *p = (uint64_t *) buf;
210 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
211 env->vfp.pregs[preg].p[vq / 4] = *p++;
212 len += 8;
214 return len;
216 case 51:
217 /* cannot set vg via gdbstub */
218 return 0;
219 default:
220 /* gdbstub asked for something out our range */
221 break;
224 return 0;
227 int aarch64_gdb_get_pauth_reg(CPUState *cs, GByteArray *buf, int reg)
229 ARMCPU *cpu = ARM_CPU(cs);
230 CPUARMState *env = &cpu->env;
232 switch (reg) {
233 case 0: /* pauth_dmask */
234 case 1: /* pauth_cmask */
235 case 2: /* pauth_dmask_high */
236 case 3: /* pauth_cmask_high */
238 * Note that older versions of this feature only contained
239 * pauth_{d,c}mask, for use with Linux user processes, and
240 * thus exclusively in the low half of the address space.
242 * To support system mode, and to debug kernels, two new regs
243 * were added to cover the high half of the address space.
244 * For the purpose of pauth_ptr_mask, we can use any well-formed
245 * address within the address space half -- here, 0 and -1.
248 bool is_data = !(reg & 1);
249 bool is_high = reg & 2;
250 ARMMMUIdx mmu_idx = arm_stage1_mmu_idx(env);
251 ARMVAParameters param;
253 param = aa64_va_parameters(env, -is_high, mmu_idx, is_data, false);
254 return gdb_get_reg64(buf, pauth_ptr_mask(param));
256 default:
257 return 0;
261 int aarch64_gdb_set_pauth_reg(CPUState *cs, uint8_t *buf, int reg)
263 /* All pseudo registers are read-only. */
264 return 0;
267 static void output_vector_union_type(GDBFeatureBuilder *builder, int reg_width,
268 const char *name)
270 struct TypeSize {
271 const char *gdb_type;
272 short size;
273 char sz, suffix;
276 static const struct TypeSize vec_lanes[] = {
277 /* quads */
278 { "uint128", 128, 'q', 'u' },
279 { "int128", 128, 'q', 's' },
280 /* 64 bit */
281 { "ieee_double", 64, 'd', 'f' },
282 { "uint64", 64, 'd', 'u' },
283 { "int64", 64, 'd', 's' },
284 /* 32 bit */
285 { "ieee_single", 32, 's', 'f' },
286 { "uint32", 32, 's', 'u' },
287 { "int32", 32, 's', 's' },
288 /* 16 bit */
289 { "ieee_half", 16, 'h', 'f' },
290 { "uint16", 16, 'h', 'u' },
291 { "int16", 16, 'h', 's' },
292 /* bytes */
293 { "uint8", 8, 'b', 'u' },
294 { "int8", 8, 'b', 's' },
297 static const char suf[] = { 'b', 'h', 's', 'd', 'q' };
298 int i, j;
300 /* First define types and totals in a whole VL */
301 for (i = 0; i < ARRAY_SIZE(vec_lanes); i++) {
302 gdb_feature_builder_append_tag(
303 builder, "<vector id=\"%s%c%c\" type=\"%s\" count=\"%d\"/>",
304 name, vec_lanes[i].sz, vec_lanes[i].suffix,
305 vec_lanes[i].gdb_type, reg_width / vec_lanes[i].size);
309 * Now define a union for each size group containing unsigned and
310 * signed and potentially float versions of each size from 128 to
311 * 8 bits.
313 for (i = 0; i < ARRAY_SIZE(suf); i++) {
314 int bits = 8 << i;
316 gdb_feature_builder_append_tag(builder, "<union id=\"%sn%c\">",
317 name, suf[i]);
318 for (j = 0; j < ARRAY_SIZE(vec_lanes); j++) {
319 if (vec_lanes[j].size == bits) {
320 gdb_feature_builder_append_tag(
321 builder, "<field name=\"%c\" type=\"%s%c%c\"/>",
322 vec_lanes[j].suffix, name,
323 vec_lanes[j].sz, vec_lanes[j].suffix);
326 gdb_feature_builder_append_tag(builder, "</union>");
329 /* And now the final union of unions */
330 gdb_feature_builder_append_tag(builder, "<union id=\"%s\">", name);
331 for (i = ARRAY_SIZE(suf) - 1; i >= 0; i--) {
332 gdb_feature_builder_append_tag(builder,
333 "<field name=\"%c\" type=\"%sn%c\"/>",
334 suf[i], name, suf[i]);
336 gdb_feature_builder_append_tag(builder, "</union>");
339 GDBFeature *arm_gen_dynamic_svereg_feature(CPUState *cs, int base_reg)
341 ARMCPU *cpu = ARM_CPU(cs);
342 int reg_width = cpu->sve_max_vq * 128;
343 int pred_width = cpu->sve_max_vq * 16;
344 GDBFeatureBuilder builder;
345 char *name;
346 int reg = 0;
347 int i;
349 gdb_feature_builder_init(&builder, &cpu->dyn_svereg_feature.desc,
350 "org.gnu.gdb.aarch64.sve", "sve-registers.xml",
351 base_reg);
353 /* Create the vector union type. */
354 output_vector_union_type(&builder, reg_width, "svev");
356 /* Create the predicate vector type. */
357 gdb_feature_builder_append_tag(
358 &builder, "<vector id=\"svep\" type=\"uint8\" count=\"%d\"/>",
359 pred_width / 8);
361 /* Define the vector registers. */
362 for (i = 0; i < 32; i++) {
363 name = g_strdup_printf("z%d", i);
364 gdb_feature_builder_append_reg(&builder, name, reg_width, reg++,
365 "svev", NULL);
368 /* fpscr & status registers */
369 gdb_feature_builder_append_reg(&builder, "fpsr", 32, reg++,
370 "int", "float");
371 gdb_feature_builder_append_reg(&builder, "fpcr", 32, reg++,
372 "int", "float");
374 /* Define the predicate registers. */
375 for (i = 0; i < 16; i++) {
376 name = g_strdup_printf("p%d", i);
377 gdb_feature_builder_append_reg(&builder, name, pred_width, reg++,
378 "svep", NULL);
380 gdb_feature_builder_append_reg(&builder, "ffr", pred_width, reg++,
381 "svep", "vector");
383 /* Define the vector length pseudo-register. */
384 gdb_feature_builder_append_reg(&builder, "vg", 64, reg++, "int", NULL);
386 gdb_feature_builder_end(&builder);
388 return &cpu->dyn_svereg_feature.desc;
391 #ifdef CONFIG_USER_ONLY
392 int aarch64_gdb_get_tag_ctl_reg(CPUState *cs, GByteArray *buf, int reg)
394 ARMCPU *cpu = ARM_CPU(cs);
395 CPUARMState *env = &cpu->env;
396 uint64_t tcf0;
398 assert(reg == 0);
400 tcf0 = extract64(env->cp15.sctlr_el[1], 38, 2);
402 return gdb_get_reg64(buf, tcf0);
405 int aarch64_gdb_set_tag_ctl_reg(CPUState *cs, uint8_t *buf, int reg)
407 #if defined(CONFIG_LINUX)
408 ARMCPU *cpu = ARM_CPU(cs);
409 CPUARMState *env = &cpu->env;
411 uint8_t tcf;
413 assert(reg == 0);
415 tcf = *buf << PR_MTE_TCF_SHIFT;
417 if (!tcf) {
418 return 0;
422 * 'tag_ctl' register is actually a "pseudo-register" provided by GDB to
423 * expose options regarding the type of MTE fault that can be controlled at
424 * runtime.
426 arm_set_mte_tcf0(env, tcf);
428 return 1;
429 #else
430 return 0;
431 #endif
433 #endif /* CONFIG_USER_ONLY */
435 #ifdef CONFIG_TCG
436 static void handle_q_memtag(GArray *params, void *user_ctx)
438 ARMCPU *cpu = ARM_CPU(user_ctx);
439 CPUARMState *env = &cpu->env;
440 uint32_t mmu_index;
442 uint64_t addr = gdb_get_cmd_param(params, 0)->val_ull;
443 uint64_t len = gdb_get_cmd_param(params, 1)->val_ul;
444 int type = gdb_get_cmd_param(params, 2)->val_ul;
446 uint8_t *tags;
447 uint8_t addr_tag;
449 g_autoptr(GString) str_buf = g_string_new(NULL);
452 * GDB does not query multiple tags for a memory range on remote targets, so
453 * that's not supported either by gdbstub.
455 if (len != 1) {
456 gdb_put_packet("E02");
459 /* GDB never queries a tag different from an allocation tag (type 1). */
460 if (type != 1) {
461 gdb_put_packet("E03");
464 /* Find out the current translation regime for probe. */
465 mmu_index = cpu_mmu_index(env_cpu(env), false);
466 /* Note that tags are packed here (2 tags packed in one byte). */
467 tags = allocation_tag_mem_probe(env, mmu_index, addr, MMU_DATA_LOAD, 1,
468 MMU_DATA_LOAD, true, 0);
469 if (!tags) {
470 /* Address is not in a tagged region. */
471 gdb_put_packet("E04");
472 return;
475 /* Unpack tag from byte. */
476 addr_tag = load_tag1(addr, tags);
477 g_string_printf(str_buf, "m%.2x", addr_tag);
479 gdb_put_packet(str_buf->str);
482 static void handle_q_isaddresstagged(GArray *params, void *user_ctx)
484 ARMCPU *cpu = ARM_CPU(user_ctx);
485 CPUARMState *env = &cpu->env;
486 uint32_t mmu_index;
488 uint64_t addr = gdb_get_cmd_param(params, 0)->val_ull;
490 uint8_t *tags;
491 const char *reply;
493 /* Find out the current translation regime for probe. */
494 mmu_index = cpu_mmu_index(env_cpu(env), false);
495 tags = allocation_tag_mem_probe(env, mmu_index, addr, MMU_DATA_LOAD, 1,
496 MMU_DATA_LOAD, true, 0);
497 reply = tags ? "01" : "00";
499 gdb_put_packet(reply);
502 static void handle_Q_memtag(GArray *params, void *user_ctx)
504 ARMCPU *cpu = ARM_CPU(user_ctx);
505 CPUARMState *env = &cpu->env;
506 uint32_t mmu_index;
508 uint64_t start_addr = gdb_get_cmd_param(params, 0)->val_ull;
509 uint64_t len = gdb_get_cmd_param(params, 1)->val_ul;
510 int type = gdb_get_cmd_param(params, 2)->val_ul;
511 char const *new_tags_str = gdb_get_cmd_param(params, 3)->data;
513 uint64_t end_addr;
515 int num_new_tags;
516 uint8_t *tags;
518 g_autoptr(GByteArray) new_tags = g_byte_array_new();
521 * Only the allocation tag (i.e. type 1) can be set at the stub side.
523 if (type != 1) {
524 gdb_put_packet("E02");
525 return;
528 end_addr = start_addr + (len - 1); /* 'len' is always >= 1 */
529 /* Check if request's memory range does not cross page boundaries. */
530 if ((start_addr ^ end_addr) & TARGET_PAGE_MASK) {
531 gdb_put_packet("E03");
532 return;
536 * Get all tags in the page starting from the tag of the start address.
537 * Note that there are two tags packed into a single byte here.
539 /* Find out the current translation regime for probe. */
540 mmu_index = cpu_mmu_index(env_cpu(env), false);
541 tags = allocation_tag_mem_probe(env, mmu_index, start_addr, MMU_DATA_STORE,
542 1, MMU_DATA_STORE, true, 0);
543 if (!tags) {
544 /* Address is not in a tagged region. */
545 gdb_put_packet("E04");
546 return;
549 /* Convert tags provided by GDB, 2 hex digits per tag. */
550 num_new_tags = strlen(new_tags_str) / 2;
551 gdb_hextomem(new_tags, new_tags_str, num_new_tags);
553 uint64_t address = start_addr;
554 int new_tag_index = 0;
555 while (address <= end_addr) {
556 uint8_t new_tag;
557 int packed_index;
560 * Find packed tag index from unpacked tag index. There are two tags
561 * in one packed index (one tag per nibble).
563 packed_index = new_tag_index / 2;
565 new_tag = new_tags->data[new_tag_index % num_new_tags];
566 store_tag1(address, tags + packed_index, new_tag);
568 address += TAG_GRANULE;
569 new_tag_index++;
572 gdb_put_packet("OK");
575 enum Command {
576 qMemTags,
577 qIsAddressTagged,
578 QMemTags,
579 NUM_CMDS
582 static const GdbCmdParseEntry cmd_handler_table[NUM_CMDS] = {
583 [qMemTags] = {
584 .handler = handle_q_memtag,
585 .cmd_startswith = true,
586 .cmd = "MemTags:",
587 .schema = "L,l:l0",
588 .need_cpu_context = true
590 [qIsAddressTagged] = {
591 .handler = handle_q_isaddresstagged,
592 .cmd_startswith = true,
593 .cmd = "IsAddressTagged:",
594 .schema = "L0",
595 .need_cpu_context = true
597 [QMemTags] = {
598 .handler = handle_Q_memtag,
599 .cmd_startswith = true,
600 .cmd = "MemTags:",
601 .schema = "L,l:l:s0",
602 .need_cpu_context = true
605 #endif /* CONFIG_TCG */
607 void aarch64_cpu_register_gdb_commands(ARMCPU *cpu, GString *qsupported,
608 GPtrArray *qtable, GPtrArray *stable)
610 /* MTE */
611 #ifdef CONFIG_TCG
612 if (cpu_isar_feature(aa64_mte, cpu)) {
613 g_string_append(qsupported, ";memory-tagging+");
615 g_ptr_array_add(qtable, (gpointer) &cmd_handler_table[qMemTags]);
616 g_ptr_array_add(qtable, (gpointer) &cmd_handler_table[qIsAddressTagged]);
617 g_ptr_array_add(stable, (gpointer) &cmd_handler_table[QMemTags]);
619 #endif