Merge tag 'pull-nvme-20241001' of https://gitlab.com/birkelund/qemu into staging
[qemu/armbru.git] / hw / net / e1000e_core.c
blob2e4c50ddbaf04b1182d178875bf68bcfb8b7d42c
1 /*
2 * Core code for QEMU e1000e emulation
4 * Software developer's manuals:
5 * http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
7 * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
8 * Developed by Daynix Computing LTD (http://www.daynix.com)
10 * Authors:
11 * Dmitry Fleytman <dmitry@daynix.com>
12 * Leonid Bloch <leonid@daynix.com>
13 * Yan Vugenfirer <yan@daynix.com>
15 * Based on work done by:
16 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
17 * Copyright (c) 2008 Qumranet
18 * Based on work done by:
19 * Copyright (c) 2007 Dan Aloni
20 * Copyright (c) 2004 Antony T Curtis
22 * This library is free software; you can redistribute it and/or
23 * modify it under the terms of the GNU Lesser General Public
24 * License as published by the Free Software Foundation; either
25 * version 2.1 of the License, or (at your option) any later version.
27 * This library is distributed in the hope that it will be useful,
28 * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
30 * Lesser General Public License for more details.
32 * You should have received a copy of the GNU Lesser General Public
33 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
36 #include "qemu/osdep.h"
37 #include "qemu/log.h"
38 #include "net/net.h"
39 #include "net/tap.h"
40 #include "hw/net/mii.h"
41 #include "hw/pci/msi.h"
42 #include "hw/pci/msix.h"
43 #include "sysemu/runstate.h"
45 #include "net_tx_pkt.h"
46 #include "net_rx_pkt.h"
48 #include "e1000_common.h"
49 #include "e1000x_common.h"
50 #include "e1000e_core.h"
52 #include "trace.h"
54 /* No more then 7813 interrupts per second according to spec 10.2.4.2 */
55 #define E1000E_MIN_XITR (500)
57 #define E1000E_MAX_TX_FRAGS (64)
59 union e1000_rx_desc_union {
60 struct e1000_rx_desc legacy;
61 union e1000_rx_desc_extended extended;
62 union e1000_rx_desc_packet_split packet_split;
65 static ssize_t
66 e1000e_receive_internal(E1000ECore *core, const struct iovec *iov, int iovcnt,
67 bool has_vnet);
69 static inline void
70 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val);
72 static void e1000e_reset(E1000ECore *core, bool sw);
74 static inline void
75 e1000e_process_ts_option(E1000ECore *core, struct e1000_tx_desc *dp)
77 if (le32_to_cpu(dp->upper.data) & E1000_TXD_EXTCMD_TSTAMP) {
78 trace_e1000e_wrn_no_ts_support();
82 static inline void
83 e1000e_process_snap_option(E1000ECore *core, uint32_t cmd_and_length)
85 if (cmd_and_length & E1000_TXD_CMD_SNAP) {
86 trace_e1000e_wrn_no_snap_support();
90 static inline void
91 e1000e_raise_legacy_irq(E1000ECore *core)
93 trace_e1000e_irq_legacy_notify(true);
94 e1000x_inc_reg_if_not_full(core->mac, IAC);
95 pci_set_irq(core->owner, 1);
98 static inline void
99 e1000e_lower_legacy_irq(E1000ECore *core)
101 trace_e1000e_irq_legacy_notify(false);
102 pci_set_irq(core->owner, 0);
105 static inline void
106 e1000e_intrmgr_rearm_timer(E1000IntrDelayTimer *timer)
108 int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] *
109 timer->delay_resolution_ns;
111 trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns);
113 timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns);
115 timer->running = true;
118 static void
119 e1000e_intmgr_timer_resume(E1000IntrDelayTimer *timer)
121 if (timer->running) {
122 e1000e_intrmgr_rearm_timer(timer);
126 static inline void
127 e1000e_intrmgr_stop_timer(E1000IntrDelayTimer *timer)
129 if (timer->running) {
130 timer_del(timer->timer);
131 timer->running = false;
135 static inline void
136 e1000e_intrmgr_fire_delayed_interrupts(E1000ECore *core)
138 trace_e1000e_irq_fire_delayed_interrupts();
139 e1000e_set_interrupt_cause(core, 0);
142 static void
143 e1000e_intrmgr_on_timer(void *opaque)
145 E1000IntrDelayTimer *timer = opaque;
147 trace_e1000e_irq_throttling_timer(timer->delay_reg << 2);
149 timer->running = false;
150 e1000e_intrmgr_fire_delayed_interrupts(timer->core);
153 static void
154 e1000e_intrmgr_on_throttling_timer(void *opaque)
156 E1000IntrDelayTimer *timer = opaque;
158 timer->running = false;
160 if (timer->core->mac[IMS] & timer->core->mac[ICR]) {
161 if (msi_enabled(timer->core->owner)) {
162 trace_e1000e_irq_msi_notify_postponed();
163 msi_notify(timer->core->owner, 0);
164 } else {
165 trace_e1000e_irq_legacy_notify_postponed();
166 e1000e_raise_legacy_irq(timer->core);
171 static void
172 e1000e_intrmgr_on_msix_throttling_timer(void *opaque)
174 E1000IntrDelayTimer *timer = opaque;
175 int idx = timer - &timer->core->eitr[0];
177 timer->running = false;
179 trace_e1000e_irq_msix_notify_postponed_vec(idx);
180 msix_notify(timer->core->owner, idx);
183 static void
184 e1000e_intrmgr_initialize_all_timers(E1000ECore *core, bool create)
186 int i;
188 core->radv.delay_reg = RADV;
189 core->rdtr.delay_reg = RDTR;
190 core->raid.delay_reg = RAID;
191 core->tadv.delay_reg = TADV;
192 core->tidv.delay_reg = TIDV;
194 core->radv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
195 core->rdtr.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
196 core->raid.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
197 core->tadv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
198 core->tidv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
200 core->radv.core = core;
201 core->rdtr.core = core;
202 core->raid.core = core;
203 core->tadv.core = core;
204 core->tidv.core = core;
206 core->itr.core = core;
207 core->itr.delay_reg = ITR;
208 core->itr.delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
210 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
211 core->eitr[i].core = core;
212 core->eitr[i].delay_reg = EITR + i;
213 core->eitr[i].delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
216 if (!create) {
217 return;
220 core->radv.timer =
221 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->radv);
222 core->rdtr.timer =
223 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->rdtr);
224 core->raid.timer =
225 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->raid);
227 core->tadv.timer =
228 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tadv);
229 core->tidv.timer =
230 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tidv);
232 core->itr.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
233 e1000e_intrmgr_on_throttling_timer,
234 &core->itr);
236 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
237 core->eitr[i].timer =
238 timer_new_ns(QEMU_CLOCK_VIRTUAL,
239 e1000e_intrmgr_on_msix_throttling_timer,
240 &core->eitr[i]);
244 static inline void
245 e1000e_intrmgr_stop_delay_timers(E1000ECore *core)
247 e1000e_intrmgr_stop_timer(&core->radv);
248 e1000e_intrmgr_stop_timer(&core->rdtr);
249 e1000e_intrmgr_stop_timer(&core->raid);
250 e1000e_intrmgr_stop_timer(&core->tidv);
251 e1000e_intrmgr_stop_timer(&core->tadv);
254 static bool
255 e1000e_intrmgr_delay_rx_causes(E1000ECore *core, uint32_t *causes)
257 uint32_t delayable_causes;
258 uint32_t rdtr = core->mac[RDTR];
259 uint32_t radv = core->mac[RADV];
260 uint32_t raid = core->mac[RAID];
262 if (msix_enabled(core->owner)) {
263 return false;
266 delayable_causes = E1000_ICR_RXQ0 |
267 E1000_ICR_RXQ1 |
268 E1000_ICR_RXT0;
270 if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS)) {
271 delayable_causes |= E1000_ICR_ACK;
274 /* Clean up all causes that may be delayed */
275 core->delayed_causes |= *causes & delayable_causes;
276 *causes &= ~delayable_causes;
279 * Check if delayed RX interrupts disabled by client
280 * or if there are causes that cannot be delayed
282 if ((rdtr == 0) || (*causes != 0)) {
283 return false;
287 * Check if delayed RX ACK interrupts disabled by client
288 * and there is an ACK packet received
290 if ((raid == 0) && (core->delayed_causes & E1000_ICR_ACK)) {
291 return false;
294 /* All causes delayed */
295 e1000e_intrmgr_rearm_timer(&core->rdtr);
297 if (!core->radv.running && (radv != 0)) {
298 e1000e_intrmgr_rearm_timer(&core->radv);
301 if (!core->raid.running && (core->delayed_causes & E1000_ICR_ACK)) {
302 e1000e_intrmgr_rearm_timer(&core->raid);
305 return true;
308 static bool
309 e1000e_intrmgr_delay_tx_causes(E1000ECore *core, uint32_t *causes)
311 static const uint32_t delayable_causes = E1000_ICR_TXQ0 |
312 E1000_ICR_TXQ1 |
313 E1000_ICR_TXQE |
314 E1000_ICR_TXDW;
316 if (msix_enabled(core->owner)) {
317 return false;
320 /* Clean up all causes that may be delayed */
321 core->delayed_causes |= *causes & delayable_causes;
322 *causes &= ~delayable_causes;
324 /* If there are causes that cannot be delayed */
325 if (*causes != 0) {
326 return false;
329 /* All causes delayed */
330 e1000e_intrmgr_rearm_timer(&core->tidv);
332 if (!core->tadv.running && (core->mac[TADV] != 0)) {
333 e1000e_intrmgr_rearm_timer(&core->tadv);
336 return true;
339 static uint32_t
340 e1000e_intmgr_collect_delayed_causes(E1000ECore *core)
342 uint32_t res;
344 if (msix_enabled(core->owner)) {
345 assert(core->delayed_causes == 0);
346 return 0;
349 res = core->delayed_causes;
350 core->delayed_causes = 0;
352 e1000e_intrmgr_stop_delay_timers(core);
354 return res;
357 static void
358 e1000e_intrmgr_fire_all_timers(E1000ECore *core)
360 int i;
362 if (core->itr.running) {
363 timer_del(core->itr.timer);
364 e1000e_intrmgr_on_throttling_timer(&core->itr);
367 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
368 if (core->eitr[i].running) {
369 timer_del(core->eitr[i].timer);
370 e1000e_intrmgr_on_msix_throttling_timer(&core->eitr[i]);
375 static void
376 e1000e_intrmgr_resume(E1000ECore *core)
378 int i;
380 e1000e_intmgr_timer_resume(&core->radv);
381 e1000e_intmgr_timer_resume(&core->rdtr);
382 e1000e_intmgr_timer_resume(&core->raid);
383 e1000e_intmgr_timer_resume(&core->tidv);
384 e1000e_intmgr_timer_resume(&core->tadv);
386 e1000e_intmgr_timer_resume(&core->itr);
388 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
389 e1000e_intmgr_timer_resume(&core->eitr[i]);
393 static void
394 e1000e_intrmgr_reset(E1000ECore *core)
396 int i;
398 core->delayed_causes = 0;
400 e1000e_intrmgr_stop_delay_timers(core);
402 e1000e_intrmgr_stop_timer(&core->itr);
404 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
405 e1000e_intrmgr_stop_timer(&core->eitr[i]);
409 static void
410 e1000e_intrmgr_pci_unint(E1000ECore *core)
412 int i;
414 timer_free(core->radv.timer);
415 timer_free(core->rdtr.timer);
416 timer_free(core->raid.timer);
418 timer_free(core->tadv.timer);
419 timer_free(core->tidv.timer);
421 timer_free(core->itr.timer);
423 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
424 timer_free(core->eitr[i].timer);
428 static void
429 e1000e_intrmgr_pci_realize(E1000ECore *core)
431 e1000e_intrmgr_initialize_all_timers(core, true);
434 static inline bool
435 e1000e_rx_csum_enabled(E1000ECore *core)
437 return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true;
440 static inline bool
441 e1000e_rx_use_legacy_descriptor(E1000ECore *core)
443 return (core->mac[RFCTL] & E1000_RFCTL_EXTEN) ? false : true;
446 static inline bool
447 e1000e_rx_use_ps_descriptor(E1000ECore *core)
449 return !e1000e_rx_use_legacy_descriptor(core) &&
450 (core->mac[RCTL] & E1000_RCTL_DTYP_PS);
453 static inline bool
454 e1000e_rss_enabled(E1000ECore *core)
456 return E1000_MRQC_ENABLED(core->mac[MRQC]) &&
457 !e1000e_rx_csum_enabled(core) &&
458 !e1000e_rx_use_legacy_descriptor(core);
461 typedef struct E1000E_RSSInfo_st {
462 bool enabled;
463 uint32_t hash;
464 uint32_t queue;
465 uint32_t type;
466 } E1000E_RSSInfo;
468 static uint32_t
469 e1000e_rss_get_hash_type(E1000ECore *core, struct NetRxPkt *pkt)
471 bool hasip4, hasip6;
472 EthL4HdrProto l4hdr_proto;
474 assert(e1000e_rss_enabled(core));
476 net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
478 if (hasip4) {
479 trace_e1000e_rx_rss_ip4(l4hdr_proto, core->mac[MRQC],
480 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]),
481 E1000_MRQC_EN_IPV4(core->mac[MRQC]));
483 if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP &&
484 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) {
485 return E1000_MRQ_RSS_TYPE_IPV4TCP;
488 if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) {
489 return E1000_MRQ_RSS_TYPE_IPV4;
491 } else if (hasip6) {
492 eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt);
494 bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS;
495 bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS;
498 * Following two traces must not be combined because resulting
499 * event will have 11 arguments totally and some trace backends
500 * (at least "ust") have limitation of maximum 10 arguments per
501 * event. Events with more arguments fail to compile for
502 * backends like these.
504 trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]);
505 trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, l4hdr_proto,
506 ip6info->has_ext_hdrs,
507 ip6info->rss_ex_dst_valid,
508 ip6info->rss_ex_src_valid,
509 core->mac[MRQC],
510 E1000_MRQC_EN_TCPIPV6EX(core->mac[MRQC]),
511 E1000_MRQC_EN_IPV6EX(core->mac[MRQC]),
512 E1000_MRQC_EN_IPV6(core->mac[MRQC]));
514 if ((!ex_dis || !ip6info->has_ext_hdrs) &&
515 (!new_ex_dis || !(ip6info->rss_ex_dst_valid ||
516 ip6info->rss_ex_src_valid))) {
518 if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP &&
519 E1000_MRQC_EN_TCPIPV6EX(core->mac[MRQC])) {
520 return E1000_MRQ_RSS_TYPE_IPV6TCPEX;
523 if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) {
524 return E1000_MRQ_RSS_TYPE_IPV6EX;
529 if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) {
530 return E1000_MRQ_RSS_TYPE_IPV6;
535 return E1000_MRQ_RSS_TYPE_NONE;
538 static uint32_t
539 e1000e_rss_calc_hash(E1000ECore *core,
540 struct NetRxPkt *pkt,
541 E1000E_RSSInfo *info)
543 NetRxPktRssType type;
545 assert(e1000e_rss_enabled(core));
547 switch (info->type) {
548 case E1000_MRQ_RSS_TYPE_IPV4:
549 type = NetPktRssIpV4;
550 break;
551 case E1000_MRQ_RSS_TYPE_IPV4TCP:
552 type = NetPktRssIpV4Tcp;
553 break;
554 case E1000_MRQ_RSS_TYPE_IPV6TCPEX:
555 type = NetPktRssIpV6TcpEx;
556 break;
557 case E1000_MRQ_RSS_TYPE_IPV6:
558 type = NetPktRssIpV6;
559 break;
560 case E1000_MRQ_RSS_TYPE_IPV6EX:
561 type = NetPktRssIpV6Ex;
562 break;
563 default:
564 g_assert_not_reached();
567 return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]);
570 static void
571 e1000e_rss_parse_packet(E1000ECore *core,
572 struct NetRxPkt *pkt,
573 E1000E_RSSInfo *info)
575 trace_e1000e_rx_rss_started();
577 if (!e1000e_rss_enabled(core)) {
578 info->enabled = false;
579 info->hash = 0;
580 info->queue = 0;
581 info->type = 0;
582 trace_e1000e_rx_rss_disabled();
583 return;
586 info->enabled = true;
588 info->type = e1000e_rss_get_hash_type(core, pkt);
590 trace_e1000e_rx_rss_type(info->type);
592 if (info->type == E1000_MRQ_RSS_TYPE_NONE) {
593 info->hash = 0;
594 info->queue = 0;
595 return;
598 info->hash = e1000e_rss_calc_hash(core, pkt, info);
599 info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash);
602 static bool
603 e1000e_setup_tx_offloads(E1000ECore *core, struct e1000e_tx *tx)
605 if (tx->props.tse && tx->cptse) {
606 if (!net_tx_pkt_build_vheader(tx->tx_pkt, true, true, tx->props.mss)) {
607 return false;
610 net_tx_pkt_update_ip_checksums(tx->tx_pkt);
611 e1000x_inc_reg_if_not_full(core->mac, TSCTC);
612 return true;
615 if (tx->sum_needed & E1000_TXD_POPTS_TXSM) {
616 if (!net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0)) {
617 return false;
621 if (tx->sum_needed & E1000_TXD_POPTS_IXSM) {
622 net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt);
625 return true;
628 static void e1000e_tx_pkt_callback(void *core,
629 const struct iovec *iov,
630 int iovcnt,
631 const struct iovec *virt_iov,
632 int virt_iovcnt)
634 e1000e_receive_internal(core, virt_iov, virt_iovcnt, true);
637 static bool
638 e1000e_tx_pkt_send(E1000ECore *core, struct e1000e_tx *tx, int queue_index)
640 int target_queue = MIN(core->max_queue_num, queue_index);
641 NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue);
643 if (!e1000e_setup_tx_offloads(core, tx)) {
644 return false;
647 net_tx_pkt_dump(tx->tx_pkt);
649 if ((core->phy[0][MII_BMCR] & MII_BMCR_LOOPBACK) ||
650 ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) {
651 return net_tx_pkt_send_custom(tx->tx_pkt, false,
652 e1000e_tx_pkt_callback, core);
653 } else {
654 return net_tx_pkt_send(tx->tx_pkt, queue);
658 static void
659 e1000e_on_tx_done_update_stats(E1000ECore *core, struct NetTxPkt *tx_pkt)
661 static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
662 PTC1023, PTC1522 };
664 size_t tot_len = net_tx_pkt_get_total_len(tx_pkt) + 4;
666 e1000x_increase_size_stats(core->mac, PTCregs, tot_len);
667 e1000x_inc_reg_if_not_full(core->mac, TPT);
668 e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len);
670 switch (net_tx_pkt_get_packet_type(tx_pkt)) {
671 case ETH_PKT_BCAST:
672 e1000x_inc_reg_if_not_full(core->mac, BPTC);
673 break;
674 case ETH_PKT_MCAST:
675 e1000x_inc_reg_if_not_full(core->mac, MPTC);
676 break;
677 case ETH_PKT_UCAST:
678 break;
679 default:
680 g_assert_not_reached();
683 e1000x_inc_reg_if_not_full(core->mac, GPTC);
684 e1000x_grow_8reg_if_not_full(core->mac, GOTCL, tot_len);
687 static void
688 e1000e_process_tx_desc(E1000ECore *core,
689 struct e1000e_tx *tx,
690 struct e1000_tx_desc *dp,
691 int queue_index)
693 uint32_t txd_lower = le32_to_cpu(dp->lower.data);
694 uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
695 unsigned int split_size = txd_lower & 0xffff;
696 uint64_t addr;
697 struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
698 bool eop = txd_lower & E1000_TXD_CMD_EOP;
700 if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */
701 e1000x_read_tx_ctx_descr(xp, &tx->props);
702 e1000e_process_snap_option(core, le32_to_cpu(xp->cmd_and_length));
703 return;
704 } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
705 /* data descriptor */
706 tx->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
707 tx->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
708 e1000e_process_ts_option(core, dp);
709 } else {
710 /* legacy descriptor */
711 e1000e_process_ts_option(core, dp);
712 tx->cptse = 0;
715 addr = le64_to_cpu(dp->buffer_addr);
717 if (!tx->skip_cp) {
718 if (!net_tx_pkt_add_raw_fragment_pci(tx->tx_pkt, core->owner,
719 addr, split_size)) {
720 tx->skip_cp = true;
724 if (eop) {
725 if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) {
726 if (e1000x_vlan_enabled(core->mac) &&
727 e1000x_is_vlan_txd(txd_lower)) {
728 net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt,
729 le16_to_cpu(dp->upper.fields.special), core->mac[VET]);
731 if (e1000e_tx_pkt_send(core, tx, queue_index)) {
732 e1000e_on_tx_done_update_stats(core, tx->tx_pkt);
736 tx->skip_cp = false;
737 net_tx_pkt_reset(tx->tx_pkt, net_tx_pkt_unmap_frag_pci, core->owner);
739 tx->sum_needed = 0;
740 tx->cptse = 0;
744 static inline uint32_t
745 e1000e_tx_wb_interrupt_cause(E1000ECore *core, int queue_idx)
747 if (!msix_enabled(core->owner)) {
748 return E1000_ICR_TXDW;
751 return (queue_idx == 0) ? E1000_ICR_TXQ0 : E1000_ICR_TXQ1;
754 static inline uint32_t
755 e1000e_rx_wb_interrupt_cause(E1000ECore *core, int queue_idx,
756 bool min_threshold_hit)
758 if (!msix_enabled(core->owner)) {
759 return E1000_ICS_RXT0 | (min_threshold_hit ? E1000_ICS_RXDMT0 : 0);
762 return (queue_idx == 0) ? E1000_ICR_RXQ0 : E1000_ICR_RXQ1;
765 static uint32_t
766 e1000e_txdesc_writeback(E1000ECore *core, dma_addr_t base,
767 struct e1000_tx_desc *dp, bool *ide, int queue_idx)
769 uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
771 if (!(txd_lower & E1000_TXD_CMD_RS) &&
772 !(core->mac[IVAR] & E1000_IVAR_TX_INT_EVERY_WB)) {
773 return 0;
776 *ide = (txd_lower & E1000_TXD_CMD_IDE) ? true : false;
778 txd_upper = le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD;
780 dp->upper.data = cpu_to_le32(txd_upper);
781 pci_dma_write(core->owner, base + ((char *)&dp->upper - (char *)dp),
782 &dp->upper, sizeof(dp->upper));
783 return e1000e_tx_wb_interrupt_cause(core, queue_idx);
786 typedef struct E1000ERingInfo {
787 int dbah;
788 int dbal;
789 int dlen;
790 int dh;
791 int dt;
792 int idx;
793 } E1000ERingInfo;
795 static inline bool
796 e1000e_ring_empty(E1000ECore *core, const E1000ERingInfo *r)
798 return core->mac[r->dh] == core->mac[r->dt] ||
799 core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN;
802 static inline uint64_t
803 e1000e_ring_base(E1000ECore *core, const E1000ERingInfo *r)
805 uint64_t bah = core->mac[r->dbah];
806 uint64_t bal = core->mac[r->dbal];
808 return (bah << 32) + bal;
811 static inline uint64_t
812 e1000e_ring_head_descr(E1000ECore *core, const E1000ERingInfo *r)
814 return e1000e_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh];
817 static inline void
818 e1000e_ring_advance(E1000ECore *core, const E1000ERingInfo *r, uint32_t count)
820 core->mac[r->dh] += count;
822 if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) {
823 core->mac[r->dh] = 0;
827 static inline uint32_t
828 e1000e_ring_free_descr_num(E1000ECore *core, const E1000ERingInfo *r)
830 trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen],
831 core->mac[r->dh], core->mac[r->dt]);
833 if (core->mac[r->dh] <= core->mac[r->dt]) {
834 return core->mac[r->dt] - core->mac[r->dh];
837 if (core->mac[r->dh] > core->mac[r->dt]) {
838 return core->mac[r->dlen] / E1000_RING_DESC_LEN +
839 core->mac[r->dt] - core->mac[r->dh];
842 g_assert_not_reached();
845 static inline bool
846 e1000e_ring_enabled(E1000ECore *core, const E1000ERingInfo *r)
848 return core->mac[r->dlen] > 0;
851 static inline uint32_t
852 e1000e_ring_len(E1000ECore *core, const E1000ERingInfo *r)
854 return core->mac[r->dlen];
857 typedef struct E1000E_TxRing_st {
858 const E1000ERingInfo *i;
859 struct e1000e_tx *tx;
860 } E1000E_TxRing;
862 static inline int
863 e1000e_mq_queue_idx(int base_reg_idx, int reg_idx)
865 return (reg_idx - base_reg_idx) / (0x100 >> 2);
868 static inline void
869 e1000e_tx_ring_init(E1000ECore *core, E1000E_TxRing *txr, int idx)
871 static const E1000ERingInfo i[E1000E_NUM_QUEUES] = {
872 { TDBAH, TDBAL, TDLEN, TDH, TDT, 0 },
873 { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 }
876 assert(idx < ARRAY_SIZE(i));
878 txr->i = &i[idx];
879 txr->tx = &core->tx[idx];
882 typedef struct E1000E_RxRing_st {
883 const E1000ERingInfo *i;
884 } E1000E_RxRing;
886 static inline void
887 e1000e_rx_ring_init(E1000ECore *core, E1000E_RxRing *rxr, int idx)
889 static const E1000ERingInfo i[E1000E_NUM_QUEUES] = {
890 { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 },
891 { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 }
894 assert(idx < ARRAY_SIZE(i));
896 rxr->i = &i[idx];
899 static void
900 e1000e_start_xmit(E1000ECore *core, const E1000E_TxRing *txr)
902 dma_addr_t base;
903 struct e1000_tx_desc desc;
904 bool ide = false;
905 const E1000ERingInfo *txi = txr->i;
906 uint32_t cause = E1000_ICS_TXQE;
908 if (!(core->mac[TCTL] & E1000_TCTL_EN)) {
909 trace_e1000e_tx_disabled();
910 return;
913 while (!e1000e_ring_empty(core, txi)) {
914 base = e1000e_ring_head_descr(core, txi);
916 pci_dma_read(core->owner, base, &desc, sizeof(desc));
918 trace_e1000e_tx_descr((void *)(intptr_t)desc.buffer_addr,
919 desc.lower.data, desc.upper.data);
921 e1000e_process_tx_desc(core, txr->tx, &desc, txi->idx);
922 cause |= e1000e_txdesc_writeback(core, base, &desc, &ide, txi->idx);
924 e1000e_ring_advance(core, txi, 1);
927 if (!ide || !e1000e_intrmgr_delay_tx_causes(core, &cause)) {
928 e1000e_set_interrupt_cause(core, cause);
931 net_tx_pkt_reset(txr->tx->tx_pkt, net_tx_pkt_unmap_frag_pci, core->owner);
934 static bool
935 e1000e_has_rxbufs(E1000ECore *core, const E1000ERingInfo *r,
936 size_t total_size)
938 uint32_t bufs = e1000e_ring_free_descr_num(core, r);
940 trace_e1000e_rx_has_buffers(r->idx, bufs, total_size,
941 core->rx_desc_buf_size);
943 return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) *
944 core->rx_desc_buf_size;
947 void
948 e1000e_start_recv(E1000ECore *core)
950 int i;
952 trace_e1000e_rx_start_recv();
954 for (i = 0; i <= core->max_queue_num; i++) {
955 qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i));
959 bool
960 e1000e_can_receive(E1000ECore *core)
962 int i;
964 if (!e1000x_rx_ready(core->owner, core->mac)) {
965 return false;
968 for (i = 0; i < E1000E_NUM_QUEUES; i++) {
969 E1000E_RxRing rxr;
971 e1000e_rx_ring_init(core, &rxr, i);
972 if (e1000e_ring_enabled(core, rxr.i) &&
973 e1000e_has_rxbufs(core, rxr.i, 1)) {
974 trace_e1000e_rx_can_recv();
975 return true;
979 trace_e1000e_rx_can_recv_rings_full();
980 return false;
983 ssize_t
984 e1000e_receive(E1000ECore *core, const uint8_t *buf, size_t size)
986 const struct iovec iov = {
987 .iov_base = (uint8_t *)buf,
988 .iov_len = size
991 return e1000e_receive_iov(core, &iov, 1);
994 static inline bool
995 e1000e_rx_l3_cso_enabled(E1000ECore *core)
997 return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD);
1000 static inline bool
1001 e1000e_rx_l4_cso_enabled(E1000ECore *core)
1003 return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD);
1006 static bool
1007 e1000e_receive_filter(E1000ECore *core, const void *buf)
1009 return (!e1000x_is_vlan_packet(buf, core->mac[VET]) ||
1010 e1000x_rx_vlan_filter(core->mac, PKT_GET_VLAN_HDR(buf))) &&
1011 e1000x_rx_group_filter(core->mac, buf);
1014 static inline void
1015 e1000e_read_lgcy_rx_descr(E1000ECore *core, struct e1000_rx_desc *desc,
1016 hwaddr *buff_addr)
1018 *buff_addr = le64_to_cpu(desc->buffer_addr);
1021 static inline void
1022 e1000e_read_ext_rx_descr(E1000ECore *core, union e1000_rx_desc_extended *desc,
1023 hwaddr *buff_addr)
1025 *buff_addr = le64_to_cpu(desc->read.buffer_addr);
1028 static inline void
1029 e1000e_read_ps_rx_descr(E1000ECore *core,
1030 union e1000_rx_desc_packet_split *desc,
1031 hwaddr buff_addr[MAX_PS_BUFFERS])
1033 int i;
1035 for (i = 0; i < MAX_PS_BUFFERS; i++) {
1036 buff_addr[i] = le64_to_cpu(desc->read.buffer_addr[i]);
1039 trace_e1000e_rx_desc_ps_read(buff_addr[0], buff_addr[1],
1040 buff_addr[2], buff_addr[3]);
1043 static inline void
1044 e1000e_read_rx_descr(E1000ECore *core, union e1000_rx_desc_union *desc,
1045 hwaddr buff_addr[MAX_PS_BUFFERS])
1047 if (e1000e_rx_use_legacy_descriptor(core)) {
1048 e1000e_read_lgcy_rx_descr(core, &desc->legacy, &buff_addr[0]);
1049 buff_addr[1] = buff_addr[2] = buff_addr[3] = 0;
1050 } else {
1051 if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1052 e1000e_read_ps_rx_descr(core, &desc->packet_split, buff_addr);
1053 } else {
1054 e1000e_read_ext_rx_descr(core, &desc->extended, &buff_addr[0]);
1055 buff_addr[1] = buff_addr[2] = buff_addr[3] = 0;
1060 static void
1061 e1000e_verify_csum_in_sw(E1000ECore *core,
1062 struct NetRxPkt *pkt,
1063 uint32_t *status_flags,
1064 EthL4HdrProto l4hdr_proto)
1066 bool csum_valid;
1067 uint32_t csum_error;
1069 if (e1000e_rx_l3_cso_enabled(core)) {
1070 if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) {
1071 trace_e1000e_rx_metadata_l3_csum_validation_failed();
1072 } else {
1073 csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE;
1074 *status_flags |= E1000_RXD_STAT_IPCS | csum_error;
1076 } else {
1077 trace_e1000e_rx_metadata_l3_cso_disabled();
1080 if (!e1000e_rx_l4_cso_enabled(core)) {
1081 trace_e1000e_rx_metadata_l4_cso_disabled();
1082 return;
1085 if (l4hdr_proto != ETH_L4_HDR_PROTO_TCP &&
1086 l4hdr_proto != ETH_L4_HDR_PROTO_UDP) {
1087 return;
1090 if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) {
1091 trace_e1000e_rx_metadata_l4_csum_validation_failed();
1092 return;
1095 csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE;
1096 *status_flags |= E1000_RXD_STAT_TCPCS | csum_error;
1098 if (l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1099 *status_flags |= E1000_RXD_STAT_UDPCS;
1103 static inline bool
1104 e1000e_is_tcp_ack(E1000ECore *core, struct NetRxPkt *rx_pkt)
1106 if (!net_rx_pkt_is_tcp_ack(rx_pkt)) {
1107 return false;
1110 if (core->mac[RFCTL] & E1000_RFCTL_ACK_DATA_DIS) {
1111 return !net_rx_pkt_has_tcp_data(rx_pkt);
1114 return true;
1117 static void
1118 e1000e_build_rx_metadata(E1000ECore *core,
1119 struct NetRxPkt *pkt,
1120 bool is_eop,
1121 const E1000E_RSSInfo *rss_info,
1122 uint32_t *rss, uint32_t *mrq,
1123 uint32_t *status_flags,
1124 uint16_t *ip_id,
1125 uint16_t *vlan_tag)
1127 struct virtio_net_hdr *vhdr;
1128 bool hasip4, hasip6;
1129 EthL4HdrProto l4hdr_proto;
1130 uint32_t pkt_type;
1132 *status_flags = E1000_RXD_STAT_DD;
1134 /* No additional metadata needed for non-EOP descriptors */
1135 if (!is_eop) {
1136 goto func_exit;
1139 *status_flags |= E1000_RXD_STAT_EOP;
1141 net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
1142 trace_e1000e_rx_metadata_protocols(hasip4, hasip6, l4hdr_proto);
1144 /* VLAN state */
1145 if (net_rx_pkt_is_vlan_stripped(pkt)) {
1146 *status_flags |= E1000_RXD_STAT_VP;
1147 *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt));
1148 trace_e1000e_rx_metadata_vlan(*vlan_tag);
1151 /* Packet parsing results */
1152 if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) {
1153 if (rss_info->enabled) {
1154 *rss = cpu_to_le32(rss_info->hash);
1155 *mrq = cpu_to_le32(rss_info->type | (rss_info->queue << 8));
1156 trace_e1000e_rx_metadata_rss(*rss, *mrq);
1158 } else if (hasip4) {
1159 *status_flags |= E1000_RXD_STAT_IPIDV;
1160 *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt));
1161 trace_e1000e_rx_metadata_ip_id(*ip_id);
1164 if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP && e1000e_is_tcp_ack(core, pkt)) {
1165 *status_flags |= E1000_RXD_STAT_ACK;
1166 trace_e1000e_rx_metadata_ack();
1169 if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) {
1170 trace_e1000e_rx_metadata_ipv6_filtering_disabled();
1171 pkt_type = E1000_RXD_PKT_MAC;
1172 } else if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP ||
1173 l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1174 pkt_type = hasip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP;
1175 } else if (hasip4 || hasip6) {
1176 pkt_type = hasip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6;
1177 } else {
1178 pkt_type = E1000_RXD_PKT_MAC;
1181 *status_flags |= E1000_RXD_PKT_TYPE(pkt_type);
1182 trace_e1000e_rx_metadata_pkt_type(pkt_type);
1184 /* RX CSO information */
1185 if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) {
1186 trace_e1000e_rx_metadata_ipv6_sum_disabled();
1187 goto func_exit;
1190 vhdr = net_rx_pkt_get_vhdr(pkt);
1192 if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) &&
1193 !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) {
1194 trace_e1000e_rx_metadata_virthdr_no_csum_info();
1195 e1000e_verify_csum_in_sw(core, pkt, status_flags, l4hdr_proto);
1196 goto func_exit;
1199 if (e1000e_rx_l3_cso_enabled(core)) {
1200 *status_flags |= hasip4 ? E1000_RXD_STAT_IPCS : 0;
1201 } else {
1202 trace_e1000e_rx_metadata_l3_cso_disabled();
1205 if (e1000e_rx_l4_cso_enabled(core)) {
1206 switch (l4hdr_proto) {
1207 case ETH_L4_HDR_PROTO_TCP:
1208 *status_flags |= E1000_RXD_STAT_TCPCS;
1209 break;
1211 case ETH_L4_HDR_PROTO_UDP:
1212 *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS;
1213 break;
1215 default:
1216 break;
1218 } else {
1219 trace_e1000e_rx_metadata_l4_cso_disabled();
1222 func_exit:
1223 trace_e1000e_rx_metadata_status_flags(*status_flags);
1224 *status_flags = cpu_to_le32(*status_flags);
1227 static inline void
1228 e1000e_write_lgcy_rx_descr(E1000ECore *core, struct e1000_rx_desc *desc,
1229 struct NetRxPkt *pkt,
1230 const E1000E_RSSInfo *rss_info,
1231 uint16_t length)
1233 uint32_t status_flags, rss, mrq;
1234 uint16_t ip_id;
1236 assert(!rss_info->enabled);
1238 desc->length = cpu_to_le16(length);
1239 desc->csum = 0;
1241 e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1242 rss_info,
1243 &rss, &mrq,
1244 &status_flags, &ip_id,
1245 &desc->special);
1246 desc->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24);
1247 desc->status = (uint8_t) le32_to_cpu(status_flags);
1250 static inline void
1251 e1000e_write_ext_rx_descr(E1000ECore *core, union e1000_rx_desc_extended *desc,
1252 struct NetRxPkt *pkt,
1253 const E1000E_RSSInfo *rss_info,
1254 uint16_t length)
1256 memset(&desc->wb, 0, sizeof(desc->wb));
1258 desc->wb.upper.length = cpu_to_le16(length);
1260 e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1261 rss_info,
1262 &desc->wb.lower.hi_dword.rss,
1263 &desc->wb.lower.mrq,
1264 &desc->wb.upper.status_error,
1265 &desc->wb.lower.hi_dword.csum_ip.ip_id,
1266 &desc->wb.upper.vlan);
1269 static inline void
1270 e1000e_write_ps_rx_descr(E1000ECore *core,
1271 union e1000_rx_desc_packet_split *desc,
1272 struct NetRxPkt *pkt,
1273 const E1000E_RSSInfo *rss_info,
1274 size_t ps_hdr_len,
1275 uint16_t(*written)[MAX_PS_BUFFERS])
1277 int i;
1279 memset(&desc->wb, 0, sizeof(desc->wb));
1281 desc->wb.middle.length0 = cpu_to_le16((*written)[0]);
1283 for (i = 0; i < PS_PAGE_BUFFERS; i++) {
1284 desc->wb.upper.length[i] = cpu_to_le16((*written)[i + 1]);
1287 e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1288 rss_info,
1289 &desc->wb.lower.hi_dword.rss,
1290 &desc->wb.lower.mrq,
1291 &desc->wb.middle.status_error,
1292 &desc->wb.lower.hi_dword.csum_ip.ip_id,
1293 &desc->wb.middle.vlan);
1295 desc->wb.upper.header_status =
1296 cpu_to_le16(ps_hdr_len | (ps_hdr_len ? E1000_RXDPS_HDRSTAT_HDRSP : 0));
1298 trace_e1000e_rx_desc_ps_write((*written)[0], (*written)[1],
1299 (*written)[2], (*written)[3]);
1302 static inline void
1303 e1000e_write_rx_descr(E1000ECore *core, union e1000_rx_desc_union *desc,
1304 struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info,
1305 size_t ps_hdr_len, uint16_t(*written)[MAX_PS_BUFFERS])
1307 if (e1000e_rx_use_legacy_descriptor(core)) {
1308 assert(ps_hdr_len == 0);
1309 e1000e_write_lgcy_rx_descr(core, &desc->legacy, pkt, rss_info,
1310 (*written)[0]);
1311 } else {
1312 if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1313 e1000e_write_ps_rx_descr(core, &desc->packet_split, pkt, rss_info,
1314 ps_hdr_len, written);
1315 } else {
1316 assert(ps_hdr_len == 0);
1317 e1000e_write_ext_rx_descr(core, &desc->extended, pkt, rss_info,
1318 (*written)[0]);
1323 static inline void
1324 e1000e_pci_dma_write_rx_desc(E1000ECore *core, dma_addr_t addr,
1325 union e1000_rx_desc_union *desc, dma_addr_t len)
1327 PCIDevice *dev = core->owner;
1329 if (e1000e_rx_use_legacy_descriptor(core)) {
1330 struct e1000_rx_desc *d = &desc->legacy;
1331 size_t offset = offsetof(struct e1000_rx_desc, status);
1332 uint8_t status = d->status;
1334 d->status &= ~E1000_RXD_STAT_DD;
1335 pci_dma_write(dev, addr, desc, len);
1337 if (status & E1000_RXD_STAT_DD) {
1338 d->status = status;
1339 pci_dma_write(dev, addr + offset, &status, sizeof(status));
1341 } else {
1342 if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1343 union e1000_rx_desc_packet_split *d = &desc->packet_split;
1344 size_t offset = offsetof(union e1000_rx_desc_packet_split,
1345 wb.middle.status_error);
1346 uint32_t status = d->wb.middle.status_error;
1348 d->wb.middle.status_error &= ~E1000_RXD_STAT_DD;
1349 pci_dma_write(dev, addr, desc, len);
1351 if (status & E1000_RXD_STAT_DD) {
1352 d->wb.middle.status_error = status;
1353 pci_dma_write(dev, addr + offset, &status, sizeof(status));
1355 } else {
1356 union e1000_rx_desc_extended *d = &desc->extended;
1357 size_t offset = offsetof(union e1000_rx_desc_extended,
1358 wb.upper.status_error);
1359 uint32_t status = d->wb.upper.status_error;
1361 d->wb.upper.status_error &= ~E1000_RXD_STAT_DD;
1362 pci_dma_write(dev, addr, desc, len);
1364 if (status & E1000_RXD_STAT_DD) {
1365 d->wb.upper.status_error = status;
1366 pci_dma_write(dev, addr + offset, &status, sizeof(status));
1372 typedef struct E1000EBAState {
1373 uint16_t written[MAX_PS_BUFFERS];
1374 uint8_t cur_idx;
1375 } E1000EBAState;
1377 static inline void
1378 e1000e_write_hdr_frag_to_rx_buffers(E1000ECore *core,
1379 hwaddr ba[MAX_PS_BUFFERS],
1380 E1000EBAState *bastate,
1381 const char *data,
1382 dma_addr_t data_len)
1384 assert(data_len <= core->rxbuf_sizes[0] - bastate->written[0]);
1386 pci_dma_write(core->owner, ba[0] + bastate->written[0], data, data_len);
1387 bastate->written[0] += data_len;
1389 bastate->cur_idx = 1;
1392 static void
1393 e1000e_write_payload_frag_to_rx_buffers(E1000ECore *core,
1394 hwaddr ba[MAX_PS_BUFFERS],
1395 E1000EBAState *bastate,
1396 const char *data,
1397 dma_addr_t data_len)
1399 while (data_len > 0) {
1400 uint32_t cur_buf_len = core->rxbuf_sizes[bastate->cur_idx];
1401 uint32_t cur_buf_bytes_left = cur_buf_len -
1402 bastate->written[bastate->cur_idx];
1403 uint32_t bytes_to_write = MIN(data_len, cur_buf_bytes_left);
1405 trace_e1000e_rx_desc_buff_write(bastate->cur_idx,
1406 ba[bastate->cur_idx],
1407 bastate->written[bastate->cur_idx],
1408 data,
1409 bytes_to_write);
1411 pci_dma_write(core->owner,
1412 ba[bastate->cur_idx] + bastate->written[bastate->cur_idx],
1413 data, bytes_to_write);
1415 bastate->written[bastate->cur_idx] += bytes_to_write;
1416 data += bytes_to_write;
1417 data_len -= bytes_to_write;
1419 if (bastate->written[bastate->cur_idx] == cur_buf_len) {
1420 bastate->cur_idx++;
1423 assert(bastate->cur_idx < MAX_PS_BUFFERS);
1427 static void
1428 e1000e_update_rx_stats(E1000ECore *core, size_t pkt_size, size_t pkt_fcs_size)
1430 eth_pkt_types_e pkt_type = net_rx_pkt_get_packet_type(core->rx_pkt);
1431 e1000x_update_rx_total_stats(core->mac, pkt_type, pkt_size, pkt_fcs_size);
1434 static inline bool
1435 e1000e_rx_descr_threshold_hit(E1000ECore *core, const E1000ERingInfo *rxi)
1437 return e1000e_ring_free_descr_num(core, rxi) ==
1438 e1000e_ring_len(core, rxi) >> core->rxbuf_min_shift;
1441 static bool
1442 e1000e_do_ps(E1000ECore *core, struct NetRxPkt *pkt, size_t *hdr_len)
1444 bool hasip4, hasip6;
1445 EthL4HdrProto l4hdr_proto;
1446 bool fragment;
1448 if (!e1000e_rx_use_ps_descriptor(core)) {
1449 return false;
1452 net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
1454 if (hasip4) {
1455 fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
1456 } else if (hasip6) {
1457 fragment = net_rx_pkt_get_ip6_info(pkt)->fragment;
1458 } else {
1459 return false;
1462 if (fragment && (core->mac[RFCTL] & E1000_RFCTL_IPFRSP_DIS)) {
1463 return false;
1466 if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP ||
1467 l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1468 *hdr_len = net_rx_pkt_get_l5_hdr_offset(pkt);
1469 } else {
1470 *hdr_len = net_rx_pkt_get_l4_hdr_offset(pkt);
1473 if ((*hdr_len > core->rxbuf_sizes[0]) ||
1474 (*hdr_len > net_rx_pkt_get_total_len(pkt))) {
1475 return false;
1478 return true;
1481 static void
1482 e1000e_write_packet_to_guest(E1000ECore *core, struct NetRxPkt *pkt,
1483 const E1000E_RxRing *rxr,
1484 const E1000E_RSSInfo *rss_info)
1486 PCIDevice *d = core->owner;
1487 dma_addr_t base;
1488 union e1000_rx_desc_union desc;
1489 size_t desc_size;
1490 size_t desc_offset = 0;
1491 size_t iov_ofs = 0;
1493 struct iovec *iov = net_rx_pkt_get_iovec(pkt);
1494 size_t size = net_rx_pkt_get_total_len(pkt);
1495 size_t total_size = size + e1000x_fcs_len(core->mac);
1496 const E1000ERingInfo *rxi;
1497 size_t ps_hdr_len = 0;
1498 bool do_ps = e1000e_do_ps(core, pkt, &ps_hdr_len);
1499 bool is_first = true;
1501 rxi = rxr->i;
1503 do {
1504 hwaddr ba[MAX_PS_BUFFERS];
1505 E1000EBAState bastate = { { 0 } };
1506 bool is_last = false;
1508 desc_size = total_size - desc_offset;
1510 if (desc_size > core->rx_desc_buf_size) {
1511 desc_size = core->rx_desc_buf_size;
1514 if (e1000e_ring_empty(core, rxi)) {
1515 return;
1518 base = e1000e_ring_head_descr(core, rxi);
1520 pci_dma_read(d, base, &desc, core->rx_desc_len);
1522 trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len);
1524 e1000e_read_rx_descr(core, &desc, ba);
1526 if (ba[0]) {
1527 if (desc_offset < size) {
1528 static const uint32_t fcs_pad;
1529 size_t iov_copy;
1530 size_t copy_size = size - desc_offset;
1531 if (copy_size > core->rx_desc_buf_size) {
1532 copy_size = core->rx_desc_buf_size;
1535 /* For PS mode copy the packet header first */
1536 if (do_ps) {
1537 if (is_first) {
1538 size_t ps_hdr_copied = 0;
1539 do {
1540 iov_copy = MIN(ps_hdr_len - ps_hdr_copied,
1541 iov->iov_len - iov_ofs);
1543 e1000e_write_hdr_frag_to_rx_buffers(core, ba,
1544 &bastate,
1545 iov->iov_base,
1546 iov_copy);
1548 copy_size -= iov_copy;
1549 ps_hdr_copied += iov_copy;
1551 iov_ofs += iov_copy;
1552 if (iov_ofs == iov->iov_len) {
1553 iov++;
1554 iov_ofs = 0;
1556 } while (ps_hdr_copied < ps_hdr_len);
1558 is_first = false;
1559 } else {
1560 /* Leave buffer 0 of each descriptor except first */
1561 /* empty as per spec 7.1.5.1 */
1562 e1000e_write_hdr_frag_to_rx_buffers(core, ba, &bastate,
1563 NULL, 0);
1567 /* Copy packet payload */
1568 while (copy_size) {
1569 iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
1571 e1000e_write_payload_frag_to_rx_buffers(core, ba, &bastate,
1572 iov->iov_base +
1573 iov_ofs,
1574 iov_copy);
1576 copy_size -= iov_copy;
1577 iov_ofs += iov_copy;
1578 if (iov_ofs == iov->iov_len) {
1579 iov++;
1580 iov_ofs = 0;
1584 if (desc_offset + desc_size >= total_size) {
1585 /* Simulate FCS checksum presence in the last descriptor */
1586 e1000e_write_payload_frag_to_rx_buffers(core, ba, &bastate,
1587 (const char *) &fcs_pad, e1000x_fcs_len(core->mac));
1590 } else { /* as per intel docs; skip descriptors with null buf addr */
1591 trace_e1000e_rx_null_descriptor();
1593 desc_offset += desc_size;
1594 if (desc_offset >= total_size) {
1595 is_last = true;
1598 e1000e_write_rx_descr(core, &desc, is_last ? core->rx_pkt : NULL,
1599 rss_info, do_ps ? ps_hdr_len : 0, &bastate.written);
1600 e1000e_pci_dma_write_rx_desc(core, base, &desc, core->rx_desc_len);
1602 e1000e_ring_advance(core, rxi,
1603 core->rx_desc_len / E1000_MIN_RX_DESC_LEN);
1605 } while (desc_offset < total_size);
1607 e1000e_update_rx_stats(core, size, total_size);
1610 static inline void
1611 e1000e_rx_fix_l4_csum(E1000ECore *core, struct NetRxPkt *pkt)
1613 struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt);
1615 if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
1616 net_rx_pkt_fix_l4_csum(pkt);
1620 ssize_t
1621 e1000e_receive_iov(E1000ECore *core, const struct iovec *iov, int iovcnt)
1623 return e1000e_receive_internal(core, iov, iovcnt, core->has_vnet);
1626 static ssize_t
1627 e1000e_receive_internal(E1000ECore *core, const struct iovec *iov, int iovcnt,
1628 bool has_vnet)
1630 uint32_t causes = 0;
1631 uint8_t buf[ETH_ZLEN];
1632 struct iovec min_iov;
1633 size_t size, orig_size;
1634 size_t iov_ofs = 0;
1635 E1000E_RxRing rxr;
1636 E1000E_RSSInfo rss_info;
1637 size_t total_size;
1638 ssize_t retval;
1639 bool rdmts_hit;
1641 trace_e1000e_rx_receive_iov(iovcnt);
1643 if (!e1000x_hw_rx_enabled(core->mac)) {
1644 return -1;
1647 /* Pull virtio header in */
1648 if (has_vnet) {
1649 net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt);
1650 iov_ofs = sizeof(struct virtio_net_hdr);
1651 } else {
1652 net_rx_pkt_unset_vhdr(core->rx_pkt);
1655 orig_size = iov_size(iov, iovcnt);
1656 size = orig_size - iov_ofs;
1658 /* Pad to minimum Ethernet frame length */
1659 if (size < sizeof(buf)) {
1660 iov_to_buf(iov, iovcnt, iov_ofs, buf, size);
1661 memset(&buf[size], 0, sizeof(buf) - size);
1662 e1000x_inc_reg_if_not_full(core->mac, RUC);
1663 min_iov.iov_base = buf;
1664 min_iov.iov_len = size = sizeof(buf);
1665 iovcnt = 1;
1666 iov = &min_iov;
1667 iov_ofs = 0;
1668 } else {
1669 iov_to_buf(iov, iovcnt, iov_ofs, buf, ETH_HLEN + 4);
1672 /* Discard oversized packets if !LPE and !SBP. */
1673 if (e1000x_is_oversized(core->mac, size)) {
1674 return orig_size;
1677 net_rx_pkt_set_packet_type(core->rx_pkt,
1678 get_eth_packet_type(PKT_GET_ETH_HDR(buf)));
1680 if (!e1000e_receive_filter(core, buf)) {
1681 trace_e1000e_rx_flt_dropped();
1682 return orig_size;
1685 net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs,
1686 e1000x_vlan_enabled(core->mac) ? 0 : -1,
1687 core->mac[VET], 0);
1689 e1000e_rss_parse_packet(core, core->rx_pkt, &rss_info);
1690 e1000e_rx_ring_init(core, &rxr, rss_info.queue);
1692 total_size = net_rx_pkt_get_total_len(core->rx_pkt) +
1693 e1000x_fcs_len(core->mac);
1695 if (e1000e_has_rxbufs(core, rxr.i, total_size)) {
1696 e1000e_rx_fix_l4_csum(core, core->rx_pkt);
1698 e1000e_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info);
1700 retval = orig_size;
1702 /* Perform small receive detection (RSRPD) */
1703 if (total_size < core->mac[RSRPD]) {
1704 causes |= E1000_ICS_SRPD;
1707 /* Perform ACK receive detection */
1708 if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS) &&
1709 (e1000e_is_tcp_ack(core, core->rx_pkt))) {
1710 causes |= E1000_ICS_ACK;
1713 /* Check if receive descriptor minimum threshold hit */
1714 rdmts_hit = e1000e_rx_descr_threshold_hit(core, rxr.i);
1715 causes |= e1000e_rx_wb_interrupt_cause(core, rxr.i->idx, rdmts_hit);
1717 trace_e1000e_rx_written_to_guest(rxr.i->idx);
1718 } else {
1719 causes |= E1000_ICS_RXO;
1720 retval = 0;
1722 trace_e1000e_rx_not_written_to_guest(rxr.i->idx);
1725 if (!e1000e_intrmgr_delay_rx_causes(core, &causes)) {
1726 trace_e1000e_rx_interrupt_set(causes);
1727 e1000e_set_interrupt_cause(core, causes);
1728 } else {
1729 trace_e1000e_rx_interrupt_delayed(causes);
1732 return retval;
1735 static inline bool
1736 e1000e_have_autoneg(E1000ECore *core)
1738 return core->phy[0][MII_BMCR] & MII_BMCR_AUTOEN;
1741 static void e1000e_update_flowctl_status(E1000ECore *core)
1743 if (e1000e_have_autoneg(core) &&
1744 core->phy[0][MII_BMSR] & MII_BMSR_AN_COMP) {
1745 trace_e1000e_link_autoneg_flowctl(true);
1746 core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE;
1747 } else {
1748 trace_e1000e_link_autoneg_flowctl(false);
1752 static inline void
1753 e1000e_link_down(E1000ECore *core)
1755 e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1756 e1000e_update_flowctl_status(core);
1759 static inline void
1760 e1000e_set_phy_ctrl(E1000ECore *core, int index, uint16_t val)
1762 /* bits 0-5 reserved; MII_BMCR_[ANRESTART,RESET] are self clearing */
1763 core->phy[0][MII_BMCR] = val & ~(0x3f |
1764 MII_BMCR_RESET |
1765 MII_BMCR_ANRESTART);
1767 if ((val & MII_BMCR_ANRESTART) &&
1768 e1000e_have_autoneg(core)) {
1769 e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1773 static void
1774 e1000e_set_phy_oem_bits(E1000ECore *core, int index, uint16_t val)
1776 core->phy[0][PHY_OEM_BITS] = val & ~BIT(10);
1778 if (val & BIT(10)) {
1779 e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1783 static void
1784 e1000e_set_phy_page(E1000ECore *core, int index, uint16_t val)
1786 core->phy[0][PHY_PAGE] = val & PHY_PAGE_RW_MASK;
1789 void
1790 e1000e_core_set_link_status(E1000ECore *core)
1792 NetClientState *nc = qemu_get_queue(core->owner_nic);
1793 uint32_t old_status = core->mac[STATUS];
1795 trace_e1000e_link_status_changed(nc->link_down ? false : true);
1797 if (nc->link_down) {
1798 e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1799 } else {
1800 if (e1000e_have_autoneg(core) &&
1801 !(core->phy[0][MII_BMSR] & MII_BMSR_AN_COMP)) {
1802 e1000x_restart_autoneg(core->mac, core->phy[0],
1803 core->autoneg_timer);
1804 } else {
1805 e1000x_update_regs_on_link_up(core->mac, core->phy[0]);
1806 e1000e_start_recv(core);
1810 if (core->mac[STATUS] != old_status) {
1811 e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
1815 static void
1816 e1000e_set_ctrl(E1000ECore *core, int index, uint32_t val)
1818 trace_e1000e_core_ctrl_write(index, val);
1820 /* RST is self clearing */
1821 core->mac[CTRL] = val & ~E1000_CTRL_RST;
1822 core->mac[CTRL_DUP] = core->mac[CTRL];
1824 trace_e1000e_link_set_params(
1825 !!(val & E1000_CTRL_ASDE),
1826 (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
1827 !!(val & E1000_CTRL_FRCSPD),
1828 !!(val & E1000_CTRL_FRCDPX),
1829 !!(val & E1000_CTRL_RFCE),
1830 !!(val & E1000_CTRL_TFCE));
1832 if (val & E1000_CTRL_RST) {
1833 trace_e1000e_core_ctrl_sw_reset();
1834 e1000e_reset(core, true);
1837 if (val & E1000_CTRL_PHY_RST) {
1838 trace_e1000e_core_ctrl_phy_reset();
1839 core->mac[STATUS] |= E1000_STATUS_PHYRA;
1843 static void
1844 e1000e_set_rfctl(E1000ECore *core, int index, uint32_t val)
1846 trace_e1000e_rx_set_rfctl(val);
1848 if (!(val & E1000_RFCTL_ISCSI_DIS)) {
1849 trace_e1000e_wrn_iscsi_filtering_not_supported();
1852 if (!(val & E1000_RFCTL_NFSW_DIS)) {
1853 trace_e1000e_wrn_nfsw_filtering_not_supported();
1856 if (!(val & E1000_RFCTL_NFSR_DIS)) {
1857 trace_e1000e_wrn_nfsr_filtering_not_supported();
1860 core->mac[RFCTL] = val;
1863 static void
1864 e1000e_calc_per_desc_buf_size(E1000ECore *core)
1866 int i;
1867 core->rx_desc_buf_size = 0;
1869 for (i = 0; i < ARRAY_SIZE(core->rxbuf_sizes); i++) {
1870 core->rx_desc_buf_size += core->rxbuf_sizes[i];
1874 static void
1875 e1000e_parse_rxbufsize(E1000ECore *core)
1877 uint32_t rctl = core->mac[RCTL];
1879 memset(core->rxbuf_sizes, 0, sizeof(core->rxbuf_sizes));
1881 if (rctl & E1000_RCTL_DTYP_MASK) {
1882 uint32_t bsize;
1884 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE0_MASK;
1885 core->rxbuf_sizes[0] = (bsize >> E1000_PSRCTL_BSIZE0_SHIFT) * 128;
1887 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE1_MASK;
1888 core->rxbuf_sizes[1] = (bsize >> E1000_PSRCTL_BSIZE1_SHIFT) * 1024;
1890 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE2_MASK;
1891 core->rxbuf_sizes[2] = (bsize >> E1000_PSRCTL_BSIZE2_SHIFT) * 1024;
1893 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE3_MASK;
1894 core->rxbuf_sizes[3] = (bsize >> E1000_PSRCTL_BSIZE3_SHIFT) * 1024;
1895 } else if (rctl & E1000_RCTL_FLXBUF_MASK) {
1896 int flxbuf = rctl & E1000_RCTL_FLXBUF_MASK;
1897 core->rxbuf_sizes[0] = (flxbuf >> E1000_RCTL_FLXBUF_SHIFT) * 1024;
1898 } else {
1899 core->rxbuf_sizes[0] = e1000x_rxbufsize(rctl);
1902 trace_e1000e_rx_desc_buff_sizes(core->rxbuf_sizes[0], core->rxbuf_sizes[1],
1903 core->rxbuf_sizes[2], core->rxbuf_sizes[3]);
1905 e1000e_calc_per_desc_buf_size(core);
1908 static void
1909 e1000e_calc_rxdesclen(E1000ECore *core)
1911 if (e1000e_rx_use_legacy_descriptor(core)) {
1912 core->rx_desc_len = sizeof(struct e1000_rx_desc);
1913 } else {
1914 if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1915 core->rx_desc_len = sizeof(union e1000_rx_desc_packet_split);
1916 } else {
1917 core->rx_desc_len = sizeof(union e1000_rx_desc_extended);
1920 trace_e1000e_rx_desc_len(core->rx_desc_len);
1923 static void
1924 e1000e_set_rx_control(E1000ECore *core, int index, uint32_t val)
1926 core->mac[RCTL] = val;
1927 trace_e1000e_rx_set_rctl(core->mac[RCTL]);
1929 if (val & E1000_RCTL_EN) {
1930 e1000e_parse_rxbufsize(core);
1931 e1000e_calc_rxdesclen(core);
1932 core->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1 +
1933 E1000_RING_DESC_LEN_SHIFT;
1935 e1000e_start_recv(core);
1939 static
1940 void(*e1000e_phyreg_writeops[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE])
1941 (E1000ECore *, int, uint16_t) = {
1942 [0] = {
1943 [MII_BMCR] = e1000e_set_phy_ctrl,
1944 [PHY_PAGE] = e1000e_set_phy_page,
1945 [PHY_OEM_BITS] = e1000e_set_phy_oem_bits
1949 static inline bool
1950 e1000e_postpone_interrupt(E1000IntrDelayTimer *timer)
1952 if (timer->running) {
1953 trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2);
1955 return true;
1958 if (timer->core->mac[timer->delay_reg] != 0) {
1959 e1000e_intrmgr_rearm_timer(timer);
1962 return false;
1965 static inline bool
1966 e1000e_itr_should_postpone(E1000ECore *core)
1968 return e1000e_postpone_interrupt(&core->itr);
1971 static inline bool
1972 e1000e_eitr_should_postpone(E1000ECore *core, int idx)
1974 return e1000e_postpone_interrupt(&core->eitr[idx]);
1977 static void
1978 e1000e_msix_notify_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
1980 uint32_t effective_eiac;
1982 if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
1983 uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
1984 if (vec < E1000E_MSIX_VEC_NUM) {
1985 if (!e1000e_eitr_should_postpone(core, vec)) {
1986 trace_e1000e_irq_msix_notify_vec(vec);
1987 msix_notify(core->owner, vec);
1989 } else {
1990 trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
1992 } else {
1993 trace_e1000e_wrn_msix_invalid(cause, int_cfg);
1996 if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_EIAME) {
1997 trace_e1000e_irq_iam_clear_eiame(core->mac[IAM], cause);
1998 core->mac[IAM] &= ~cause;
2001 trace_e1000e_irq_icr_clear_eiac(core->mac[ICR], core->mac[EIAC]);
2003 effective_eiac = core->mac[EIAC] & cause;
2005 core->mac[ICR] &= ~effective_eiac;
2007 if (!(core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2008 core->mac[IMS] &= ~effective_eiac;
2012 static void
2013 e1000e_msix_notify(E1000ECore *core, uint32_t causes)
2015 if (causes & E1000_ICR_RXQ0) {
2016 e1000e_msix_notify_one(core, E1000_ICR_RXQ0,
2017 E1000_IVAR_RXQ0(core->mac[IVAR]));
2020 if (causes & E1000_ICR_RXQ1) {
2021 e1000e_msix_notify_one(core, E1000_ICR_RXQ1,
2022 E1000_IVAR_RXQ1(core->mac[IVAR]));
2025 if (causes & E1000_ICR_TXQ0) {
2026 e1000e_msix_notify_one(core, E1000_ICR_TXQ0,
2027 E1000_IVAR_TXQ0(core->mac[IVAR]));
2030 if (causes & E1000_ICR_TXQ1) {
2031 e1000e_msix_notify_one(core, E1000_ICR_TXQ1,
2032 E1000_IVAR_TXQ1(core->mac[IVAR]));
2035 if (causes & E1000_ICR_OTHER) {
2036 e1000e_msix_notify_one(core, E1000_ICR_OTHER,
2037 E1000_IVAR_OTHER(core->mac[IVAR]));
2041 static void
2042 e1000e_msix_clear_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
2044 if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
2045 uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
2046 if (vec < E1000E_MSIX_VEC_NUM) {
2047 trace_e1000e_irq_msix_pending_clearing(cause, int_cfg, vec);
2048 msix_clr_pending(core->owner, vec);
2049 } else {
2050 trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2052 } else {
2053 trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2057 static void
2058 e1000e_msix_clear(E1000ECore *core, uint32_t causes)
2060 if (causes & E1000_ICR_RXQ0) {
2061 e1000e_msix_clear_one(core, E1000_ICR_RXQ0,
2062 E1000_IVAR_RXQ0(core->mac[IVAR]));
2065 if (causes & E1000_ICR_RXQ1) {
2066 e1000e_msix_clear_one(core, E1000_ICR_RXQ1,
2067 E1000_IVAR_RXQ1(core->mac[IVAR]));
2070 if (causes & E1000_ICR_TXQ0) {
2071 e1000e_msix_clear_one(core, E1000_ICR_TXQ0,
2072 E1000_IVAR_TXQ0(core->mac[IVAR]));
2075 if (causes & E1000_ICR_TXQ1) {
2076 e1000e_msix_clear_one(core, E1000_ICR_TXQ1,
2077 E1000_IVAR_TXQ1(core->mac[IVAR]));
2080 if (causes & E1000_ICR_OTHER) {
2081 e1000e_msix_clear_one(core, E1000_ICR_OTHER,
2082 E1000_IVAR_OTHER(core->mac[IVAR]));
2086 static inline void
2087 e1000e_fix_icr_asserted(E1000ECore *core)
2089 core->mac[ICR] &= ~E1000_ICR_ASSERTED;
2090 if (core->mac[ICR]) {
2091 core->mac[ICR] |= E1000_ICR_ASSERTED;
2094 trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]);
2097 static void e1000e_raise_interrupts(E1000ECore *core,
2098 size_t index, uint32_t causes)
2100 bool is_msix = msix_enabled(core->owner);
2101 uint32_t old_causes = core->mac[IMS] & core->mac[ICR];
2102 uint32_t raised_causes;
2104 trace_e1000e_irq_set(index << 2,
2105 core->mac[index], core->mac[index] | causes);
2107 core->mac[index] |= causes;
2109 /* Set ICR[OTHER] for MSI-X */
2110 if (is_msix) {
2111 if (core->mac[ICR] & E1000_ICR_OTHER_CAUSES) {
2112 core->mac[ICR] |= E1000_ICR_OTHER;
2113 trace_e1000e_irq_add_msi_other(core->mac[ICR]);
2117 e1000e_fix_icr_asserted(core);
2120 * Make sure ICR and ICS registers have the same value.
2121 * The spec says that the ICS register is write-only. However in practice,
2122 * on real hardware ICS is readable, and for reads it has the same value as
2123 * ICR (except that ICS does not have the clear on read behaviour of ICR).
2125 * The VxWorks PRO/1000 driver uses this behaviour.
2127 core->mac[ICS] = core->mac[ICR];
2129 trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
2130 core->mac[ICR], core->mac[IMS]);
2132 raised_causes = core->mac[IMS] & core->mac[ICR] & ~old_causes;
2133 if (!raised_causes) {
2134 return;
2137 if (is_msix) {
2138 e1000e_msix_notify(core, raised_causes & ~E1000_ICR_ASSERTED);
2139 } else if (!e1000e_itr_should_postpone(core)) {
2140 if (msi_enabled(core->owner)) {
2141 trace_e1000e_irq_msi_notify(raised_causes);
2142 msi_notify(core->owner, 0);
2143 } else {
2144 e1000e_raise_legacy_irq(core);
2149 static void e1000e_lower_interrupts(E1000ECore *core,
2150 size_t index, uint32_t causes)
2152 trace_e1000e_irq_clear(index << 2,
2153 core->mac[index], core->mac[index] & ~causes);
2155 core->mac[index] &= ~causes;
2158 * Make sure ICR and ICS registers have the same value.
2159 * The spec says that the ICS register is write-only. However in practice,
2160 * on real hardware ICS is readable, and for reads it has the same value as
2161 * ICR (except that ICS does not have the clear on read behaviour of ICR).
2163 * The VxWorks PRO/1000 driver uses this behaviour.
2165 core->mac[ICS] = core->mac[ICR];
2167 trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
2168 core->mac[ICR], core->mac[IMS]);
2170 if (!(core->mac[IMS] & core->mac[ICR]) &&
2171 !msix_enabled(core->owner) && !msi_enabled(core->owner)) {
2172 e1000e_lower_legacy_irq(core);
2176 static void
2177 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val)
2179 val |= e1000e_intmgr_collect_delayed_causes(core);
2180 e1000e_raise_interrupts(core, ICR, val);
2183 static inline void
2184 e1000e_autoneg_timer(void *opaque)
2186 E1000ECore *core = opaque;
2187 if (!qemu_get_queue(core->owner_nic)->link_down) {
2188 e1000x_update_regs_on_autoneg_done(core->mac, core->phy[0]);
2189 e1000e_start_recv(core);
2191 e1000e_update_flowctl_status(core);
2192 /* signal link status change to the guest */
2193 e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
2197 static inline uint16_t
2198 e1000e_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr)
2200 uint16_t index = (addr & 0x1ffff) >> 2;
2201 return index + (mac_reg_access[index] & 0xfffe);
2204 static const char e1000e_phy_regcap[E1000E_PHY_PAGES][0x20] = {
2205 [0] = {
2206 [MII_BMCR] = PHY_ANYPAGE | PHY_RW,
2207 [MII_BMSR] = PHY_ANYPAGE | PHY_R,
2208 [MII_PHYID1] = PHY_ANYPAGE | PHY_R,
2209 [MII_PHYID2] = PHY_ANYPAGE | PHY_R,
2210 [MII_ANAR] = PHY_ANYPAGE | PHY_RW,
2211 [MII_ANLPAR] = PHY_ANYPAGE | PHY_R,
2212 [MII_ANER] = PHY_ANYPAGE | PHY_R,
2213 [MII_ANNP] = PHY_ANYPAGE | PHY_RW,
2214 [MII_ANLPRNP] = PHY_ANYPAGE | PHY_R,
2215 [MII_CTRL1000] = PHY_ANYPAGE | PHY_RW,
2216 [MII_STAT1000] = PHY_ANYPAGE | PHY_R,
2217 [MII_EXTSTAT] = PHY_ANYPAGE | PHY_R,
2218 [PHY_PAGE] = PHY_ANYPAGE | PHY_RW,
2220 [PHY_COPPER_CTRL1] = PHY_RW,
2221 [PHY_COPPER_STAT1] = PHY_R,
2222 [PHY_COPPER_CTRL3] = PHY_RW,
2223 [PHY_RX_ERR_CNTR] = PHY_R,
2224 [PHY_OEM_BITS] = PHY_RW,
2225 [PHY_BIAS_1] = PHY_RW,
2226 [PHY_BIAS_2] = PHY_RW,
2227 [PHY_COPPER_INT_ENABLE] = PHY_RW,
2228 [PHY_COPPER_STAT2] = PHY_R,
2229 [PHY_COPPER_CTRL2] = PHY_RW
2231 [2] = {
2232 [PHY_MAC_CTRL1] = PHY_RW,
2233 [PHY_MAC_INT_ENABLE] = PHY_RW,
2234 [PHY_MAC_STAT] = PHY_R,
2235 [PHY_MAC_CTRL2] = PHY_RW
2237 [3] = {
2238 [PHY_LED_03_FUNC_CTRL1] = PHY_RW,
2239 [PHY_LED_03_POL_CTRL] = PHY_RW,
2240 [PHY_LED_TIMER_CTRL] = PHY_RW,
2241 [PHY_LED_45_CTRL] = PHY_RW
2243 [5] = {
2244 [PHY_1000T_SKEW] = PHY_R,
2245 [PHY_1000T_SWAP] = PHY_R
2247 [6] = {
2248 [PHY_CRC_COUNTERS] = PHY_R
2252 static bool
2253 e1000e_phy_reg_check_cap(E1000ECore *core, uint32_t addr,
2254 char cap, uint8_t *page)
2256 *page =
2257 (e1000e_phy_regcap[0][addr] & PHY_ANYPAGE) ? 0
2258 : core->phy[0][PHY_PAGE];
2260 if (*page >= E1000E_PHY_PAGES) {
2261 return false;
2264 return e1000e_phy_regcap[*page][addr] & cap;
2267 static void
2268 e1000e_phy_reg_write(E1000ECore *core, uint8_t page,
2269 uint32_t addr, uint16_t data)
2271 assert(page < E1000E_PHY_PAGES);
2272 assert(addr < E1000E_PHY_PAGE_SIZE);
2274 if (e1000e_phyreg_writeops[page][addr]) {
2275 e1000e_phyreg_writeops[page][addr](core, addr, data);
2276 } else {
2277 core->phy[page][addr] = data;
2281 static void
2282 e1000e_set_mdic(E1000ECore *core, int index, uint32_t val)
2284 uint32_t data = val & E1000_MDIC_DATA_MASK;
2285 uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
2286 uint8_t page;
2288 if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */
2289 val = core->mac[MDIC] | E1000_MDIC_ERROR;
2290 } else if (val & E1000_MDIC_OP_READ) {
2291 if (!e1000e_phy_reg_check_cap(core, addr, PHY_R, &page)) {
2292 trace_e1000e_core_mdic_read_unhandled(page, addr);
2293 val |= E1000_MDIC_ERROR;
2294 } else {
2295 val = (val ^ data) | core->phy[page][addr];
2296 trace_e1000e_core_mdic_read(page, addr, val);
2298 } else if (val & E1000_MDIC_OP_WRITE) {
2299 if (!e1000e_phy_reg_check_cap(core, addr, PHY_W, &page)) {
2300 trace_e1000e_core_mdic_write_unhandled(page, addr);
2301 val |= E1000_MDIC_ERROR;
2302 } else {
2303 trace_e1000e_core_mdic_write(page, addr, data);
2304 e1000e_phy_reg_write(core, page, addr, data);
2307 core->mac[MDIC] = val | E1000_MDIC_READY;
2309 if (val & E1000_MDIC_INT_EN) {
2310 e1000e_set_interrupt_cause(core, E1000_ICR_MDAC);
2314 static void
2315 e1000e_set_rdt(E1000ECore *core, int index, uint32_t val)
2317 core->mac[index] = val & 0xffff;
2318 trace_e1000e_rx_set_rdt(e1000e_mq_queue_idx(RDT0, index), val);
2319 e1000e_start_recv(core);
2322 static void
2323 e1000e_set_status(E1000ECore *core, int index, uint32_t val)
2325 if ((val & E1000_STATUS_PHYRA) == 0) {
2326 core->mac[index] &= ~E1000_STATUS_PHYRA;
2330 static void
2331 e1000e_set_ctrlext(E1000ECore *core, int index, uint32_t val)
2333 trace_e1000e_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK),
2334 !!(val & E1000_CTRL_EXT_SPD_BYPS));
2336 /* Zero self-clearing bits */
2337 val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST);
2338 core->mac[CTRL_EXT] = val;
2341 static void
2342 e1000e_set_pbaclr(E1000ECore *core, int index, uint32_t val)
2344 int i;
2346 core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK;
2348 if (!msix_enabled(core->owner)) {
2349 return;
2352 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
2353 if (core->mac[PBACLR] & BIT(i)) {
2354 msix_clr_pending(core->owner, i);
2359 static void
2360 e1000e_set_fcrth(E1000ECore *core, int index, uint32_t val)
2362 core->mac[FCRTH] = val & 0xFFF8;
2365 static void
2366 e1000e_set_fcrtl(E1000ECore *core, int index, uint32_t val)
2368 core->mac[FCRTL] = val & 0x8000FFF8;
2371 #define E1000E_LOW_BITS_SET_FUNC(num) \
2372 static void \
2373 e1000e_set_##num##bit(E1000ECore *core, int index, uint32_t val) \
2375 core->mac[index] = val & (BIT(num) - 1); \
2378 E1000E_LOW_BITS_SET_FUNC(4)
2379 E1000E_LOW_BITS_SET_FUNC(6)
2380 E1000E_LOW_BITS_SET_FUNC(11)
2381 E1000E_LOW_BITS_SET_FUNC(12)
2382 E1000E_LOW_BITS_SET_FUNC(13)
2383 E1000E_LOW_BITS_SET_FUNC(16)
2385 static void
2386 e1000e_set_vet(E1000ECore *core, int index, uint32_t val)
2388 core->mac[VET] = val & 0xffff;
2389 trace_e1000e_vlan_vet(core->mac[VET]);
2392 static void
2393 e1000e_set_dlen(E1000ECore *core, int index, uint32_t val)
2395 core->mac[index] = val & E1000_XDLEN_MASK;
2398 static void
2399 e1000e_set_dbal(E1000ECore *core, int index, uint32_t val)
2401 core->mac[index] = val & E1000_XDBAL_MASK;
2404 static void
2405 e1000e_set_tctl(E1000ECore *core, int index, uint32_t val)
2407 E1000E_TxRing txr;
2408 core->mac[index] = val;
2410 if (core->mac[TARC0] & E1000_TARC_ENABLE) {
2411 e1000e_tx_ring_init(core, &txr, 0);
2412 e1000e_start_xmit(core, &txr);
2415 if (core->mac[TARC1] & E1000_TARC_ENABLE) {
2416 e1000e_tx_ring_init(core, &txr, 1);
2417 e1000e_start_xmit(core, &txr);
2421 static void
2422 e1000e_set_tdt(E1000ECore *core, int index, uint32_t val)
2424 E1000E_TxRing txr;
2425 int qidx = e1000e_mq_queue_idx(TDT, index);
2426 uint32_t tarc_reg = (qidx == 0) ? TARC0 : TARC1;
2428 core->mac[index] = val & 0xffff;
2430 if (core->mac[tarc_reg] & E1000_TARC_ENABLE) {
2431 e1000e_tx_ring_init(core, &txr, qidx);
2432 e1000e_start_xmit(core, &txr);
2436 static void
2437 e1000e_set_ics(E1000ECore *core, int index, uint32_t val)
2439 trace_e1000e_irq_write_ics(val);
2440 e1000e_set_interrupt_cause(core, val);
2443 static void
2444 e1000e_set_icr(E1000ECore *core, int index, uint32_t val)
2446 if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2447 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2448 trace_e1000e_irq_icr_process_iame();
2449 e1000e_lower_interrupts(core, IMS, core->mac[IAM]);
2453 * Windows driver expects that the "receive overrun" bit and other
2454 * ones to be cleared when the "Other" bit (#24) is cleared.
2456 if (val & E1000_ICR_OTHER) {
2457 val |= E1000_ICR_OTHER_CAUSES;
2459 e1000e_lower_interrupts(core, ICR, val);
2462 static void
2463 e1000e_set_imc(E1000ECore *core, int index, uint32_t val)
2465 trace_e1000e_irq_ims_clear_set_imc(val);
2466 e1000e_lower_interrupts(core, IMS, val);
2469 static void
2470 e1000e_set_ims(E1000ECore *core, int index, uint32_t val)
2472 static const uint32_t ims_ext_mask =
2473 E1000_IMS_RXQ0 | E1000_IMS_RXQ1 |
2474 E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
2475 E1000_IMS_OTHER;
2477 static const uint32_t ims_valid_mask =
2478 E1000_IMS_TXDW | E1000_IMS_TXQE | E1000_IMS_LSC |
2479 E1000_IMS_RXDMT0 | E1000_IMS_RXO | E1000_IMS_RXT0 |
2480 E1000_IMS_MDAC | E1000_IMS_TXD_LOW | E1000_IMS_SRPD |
2481 E1000_IMS_ACK | E1000_IMS_MNG | E1000_IMS_RXQ0 |
2482 E1000_IMS_RXQ1 | E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
2483 E1000_IMS_OTHER;
2485 uint32_t valid_val = val & ims_valid_mask;
2487 if ((valid_val & ims_ext_mask) &&
2488 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PBA_CLR) &&
2489 msix_enabled(core->owner)) {
2490 e1000e_msix_clear(core, valid_val);
2493 if ((valid_val == ims_valid_mask) &&
2494 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_INT_TIMERS_CLEAR_ENA)) {
2495 trace_e1000e_irq_fire_all_timers(val);
2496 e1000e_intrmgr_fire_all_timers(core);
2499 e1000e_raise_interrupts(core, IMS, valid_val);
2502 static void
2503 e1000e_set_rdtr(E1000ECore *core, int index, uint32_t val)
2505 e1000e_set_16bit(core, index, val);
2507 if ((val & E1000_RDTR_FPD) && (core->rdtr.running)) {
2508 trace_e1000e_irq_rdtr_fpd_running();
2509 e1000e_intrmgr_fire_delayed_interrupts(core);
2510 } else {
2511 trace_e1000e_irq_rdtr_fpd_not_running();
2515 static void
2516 e1000e_set_tidv(E1000ECore *core, int index, uint32_t val)
2518 e1000e_set_16bit(core, index, val);
2520 if ((val & E1000_TIDV_FPD) && (core->tidv.running)) {
2521 trace_e1000e_irq_tidv_fpd_running();
2522 e1000e_intrmgr_fire_delayed_interrupts(core);
2523 } else {
2524 trace_e1000e_irq_tidv_fpd_not_running();
2528 static uint32_t
2529 e1000e_mac_readreg(E1000ECore *core, int index)
2531 return core->mac[index];
2534 static uint32_t
2535 e1000e_mac_ics_read(E1000ECore *core, int index)
2537 trace_e1000e_irq_read_ics(core->mac[ICS]);
2538 return core->mac[ICS];
2541 static uint32_t
2542 e1000e_mac_ims_read(E1000ECore *core, int index)
2544 trace_e1000e_irq_read_ims(core->mac[IMS]);
2545 return core->mac[IMS];
2548 static uint32_t
2549 e1000e_mac_swsm_read(E1000ECore *core, int index)
2551 uint32_t val = core->mac[SWSM];
2552 core->mac[SWSM] = val | E1000_SWSM_SMBI;
2553 return val;
2556 static uint32_t
2557 e1000e_mac_itr_read(E1000ECore *core, int index)
2559 return core->itr_guest_value;
2562 static uint32_t
2563 e1000e_mac_eitr_read(E1000ECore *core, int index)
2565 return core->eitr_guest_value[index - EITR];
2568 static uint32_t
2569 e1000e_mac_icr_read(E1000ECore *core, int index)
2571 uint32_t ret = core->mac[ICR];
2573 if (core->mac[IMS] == 0) {
2574 trace_e1000e_irq_icr_clear_zero_ims();
2575 e1000e_lower_interrupts(core, ICR, 0xffffffff);
2578 if (!msix_enabled(core->owner)) {
2579 trace_e1000e_irq_icr_clear_nonmsix_icr_read();
2580 e1000e_lower_interrupts(core, ICR, 0xffffffff);
2583 if (core->mac[ICR] & E1000_ICR_ASSERTED) {
2584 if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME) {
2585 trace_e1000e_irq_icr_clear_iame();
2586 e1000e_lower_interrupts(core, ICR, 0xffffffff);
2587 trace_e1000e_irq_icr_process_iame();
2588 e1000e_lower_interrupts(core, IMS, core->mac[IAM]);
2592 * The datasheet does not say what happens when interrupt was asserted
2593 * (ICR.INT_ASSERT=1) and auto mask is *not* active.
2594 * However, section of 13.3.27 the PCIe* GbE Controllers Open Source
2595 * Software Developer’s Manual, which were written for older devices,
2596 * namely 631xESB/632xESB, 82563EB/82564EB, 82571EB/82572EI &
2597 * 82573E/82573V/82573L, does say:
2598 * > If IMS = 0b, then the ICR register is always clear-on-read. If IMS
2599 * > is not 0b, but some ICR bit is set where the corresponding IMS bit
2600 * > is not set, then a read does not clear the ICR register. For
2601 * > example, if IMS = 10101010b and ICR = 01010101b, then a read to the
2602 * > ICR register does not clear it. If IMS = 10101010b and
2603 * > ICR = 0101011b, then a read to the ICR register clears it entirely
2604 * > (ICR.INT_ASSERTED = 1b).
2606 * Linux does no longer activate auto mask since commit
2607 * 0a8047ac68e50e4ccbadcfc6b6b070805b976885 and the real hardware
2608 * clears ICR even in such a case so we also should do so.
2610 if (core->mac[ICR] & core->mac[IMS]) {
2611 trace_e1000e_irq_icr_clear_icr_bit_ims(core->mac[ICR],
2612 core->mac[IMS]);
2613 e1000e_lower_interrupts(core, ICR, 0xffffffff);
2617 return ret;
2620 static uint32_t
2621 e1000e_mac_read_clr4(E1000ECore *core, int index)
2623 uint32_t ret = core->mac[index];
2625 core->mac[index] = 0;
2626 return ret;
2629 static uint32_t
2630 e1000e_mac_read_clr8(E1000ECore *core, int index)
2632 uint32_t ret = core->mac[index];
2634 core->mac[index] = 0;
2635 core->mac[index - 1] = 0;
2636 return ret;
2639 static uint32_t
2640 e1000e_get_ctrl(E1000ECore *core, int index)
2642 uint32_t val = core->mac[CTRL];
2644 trace_e1000e_link_read_params(
2645 !!(val & E1000_CTRL_ASDE),
2646 (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
2647 !!(val & E1000_CTRL_FRCSPD),
2648 !!(val & E1000_CTRL_FRCDPX),
2649 !!(val & E1000_CTRL_RFCE),
2650 !!(val & E1000_CTRL_TFCE));
2652 return val;
2655 static uint32_t
2656 e1000e_get_status(E1000ECore *core, int index)
2658 uint32_t res = core->mac[STATUS];
2660 if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE)) {
2661 res |= E1000_STATUS_GIO_MASTER_ENABLE;
2664 if (core->mac[CTRL] & E1000_CTRL_FRCDPX) {
2665 res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0;
2666 } else {
2667 res |= E1000_STATUS_FD;
2670 if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) ||
2671 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) {
2672 switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) {
2673 case E1000_CTRL_SPD_10:
2674 res |= E1000_STATUS_SPEED_10;
2675 break;
2676 case E1000_CTRL_SPD_100:
2677 res |= E1000_STATUS_SPEED_100;
2678 break;
2679 case E1000_CTRL_SPD_1000:
2680 default:
2681 res |= E1000_STATUS_SPEED_1000;
2682 break;
2684 } else {
2685 res |= E1000_STATUS_SPEED_1000;
2688 trace_e1000e_link_status(
2689 !!(res & E1000_STATUS_LU),
2690 !!(res & E1000_STATUS_FD),
2691 (res & E1000_STATUS_SPEED_MASK) >> E1000_STATUS_SPEED_SHIFT,
2692 (res & E1000_STATUS_ASDV) >> E1000_STATUS_ASDV_SHIFT);
2694 return res;
2697 static uint32_t
2698 e1000e_get_tarc(E1000ECore *core, int index)
2700 return core->mac[index] & ((BIT(11) - 1) |
2701 BIT(27) |
2702 BIT(28) |
2703 BIT(29) |
2704 BIT(30));
2707 static void
2708 e1000e_mac_writereg(E1000ECore *core, int index, uint32_t val)
2710 core->mac[index] = val;
2713 static void
2714 e1000e_mac_setmacaddr(E1000ECore *core, int index, uint32_t val)
2716 uint32_t macaddr[2];
2718 core->mac[index] = val;
2720 macaddr[0] = cpu_to_le32(core->mac[RA]);
2721 macaddr[1] = cpu_to_le32(core->mac[RA + 1]);
2722 qemu_format_nic_info_str(qemu_get_queue(core->owner_nic),
2723 (uint8_t *) macaddr);
2725 trace_e1000e_mac_set_sw(MAC_ARG(macaddr));
2728 static void
2729 e1000e_set_eecd(E1000ECore *core, int index, uint32_t val)
2731 static const uint32_t ro_bits = E1000_EECD_PRES |
2732 E1000_EECD_AUTO_RD |
2733 E1000_EECD_SIZE_EX_MASK;
2735 core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits);
2738 static void
2739 e1000e_set_eerd(E1000ECore *core, int index, uint32_t val)
2741 uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2742 uint32_t flags = 0;
2743 uint32_t data = 0;
2745 if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2746 data = core->eeprom[addr];
2747 flags = E1000_EERW_DONE;
2750 core->mac[EERD] = flags |
2751 (addr << E1000_EERW_ADDR_SHIFT) |
2752 (data << E1000_EERW_DATA_SHIFT);
2755 static void
2756 e1000e_set_eewr(E1000ECore *core, int index, uint32_t val)
2758 uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2759 uint32_t data = (val >> E1000_EERW_DATA_SHIFT) & E1000_EERW_DATA_MASK;
2760 uint32_t flags = 0;
2762 if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2763 core->eeprom[addr] = data;
2764 flags = E1000_EERW_DONE;
2767 core->mac[EERD] = flags |
2768 (addr << E1000_EERW_ADDR_SHIFT) |
2769 (data << E1000_EERW_DATA_SHIFT);
2772 static void
2773 e1000e_set_rxdctl(E1000ECore *core, int index, uint32_t val)
2775 core->mac[RXDCTL] = core->mac[RXDCTL1] = val;
2778 static void
2779 e1000e_set_itr(E1000ECore *core, int index, uint32_t val)
2781 uint32_t interval = val & 0xffff;
2783 trace_e1000e_irq_itr_set(val);
2785 core->itr_guest_value = interval;
2786 core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2789 static void
2790 e1000e_set_eitr(E1000ECore *core, int index, uint32_t val)
2792 uint32_t interval = val & 0xffff;
2793 uint32_t eitr_num = index - EITR;
2795 trace_e1000e_irq_eitr_set(eitr_num, val);
2797 core->eitr_guest_value[eitr_num] = interval;
2798 core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2801 static void
2802 e1000e_set_psrctl(E1000ECore *core, int index, uint32_t val)
2804 if (core->mac[RCTL] & E1000_RCTL_DTYP_MASK) {
2806 if ((val & E1000_PSRCTL_BSIZE0_MASK) == 0) {
2807 qemu_log_mask(LOG_GUEST_ERROR,
2808 "e1000e: PSRCTL.BSIZE0 cannot be zero");
2809 return;
2812 if ((val & E1000_PSRCTL_BSIZE1_MASK) == 0) {
2813 qemu_log_mask(LOG_GUEST_ERROR,
2814 "e1000e: PSRCTL.BSIZE1 cannot be zero");
2815 return;
2819 core->mac[PSRCTL] = val;
2822 static void
2823 e1000e_update_rx_offloads(E1000ECore *core)
2825 int cso_state = e1000e_rx_l4_cso_enabled(core);
2827 trace_e1000e_rx_set_cso(cso_state);
2829 if (core->has_vnet) {
2830 qemu_set_offload(qemu_get_queue(core->owner_nic)->peer,
2831 cso_state, 0, 0, 0, 0, 0, 0);
2835 static void
2836 e1000e_set_rxcsum(E1000ECore *core, int index, uint32_t val)
2838 core->mac[RXCSUM] = val;
2839 e1000e_update_rx_offloads(core);
2842 static void
2843 e1000e_set_gcr(E1000ECore *core, int index, uint32_t val)
2845 uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS;
2846 core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits;
2849 static uint32_t e1000e_get_systiml(E1000ECore *core, int index)
2851 e1000x_timestamp(core->mac, core->timadj, SYSTIML, SYSTIMH);
2852 return core->mac[SYSTIML];
2855 static uint32_t e1000e_get_rxsatrh(E1000ECore *core, int index)
2857 core->mac[TSYNCRXCTL] &= ~E1000_TSYNCRXCTL_VALID;
2858 return core->mac[RXSATRH];
2861 static uint32_t e1000e_get_txstmph(E1000ECore *core, int index)
2863 core->mac[TSYNCTXCTL] &= ~E1000_TSYNCTXCTL_VALID;
2864 return core->mac[TXSTMPH];
2867 static void e1000e_set_timinca(E1000ECore *core, int index, uint32_t val)
2869 e1000x_set_timinca(core->mac, &core->timadj, val);
2872 static void e1000e_set_timadjh(E1000ECore *core, int index, uint32_t val)
2874 core->mac[TIMADJH] = val;
2875 core->timadj += core->mac[TIMADJL] | ((int64_t)core->mac[TIMADJH] << 32);
2878 #define e1000e_getreg(x) [x] = e1000e_mac_readreg
2879 typedef uint32_t (*readops)(E1000ECore *, int);
2880 static const readops e1000e_macreg_readops[] = {
2881 e1000e_getreg(PBA),
2882 e1000e_getreg(WUFC),
2883 e1000e_getreg(MANC),
2884 e1000e_getreg(TOTL),
2885 e1000e_getreg(RDT0),
2886 e1000e_getreg(RDBAH0),
2887 e1000e_getreg(TDBAL1),
2888 e1000e_getreg(RDLEN0),
2889 e1000e_getreg(RDH1),
2890 e1000e_getreg(LATECOL),
2891 e1000e_getreg(SEQEC),
2892 e1000e_getreg(XONTXC),
2893 e1000e_getreg(AIT),
2894 e1000e_getreg(TDFH),
2895 e1000e_getreg(TDFT),
2896 e1000e_getreg(TDFHS),
2897 e1000e_getreg(TDFTS),
2898 e1000e_getreg(TDFPC),
2899 e1000e_getreg(WUS),
2900 e1000e_getreg(PBS),
2901 e1000e_getreg(RDFH),
2902 e1000e_getreg(RDFT),
2903 e1000e_getreg(RDFHS),
2904 e1000e_getreg(RDFTS),
2905 e1000e_getreg(RDFPC),
2906 e1000e_getreg(GORCL),
2907 e1000e_getreg(MGTPRC),
2908 e1000e_getreg(EERD),
2909 e1000e_getreg(EIAC),
2910 e1000e_getreg(PSRCTL),
2911 e1000e_getreg(MANC2H),
2912 e1000e_getreg(RXCSUM),
2913 e1000e_getreg(GSCL_3),
2914 e1000e_getreg(GSCN_2),
2915 e1000e_getreg(RSRPD),
2916 e1000e_getreg(RDBAL1),
2917 e1000e_getreg(FCAH),
2918 e1000e_getreg(FCRTH),
2919 e1000e_getreg(FLOP),
2920 e1000e_getreg(FLASHT),
2921 e1000e_getreg(RXSTMPH),
2922 e1000e_getreg(TXSTMPL),
2923 e1000e_getreg(TIMADJL),
2924 e1000e_getreg(TXDCTL),
2925 e1000e_getreg(RDH0),
2926 e1000e_getreg(TDT1),
2927 e1000e_getreg(TNCRS),
2928 e1000e_getreg(RJC),
2929 e1000e_getreg(IAM),
2930 e1000e_getreg(GSCL_2),
2931 e1000e_getreg(RDBAH1),
2932 e1000e_getreg(FLSWDATA),
2933 e1000e_getreg(TIPG),
2934 e1000e_getreg(FLMNGCTL),
2935 e1000e_getreg(FLMNGCNT),
2936 e1000e_getreg(TSYNCTXCTL),
2937 e1000e_getreg(EXTCNF_SIZE),
2938 e1000e_getreg(EXTCNF_CTRL),
2939 e1000e_getreg(EEMNGDATA),
2940 e1000e_getreg(CTRL_EXT),
2941 e1000e_getreg(SYSTIMH),
2942 e1000e_getreg(EEMNGCTL),
2943 e1000e_getreg(FLMNGDATA),
2944 e1000e_getreg(TSYNCRXCTL),
2945 e1000e_getreg(TDH),
2946 e1000e_getreg(LEDCTL),
2947 e1000e_getreg(TCTL),
2948 e1000e_getreg(TDBAL),
2949 e1000e_getreg(TDLEN),
2950 e1000e_getreg(TDH1),
2951 e1000e_getreg(RADV),
2952 e1000e_getreg(ECOL),
2953 e1000e_getreg(DC),
2954 e1000e_getreg(RLEC),
2955 e1000e_getreg(XOFFTXC),
2956 e1000e_getreg(RFC),
2957 e1000e_getreg(RNBC),
2958 e1000e_getreg(MGTPTC),
2959 e1000e_getreg(TIMINCA),
2960 e1000e_getreg(RXCFGL),
2961 e1000e_getreg(MFUTP01),
2962 e1000e_getreg(FACTPS),
2963 e1000e_getreg(GSCL_1),
2964 e1000e_getreg(GSCN_0),
2965 e1000e_getreg(GCR2),
2966 e1000e_getreg(RDT1),
2967 e1000e_getreg(PBACLR),
2968 e1000e_getreg(FCTTV),
2969 e1000e_getreg(EEWR),
2970 e1000e_getreg(FLSWCTL),
2971 e1000e_getreg(RXDCTL1),
2972 e1000e_getreg(RXSATRL),
2973 e1000e_getreg(RXUDP),
2974 e1000e_getreg(TORL),
2975 e1000e_getreg(TDLEN1),
2976 e1000e_getreg(MCC),
2977 e1000e_getreg(WUC),
2978 e1000e_getreg(EECD),
2979 e1000e_getreg(MFUTP23),
2980 e1000e_getreg(RAID),
2981 e1000e_getreg(FCRTV),
2982 e1000e_getreg(TXDCTL1),
2983 e1000e_getreg(RCTL),
2984 e1000e_getreg(TDT),
2985 e1000e_getreg(MDIC),
2986 e1000e_getreg(FCRUC),
2987 e1000e_getreg(VET),
2988 e1000e_getreg(RDBAL0),
2989 e1000e_getreg(TDBAH1),
2990 e1000e_getreg(RDTR),
2991 e1000e_getreg(SCC),
2992 e1000e_getreg(COLC),
2993 e1000e_getreg(CEXTERR),
2994 e1000e_getreg(XOFFRXC),
2995 e1000e_getreg(IPAV),
2996 e1000e_getreg(GOTCL),
2997 e1000e_getreg(MGTPDC),
2998 e1000e_getreg(GCR),
2999 e1000e_getreg(IVAR),
3000 e1000e_getreg(POEMB),
3001 e1000e_getreg(MFVAL),
3002 e1000e_getreg(FUNCTAG),
3003 e1000e_getreg(GSCL_4),
3004 e1000e_getreg(GSCN_3),
3005 e1000e_getreg(MRQC),
3006 e1000e_getreg(RDLEN1),
3007 e1000e_getreg(FCT),
3008 e1000e_getreg(FLA),
3009 e1000e_getreg(FLOL),
3010 e1000e_getreg(RXDCTL),
3011 e1000e_getreg(RXSTMPL),
3012 e1000e_getreg(TIMADJH),
3013 e1000e_getreg(FCRTL),
3014 e1000e_getreg(TDBAH),
3015 e1000e_getreg(TADV),
3016 e1000e_getreg(XONRXC),
3017 e1000e_getreg(TSCTFC),
3018 e1000e_getreg(RFCTL),
3019 e1000e_getreg(GSCN_1),
3020 e1000e_getreg(FCAL),
3021 e1000e_getreg(FLSWCNT),
3023 [TOTH] = e1000e_mac_read_clr8,
3024 [GOTCH] = e1000e_mac_read_clr8,
3025 [PRC64] = e1000e_mac_read_clr4,
3026 [PRC255] = e1000e_mac_read_clr4,
3027 [PRC1023] = e1000e_mac_read_clr4,
3028 [PTC64] = e1000e_mac_read_clr4,
3029 [PTC255] = e1000e_mac_read_clr4,
3030 [PTC1023] = e1000e_mac_read_clr4,
3031 [GPRC] = e1000e_mac_read_clr4,
3032 [TPT] = e1000e_mac_read_clr4,
3033 [RUC] = e1000e_mac_read_clr4,
3034 [BPRC] = e1000e_mac_read_clr4,
3035 [MPTC] = e1000e_mac_read_clr4,
3036 [IAC] = e1000e_mac_read_clr4,
3037 [ICR] = e1000e_mac_icr_read,
3038 [STATUS] = e1000e_get_status,
3039 [TARC0] = e1000e_get_tarc,
3040 [ICS] = e1000e_mac_ics_read,
3041 [TORH] = e1000e_mac_read_clr8,
3042 [GORCH] = e1000e_mac_read_clr8,
3043 [PRC127] = e1000e_mac_read_clr4,
3044 [PRC511] = e1000e_mac_read_clr4,
3045 [PRC1522] = e1000e_mac_read_clr4,
3046 [PTC127] = e1000e_mac_read_clr4,
3047 [PTC511] = e1000e_mac_read_clr4,
3048 [PTC1522] = e1000e_mac_read_clr4,
3049 [GPTC] = e1000e_mac_read_clr4,
3050 [TPR] = e1000e_mac_read_clr4,
3051 [ROC] = e1000e_mac_read_clr4,
3052 [MPRC] = e1000e_mac_read_clr4,
3053 [BPTC] = e1000e_mac_read_clr4,
3054 [TSCTC] = e1000e_mac_read_clr4,
3055 [ITR] = e1000e_mac_itr_read,
3056 [CTRL] = e1000e_get_ctrl,
3057 [TARC1] = e1000e_get_tarc,
3058 [SWSM] = e1000e_mac_swsm_read,
3059 [IMS] = e1000e_mac_ims_read,
3060 [SYSTIML] = e1000e_get_systiml,
3061 [RXSATRH] = e1000e_get_rxsatrh,
3062 [TXSTMPH] = e1000e_get_txstmph,
3064 [CRCERRS ... MPC] = e1000e_mac_readreg,
3065 [IP6AT ... IP6AT + 3] = e1000e_mac_readreg,
3066 [IP4AT ... IP4AT + 6] = e1000e_mac_readreg,
3067 [RA ... RA + 31] = e1000e_mac_readreg,
3068 [WUPM ... WUPM + 31] = e1000e_mac_readreg,
3069 [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = e1000e_mac_readreg,
3070 [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1] = e1000e_mac_readreg,
3071 [FFMT ... FFMT + 254] = e1000e_mac_readreg,
3072 [FFVT ... FFVT + 254] = e1000e_mac_readreg,
3073 [MDEF ... MDEF + 7] = e1000e_mac_readreg,
3074 [FFLT ... FFLT + 10] = e1000e_mac_readreg,
3075 [FTFT ... FTFT + 254] = e1000e_mac_readreg,
3076 [PBM ... PBM + 10239] = e1000e_mac_readreg,
3077 [RETA ... RETA + 31] = e1000e_mac_readreg,
3078 [RSSRK ... RSSRK + 31] = e1000e_mac_readreg,
3079 [MAVTV0 ... MAVTV3] = e1000e_mac_readreg,
3080 [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_mac_eitr_read
3082 enum { E1000E_NREADOPS = ARRAY_SIZE(e1000e_macreg_readops) };
3084 #define e1000e_putreg(x) [x] = e1000e_mac_writereg
3085 typedef void (*writeops)(E1000ECore *, int, uint32_t);
3086 static const writeops e1000e_macreg_writeops[] = {
3087 e1000e_putreg(PBA),
3088 e1000e_putreg(SWSM),
3089 e1000e_putreg(WUFC),
3090 e1000e_putreg(RDBAH1),
3091 e1000e_putreg(TDBAH),
3092 e1000e_putreg(TXDCTL),
3093 e1000e_putreg(RDBAH0),
3094 e1000e_putreg(LEDCTL),
3095 e1000e_putreg(FCAL),
3096 e1000e_putreg(FCRUC),
3097 e1000e_putreg(WUC),
3098 e1000e_putreg(WUS),
3099 e1000e_putreg(IPAV),
3100 e1000e_putreg(TDBAH1),
3101 e1000e_putreg(IAM),
3102 e1000e_putreg(EIAC),
3103 e1000e_putreg(IVAR),
3104 e1000e_putreg(TARC0),
3105 e1000e_putreg(TARC1),
3106 e1000e_putreg(FLSWDATA),
3107 e1000e_putreg(POEMB),
3108 e1000e_putreg(MFUTP01),
3109 e1000e_putreg(MFUTP23),
3110 e1000e_putreg(MANC),
3111 e1000e_putreg(MANC2H),
3112 e1000e_putreg(MFVAL),
3113 e1000e_putreg(EXTCNF_CTRL),
3114 e1000e_putreg(FACTPS),
3115 e1000e_putreg(FUNCTAG),
3116 e1000e_putreg(GSCL_1),
3117 e1000e_putreg(GSCL_2),
3118 e1000e_putreg(GSCL_3),
3119 e1000e_putreg(GSCL_4),
3120 e1000e_putreg(GSCN_0),
3121 e1000e_putreg(GSCN_1),
3122 e1000e_putreg(GSCN_2),
3123 e1000e_putreg(GSCN_3),
3124 e1000e_putreg(GCR2),
3125 e1000e_putreg(MRQC),
3126 e1000e_putreg(FLOP),
3127 e1000e_putreg(FLOL),
3128 e1000e_putreg(FLSWCTL),
3129 e1000e_putreg(FLSWCNT),
3130 e1000e_putreg(FLA),
3131 e1000e_putreg(RXDCTL1),
3132 e1000e_putreg(TXDCTL1),
3133 e1000e_putreg(TIPG),
3134 e1000e_putreg(RXSTMPH),
3135 e1000e_putreg(RXSTMPL),
3136 e1000e_putreg(RXSATRL),
3137 e1000e_putreg(RXSATRH),
3138 e1000e_putreg(TXSTMPL),
3139 e1000e_putreg(TXSTMPH),
3140 e1000e_putreg(SYSTIML),
3141 e1000e_putreg(SYSTIMH),
3142 e1000e_putreg(TIMADJL),
3143 e1000e_putreg(RXUDP),
3144 e1000e_putreg(RXCFGL),
3145 e1000e_putreg(TSYNCRXCTL),
3146 e1000e_putreg(TSYNCTXCTL),
3147 e1000e_putreg(EXTCNF_SIZE),
3148 e1000e_putreg(EEMNGCTL),
3149 e1000e_putreg(RA),
3151 [TDH1] = e1000e_set_16bit,
3152 [TDT1] = e1000e_set_tdt,
3153 [TCTL] = e1000e_set_tctl,
3154 [TDT] = e1000e_set_tdt,
3155 [MDIC] = e1000e_set_mdic,
3156 [ICS] = e1000e_set_ics,
3157 [TDH] = e1000e_set_16bit,
3158 [RDH0] = e1000e_set_16bit,
3159 [RDT0] = e1000e_set_rdt,
3160 [IMC] = e1000e_set_imc,
3161 [IMS] = e1000e_set_ims,
3162 [ICR] = e1000e_set_icr,
3163 [EECD] = e1000e_set_eecd,
3164 [RCTL] = e1000e_set_rx_control,
3165 [CTRL] = e1000e_set_ctrl,
3166 [RDTR] = e1000e_set_rdtr,
3167 [RADV] = e1000e_set_16bit,
3168 [TADV] = e1000e_set_16bit,
3169 [ITR] = e1000e_set_itr,
3170 [EERD] = e1000e_set_eerd,
3171 [AIT] = e1000e_set_16bit,
3172 [TDFH] = e1000e_set_13bit,
3173 [TDFT] = e1000e_set_13bit,
3174 [TDFHS] = e1000e_set_13bit,
3175 [TDFTS] = e1000e_set_13bit,
3176 [TDFPC] = e1000e_set_13bit,
3177 [RDFH] = e1000e_set_13bit,
3178 [RDFHS] = e1000e_set_13bit,
3179 [RDFT] = e1000e_set_13bit,
3180 [RDFTS] = e1000e_set_13bit,
3181 [RDFPC] = e1000e_set_13bit,
3182 [PBS] = e1000e_set_6bit,
3183 [GCR] = e1000e_set_gcr,
3184 [PSRCTL] = e1000e_set_psrctl,
3185 [RXCSUM] = e1000e_set_rxcsum,
3186 [RAID] = e1000e_set_16bit,
3187 [RSRPD] = e1000e_set_12bit,
3188 [TIDV] = e1000e_set_tidv,
3189 [TDLEN1] = e1000e_set_dlen,
3190 [TDLEN] = e1000e_set_dlen,
3191 [RDLEN0] = e1000e_set_dlen,
3192 [RDLEN1] = e1000e_set_dlen,
3193 [TDBAL] = e1000e_set_dbal,
3194 [TDBAL1] = e1000e_set_dbal,
3195 [RDBAL0] = e1000e_set_dbal,
3196 [RDBAL1] = e1000e_set_dbal,
3197 [RDH1] = e1000e_set_16bit,
3198 [RDT1] = e1000e_set_rdt,
3199 [STATUS] = e1000e_set_status,
3200 [PBACLR] = e1000e_set_pbaclr,
3201 [CTRL_EXT] = e1000e_set_ctrlext,
3202 [FCAH] = e1000e_set_16bit,
3203 [FCT] = e1000e_set_16bit,
3204 [FCTTV] = e1000e_set_16bit,
3205 [FCRTV] = e1000e_set_16bit,
3206 [FCRTH] = e1000e_set_fcrth,
3207 [FCRTL] = e1000e_set_fcrtl,
3208 [VET] = e1000e_set_vet,
3209 [RXDCTL] = e1000e_set_rxdctl,
3210 [FLASHT] = e1000e_set_16bit,
3211 [EEWR] = e1000e_set_eewr,
3212 [CTRL_DUP] = e1000e_set_ctrl,
3213 [RFCTL] = e1000e_set_rfctl,
3214 [RA + 1] = e1000e_mac_setmacaddr,
3215 [TIMINCA] = e1000e_set_timinca,
3216 [TIMADJH] = e1000e_set_timadjh,
3218 [IP6AT ... IP6AT + 3] = e1000e_mac_writereg,
3219 [IP4AT ... IP4AT + 6] = e1000e_mac_writereg,
3220 [RA + 2 ... RA + 31] = e1000e_mac_writereg,
3221 [WUPM ... WUPM + 31] = e1000e_mac_writereg,
3222 [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = e1000e_mac_writereg,
3223 [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1] = e1000e_mac_writereg,
3224 [FFMT ... FFMT + 254] = e1000e_set_4bit,
3225 [FFVT ... FFVT + 254] = e1000e_mac_writereg,
3226 [PBM ... PBM + 10239] = e1000e_mac_writereg,
3227 [MDEF ... MDEF + 7] = e1000e_mac_writereg,
3228 [FFLT ... FFLT + 10] = e1000e_set_11bit,
3229 [FTFT ... FTFT + 254] = e1000e_mac_writereg,
3230 [RETA ... RETA + 31] = e1000e_mac_writereg,
3231 [RSSRK ... RSSRK + 31] = e1000e_mac_writereg,
3232 [MAVTV0 ... MAVTV3] = e1000e_mac_writereg,
3233 [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_set_eitr
3235 enum { E1000E_NWRITEOPS = ARRAY_SIZE(e1000e_macreg_writeops) };
3237 enum { MAC_ACCESS_PARTIAL = 1 };
3240 * The array below combines alias offsets of the index values for the
3241 * MAC registers that have aliases, with the indication of not fully
3242 * implemented registers (lowest bit). This combination is possible
3243 * because all of the offsets are even.
3245 static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = {
3246 /* Alias index offsets */
3247 [FCRTL_A] = 0x07fe, [FCRTH_A] = 0x0802,
3248 [RDH0_A] = 0x09bc, [RDT0_A] = 0x09bc, [RDTR_A] = 0x09c6,
3249 [RDFH_A] = 0xe904, [RDFT_A] = 0xe904,
3250 [TDH_A] = 0x0cf8, [TDT_A] = 0x0cf8, [TIDV_A] = 0x0cf8,
3251 [TDFH_A] = 0xed00, [TDFT_A] = 0xed00,
3252 [RA_A ... RA_A + 31] = 0x14f0,
3253 [VFTA_A ... VFTA_A + E1000_VLAN_FILTER_TBL_SIZE - 1] = 0x1400,
3254 [RDBAL0_A ... RDLEN0_A] = 0x09bc,
3255 [TDBAL_A ... TDLEN_A] = 0x0cf8,
3256 /* Access options */
3257 [RDFH] = MAC_ACCESS_PARTIAL, [RDFT] = MAC_ACCESS_PARTIAL,
3258 [RDFHS] = MAC_ACCESS_PARTIAL, [RDFTS] = MAC_ACCESS_PARTIAL,
3259 [RDFPC] = MAC_ACCESS_PARTIAL,
3260 [TDFH] = MAC_ACCESS_PARTIAL, [TDFT] = MAC_ACCESS_PARTIAL,
3261 [TDFHS] = MAC_ACCESS_PARTIAL, [TDFTS] = MAC_ACCESS_PARTIAL,
3262 [TDFPC] = MAC_ACCESS_PARTIAL, [EECD] = MAC_ACCESS_PARTIAL,
3263 [PBM] = MAC_ACCESS_PARTIAL, [FLA] = MAC_ACCESS_PARTIAL,
3264 [FCAL] = MAC_ACCESS_PARTIAL, [FCAH] = MAC_ACCESS_PARTIAL,
3265 [FCT] = MAC_ACCESS_PARTIAL, [FCTTV] = MAC_ACCESS_PARTIAL,
3266 [FCRTV] = MAC_ACCESS_PARTIAL, [FCRTL] = MAC_ACCESS_PARTIAL,
3267 [FCRTH] = MAC_ACCESS_PARTIAL, [TXDCTL] = MAC_ACCESS_PARTIAL,
3268 [TXDCTL1] = MAC_ACCESS_PARTIAL,
3269 [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL
3272 void
3273 e1000e_core_write(E1000ECore *core, hwaddr addr, uint64_t val, unsigned size)
3275 uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3277 if (index < E1000E_NWRITEOPS && e1000e_macreg_writeops[index]) {
3278 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3279 trace_e1000e_wrn_regs_write_trivial(index << 2);
3281 trace_e1000e_core_write(index << 2, size, val);
3282 e1000e_macreg_writeops[index](core, index, val);
3283 } else if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3284 trace_e1000e_wrn_regs_write_ro(index << 2, size, val);
3285 } else {
3286 trace_e1000e_wrn_regs_write_unknown(index << 2, size, val);
3290 uint64_t
3291 e1000e_core_read(E1000ECore *core, hwaddr addr, unsigned size)
3293 uint64_t val;
3294 uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3296 if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3297 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3298 trace_e1000e_wrn_regs_read_trivial(index << 2);
3300 val = e1000e_macreg_readops[index](core, index);
3301 trace_e1000e_core_read(index << 2, size, val);
3302 return val;
3303 } else {
3304 trace_e1000e_wrn_regs_read_unknown(index << 2, size);
3306 return 0;
3309 static void
3310 e1000e_autoneg_resume(E1000ECore *core)
3312 if (e1000e_have_autoneg(core) &&
3313 !(core->phy[0][MII_BMSR] & MII_BMSR_AN_COMP)) {
3314 qemu_get_queue(core->owner_nic)->link_down = false;
3315 timer_mod(core->autoneg_timer,
3316 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
3320 void
3321 e1000e_core_pci_realize(E1000ECore *core,
3322 const uint16_t *eeprom_templ,
3323 uint32_t eeprom_size,
3324 const uint8_t *macaddr)
3326 int i;
3328 core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
3329 e1000e_autoneg_timer, core);
3330 e1000e_intrmgr_pci_realize(core);
3332 for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3333 net_tx_pkt_init(&core->tx[i].tx_pkt, E1000E_MAX_TX_FRAGS);
3336 net_rx_pkt_init(&core->rx_pkt);
3338 e1000x_core_prepare_eeprom(core->eeprom,
3339 eeprom_templ,
3340 eeprom_size,
3341 PCI_DEVICE_GET_CLASS(core->owner)->device_id,
3342 macaddr);
3343 e1000e_update_rx_offloads(core);
3346 void
3347 e1000e_core_pci_uninit(E1000ECore *core)
3349 int i;
3351 timer_free(core->autoneg_timer);
3353 e1000e_intrmgr_pci_unint(core);
3355 for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3356 net_tx_pkt_uninit(core->tx[i].tx_pkt);
3359 net_rx_pkt_uninit(core->rx_pkt);
3362 static const uint16_t
3363 e1000e_phy_reg_init[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE] = {
3364 [0] = {
3365 [MII_BMCR] = MII_BMCR_SPEED1000 |
3366 MII_BMCR_FD |
3367 MII_BMCR_AUTOEN,
3369 [MII_BMSR] = MII_BMSR_EXTCAP |
3370 MII_BMSR_LINK_ST |
3371 MII_BMSR_AUTONEG |
3372 MII_BMSR_MFPS |
3373 MII_BMSR_EXTSTAT |
3374 MII_BMSR_10T_HD |
3375 MII_BMSR_10T_FD |
3376 MII_BMSR_100TX_HD |
3377 MII_BMSR_100TX_FD,
3379 [MII_PHYID1] = 0x141,
3380 [MII_PHYID2] = E1000_PHY_ID2_82574x,
3381 [MII_ANAR] = MII_ANAR_CSMACD | MII_ANAR_10 |
3382 MII_ANAR_10FD | MII_ANAR_TX |
3383 MII_ANAR_TXFD | MII_ANAR_PAUSE |
3384 MII_ANAR_PAUSE_ASYM,
3385 [MII_ANLPAR] = MII_ANLPAR_10 | MII_ANLPAR_10FD |
3386 MII_ANLPAR_TX | MII_ANLPAR_TXFD |
3387 MII_ANLPAR_T4 | MII_ANLPAR_PAUSE,
3388 [MII_ANER] = MII_ANER_NP | MII_ANER_NWAY,
3389 [MII_ANNP] = 1 | MII_ANNP_MP,
3390 [MII_CTRL1000] = MII_CTRL1000_HALF | MII_CTRL1000_FULL |
3391 MII_CTRL1000_PORT | MII_CTRL1000_MASTER,
3392 [MII_STAT1000] = MII_STAT1000_HALF | MII_STAT1000_FULL |
3393 MII_STAT1000_ROK | MII_STAT1000_LOK,
3394 [MII_EXTSTAT] = MII_EXTSTAT_1000T_HD | MII_EXTSTAT_1000T_FD,
3396 [PHY_COPPER_CTRL1] = BIT(5) | BIT(6) | BIT(8) | BIT(9) |
3397 BIT(12) | BIT(13),
3398 [PHY_COPPER_STAT1] = BIT(3) | BIT(10) | BIT(11) | BIT(13) | BIT(15)
3400 [2] = {
3401 [PHY_MAC_CTRL1] = BIT(3) | BIT(7),
3402 [PHY_MAC_CTRL2] = BIT(1) | BIT(2) | BIT(6) | BIT(12)
3404 [3] = {
3405 [PHY_LED_TIMER_CTRL] = BIT(0) | BIT(2) | BIT(14)
3409 static const uint32_t e1000e_mac_reg_init[] = {
3410 [PBA] = 0x00140014,
3411 [LEDCTL] = BIT(1) | BIT(8) | BIT(9) | BIT(15) | BIT(17) | BIT(18),
3412 [EXTCNF_CTRL] = BIT(3),
3413 [EEMNGCTL] = BIT(31),
3414 [FLASHT] = 0x2,
3415 [FLSWCTL] = BIT(30) | BIT(31),
3416 [FLOL] = BIT(0),
3417 [RXDCTL] = BIT(16),
3418 [RXDCTL1] = BIT(16),
3419 [TIPG] = 0x8 | (0x8 << 10) | (0x6 << 20),
3420 [RXCFGL] = 0x88F7,
3421 [RXUDP] = 0x319,
3422 [CTRL] = E1000_CTRL_FD | E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
3423 E1000_CTRL_SPD_1000 | E1000_CTRL_SLU |
3424 E1000_CTRL_ADVD3WUC,
3425 [STATUS] = E1000_STATUS_ASDV_1000 | E1000_STATUS_LU,
3426 [PSRCTL] = (2 << E1000_PSRCTL_BSIZE0_SHIFT) |
3427 (4 << E1000_PSRCTL_BSIZE1_SHIFT) |
3428 (4 << E1000_PSRCTL_BSIZE2_SHIFT),
3429 [TARC0] = 0x3 | E1000_TARC_ENABLE,
3430 [TARC1] = 0x3 | E1000_TARC_ENABLE,
3431 [EECD] = E1000_EECD_AUTO_RD | E1000_EECD_PRES,
3432 [EERD] = E1000_EERW_DONE,
3433 [EEWR] = E1000_EERW_DONE,
3434 [GCR] = E1000_L0S_ADJUST |
3435 E1000_L1_ENTRY_LATENCY_MSB |
3436 E1000_L1_ENTRY_LATENCY_LSB,
3437 [TDFH] = 0x600,
3438 [TDFT] = 0x600,
3439 [TDFHS] = 0x600,
3440 [TDFTS] = 0x600,
3441 [POEMB] = 0x30D,
3442 [PBS] = 0x028,
3443 [MANC] = E1000_MANC_DIS_IP_CHK_ARP,
3444 [FACTPS] = E1000_FACTPS_LAN0_ON | 0x20000000,
3445 [SWSM] = 1,
3446 [RXCSUM] = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD,
3447 [ITR] = E1000E_MIN_XITR,
3448 [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = E1000E_MIN_XITR,
3451 static void e1000e_reset(E1000ECore *core, bool sw)
3453 int i;
3455 timer_del(core->autoneg_timer);
3457 e1000e_intrmgr_reset(core);
3459 memset(core->phy, 0, sizeof core->phy);
3460 memcpy(core->phy, e1000e_phy_reg_init, sizeof e1000e_phy_reg_init);
3462 for (i = 0; i < E1000E_MAC_SIZE; i++) {
3463 if (sw && (i == PBA || i == PBS || i == FLA)) {
3464 continue;
3467 core->mac[i] = i < ARRAY_SIZE(e1000e_mac_reg_init) ?
3468 e1000e_mac_reg_init[i] : 0;
3471 core->rxbuf_min_shift = 1 + E1000_RING_DESC_LEN_SHIFT;
3473 if (qemu_get_queue(core->owner_nic)->link_down) {
3474 e1000e_link_down(core);
3477 e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
3479 for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3480 memset(&core->tx[i].props, 0, sizeof(core->tx[i].props));
3481 core->tx[i].skip_cp = false;
3485 void
3486 e1000e_core_reset(E1000ECore *core)
3488 e1000e_reset(core, false);
3491 void e1000e_core_pre_save(E1000ECore *core)
3493 int i;
3494 NetClientState *nc = qemu_get_queue(core->owner_nic);
3497 * If link is down and auto-negotiation is supported and ongoing,
3498 * complete auto-negotiation immediately. This allows us to look
3499 * at MII_BMSR_AN_COMP to infer link status on load.
3501 if (nc->link_down && e1000e_have_autoneg(core)) {
3502 core->phy[0][MII_BMSR] |= MII_BMSR_AN_COMP;
3503 e1000e_update_flowctl_status(core);
3506 for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3507 if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) {
3508 core->tx[i].skip_cp = true;
3514 e1000e_core_post_load(E1000ECore *core)
3516 NetClientState *nc = qemu_get_queue(core->owner_nic);
3519 * nc.link_down can't be migrated, so infer link_down according
3520 * to link status bit in core.mac[STATUS].
3522 nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0;
3525 * we need to restart intrmgr timers, as an older version of
3526 * QEMU can have stopped them before migration
3528 e1000e_intrmgr_resume(core);
3529 e1000e_autoneg_resume(core);
3531 return 0;