cpus: Proper range-checking for -icount shift=N
[qemu/armbru.git] / target / arm / translate-a64.c
blob7580e463674082a0ddbc60c6fe0df79c8bc25f06
1 /*
2 * AArch64 translation
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "tcg/tcg-op.h"
24 #include "tcg/tcg-op-gvec.h"
25 #include "qemu/log.h"
26 #include "arm_ldst.h"
27 #include "translate.h"
28 #include "internals.h"
29 #include "qemu/host-utils.h"
31 #include "hw/semihosting/semihost.h"
32 #include "exec/gen-icount.h"
34 #include "exec/helper-proto.h"
35 #include "exec/helper-gen.h"
36 #include "exec/log.h"
38 #include "trace-tcg.h"
39 #include "translate-a64.h"
40 #include "qemu/atomic128.h"
42 static TCGv_i64 cpu_X[32];
43 static TCGv_i64 cpu_pc;
45 /* Load/store exclusive handling */
46 static TCGv_i64 cpu_exclusive_high;
48 static const char *regnames[] = {
49 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
50 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
51 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
52 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
55 enum a64_shift_type {
56 A64_SHIFT_TYPE_LSL = 0,
57 A64_SHIFT_TYPE_LSR = 1,
58 A64_SHIFT_TYPE_ASR = 2,
59 A64_SHIFT_TYPE_ROR = 3
62 /* Table based decoder typedefs - used when the relevant bits for decode
63 * are too awkwardly scattered across the instruction (eg SIMD).
65 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
67 typedef struct AArch64DecodeTable {
68 uint32_t pattern;
69 uint32_t mask;
70 AArch64DecodeFn *disas_fn;
71 } AArch64DecodeTable;
73 /* Function prototype for gen_ functions for calling Neon helpers */
74 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
75 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
76 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
77 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
78 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
79 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
80 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
81 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
82 typedef void NeonGenTwoSingleOPFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
83 typedef void NeonGenTwoDoubleOPFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
84 typedef void NeonGenOneOpFn(TCGv_i64, TCGv_i64);
85 typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr);
86 typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
87 typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
88 typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, MemOp);
90 /* initialize TCG globals. */
91 void a64_translate_init(void)
93 int i;
95 cpu_pc = tcg_global_mem_new_i64(cpu_env,
96 offsetof(CPUARMState, pc),
97 "pc");
98 for (i = 0; i < 32; i++) {
99 cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
100 offsetof(CPUARMState, xregs[i]),
101 regnames[i]);
104 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
105 offsetof(CPUARMState, exclusive_high), "exclusive_high");
109 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns
111 static int get_a64_user_mem_index(DisasContext *s)
114 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
115 * which is the usual mmu_idx for this cpu state.
117 ARMMMUIdx useridx = s->mmu_idx;
119 if (s->unpriv) {
121 * We have pre-computed the condition for AccType_UNPRIV.
122 * Therefore we should never get here with a mmu_idx for
123 * which we do not know the corresponding user mmu_idx.
125 switch (useridx) {
126 case ARMMMUIdx_E10_1:
127 case ARMMMUIdx_E10_1_PAN:
128 useridx = ARMMMUIdx_E10_0;
129 break;
130 case ARMMMUIdx_E20_2:
131 case ARMMMUIdx_E20_2_PAN:
132 useridx = ARMMMUIdx_E20_0;
133 break;
134 case ARMMMUIdx_SE10_1:
135 case ARMMMUIdx_SE10_1_PAN:
136 useridx = ARMMMUIdx_SE10_0;
137 break;
138 default:
139 g_assert_not_reached();
142 return arm_to_core_mmu_idx(useridx);
145 static void reset_btype(DisasContext *s)
147 if (s->btype != 0) {
148 TCGv_i32 zero = tcg_const_i32(0);
149 tcg_gen_st_i32(zero, cpu_env, offsetof(CPUARMState, btype));
150 tcg_temp_free_i32(zero);
151 s->btype = 0;
155 static void set_btype(DisasContext *s, int val)
157 TCGv_i32 tcg_val;
159 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */
160 tcg_debug_assert(val >= 1 && val <= 3);
162 tcg_val = tcg_const_i32(val);
163 tcg_gen_st_i32(tcg_val, cpu_env, offsetof(CPUARMState, btype));
164 tcg_temp_free_i32(tcg_val);
165 s->btype = -1;
168 void gen_a64_set_pc_im(uint64_t val)
170 tcg_gen_movi_i64(cpu_pc, val);
174 * Handle Top Byte Ignore (TBI) bits.
176 * If address tagging is enabled via the TCR TBI bits:
177 * + for EL2 and EL3 there is only one TBI bit, and if it is set
178 * then the address is zero-extended, clearing bits [63:56]
179 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
180 * and TBI1 controls addressses with bit 55 == 1.
181 * If the appropriate TBI bit is set for the address then
182 * the address is sign-extended from bit 55 into bits [63:56]
184 * Here We have concatenated TBI{1,0} into tbi.
186 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
187 TCGv_i64 src, int tbi)
189 if (tbi == 0) {
190 /* Load unmodified address */
191 tcg_gen_mov_i64(dst, src);
192 } else if (!regime_has_2_ranges(s->mmu_idx)) {
193 /* Force tag byte to all zero */
194 tcg_gen_extract_i64(dst, src, 0, 56);
195 } else {
196 /* Sign-extend from bit 55. */
197 tcg_gen_sextract_i64(dst, src, 0, 56);
199 if (tbi != 3) {
200 TCGv_i64 tcg_zero = tcg_const_i64(0);
203 * The two TBI bits differ.
204 * If tbi0, then !tbi1: only use the extension if positive.
205 * if !tbi0, then tbi1: only use the extension if negative.
207 tcg_gen_movcond_i64(tbi == 1 ? TCG_COND_GE : TCG_COND_LT,
208 dst, dst, tcg_zero, dst, src);
209 tcg_temp_free_i64(tcg_zero);
214 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
217 * If address tagging is enabled for instructions via the TCR TBI bits,
218 * then loading an address into the PC will clear out any tag.
220 gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
224 * Return a "clean" address for ADDR according to TBID.
225 * This is always a fresh temporary, as we need to be able to
226 * increment this independently of a dirty write-back address.
228 static TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
230 TCGv_i64 clean = new_tmp_a64(s);
232 * In order to get the correct value in the FAR_ELx register,
233 * we must present the memory subsystem with the "dirty" address
234 * including the TBI. In system mode we can make this work via
235 * the TLB, dropping the TBI during translation. But for user-only
236 * mode we don't have that option, and must remove the top byte now.
238 #ifdef CONFIG_USER_ONLY
239 gen_top_byte_ignore(s, clean, addr, s->tbid);
240 #else
241 tcg_gen_mov_i64(clean, addr);
242 #endif
243 return clean;
246 typedef struct DisasCompare64 {
247 TCGCond cond;
248 TCGv_i64 value;
249 } DisasCompare64;
251 static void a64_test_cc(DisasCompare64 *c64, int cc)
253 DisasCompare c32;
255 arm_test_cc(&c32, cc);
257 /* Sign-extend the 32-bit value so that the GE/LT comparisons work
258 * properly. The NE/EQ comparisons are also fine with this choice. */
259 c64->cond = c32.cond;
260 c64->value = tcg_temp_new_i64();
261 tcg_gen_ext_i32_i64(c64->value, c32.value);
263 arm_free_cc(&c32);
266 static void a64_free_cc(DisasCompare64 *c64)
268 tcg_temp_free_i64(c64->value);
271 static void gen_exception_internal(int excp)
273 TCGv_i32 tcg_excp = tcg_const_i32(excp);
275 assert(excp_is_internal(excp));
276 gen_helper_exception_internal(cpu_env, tcg_excp);
277 tcg_temp_free_i32(tcg_excp);
280 static void gen_exception_internal_insn(DisasContext *s, uint64_t pc, int excp)
282 gen_a64_set_pc_im(pc);
283 gen_exception_internal(excp);
284 s->base.is_jmp = DISAS_NORETURN;
287 static void gen_exception_insn(DisasContext *s, uint64_t pc, int excp,
288 uint32_t syndrome, uint32_t target_el)
290 gen_a64_set_pc_im(pc);
291 gen_exception(excp, syndrome, target_el);
292 s->base.is_jmp = DISAS_NORETURN;
295 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
297 TCGv_i32 tcg_syn;
299 gen_a64_set_pc_im(s->pc_curr);
300 tcg_syn = tcg_const_i32(syndrome);
301 gen_helper_exception_bkpt_insn(cpu_env, tcg_syn);
302 tcg_temp_free_i32(tcg_syn);
303 s->base.is_jmp = DISAS_NORETURN;
306 static void gen_step_complete_exception(DisasContext *s)
308 /* We just completed step of an insn. Move from Active-not-pending
309 * to Active-pending, and then also take the swstep exception.
310 * This corresponds to making the (IMPDEF) choice to prioritize
311 * swstep exceptions over asynchronous exceptions taken to an exception
312 * level where debug is disabled. This choice has the advantage that
313 * we do not need to maintain internal state corresponding to the
314 * ISV/EX syndrome bits between completion of the step and generation
315 * of the exception, and our syndrome information is always correct.
317 gen_ss_advance(s);
318 gen_swstep_exception(s, 1, s->is_ldex);
319 s->base.is_jmp = DISAS_NORETURN;
322 static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest)
324 /* No direct tb linking with singlestep (either QEMU's or the ARM
325 * debug architecture kind) or deterministic io
327 if (s->base.singlestep_enabled || s->ss_active ||
328 (tb_cflags(s->base.tb) & CF_LAST_IO)) {
329 return false;
332 #ifndef CONFIG_USER_ONLY
333 /* Only link tbs from inside the same guest page */
334 if ((s->base.tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) {
335 return false;
337 #endif
339 return true;
342 static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
344 TranslationBlock *tb;
346 tb = s->base.tb;
347 if (use_goto_tb(s, n, dest)) {
348 tcg_gen_goto_tb(n);
349 gen_a64_set_pc_im(dest);
350 tcg_gen_exit_tb(tb, n);
351 s->base.is_jmp = DISAS_NORETURN;
352 } else {
353 gen_a64_set_pc_im(dest);
354 if (s->ss_active) {
355 gen_step_complete_exception(s);
356 } else if (s->base.singlestep_enabled) {
357 gen_exception_internal(EXCP_DEBUG);
358 } else {
359 tcg_gen_lookup_and_goto_ptr();
360 s->base.is_jmp = DISAS_NORETURN;
365 void unallocated_encoding(DisasContext *s)
367 /* Unallocated and reserved encodings are uncategorized */
368 gen_exception_insn(s, s->pc_curr, EXCP_UDEF, syn_uncategorized(),
369 default_exception_el(s));
372 static void init_tmp_a64_array(DisasContext *s)
374 #ifdef CONFIG_DEBUG_TCG
375 memset(s->tmp_a64, 0, sizeof(s->tmp_a64));
376 #endif
377 s->tmp_a64_count = 0;
380 static void free_tmp_a64(DisasContext *s)
382 int i;
383 for (i = 0; i < s->tmp_a64_count; i++) {
384 tcg_temp_free_i64(s->tmp_a64[i]);
386 init_tmp_a64_array(s);
389 TCGv_i64 new_tmp_a64(DisasContext *s)
391 assert(s->tmp_a64_count < TMP_A64_MAX);
392 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
395 TCGv_i64 new_tmp_a64_zero(DisasContext *s)
397 TCGv_i64 t = new_tmp_a64(s);
398 tcg_gen_movi_i64(t, 0);
399 return t;
403 * Register access functions
405 * These functions are used for directly accessing a register in where
406 * changes to the final register value are likely to be made. If you
407 * need to use a register for temporary calculation (e.g. index type
408 * operations) use the read_* form.
410 * B1.2.1 Register mappings
412 * In instruction register encoding 31 can refer to ZR (zero register) or
413 * the SP (stack pointer) depending on context. In QEMU's case we map SP
414 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
415 * This is the point of the _sp forms.
417 TCGv_i64 cpu_reg(DisasContext *s, int reg)
419 if (reg == 31) {
420 return new_tmp_a64_zero(s);
421 } else {
422 return cpu_X[reg];
426 /* register access for when 31 == SP */
427 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
429 return cpu_X[reg];
432 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
433 * representing the register contents. This TCGv is an auto-freed
434 * temporary so it need not be explicitly freed, and may be modified.
436 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
438 TCGv_i64 v = new_tmp_a64(s);
439 if (reg != 31) {
440 if (sf) {
441 tcg_gen_mov_i64(v, cpu_X[reg]);
442 } else {
443 tcg_gen_ext32u_i64(v, cpu_X[reg]);
445 } else {
446 tcg_gen_movi_i64(v, 0);
448 return v;
451 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
453 TCGv_i64 v = new_tmp_a64(s);
454 if (sf) {
455 tcg_gen_mov_i64(v, cpu_X[reg]);
456 } else {
457 tcg_gen_ext32u_i64(v, cpu_X[reg]);
459 return v;
462 /* Return the offset into CPUARMState of a slice (from
463 * the least significant end) of FP register Qn (ie
464 * Dn, Sn, Hn or Bn).
465 * (Note that this is not the same mapping as for A32; see cpu.h)
467 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
469 return vec_reg_offset(s, regno, 0, size);
472 /* Offset of the high half of the 128 bit vector Qn */
473 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
475 return vec_reg_offset(s, regno, 1, MO_64);
478 /* Convenience accessors for reading and writing single and double
479 * FP registers. Writing clears the upper parts of the associated
480 * 128 bit vector register, as required by the architecture.
481 * Note that unlike the GP register accessors, the values returned
482 * by the read functions must be manually freed.
484 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
486 TCGv_i64 v = tcg_temp_new_i64();
488 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
489 return v;
492 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
494 TCGv_i32 v = tcg_temp_new_i32();
496 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
497 return v;
500 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
502 TCGv_i32 v = tcg_temp_new_i32();
504 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16));
505 return v;
508 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
509 * If SVE is not enabled, then there are only 128 bits in the vector.
511 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
513 unsigned ofs = fp_reg_offset(s, rd, MO_64);
514 unsigned vsz = vec_full_reg_size(s);
516 if (!is_q) {
517 TCGv_i64 tcg_zero = tcg_const_i64(0);
518 tcg_gen_st_i64(tcg_zero, cpu_env, ofs + 8);
519 tcg_temp_free_i64(tcg_zero);
521 if (vsz > 16) {
522 tcg_gen_gvec_dup8i(ofs + 16, vsz - 16, vsz - 16, 0);
526 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
528 unsigned ofs = fp_reg_offset(s, reg, MO_64);
530 tcg_gen_st_i64(v, cpu_env, ofs);
531 clear_vec_high(s, false, reg);
534 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
536 TCGv_i64 tmp = tcg_temp_new_i64();
538 tcg_gen_extu_i32_i64(tmp, v);
539 write_fp_dreg(s, reg, tmp);
540 tcg_temp_free_i64(tmp);
543 TCGv_ptr get_fpstatus_ptr(bool is_f16)
545 TCGv_ptr statusptr = tcg_temp_new_ptr();
546 int offset;
548 /* In A64 all instructions (both FP and Neon) use the FPCR; there
549 * is no equivalent of the A32 Neon "standard FPSCR value".
550 * However half-precision operations operate under a different
551 * FZ16 flag and use vfp.fp_status_f16 instead of vfp.fp_status.
553 if (is_f16) {
554 offset = offsetof(CPUARMState, vfp.fp_status_f16);
555 } else {
556 offset = offsetof(CPUARMState, vfp.fp_status);
558 tcg_gen_addi_ptr(statusptr, cpu_env, offset);
559 return statusptr;
562 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */
563 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
564 GVecGen2Fn *gvec_fn, int vece)
566 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
567 is_q ? 16 : 8, vec_full_reg_size(s));
570 /* Expand a 2-operand + immediate AdvSIMD vector operation using
571 * an expander function.
573 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
574 int64_t imm, GVecGen2iFn *gvec_fn, int vece)
576 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
577 imm, is_q ? 16 : 8, vec_full_reg_size(s));
580 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */
581 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
582 GVecGen3Fn *gvec_fn, int vece)
584 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
585 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
588 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */
589 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
590 int rx, GVecGen4Fn *gvec_fn, int vece)
592 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
593 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
594 is_q ? 16 : 8, vec_full_reg_size(s));
597 /* Expand a 2-operand + immediate AdvSIMD vector operation using
598 * an op descriptor.
600 static void gen_gvec_op2i(DisasContext *s, bool is_q, int rd,
601 int rn, int64_t imm, const GVecGen2i *gvec_op)
603 tcg_gen_gvec_2i(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
604 is_q ? 16 : 8, vec_full_reg_size(s), imm, gvec_op);
607 /* Expand a 3-operand AdvSIMD vector operation using an op descriptor. */
608 static void gen_gvec_op3(DisasContext *s, bool is_q, int rd,
609 int rn, int rm, const GVecGen3 *gvec_op)
611 tcg_gen_gvec_3(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
612 vec_full_reg_offset(s, rm), is_q ? 16 : 8,
613 vec_full_reg_size(s), gvec_op);
616 /* Expand a 3-operand operation using an out-of-line helper. */
617 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
618 int rn, int rm, int data, gen_helper_gvec_3 *fn)
620 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
621 vec_full_reg_offset(s, rn),
622 vec_full_reg_offset(s, rm),
623 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
626 /* Expand a 3-operand + env pointer operation using
627 * an out-of-line helper.
629 static void gen_gvec_op3_env(DisasContext *s, bool is_q, int rd,
630 int rn, int rm, gen_helper_gvec_3_ptr *fn)
632 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
633 vec_full_reg_offset(s, rn),
634 vec_full_reg_offset(s, rm), cpu_env,
635 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
638 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
639 * an out-of-line helper.
641 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
642 int rm, bool is_fp16, int data,
643 gen_helper_gvec_3_ptr *fn)
645 TCGv_ptr fpst = get_fpstatus_ptr(is_fp16);
646 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
647 vec_full_reg_offset(s, rn),
648 vec_full_reg_offset(s, rm), fpst,
649 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
650 tcg_temp_free_ptr(fpst);
653 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
654 * than the 32 bit equivalent.
656 static inline void gen_set_NZ64(TCGv_i64 result)
658 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
659 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
662 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
663 static inline void gen_logic_CC(int sf, TCGv_i64 result)
665 if (sf) {
666 gen_set_NZ64(result);
667 } else {
668 tcg_gen_extrl_i64_i32(cpu_ZF, result);
669 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
671 tcg_gen_movi_i32(cpu_CF, 0);
672 tcg_gen_movi_i32(cpu_VF, 0);
675 /* dest = T0 + T1; compute C, N, V and Z flags */
676 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
678 if (sf) {
679 TCGv_i64 result, flag, tmp;
680 result = tcg_temp_new_i64();
681 flag = tcg_temp_new_i64();
682 tmp = tcg_temp_new_i64();
684 tcg_gen_movi_i64(tmp, 0);
685 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
687 tcg_gen_extrl_i64_i32(cpu_CF, flag);
689 gen_set_NZ64(result);
691 tcg_gen_xor_i64(flag, result, t0);
692 tcg_gen_xor_i64(tmp, t0, t1);
693 tcg_gen_andc_i64(flag, flag, tmp);
694 tcg_temp_free_i64(tmp);
695 tcg_gen_extrh_i64_i32(cpu_VF, flag);
697 tcg_gen_mov_i64(dest, result);
698 tcg_temp_free_i64(result);
699 tcg_temp_free_i64(flag);
700 } else {
701 /* 32 bit arithmetic */
702 TCGv_i32 t0_32 = tcg_temp_new_i32();
703 TCGv_i32 t1_32 = tcg_temp_new_i32();
704 TCGv_i32 tmp = tcg_temp_new_i32();
706 tcg_gen_movi_i32(tmp, 0);
707 tcg_gen_extrl_i64_i32(t0_32, t0);
708 tcg_gen_extrl_i64_i32(t1_32, t1);
709 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
710 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
711 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
712 tcg_gen_xor_i32(tmp, t0_32, t1_32);
713 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
714 tcg_gen_extu_i32_i64(dest, cpu_NF);
716 tcg_temp_free_i32(tmp);
717 tcg_temp_free_i32(t0_32);
718 tcg_temp_free_i32(t1_32);
722 /* dest = T0 - T1; compute C, N, V and Z flags */
723 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
725 if (sf) {
726 /* 64 bit arithmetic */
727 TCGv_i64 result, flag, tmp;
729 result = tcg_temp_new_i64();
730 flag = tcg_temp_new_i64();
731 tcg_gen_sub_i64(result, t0, t1);
733 gen_set_NZ64(result);
735 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
736 tcg_gen_extrl_i64_i32(cpu_CF, flag);
738 tcg_gen_xor_i64(flag, result, t0);
739 tmp = tcg_temp_new_i64();
740 tcg_gen_xor_i64(tmp, t0, t1);
741 tcg_gen_and_i64(flag, flag, tmp);
742 tcg_temp_free_i64(tmp);
743 tcg_gen_extrh_i64_i32(cpu_VF, flag);
744 tcg_gen_mov_i64(dest, result);
745 tcg_temp_free_i64(flag);
746 tcg_temp_free_i64(result);
747 } else {
748 /* 32 bit arithmetic */
749 TCGv_i32 t0_32 = tcg_temp_new_i32();
750 TCGv_i32 t1_32 = tcg_temp_new_i32();
751 TCGv_i32 tmp;
753 tcg_gen_extrl_i64_i32(t0_32, t0);
754 tcg_gen_extrl_i64_i32(t1_32, t1);
755 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
756 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
757 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
758 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
759 tmp = tcg_temp_new_i32();
760 tcg_gen_xor_i32(tmp, t0_32, t1_32);
761 tcg_temp_free_i32(t0_32);
762 tcg_temp_free_i32(t1_32);
763 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
764 tcg_temp_free_i32(tmp);
765 tcg_gen_extu_i32_i64(dest, cpu_NF);
769 /* dest = T0 + T1 + CF; do not compute flags. */
770 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
772 TCGv_i64 flag = tcg_temp_new_i64();
773 tcg_gen_extu_i32_i64(flag, cpu_CF);
774 tcg_gen_add_i64(dest, t0, t1);
775 tcg_gen_add_i64(dest, dest, flag);
776 tcg_temp_free_i64(flag);
778 if (!sf) {
779 tcg_gen_ext32u_i64(dest, dest);
783 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
784 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
786 if (sf) {
787 TCGv_i64 result, cf_64, vf_64, tmp;
788 result = tcg_temp_new_i64();
789 cf_64 = tcg_temp_new_i64();
790 vf_64 = tcg_temp_new_i64();
791 tmp = tcg_const_i64(0);
793 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
794 tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp);
795 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp);
796 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
797 gen_set_NZ64(result);
799 tcg_gen_xor_i64(vf_64, result, t0);
800 tcg_gen_xor_i64(tmp, t0, t1);
801 tcg_gen_andc_i64(vf_64, vf_64, tmp);
802 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
804 tcg_gen_mov_i64(dest, result);
806 tcg_temp_free_i64(tmp);
807 tcg_temp_free_i64(vf_64);
808 tcg_temp_free_i64(cf_64);
809 tcg_temp_free_i64(result);
810 } else {
811 TCGv_i32 t0_32, t1_32, tmp;
812 t0_32 = tcg_temp_new_i32();
813 t1_32 = tcg_temp_new_i32();
814 tmp = tcg_const_i32(0);
816 tcg_gen_extrl_i64_i32(t0_32, t0);
817 tcg_gen_extrl_i64_i32(t1_32, t1);
818 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp);
819 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp);
821 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
822 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
823 tcg_gen_xor_i32(tmp, t0_32, t1_32);
824 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
825 tcg_gen_extu_i32_i64(dest, cpu_NF);
827 tcg_temp_free_i32(tmp);
828 tcg_temp_free_i32(t1_32);
829 tcg_temp_free_i32(t0_32);
834 * Load/Store generators
838 * Store from GPR register to memory.
840 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
841 TCGv_i64 tcg_addr, int size, int memidx,
842 bool iss_valid,
843 unsigned int iss_srt,
844 bool iss_sf, bool iss_ar)
846 g_assert(size <= 3);
847 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, s->be_data + size);
849 if (iss_valid) {
850 uint32_t syn;
852 syn = syn_data_abort_with_iss(0,
853 size,
854 false,
855 iss_srt,
856 iss_sf,
857 iss_ar,
858 0, 0, 0, 0, 0, false);
859 disas_set_insn_syndrome(s, syn);
863 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
864 TCGv_i64 tcg_addr, int size,
865 bool iss_valid,
866 unsigned int iss_srt,
867 bool iss_sf, bool iss_ar)
869 do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s),
870 iss_valid, iss_srt, iss_sf, iss_ar);
874 * Load from memory to GPR register
876 static void do_gpr_ld_memidx(DisasContext *s,
877 TCGv_i64 dest, TCGv_i64 tcg_addr,
878 int size, bool is_signed,
879 bool extend, int memidx,
880 bool iss_valid, unsigned int iss_srt,
881 bool iss_sf, bool iss_ar)
883 MemOp memop = s->be_data + size;
885 g_assert(size <= 3);
887 if (is_signed) {
888 memop += MO_SIGN;
891 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
893 if (extend && is_signed) {
894 g_assert(size < 3);
895 tcg_gen_ext32u_i64(dest, dest);
898 if (iss_valid) {
899 uint32_t syn;
901 syn = syn_data_abort_with_iss(0,
902 size,
903 is_signed,
904 iss_srt,
905 iss_sf,
906 iss_ar,
907 0, 0, 0, 0, 0, false);
908 disas_set_insn_syndrome(s, syn);
912 static void do_gpr_ld(DisasContext *s,
913 TCGv_i64 dest, TCGv_i64 tcg_addr,
914 int size, bool is_signed, bool extend,
915 bool iss_valid, unsigned int iss_srt,
916 bool iss_sf, bool iss_ar)
918 do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend,
919 get_mem_index(s),
920 iss_valid, iss_srt, iss_sf, iss_ar);
924 * Store from FP register to memory
926 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
928 /* This writes the bottom N bits of a 128 bit wide vector to memory */
929 TCGv_i64 tmp = tcg_temp_new_i64();
930 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64));
931 if (size < 4) {
932 tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s),
933 s->be_data + size);
934 } else {
935 bool be = s->be_data == MO_BE;
936 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
938 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
939 tcg_gen_qemu_st_i64(tmp, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
940 s->be_data | MO_Q);
941 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx));
942 tcg_gen_qemu_st_i64(tmp, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
943 s->be_data | MO_Q);
944 tcg_temp_free_i64(tcg_hiaddr);
947 tcg_temp_free_i64(tmp);
951 * Load from memory to FP register
953 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
955 /* This always zero-extends and writes to a full 128 bit wide vector */
956 TCGv_i64 tmplo = tcg_temp_new_i64();
957 TCGv_i64 tmphi;
959 if (size < 4) {
960 MemOp memop = s->be_data + size;
961 tmphi = tcg_const_i64(0);
962 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop);
963 } else {
964 bool be = s->be_data == MO_BE;
965 TCGv_i64 tcg_hiaddr;
967 tmphi = tcg_temp_new_i64();
968 tcg_hiaddr = tcg_temp_new_i64();
970 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
971 tcg_gen_qemu_ld_i64(tmplo, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
972 s->be_data | MO_Q);
973 tcg_gen_qemu_ld_i64(tmphi, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
974 s->be_data | MO_Q);
975 tcg_temp_free_i64(tcg_hiaddr);
978 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
979 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
981 tcg_temp_free_i64(tmplo);
982 tcg_temp_free_i64(tmphi);
984 clear_vec_high(s, true, destidx);
988 * Vector load/store helpers.
990 * The principal difference between this and a FP load is that we don't
991 * zero extend as we are filling a partial chunk of the vector register.
992 * These functions don't support 128 bit loads/stores, which would be
993 * normal load/store operations.
995 * The _i32 versions are useful when operating on 32 bit quantities
996 * (eg for floating point single or using Neon helper functions).
999 /* Get value of an element within a vector register */
1000 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1001 int element, MemOp memop)
1003 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1004 switch (memop) {
1005 case MO_8:
1006 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
1007 break;
1008 case MO_16:
1009 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
1010 break;
1011 case MO_32:
1012 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
1013 break;
1014 case MO_8|MO_SIGN:
1015 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
1016 break;
1017 case MO_16|MO_SIGN:
1018 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
1019 break;
1020 case MO_32|MO_SIGN:
1021 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
1022 break;
1023 case MO_64:
1024 case MO_64|MO_SIGN:
1025 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
1026 break;
1027 default:
1028 g_assert_not_reached();
1032 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1033 int element, MemOp memop)
1035 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1036 switch (memop) {
1037 case MO_8:
1038 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1039 break;
1040 case MO_16:
1041 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1042 break;
1043 case MO_8|MO_SIGN:
1044 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1045 break;
1046 case MO_16|MO_SIGN:
1047 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1048 break;
1049 case MO_32:
1050 case MO_32|MO_SIGN:
1051 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1052 break;
1053 default:
1054 g_assert_not_reached();
1058 /* Set value of an element within a vector register */
1059 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1060 int element, MemOp memop)
1062 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1063 switch (memop) {
1064 case MO_8:
1065 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1066 break;
1067 case MO_16:
1068 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1069 break;
1070 case MO_32:
1071 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1072 break;
1073 case MO_64:
1074 tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1075 break;
1076 default:
1077 g_assert_not_reached();
1081 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1082 int destidx, int element, MemOp memop)
1084 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1085 switch (memop) {
1086 case MO_8:
1087 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1088 break;
1089 case MO_16:
1090 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1091 break;
1092 case MO_32:
1093 tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1094 break;
1095 default:
1096 g_assert_not_reached();
1100 /* Store from vector register to memory */
1101 static void do_vec_st(DisasContext *s, int srcidx, int element,
1102 TCGv_i64 tcg_addr, int size, MemOp endian)
1104 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1106 read_vec_element(s, tcg_tmp, srcidx, element, size);
1107 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), endian | size);
1109 tcg_temp_free_i64(tcg_tmp);
1112 /* Load from memory to vector register */
1113 static void do_vec_ld(DisasContext *s, int destidx, int element,
1114 TCGv_i64 tcg_addr, int size, MemOp endian)
1116 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1118 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), endian | size);
1119 write_vec_element(s, tcg_tmp, destidx, element, size);
1121 tcg_temp_free_i64(tcg_tmp);
1124 /* Check that FP/Neon access is enabled. If it is, return
1125 * true. If not, emit code to generate an appropriate exception,
1126 * and return false; the caller should not emit any code for
1127 * the instruction. Note that this check must happen after all
1128 * unallocated-encoding checks (otherwise the syndrome information
1129 * for the resulting exception will be incorrect).
1131 static inline bool fp_access_check(DisasContext *s)
1133 assert(!s->fp_access_checked);
1134 s->fp_access_checked = true;
1136 if (!s->fp_excp_el) {
1137 return true;
1140 gen_exception_insn(s, s->pc_curr, EXCP_UDEF,
1141 syn_fp_access_trap(1, 0xe, false), s->fp_excp_el);
1142 return false;
1145 /* Check that SVE access is enabled. If it is, return true.
1146 * If not, emit code to generate an appropriate exception and return false.
1148 bool sve_access_check(DisasContext *s)
1150 if (s->sve_excp_el) {
1151 gen_exception_insn(s, s->pc_curr, EXCP_UDEF, syn_sve_access_trap(),
1152 s->sve_excp_el);
1153 return false;
1155 return fp_access_check(s);
1159 * This utility function is for doing register extension with an
1160 * optional shift. You will likely want to pass a temporary for the
1161 * destination register. See DecodeRegExtend() in the ARM ARM.
1163 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1164 int option, unsigned int shift)
1166 int extsize = extract32(option, 0, 2);
1167 bool is_signed = extract32(option, 2, 1);
1169 if (is_signed) {
1170 switch (extsize) {
1171 case 0:
1172 tcg_gen_ext8s_i64(tcg_out, tcg_in);
1173 break;
1174 case 1:
1175 tcg_gen_ext16s_i64(tcg_out, tcg_in);
1176 break;
1177 case 2:
1178 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1179 break;
1180 case 3:
1181 tcg_gen_mov_i64(tcg_out, tcg_in);
1182 break;
1184 } else {
1185 switch (extsize) {
1186 case 0:
1187 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1188 break;
1189 case 1:
1190 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1191 break;
1192 case 2:
1193 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1194 break;
1195 case 3:
1196 tcg_gen_mov_i64(tcg_out, tcg_in);
1197 break;
1201 if (shift) {
1202 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1206 static inline void gen_check_sp_alignment(DisasContext *s)
1208 /* The AArch64 architecture mandates that (if enabled via PSTATE
1209 * or SCTLR bits) there is a check that SP is 16-aligned on every
1210 * SP-relative load or store (with an exception generated if it is not).
1211 * In line with general QEMU practice regarding misaligned accesses,
1212 * we omit these checks for the sake of guest program performance.
1213 * This function is provided as a hook so we can more easily add these
1214 * checks in future (possibly as a "favour catching guest program bugs
1215 * over speed" user selectable option).
1220 * This provides a simple table based table lookup decoder. It is
1221 * intended to be used when the relevant bits for decode are too
1222 * awkwardly placed and switch/if based logic would be confusing and
1223 * deeply nested. Since it's a linear search through the table, tables
1224 * should be kept small.
1226 * It returns the first handler where insn & mask == pattern, or
1227 * NULL if there is no match.
1228 * The table is terminated by an empty mask (i.e. 0)
1230 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1231 uint32_t insn)
1233 const AArch64DecodeTable *tptr = table;
1235 while (tptr->mask) {
1236 if ((insn & tptr->mask) == tptr->pattern) {
1237 return tptr->disas_fn;
1239 tptr++;
1241 return NULL;
1245 * The instruction disassembly implemented here matches
1246 * the instruction encoding classifications in chapter C4
1247 * of the ARM Architecture Reference Manual (DDI0487B_a);
1248 * classification names and decode diagrams here should generally
1249 * match up with those in the manual.
1252 /* Unconditional branch (immediate)
1253 * 31 30 26 25 0
1254 * +----+-----------+-------------------------------------+
1255 * | op | 0 0 1 0 1 | imm26 |
1256 * +----+-----------+-------------------------------------+
1258 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1260 uint64_t addr = s->pc_curr + sextract32(insn, 0, 26) * 4;
1262 if (insn & (1U << 31)) {
1263 /* BL Branch with link */
1264 tcg_gen_movi_i64(cpu_reg(s, 30), s->base.pc_next);
1267 /* B Branch / BL Branch with link */
1268 reset_btype(s);
1269 gen_goto_tb(s, 0, addr);
1272 /* Compare and branch (immediate)
1273 * 31 30 25 24 23 5 4 0
1274 * +----+-------------+----+---------------------+--------+
1275 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
1276 * +----+-------------+----+---------------------+--------+
1278 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1280 unsigned int sf, op, rt;
1281 uint64_t addr;
1282 TCGLabel *label_match;
1283 TCGv_i64 tcg_cmp;
1285 sf = extract32(insn, 31, 1);
1286 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1287 rt = extract32(insn, 0, 5);
1288 addr = s->pc_curr + sextract32(insn, 5, 19) * 4;
1290 tcg_cmp = read_cpu_reg(s, rt, sf);
1291 label_match = gen_new_label();
1293 reset_btype(s);
1294 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1295 tcg_cmp, 0, label_match);
1297 gen_goto_tb(s, 0, s->base.pc_next);
1298 gen_set_label(label_match);
1299 gen_goto_tb(s, 1, addr);
1302 /* Test and branch (immediate)
1303 * 31 30 25 24 23 19 18 5 4 0
1304 * +----+-------------+----+-------+-------------+------+
1305 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
1306 * +----+-------------+----+-------+-------------+------+
1308 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1310 unsigned int bit_pos, op, rt;
1311 uint64_t addr;
1312 TCGLabel *label_match;
1313 TCGv_i64 tcg_cmp;
1315 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1316 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1317 addr = s->pc_curr + sextract32(insn, 5, 14) * 4;
1318 rt = extract32(insn, 0, 5);
1320 tcg_cmp = tcg_temp_new_i64();
1321 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1322 label_match = gen_new_label();
1324 reset_btype(s);
1325 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1326 tcg_cmp, 0, label_match);
1327 tcg_temp_free_i64(tcg_cmp);
1328 gen_goto_tb(s, 0, s->base.pc_next);
1329 gen_set_label(label_match);
1330 gen_goto_tb(s, 1, addr);
1333 /* Conditional branch (immediate)
1334 * 31 25 24 23 5 4 3 0
1335 * +---------------+----+---------------------+----+------+
1336 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
1337 * +---------------+----+---------------------+----+------+
1339 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1341 unsigned int cond;
1342 uint64_t addr;
1344 if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1345 unallocated_encoding(s);
1346 return;
1348 addr = s->pc_curr + sextract32(insn, 5, 19) * 4;
1349 cond = extract32(insn, 0, 4);
1351 reset_btype(s);
1352 if (cond < 0x0e) {
1353 /* genuinely conditional branches */
1354 TCGLabel *label_match = gen_new_label();
1355 arm_gen_test_cc(cond, label_match);
1356 gen_goto_tb(s, 0, s->base.pc_next);
1357 gen_set_label(label_match);
1358 gen_goto_tb(s, 1, addr);
1359 } else {
1360 /* 0xe and 0xf are both "always" conditions */
1361 gen_goto_tb(s, 0, addr);
1365 /* HINT instruction group, including various allocated HINTs */
1366 static void handle_hint(DisasContext *s, uint32_t insn,
1367 unsigned int op1, unsigned int op2, unsigned int crm)
1369 unsigned int selector = crm << 3 | op2;
1371 if (op1 != 3) {
1372 unallocated_encoding(s);
1373 return;
1376 switch (selector) {
1377 case 0b00000: /* NOP */
1378 break;
1379 case 0b00011: /* WFI */
1380 s->base.is_jmp = DISAS_WFI;
1381 break;
1382 case 0b00001: /* YIELD */
1383 /* When running in MTTCG we don't generate jumps to the yield and
1384 * WFE helpers as it won't affect the scheduling of other vCPUs.
1385 * If we wanted to more completely model WFE/SEV so we don't busy
1386 * spin unnecessarily we would need to do something more involved.
1388 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1389 s->base.is_jmp = DISAS_YIELD;
1391 break;
1392 case 0b00010: /* WFE */
1393 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1394 s->base.is_jmp = DISAS_WFE;
1396 break;
1397 case 0b00100: /* SEV */
1398 case 0b00101: /* SEVL */
1399 /* we treat all as NOP at least for now */
1400 break;
1401 case 0b00111: /* XPACLRI */
1402 if (s->pauth_active) {
1403 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]);
1405 break;
1406 case 0b01000: /* PACIA1716 */
1407 if (s->pauth_active) {
1408 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1410 break;
1411 case 0b01010: /* PACIB1716 */
1412 if (s->pauth_active) {
1413 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1415 break;
1416 case 0b01100: /* AUTIA1716 */
1417 if (s->pauth_active) {
1418 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1420 break;
1421 case 0b01110: /* AUTIB1716 */
1422 if (s->pauth_active) {
1423 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1425 break;
1426 case 0b11000: /* PACIAZ */
1427 if (s->pauth_active) {
1428 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30],
1429 new_tmp_a64_zero(s));
1431 break;
1432 case 0b11001: /* PACIASP */
1433 if (s->pauth_active) {
1434 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1436 break;
1437 case 0b11010: /* PACIBZ */
1438 if (s->pauth_active) {
1439 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30],
1440 new_tmp_a64_zero(s));
1442 break;
1443 case 0b11011: /* PACIBSP */
1444 if (s->pauth_active) {
1445 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1447 break;
1448 case 0b11100: /* AUTIAZ */
1449 if (s->pauth_active) {
1450 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30],
1451 new_tmp_a64_zero(s));
1453 break;
1454 case 0b11101: /* AUTIASP */
1455 if (s->pauth_active) {
1456 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1458 break;
1459 case 0b11110: /* AUTIBZ */
1460 if (s->pauth_active) {
1461 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30],
1462 new_tmp_a64_zero(s));
1464 break;
1465 case 0b11111: /* AUTIBSP */
1466 if (s->pauth_active) {
1467 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1469 break;
1470 default:
1471 /* default specified as NOP equivalent */
1472 break;
1476 static void gen_clrex(DisasContext *s, uint32_t insn)
1478 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1481 /* CLREX, DSB, DMB, ISB */
1482 static void handle_sync(DisasContext *s, uint32_t insn,
1483 unsigned int op1, unsigned int op2, unsigned int crm)
1485 TCGBar bar;
1487 if (op1 != 3) {
1488 unallocated_encoding(s);
1489 return;
1492 switch (op2) {
1493 case 2: /* CLREX */
1494 gen_clrex(s, insn);
1495 return;
1496 case 4: /* DSB */
1497 case 5: /* DMB */
1498 switch (crm & 3) {
1499 case 1: /* MBReqTypes_Reads */
1500 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1501 break;
1502 case 2: /* MBReqTypes_Writes */
1503 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1504 break;
1505 default: /* MBReqTypes_All */
1506 bar = TCG_BAR_SC | TCG_MO_ALL;
1507 break;
1509 tcg_gen_mb(bar);
1510 return;
1511 case 6: /* ISB */
1512 /* We need to break the TB after this insn to execute
1513 * a self-modified code correctly and also to take
1514 * any pending interrupts immediately.
1516 reset_btype(s);
1517 gen_goto_tb(s, 0, s->base.pc_next);
1518 return;
1520 case 7: /* SB */
1521 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) {
1522 goto do_unallocated;
1525 * TODO: There is no speculation barrier opcode for TCG;
1526 * MB and end the TB instead.
1528 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1529 gen_goto_tb(s, 0, s->base.pc_next);
1530 return;
1532 default:
1533 do_unallocated:
1534 unallocated_encoding(s);
1535 return;
1539 static void gen_xaflag(void)
1541 TCGv_i32 z = tcg_temp_new_i32();
1543 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1546 * (!C & !Z) << 31
1547 * (!(C | Z)) << 31
1548 * ~((C | Z) << 31)
1549 * ~-(C | Z)
1550 * (C | Z) - 1
1552 tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1553 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1555 /* !(Z & C) */
1556 tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1557 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1559 /* (!C & Z) << 31 -> -(Z & ~C) */
1560 tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1561 tcg_gen_neg_i32(cpu_VF, cpu_VF);
1563 /* C | Z */
1564 tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1566 tcg_temp_free_i32(z);
1569 static void gen_axflag(void)
1571 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */
1572 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */
1574 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1575 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1577 tcg_gen_movi_i32(cpu_NF, 0);
1578 tcg_gen_movi_i32(cpu_VF, 0);
1581 /* MSR (immediate) - move immediate to processor state field */
1582 static void handle_msr_i(DisasContext *s, uint32_t insn,
1583 unsigned int op1, unsigned int op2, unsigned int crm)
1585 TCGv_i32 t1;
1586 int op = op1 << 3 | op2;
1588 /* End the TB by default, chaining is ok. */
1589 s->base.is_jmp = DISAS_TOO_MANY;
1591 switch (op) {
1592 case 0x00: /* CFINV */
1593 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) {
1594 goto do_unallocated;
1596 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1597 s->base.is_jmp = DISAS_NEXT;
1598 break;
1600 case 0x01: /* XAFlag */
1601 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1602 goto do_unallocated;
1604 gen_xaflag();
1605 s->base.is_jmp = DISAS_NEXT;
1606 break;
1608 case 0x02: /* AXFlag */
1609 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1610 goto do_unallocated;
1612 gen_axflag();
1613 s->base.is_jmp = DISAS_NEXT;
1614 break;
1616 case 0x03: /* UAO */
1617 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1618 goto do_unallocated;
1620 if (crm & 1) {
1621 set_pstate_bits(PSTATE_UAO);
1622 } else {
1623 clear_pstate_bits(PSTATE_UAO);
1625 t1 = tcg_const_i32(s->current_el);
1626 gen_helper_rebuild_hflags_a64(cpu_env, t1);
1627 tcg_temp_free_i32(t1);
1628 break;
1630 case 0x04: /* PAN */
1631 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1632 goto do_unallocated;
1634 if (crm & 1) {
1635 set_pstate_bits(PSTATE_PAN);
1636 } else {
1637 clear_pstate_bits(PSTATE_PAN);
1639 t1 = tcg_const_i32(s->current_el);
1640 gen_helper_rebuild_hflags_a64(cpu_env, t1);
1641 tcg_temp_free_i32(t1);
1642 break;
1644 case 0x05: /* SPSel */
1645 if (s->current_el == 0) {
1646 goto do_unallocated;
1648 t1 = tcg_const_i32(crm & PSTATE_SP);
1649 gen_helper_msr_i_spsel(cpu_env, t1);
1650 tcg_temp_free_i32(t1);
1651 break;
1653 case 0x1e: /* DAIFSet */
1654 t1 = tcg_const_i32(crm);
1655 gen_helper_msr_i_daifset(cpu_env, t1);
1656 tcg_temp_free_i32(t1);
1657 break;
1659 case 0x1f: /* DAIFClear */
1660 t1 = tcg_const_i32(crm);
1661 gen_helper_msr_i_daifclear(cpu_env, t1);
1662 tcg_temp_free_i32(t1);
1663 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */
1664 s->base.is_jmp = DISAS_UPDATE;
1665 break;
1667 default:
1668 do_unallocated:
1669 unallocated_encoding(s);
1670 return;
1674 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1676 TCGv_i32 tmp = tcg_temp_new_i32();
1677 TCGv_i32 nzcv = tcg_temp_new_i32();
1679 /* build bit 31, N */
1680 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1681 /* build bit 30, Z */
1682 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1683 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1684 /* build bit 29, C */
1685 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1686 /* build bit 28, V */
1687 tcg_gen_shri_i32(tmp, cpu_VF, 31);
1688 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1689 /* generate result */
1690 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1692 tcg_temp_free_i32(nzcv);
1693 tcg_temp_free_i32(tmp);
1696 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1698 TCGv_i32 nzcv = tcg_temp_new_i32();
1700 /* take NZCV from R[t] */
1701 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1703 /* bit 31, N */
1704 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1705 /* bit 30, Z */
1706 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1707 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1708 /* bit 29, C */
1709 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1710 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1711 /* bit 28, V */
1712 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1713 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1714 tcg_temp_free_i32(nzcv);
1717 /* MRS - move from system register
1718 * MSR (register) - move to system register
1719 * SYS
1720 * SYSL
1721 * These are all essentially the same insn in 'read' and 'write'
1722 * versions, with varying op0 fields.
1724 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1725 unsigned int op0, unsigned int op1, unsigned int op2,
1726 unsigned int crn, unsigned int crm, unsigned int rt)
1728 const ARMCPRegInfo *ri;
1729 TCGv_i64 tcg_rt;
1731 ri = get_arm_cp_reginfo(s->cp_regs,
1732 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1733 crn, crm, op0, op1, op2));
1735 if (!ri) {
1736 /* Unknown register; this might be a guest error or a QEMU
1737 * unimplemented feature.
1739 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1740 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1741 isread ? "read" : "write", op0, op1, crn, crm, op2);
1742 unallocated_encoding(s);
1743 return;
1746 /* Check access permissions */
1747 if (!cp_access_ok(s->current_el, ri, isread)) {
1748 unallocated_encoding(s);
1749 return;
1752 if (ri->accessfn) {
1753 /* Emit code to perform further access permissions checks at
1754 * runtime; this may result in an exception.
1756 TCGv_ptr tmpptr;
1757 TCGv_i32 tcg_syn, tcg_isread;
1758 uint32_t syndrome;
1760 gen_a64_set_pc_im(s->pc_curr);
1761 tmpptr = tcg_const_ptr(ri);
1762 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1763 tcg_syn = tcg_const_i32(syndrome);
1764 tcg_isread = tcg_const_i32(isread);
1765 gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn, tcg_isread);
1766 tcg_temp_free_ptr(tmpptr);
1767 tcg_temp_free_i32(tcg_syn);
1768 tcg_temp_free_i32(tcg_isread);
1769 } else if (ri->type & ARM_CP_RAISES_EXC) {
1771 * The readfn or writefn might raise an exception;
1772 * synchronize the CPU state in case it does.
1774 gen_a64_set_pc_im(s->pc_curr);
1777 /* Handle special cases first */
1778 switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
1779 case ARM_CP_NOP:
1780 return;
1781 case ARM_CP_NZCV:
1782 tcg_rt = cpu_reg(s, rt);
1783 if (isread) {
1784 gen_get_nzcv(tcg_rt);
1785 } else {
1786 gen_set_nzcv(tcg_rt);
1788 return;
1789 case ARM_CP_CURRENTEL:
1790 /* Reads as current EL value from pstate, which is
1791 * guaranteed to be constant by the tb flags.
1793 tcg_rt = cpu_reg(s, rt);
1794 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1795 return;
1796 case ARM_CP_DC_ZVA:
1797 /* Writes clear the aligned block of memory which rt points into. */
1798 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
1799 gen_helper_dc_zva(cpu_env, tcg_rt);
1800 return;
1801 default:
1802 break;
1804 if ((ri->type & ARM_CP_FPU) && !fp_access_check(s)) {
1805 return;
1806 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
1807 return;
1810 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1811 gen_io_start();
1814 tcg_rt = cpu_reg(s, rt);
1816 if (isread) {
1817 if (ri->type & ARM_CP_CONST) {
1818 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
1819 } else if (ri->readfn) {
1820 TCGv_ptr tmpptr;
1821 tmpptr = tcg_const_ptr(ri);
1822 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr);
1823 tcg_temp_free_ptr(tmpptr);
1824 } else {
1825 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
1827 } else {
1828 if (ri->type & ARM_CP_CONST) {
1829 /* If not forbidden by access permissions, treat as WI */
1830 return;
1831 } else if (ri->writefn) {
1832 TCGv_ptr tmpptr;
1833 tmpptr = tcg_const_ptr(ri);
1834 gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt);
1835 tcg_temp_free_ptr(tmpptr);
1836 } else {
1837 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
1841 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1842 /* I/O operations must end the TB here (whether read or write) */
1843 s->base.is_jmp = DISAS_UPDATE;
1845 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
1847 * A write to any coprocessor regiser that ends a TB
1848 * must rebuild the hflags for the next TB.
1850 TCGv_i32 tcg_el = tcg_const_i32(s->current_el);
1851 gen_helper_rebuild_hflags_a64(cpu_env, tcg_el);
1852 tcg_temp_free_i32(tcg_el);
1854 * We default to ending the TB on a coprocessor register write,
1855 * but allow this to be suppressed by the register definition
1856 * (usually only necessary to work around guest bugs).
1858 s->base.is_jmp = DISAS_UPDATE;
1862 /* System
1863 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
1864 * +---------------------+---+-----+-----+-------+-------+-----+------+
1865 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
1866 * +---------------------+---+-----+-----+-------+-------+-----+------+
1868 static void disas_system(DisasContext *s, uint32_t insn)
1870 unsigned int l, op0, op1, crn, crm, op2, rt;
1871 l = extract32(insn, 21, 1);
1872 op0 = extract32(insn, 19, 2);
1873 op1 = extract32(insn, 16, 3);
1874 crn = extract32(insn, 12, 4);
1875 crm = extract32(insn, 8, 4);
1876 op2 = extract32(insn, 5, 3);
1877 rt = extract32(insn, 0, 5);
1879 if (op0 == 0) {
1880 if (l || rt != 31) {
1881 unallocated_encoding(s);
1882 return;
1884 switch (crn) {
1885 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */
1886 handle_hint(s, insn, op1, op2, crm);
1887 break;
1888 case 3: /* CLREX, DSB, DMB, ISB */
1889 handle_sync(s, insn, op1, op2, crm);
1890 break;
1891 case 4: /* MSR (immediate) */
1892 handle_msr_i(s, insn, op1, op2, crm);
1893 break;
1894 default:
1895 unallocated_encoding(s);
1896 break;
1898 return;
1900 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
1903 /* Exception generation
1905 * 31 24 23 21 20 5 4 2 1 0
1906 * +-----------------+-----+------------------------+-----+----+
1907 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
1908 * +-----------------------+------------------------+----------+
1910 static void disas_exc(DisasContext *s, uint32_t insn)
1912 int opc = extract32(insn, 21, 3);
1913 int op2_ll = extract32(insn, 0, 5);
1914 int imm16 = extract32(insn, 5, 16);
1915 TCGv_i32 tmp;
1917 switch (opc) {
1918 case 0:
1919 /* For SVC, HVC and SMC we advance the single-step state
1920 * machine before taking the exception. This is architecturally
1921 * mandated, to ensure that single-stepping a system call
1922 * instruction works properly.
1924 switch (op2_ll) {
1925 case 1: /* SVC */
1926 gen_ss_advance(s);
1927 gen_exception_insn(s, s->base.pc_next, EXCP_SWI,
1928 syn_aa64_svc(imm16), default_exception_el(s));
1929 break;
1930 case 2: /* HVC */
1931 if (s->current_el == 0) {
1932 unallocated_encoding(s);
1933 break;
1935 /* The pre HVC helper handles cases when HVC gets trapped
1936 * as an undefined insn by runtime configuration.
1938 gen_a64_set_pc_im(s->pc_curr);
1939 gen_helper_pre_hvc(cpu_env);
1940 gen_ss_advance(s);
1941 gen_exception_insn(s, s->base.pc_next, EXCP_HVC,
1942 syn_aa64_hvc(imm16), 2);
1943 break;
1944 case 3: /* SMC */
1945 if (s->current_el == 0) {
1946 unallocated_encoding(s);
1947 break;
1949 gen_a64_set_pc_im(s->pc_curr);
1950 tmp = tcg_const_i32(syn_aa64_smc(imm16));
1951 gen_helper_pre_smc(cpu_env, tmp);
1952 tcg_temp_free_i32(tmp);
1953 gen_ss_advance(s);
1954 gen_exception_insn(s, s->base.pc_next, EXCP_SMC,
1955 syn_aa64_smc(imm16), 3);
1956 break;
1957 default:
1958 unallocated_encoding(s);
1959 break;
1961 break;
1962 case 1:
1963 if (op2_ll != 0) {
1964 unallocated_encoding(s);
1965 break;
1967 /* BRK */
1968 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16));
1969 break;
1970 case 2:
1971 if (op2_ll != 0) {
1972 unallocated_encoding(s);
1973 break;
1975 /* HLT. This has two purposes.
1976 * Architecturally, it is an external halting debug instruction.
1977 * Since QEMU doesn't implement external debug, we treat this as
1978 * it is required for halting debug disabled: it will UNDEF.
1979 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
1981 if (semihosting_enabled() && imm16 == 0xf000) {
1982 #ifndef CONFIG_USER_ONLY
1983 /* In system mode, don't allow userspace access to semihosting,
1984 * to provide some semblance of security (and for consistency
1985 * with our 32-bit semihosting).
1987 if (s->current_el == 0) {
1988 unsupported_encoding(s, insn);
1989 break;
1991 #endif
1992 gen_exception_internal_insn(s, s->pc_curr, EXCP_SEMIHOST);
1993 } else {
1994 unsupported_encoding(s, insn);
1996 break;
1997 case 5:
1998 if (op2_ll < 1 || op2_ll > 3) {
1999 unallocated_encoding(s);
2000 break;
2002 /* DCPS1, DCPS2, DCPS3 */
2003 unsupported_encoding(s, insn);
2004 break;
2005 default:
2006 unallocated_encoding(s);
2007 break;
2011 /* Unconditional branch (register)
2012 * 31 25 24 21 20 16 15 10 9 5 4 0
2013 * +---------------+-------+-------+-------+------+-------+
2014 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
2015 * +---------------+-------+-------+-------+------+-------+
2017 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
2019 unsigned int opc, op2, op3, rn, op4;
2020 unsigned btype_mod = 2; /* 0: BR, 1: BLR, 2: other */
2021 TCGv_i64 dst;
2022 TCGv_i64 modifier;
2024 opc = extract32(insn, 21, 4);
2025 op2 = extract32(insn, 16, 5);
2026 op3 = extract32(insn, 10, 6);
2027 rn = extract32(insn, 5, 5);
2028 op4 = extract32(insn, 0, 5);
2030 if (op2 != 0x1f) {
2031 goto do_unallocated;
2034 switch (opc) {
2035 case 0: /* BR */
2036 case 1: /* BLR */
2037 case 2: /* RET */
2038 btype_mod = opc;
2039 switch (op3) {
2040 case 0:
2041 /* BR, BLR, RET */
2042 if (op4 != 0) {
2043 goto do_unallocated;
2045 dst = cpu_reg(s, rn);
2046 break;
2048 case 2:
2049 case 3:
2050 if (!dc_isar_feature(aa64_pauth, s)) {
2051 goto do_unallocated;
2053 if (opc == 2) {
2054 /* RETAA, RETAB */
2055 if (rn != 0x1f || op4 != 0x1f) {
2056 goto do_unallocated;
2058 rn = 30;
2059 modifier = cpu_X[31];
2060 } else {
2061 /* BRAAZ, BRABZ, BLRAAZ, BLRABZ */
2062 if (op4 != 0x1f) {
2063 goto do_unallocated;
2065 modifier = new_tmp_a64_zero(s);
2067 if (s->pauth_active) {
2068 dst = new_tmp_a64(s);
2069 if (op3 == 2) {
2070 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2071 } else {
2072 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2074 } else {
2075 dst = cpu_reg(s, rn);
2077 break;
2079 default:
2080 goto do_unallocated;
2082 gen_a64_set_pc(s, dst);
2083 /* BLR also needs to load return address */
2084 if (opc == 1) {
2085 tcg_gen_movi_i64(cpu_reg(s, 30), s->base.pc_next);
2087 break;
2089 case 8: /* BRAA */
2090 case 9: /* BLRAA */
2091 if (!dc_isar_feature(aa64_pauth, s)) {
2092 goto do_unallocated;
2094 if ((op3 & ~1) != 2) {
2095 goto do_unallocated;
2097 btype_mod = opc & 1;
2098 if (s->pauth_active) {
2099 dst = new_tmp_a64(s);
2100 modifier = cpu_reg_sp(s, op4);
2101 if (op3 == 2) {
2102 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2103 } else {
2104 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2106 } else {
2107 dst = cpu_reg(s, rn);
2109 gen_a64_set_pc(s, dst);
2110 /* BLRAA also needs to load return address */
2111 if (opc == 9) {
2112 tcg_gen_movi_i64(cpu_reg(s, 30), s->base.pc_next);
2114 break;
2116 case 4: /* ERET */
2117 if (s->current_el == 0) {
2118 goto do_unallocated;
2120 switch (op3) {
2121 case 0: /* ERET */
2122 if (op4 != 0) {
2123 goto do_unallocated;
2125 dst = tcg_temp_new_i64();
2126 tcg_gen_ld_i64(dst, cpu_env,
2127 offsetof(CPUARMState, elr_el[s->current_el]));
2128 break;
2130 case 2: /* ERETAA */
2131 case 3: /* ERETAB */
2132 if (!dc_isar_feature(aa64_pauth, s)) {
2133 goto do_unallocated;
2135 if (rn != 0x1f || op4 != 0x1f) {
2136 goto do_unallocated;
2138 dst = tcg_temp_new_i64();
2139 tcg_gen_ld_i64(dst, cpu_env,
2140 offsetof(CPUARMState, elr_el[s->current_el]));
2141 if (s->pauth_active) {
2142 modifier = cpu_X[31];
2143 if (op3 == 2) {
2144 gen_helper_autia(dst, cpu_env, dst, modifier);
2145 } else {
2146 gen_helper_autib(dst, cpu_env, dst, modifier);
2149 break;
2151 default:
2152 goto do_unallocated;
2154 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
2155 gen_io_start();
2158 gen_helper_exception_return(cpu_env, dst);
2159 tcg_temp_free_i64(dst);
2160 /* Must exit loop to check un-masked IRQs */
2161 s->base.is_jmp = DISAS_EXIT;
2162 return;
2164 case 5: /* DRPS */
2165 if (op3 != 0 || op4 != 0 || rn != 0x1f) {
2166 goto do_unallocated;
2167 } else {
2168 unsupported_encoding(s, insn);
2170 return;
2172 default:
2173 do_unallocated:
2174 unallocated_encoding(s);
2175 return;
2178 switch (btype_mod) {
2179 case 0: /* BR */
2180 if (dc_isar_feature(aa64_bti, s)) {
2181 /* BR to {x16,x17} or !guard -> 1, else 3. */
2182 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
2184 break;
2186 case 1: /* BLR */
2187 if (dc_isar_feature(aa64_bti, s)) {
2188 /* BLR sets BTYPE to 2, regardless of source guarded page. */
2189 set_btype(s, 2);
2191 break;
2193 default: /* RET or none of the above. */
2194 /* BTYPE will be set to 0 by normal end-of-insn processing. */
2195 break;
2198 s->base.is_jmp = DISAS_JUMP;
2201 /* Branches, exception generating and system instructions */
2202 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
2204 switch (extract32(insn, 25, 7)) {
2205 case 0x0a: case 0x0b:
2206 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
2207 disas_uncond_b_imm(s, insn);
2208 break;
2209 case 0x1a: case 0x5a: /* Compare & branch (immediate) */
2210 disas_comp_b_imm(s, insn);
2211 break;
2212 case 0x1b: case 0x5b: /* Test & branch (immediate) */
2213 disas_test_b_imm(s, insn);
2214 break;
2215 case 0x2a: /* Conditional branch (immediate) */
2216 disas_cond_b_imm(s, insn);
2217 break;
2218 case 0x6a: /* Exception generation / System */
2219 if (insn & (1 << 24)) {
2220 if (extract32(insn, 22, 2) == 0) {
2221 disas_system(s, insn);
2222 } else {
2223 unallocated_encoding(s);
2225 } else {
2226 disas_exc(s, insn);
2228 break;
2229 case 0x6b: /* Unconditional branch (register) */
2230 disas_uncond_b_reg(s, insn);
2231 break;
2232 default:
2233 unallocated_encoding(s);
2234 break;
2239 * Load/Store exclusive instructions are implemented by remembering
2240 * the value/address loaded, and seeing if these are the same
2241 * when the store is performed. This is not actually the architecturally
2242 * mandated semantics, but it works for typical guest code sequences
2243 * and avoids having to monitor regular stores.
2245 * The store exclusive uses the atomic cmpxchg primitives to avoid
2246 * races in multi-threaded linux-user and when MTTCG softmmu is
2247 * enabled.
2249 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
2250 TCGv_i64 addr, int size, bool is_pair)
2252 int idx = get_mem_index(s);
2253 MemOp memop = s->be_data;
2255 g_assert(size <= 3);
2256 if (is_pair) {
2257 g_assert(size >= 2);
2258 if (size == 2) {
2259 /* The pair must be single-copy atomic for the doubleword. */
2260 memop |= MO_64 | MO_ALIGN;
2261 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2262 if (s->be_data == MO_LE) {
2263 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2264 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2265 } else {
2266 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2267 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2269 } else {
2270 /* The pair must be single-copy atomic for *each* doubleword, not
2271 the entire quadword, however it must be quadword aligned. */
2272 memop |= MO_64;
2273 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx,
2274 memop | MO_ALIGN_16);
2276 TCGv_i64 addr2 = tcg_temp_new_i64();
2277 tcg_gen_addi_i64(addr2, addr, 8);
2278 tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop);
2279 tcg_temp_free_i64(addr2);
2281 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2282 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2284 } else {
2285 memop |= size | MO_ALIGN;
2286 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2287 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2289 tcg_gen_mov_i64(cpu_exclusive_addr, addr);
2292 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2293 TCGv_i64 addr, int size, int is_pair)
2295 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2296 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
2297 * [addr] = {Rt};
2298 * if (is_pair) {
2299 * [addr + datasize] = {Rt2};
2301 * {Rd} = 0;
2302 * } else {
2303 * {Rd} = 1;
2305 * env->exclusive_addr = -1;
2307 TCGLabel *fail_label = gen_new_label();
2308 TCGLabel *done_label = gen_new_label();
2309 TCGv_i64 tmp;
2311 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
2313 tmp = tcg_temp_new_i64();
2314 if (is_pair) {
2315 if (size == 2) {
2316 if (s->be_data == MO_LE) {
2317 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2318 } else {
2319 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2321 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2322 cpu_exclusive_val, tmp,
2323 get_mem_index(s),
2324 MO_64 | MO_ALIGN | s->be_data);
2325 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2326 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2327 if (!HAVE_CMPXCHG128) {
2328 gen_helper_exit_atomic(cpu_env);
2329 s->base.is_jmp = DISAS_NORETURN;
2330 } else if (s->be_data == MO_LE) {
2331 gen_helper_paired_cmpxchg64_le_parallel(tmp, cpu_env,
2332 cpu_exclusive_addr,
2333 cpu_reg(s, rt),
2334 cpu_reg(s, rt2));
2335 } else {
2336 gen_helper_paired_cmpxchg64_be_parallel(tmp, cpu_env,
2337 cpu_exclusive_addr,
2338 cpu_reg(s, rt),
2339 cpu_reg(s, rt2));
2341 } else if (s->be_data == MO_LE) {
2342 gen_helper_paired_cmpxchg64_le(tmp, cpu_env, cpu_exclusive_addr,
2343 cpu_reg(s, rt), cpu_reg(s, rt2));
2344 } else {
2345 gen_helper_paired_cmpxchg64_be(tmp, cpu_env, cpu_exclusive_addr,
2346 cpu_reg(s, rt), cpu_reg(s, rt2));
2348 } else {
2349 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2350 cpu_reg(s, rt), get_mem_index(s),
2351 size | MO_ALIGN | s->be_data);
2352 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2354 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2355 tcg_temp_free_i64(tmp);
2356 tcg_gen_br(done_label);
2358 gen_set_label(fail_label);
2359 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2360 gen_set_label(done_label);
2361 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2364 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2365 int rn, int size)
2367 TCGv_i64 tcg_rs = cpu_reg(s, rs);
2368 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2369 int memidx = get_mem_index(s);
2370 TCGv_i64 clean_addr;
2372 if (rn == 31) {
2373 gen_check_sp_alignment(s);
2375 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2376 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx,
2377 size | MO_ALIGN | s->be_data);
2380 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2381 int rn, int size)
2383 TCGv_i64 s1 = cpu_reg(s, rs);
2384 TCGv_i64 s2 = cpu_reg(s, rs + 1);
2385 TCGv_i64 t1 = cpu_reg(s, rt);
2386 TCGv_i64 t2 = cpu_reg(s, rt + 1);
2387 TCGv_i64 clean_addr;
2388 int memidx = get_mem_index(s);
2390 if (rn == 31) {
2391 gen_check_sp_alignment(s);
2393 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2395 if (size == 2) {
2396 TCGv_i64 cmp = tcg_temp_new_i64();
2397 TCGv_i64 val = tcg_temp_new_i64();
2399 if (s->be_data == MO_LE) {
2400 tcg_gen_concat32_i64(val, t1, t2);
2401 tcg_gen_concat32_i64(cmp, s1, s2);
2402 } else {
2403 tcg_gen_concat32_i64(val, t2, t1);
2404 tcg_gen_concat32_i64(cmp, s2, s1);
2407 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx,
2408 MO_64 | MO_ALIGN | s->be_data);
2409 tcg_temp_free_i64(val);
2411 if (s->be_data == MO_LE) {
2412 tcg_gen_extr32_i64(s1, s2, cmp);
2413 } else {
2414 tcg_gen_extr32_i64(s2, s1, cmp);
2416 tcg_temp_free_i64(cmp);
2417 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2418 if (HAVE_CMPXCHG128) {
2419 TCGv_i32 tcg_rs = tcg_const_i32(rs);
2420 if (s->be_data == MO_LE) {
2421 gen_helper_casp_le_parallel(cpu_env, tcg_rs,
2422 clean_addr, t1, t2);
2423 } else {
2424 gen_helper_casp_be_parallel(cpu_env, tcg_rs,
2425 clean_addr, t1, t2);
2427 tcg_temp_free_i32(tcg_rs);
2428 } else {
2429 gen_helper_exit_atomic(cpu_env);
2430 s->base.is_jmp = DISAS_NORETURN;
2432 } else {
2433 TCGv_i64 d1 = tcg_temp_new_i64();
2434 TCGv_i64 d2 = tcg_temp_new_i64();
2435 TCGv_i64 a2 = tcg_temp_new_i64();
2436 TCGv_i64 c1 = tcg_temp_new_i64();
2437 TCGv_i64 c2 = tcg_temp_new_i64();
2438 TCGv_i64 zero = tcg_const_i64(0);
2440 /* Load the two words, in memory order. */
2441 tcg_gen_qemu_ld_i64(d1, clean_addr, memidx,
2442 MO_64 | MO_ALIGN_16 | s->be_data);
2443 tcg_gen_addi_i64(a2, clean_addr, 8);
2444 tcg_gen_qemu_ld_i64(d2, a2, memidx, MO_64 | s->be_data);
2446 /* Compare the two words, also in memory order. */
2447 tcg_gen_setcond_i64(TCG_COND_EQ, c1, d1, s1);
2448 tcg_gen_setcond_i64(TCG_COND_EQ, c2, d2, s2);
2449 tcg_gen_and_i64(c2, c2, c1);
2451 /* If compare equal, write back new data, else write back old data. */
2452 tcg_gen_movcond_i64(TCG_COND_NE, c1, c2, zero, t1, d1);
2453 tcg_gen_movcond_i64(TCG_COND_NE, c2, c2, zero, t2, d2);
2454 tcg_gen_qemu_st_i64(c1, clean_addr, memidx, MO_64 | s->be_data);
2455 tcg_gen_qemu_st_i64(c2, a2, memidx, MO_64 | s->be_data);
2456 tcg_temp_free_i64(a2);
2457 tcg_temp_free_i64(c1);
2458 tcg_temp_free_i64(c2);
2459 tcg_temp_free_i64(zero);
2461 /* Write back the data from memory to Rs. */
2462 tcg_gen_mov_i64(s1, d1);
2463 tcg_gen_mov_i64(s2, d2);
2464 tcg_temp_free_i64(d1);
2465 tcg_temp_free_i64(d2);
2469 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
2470 * from the ARMv8 specs for LDR (Shared decode for all encodings).
2472 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
2474 int opc0 = extract32(opc, 0, 1);
2475 int regsize;
2477 if (is_signed) {
2478 regsize = opc0 ? 32 : 64;
2479 } else {
2480 regsize = size == 3 ? 64 : 32;
2482 return regsize == 64;
2485 /* Load/store exclusive
2487 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
2488 * +-----+-------------+----+---+----+------+----+-------+------+------+
2489 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
2490 * +-----+-------------+----+---+----+------+----+-------+------+------+
2492 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
2493 * L: 0 -> store, 1 -> load
2494 * o2: 0 -> exclusive, 1 -> not
2495 * o1: 0 -> single register, 1 -> register pair
2496 * o0: 1 -> load-acquire/store-release, 0 -> not
2498 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
2500 int rt = extract32(insn, 0, 5);
2501 int rn = extract32(insn, 5, 5);
2502 int rt2 = extract32(insn, 10, 5);
2503 int rs = extract32(insn, 16, 5);
2504 int is_lasr = extract32(insn, 15, 1);
2505 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr;
2506 int size = extract32(insn, 30, 2);
2507 TCGv_i64 clean_addr;
2509 switch (o2_L_o1_o0) {
2510 case 0x0: /* STXR */
2511 case 0x1: /* STLXR */
2512 if (rn == 31) {
2513 gen_check_sp_alignment(s);
2515 if (is_lasr) {
2516 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2518 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2519 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, false);
2520 return;
2522 case 0x4: /* LDXR */
2523 case 0x5: /* LDAXR */
2524 if (rn == 31) {
2525 gen_check_sp_alignment(s);
2527 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2528 s->is_ldex = true;
2529 gen_load_exclusive(s, rt, rt2, clean_addr, size, false);
2530 if (is_lasr) {
2531 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2533 return;
2535 case 0x8: /* STLLR */
2536 if (!dc_isar_feature(aa64_lor, s)) {
2537 break;
2539 /* StoreLORelease is the same as Store-Release for QEMU. */
2540 /* fall through */
2541 case 0x9: /* STLR */
2542 /* Generate ISS for non-exclusive accesses including LASR. */
2543 if (rn == 31) {
2544 gen_check_sp_alignment(s);
2546 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2547 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2548 do_gpr_st(s, cpu_reg(s, rt), clean_addr, size, true, rt,
2549 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2550 return;
2552 case 0xc: /* LDLAR */
2553 if (!dc_isar_feature(aa64_lor, s)) {
2554 break;
2556 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */
2557 /* fall through */
2558 case 0xd: /* LDAR */
2559 /* Generate ISS for non-exclusive accesses including LASR. */
2560 if (rn == 31) {
2561 gen_check_sp_alignment(s);
2563 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2564 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false, false, true, rt,
2565 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2566 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2567 return;
2569 case 0x2: case 0x3: /* CASP / STXP */
2570 if (size & 2) { /* STXP / STLXP */
2571 if (rn == 31) {
2572 gen_check_sp_alignment(s);
2574 if (is_lasr) {
2575 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2577 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2578 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, true);
2579 return;
2581 if (rt2 == 31
2582 && ((rt | rs) & 1) == 0
2583 && dc_isar_feature(aa64_atomics, s)) {
2584 /* CASP / CASPL */
2585 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2586 return;
2588 break;
2590 case 0x6: case 0x7: /* CASPA / LDXP */
2591 if (size & 2) { /* LDXP / LDAXP */
2592 if (rn == 31) {
2593 gen_check_sp_alignment(s);
2595 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2596 s->is_ldex = true;
2597 gen_load_exclusive(s, rt, rt2, clean_addr, size, true);
2598 if (is_lasr) {
2599 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2601 return;
2603 if (rt2 == 31
2604 && ((rt | rs) & 1) == 0
2605 && dc_isar_feature(aa64_atomics, s)) {
2606 /* CASPA / CASPAL */
2607 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2608 return;
2610 break;
2612 case 0xa: /* CAS */
2613 case 0xb: /* CASL */
2614 case 0xe: /* CASA */
2615 case 0xf: /* CASAL */
2616 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) {
2617 gen_compare_and_swap(s, rs, rt, rn, size);
2618 return;
2620 break;
2622 unallocated_encoding(s);
2626 * Load register (literal)
2628 * 31 30 29 27 26 25 24 23 5 4 0
2629 * +-----+-------+---+-----+-------------------+-------+
2630 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
2631 * +-----+-------+---+-----+-------------------+-------+
2633 * V: 1 -> vector (simd/fp)
2634 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2635 * 10-> 32 bit signed, 11 -> prefetch
2636 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2638 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2640 int rt = extract32(insn, 0, 5);
2641 int64_t imm = sextract32(insn, 5, 19) << 2;
2642 bool is_vector = extract32(insn, 26, 1);
2643 int opc = extract32(insn, 30, 2);
2644 bool is_signed = false;
2645 int size = 2;
2646 TCGv_i64 tcg_rt, clean_addr;
2648 if (is_vector) {
2649 if (opc == 3) {
2650 unallocated_encoding(s);
2651 return;
2653 size = 2 + opc;
2654 if (!fp_access_check(s)) {
2655 return;
2657 } else {
2658 if (opc == 3) {
2659 /* PRFM (literal) : prefetch */
2660 return;
2662 size = 2 + extract32(opc, 0, 1);
2663 is_signed = extract32(opc, 1, 1);
2666 tcg_rt = cpu_reg(s, rt);
2668 clean_addr = tcg_const_i64(s->pc_curr + imm);
2669 if (is_vector) {
2670 do_fp_ld(s, rt, clean_addr, size);
2671 } else {
2672 /* Only unsigned 32bit loads target 32bit registers. */
2673 bool iss_sf = opc != 0;
2675 do_gpr_ld(s, tcg_rt, clean_addr, size, is_signed, false,
2676 true, rt, iss_sf, false);
2678 tcg_temp_free_i64(clean_addr);
2682 * LDNP (Load Pair - non-temporal hint)
2683 * LDP (Load Pair - non vector)
2684 * LDPSW (Load Pair Signed Word - non vector)
2685 * STNP (Store Pair - non-temporal hint)
2686 * STP (Store Pair - non vector)
2687 * LDNP (Load Pair of SIMD&FP - non-temporal hint)
2688 * LDP (Load Pair of SIMD&FP)
2689 * STNP (Store Pair of SIMD&FP - non-temporal hint)
2690 * STP (Store Pair of SIMD&FP)
2692 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
2693 * +-----+-------+---+---+-------+---+-----------------------------+
2694 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
2695 * +-----+-------+---+---+-------+---+-------+-------+------+------+
2697 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
2698 * LDPSW 01
2699 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2700 * V: 0 -> GPR, 1 -> Vector
2701 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2702 * 10 -> signed offset, 11 -> pre-index
2703 * L: 0 -> Store 1 -> Load
2705 * Rt, Rt2 = GPR or SIMD registers to be stored
2706 * Rn = general purpose register containing address
2707 * imm7 = signed offset (multiple of 4 or 8 depending on size)
2709 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2711 int rt = extract32(insn, 0, 5);
2712 int rn = extract32(insn, 5, 5);
2713 int rt2 = extract32(insn, 10, 5);
2714 uint64_t offset = sextract64(insn, 15, 7);
2715 int index = extract32(insn, 23, 2);
2716 bool is_vector = extract32(insn, 26, 1);
2717 bool is_load = extract32(insn, 22, 1);
2718 int opc = extract32(insn, 30, 2);
2720 bool is_signed = false;
2721 bool postindex = false;
2722 bool wback = false;
2724 TCGv_i64 clean_addr, dirty_addr;
2726 int size;
2728 if (opc == 3) {
2729 unallocated_encoding(s);
2730 return;
2733 if (is_vector) {
2734 size = 2 + opc;
2735 } else {
2736 size = 2 + extract32(opc, 1, 1);
2737 is_signed = extract32(opc, 0, 1);
2738 if (!is_load && is_signed) {
2739 unallocated_encoding(s);
2740 return;
2744 switch (index) {
2745 case 1: /* post-index */
2746 postindex = true;
2747 wback = true;
2748 break;
2749 case 0:
2750 /* signed offset with "non-temporal" hint. Since we don't emulate
2751 * caches we don't care about hints to the cache system about
2752 * data access patterns, and handle this identically to plain
2753 * signed offset.
2755 if (is_signed) {
2756 /* There is no non-temporal-hint version of LDPSW */
2757 unallocated_encoding(s);
2758 return;
2760 postindex = false;
2761 break;
2762 case 2: /* signed offset, rn not updated */
2763 postindex = false;
2764 break;
2765 case 3: /* pre-index */
2766 postindex = false;
2767 wback = true;
2768 break;
2771 if (is_vector && !fp_access_check(s)) {
2772 return;
2775 offset <<= size;
2777 if (rn == 31) {
2778 gen_check_sp_alignment(s);
2781 dirty_addr = read_cpu_reg_sp(s, rn, 1);
2782 if (!postindex) {
2783 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2785 clean_addr = clean_data_tbi(s, dirty_addr);
2787 if (is_vector) {
2788 if (is_load) {
2789 do_fp_ld(s, rt, clean_addr, size);
2790 } else {
2791 do_fp_st(s, rt, clean_addr, size);
2793 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2794 if (is_load) {
2795 do_fp_ld(s, rt2, clean_addr, size);
2796 } else {
2797 do_fp_st(s, rt2, clean_addr, size);
2799 } else {
2800 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2801 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
2803 if (is_load) {
2804 TCGv_i64 tmp = tcg_temp_new_i64();
2806 /* Do not modify tcg_rt before recognizing any exception
2807 * from the second load.
2809 do_gpr_ld(s, tmp, clean_addr, size, is_signed, false,
2810 false, 0, false, false);
2811 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2812 do_gpr_ld(s, tcg_rt2, clean_addr, size, is_signed, false,
2813 false, 0, false, false);
2815 tcg_gen_mov_i64(tcg_rt, tmp);
2816 tcg_temp_free_i64(tmp);
2817 } else {
2818 do_gpr_st(s, tcg_rt, clean_addr, size,
2819 false, 0, false, false);
2820 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2821 do_gpr_st(s, tcg_rt2, clean_addr, size,
2822 false, 0, false, false);
2826 if (wback) {
2827 if (postindex) {
2828 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2830 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
2835 * Load/store (immediate post-indexed)
2836 * Load/store (immediate pre-indexed)
2837 * Load/store (unscaled immediate)
2839 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
2840 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2841 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
2842 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2844 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
2845 10 -> unprivileged
2846 * V = 0 -> non-vector
2847 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
2848 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2850 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
2851 int opc,
2852 int size,
2853 int rt,
2854 bool is_vector)
2856 int rn = extract32(insn, 5, 5);
2857 int imm9 = sextract32(insn, 12, 9);
2858 int idx = extract32(insn, 10, 2);
2859 bool is_signed = false;
2860 bool is_store = false;
2861 bool is_extended = false;
2862 bool is_unpriv = (idx == 2);
2863 bool iss_valid = !is_vector;
2864 bool post_index;
2865 bool writeback;
2867 TCGv_i64 clean_addr, dirty_addr;
2869 if (is_vector) {
2870 size |= (opc & 2) << 1;
2871 if (size > 4 || is_unpriv) {
2872 unallocated_encoding(s);
2873 return;
2875 is_store = ((opc & 1) == 0);
2876 if (!fp_access_check(s)) {
2877 return;
2879 } else {
2880 if (size == 3 && opc == 2) {
2881 /* PRFM - prefetch */
2882 if (idx != 0) {
2883 unallocated_encoding(s);
2884 return;
2886 return;
2888 if (opc == 3 && size > 1) {
2889 unallocated_encoding(s);
2890 return;
2892 is_store = (opc == 0);
2893 is_signed = extract32(opc, 1, 1);
2894 is_extended = (size < 3) && extract32(opc, 0, 1);
2897 switch (idx) {
2898 case 0:
2899 case 2:
2900 post_index = false;
2901 writeback = false;
2902 break;
2903 case 1:
2904 post_index = true;
2905 writeback = true;
2906 break;
2907 case 3:
2908 post_index = false;
2909 writeback = true;
2910 break;
2911 default:
2912 g_assert_not_reached();
2915 if (rn == 31) {
2916 gen_check_sp_alignment(s);
2919 dirty_addr = read_cpu_reg_sp(s, rn, 1);
2920 if (!post_index) {
2921 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
2923 clean_addr = clean_data_tbi(s, dirty_addr);
2925 if (is_vector) {
2926 if (is_store) {
2927 do_fp_st(s, rt, clean_addr, size);
2928 } else {
2929 do_fp_ld(s, rt, clean_addr, size);
2931 } else {
2932 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2933 int memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
2934 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2936 if (is_store) {
2937 do_gpr_st_memidx(s, tcg_rt, clean_addr, size, memidx,
2938 iss_valid, rt, iss_sf, false);
2939 } else {
2940 do_gpr_ld_memidx(s, tcg_rt, clean_addr, size,
2941 is_signed, is_extended, memidx,
2942 iss_valid, rt, iss_sf, false);
2946 if (writeback) {
2947 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
2948 if (post_index) {
2949 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
2951 tcg_gen_mov_i64(tcg_rn, dirty_addr);
2956 * Load/store (register offset)
2958 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2959 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2960 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
2961 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2963 * For non-vector:
2964 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2965 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2966 * For vector:
2967 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2968 * opc<0>: 0 -> store, 1 -> load
2969 * V: 1 -> vector/simd
2970 * opt: extend encoding (see DecodeRegExtend)
2971 * S: if S=1 then scale (essentially index by sizeof(size))
2972 * Rt: register to transfer into/out of
2973 * Rn: address register or SP for base
2974 * Rm: offset register or ZR for offset
2976 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
2977 int opc,
2978 int size,
2979 int rt,
2980 bool is_vector)
2982 int rn = extract32(insn, 5, 5);
2983 int shift = extract32(insn, 12, 1);
2984 int rm = extract32(insn, 16, 5);
2985 int opt = extract32(insn, 13, 3);
2986 bool is_signed = false;
2987 bool is_store = false;
2988 bool is_extended = false;
2990 TCGv_i64 tcg_rm, clean_addr, dirty_addr;
2992 if (extract32(opt, 1, 1) == 0) {
2993 unallocated_encoding(s);
2994 return;
2997 if (is_vector) {
2998 size |= (opc & 2) << 1;
2999 if (size > 4) {
3000 unallocated_encoding(s);
3001 return;
3003 is_store = !extract32(opc, 0, 1);
3004 if (!fp_access_check(s)) {
3005 return;
3007 } else {
3008 if (size == 3 && opc == 2) {
3009 /* PRFM - prefetch */
3010 return;
3012 if (opc == 3 && size > 1) {
3013 unallocated_encoding(s);
3014 return;
3016 is_store = (opc == 0);
3017 is_signed = extract32(opc, 1, 1);
3018 is_extended = (size < 3) && extract32(opc, 0, 1);
3021 if (rn == 31) {
3022 gen_check_sp_alignment(s);
3024 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3026 tcg_rm = read_cpu_reg(s, rm, 1);
3027 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
3029 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm);
3030 clean_addr = clean_data_tbi(s, dirty_addr);
3032 if (is_vector) {
3033 if (is_store) {
3034 do_fp_st(s, rt, clean_addr, size);
3035 } else {
3036 do_fp_ld(s, rt, clean_addr, size);
3038 } else {
3039 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3040 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3041 if (is_store) {
3042 do_gpr_st(s, tcg_rt, clean_addr, size,
3043 true, rt, iss_sf, false);
3044 } else {
3045 do_gpr_ld(s, tcg_rt, clean_addr, size,
3046 is_signed, is_extended,
3047 true, rt, iss_sf, false);
3053 * Load/store (unsigned immediate)
3055 * 31 30 29 27 26 25 24 23 22 21 10 9 5
3056 * +----+-------+---+-----+-----+------------+-------+------+
3057 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
3058 * +----+-------+---+-----+-----+------------+-------+------+
3060 * For non-vector:
3061 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3062 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3063 * For vector:
3064 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3065 * opc<0>: 0 -> store, 1 -> load
3066 * Rn: base address register (inc SP)
3067 * Rt: target register
3069 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
3070 int opc,
3071 int size,
3072 int rt,
3073 bool is_vector)
3075 int rn = extract32(insn, 5, 5);
3076 unsigned int imm12 = extract32(insn, 10, 12);
3077 unsigned int offset;
3079 TCGv_i64 clean_addr, dirty_addr;
3081 bool is_store;
3082 bool is_signed = false;
3083 bool is_extended = false;
3085 if (is_vector) {
3086 size |= (opc & 2) << 1;
3087 if (size > 4) {
3088 unallocated_encoding(s);
3089 return;
3091 is_store = !extract32(opc, 0, 1);
3092 if (!fp_access_check(s)) {
3093 return;
3095 } else {
3096 if (size == 3 && opc == 2) {
3097 /* PRFM - prefetch */
3098 return;
3100 if (opc == 3 && size > 1) {
3101 unallocated_encoding(s);
3102 return;
3104 is_store = (opc == 0);
3105 is_signed = extract32(opc, 1, 1);
3106 is_extended = (size < 3) && extract32(opc, 0, 1);
3109 if (rn == 31) {
3110 gen_check_sp_alignment(s);
3112 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3113 offset = imm12 << size;
3114 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3115 clean_addr = clean_data_tbi(s, dirty_addr);
3117 if (is_vector) {
3118 if (is_store) {
3119 do_fp_st(s, rt, clean_addr, size);
3120 } else {
3121 do_fp_ld(s, rt, clean_addr, size);
3123 } else {
3124 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3125 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3126 if (is_store) {
3127 do_gpr_st(s, tcg_rt, clean_addr, size,
3128 true, rt, iss_sf, false);
3129 } else {
3130 do_gpr_ld(s, tcg_rt, clean_addr, size, is_signed, is_extended,
3131 true, rt, iss_sf, false);
3136 /* Atomic memory operations
3138 * 31 30 27 26 24 22 21 16 15 12 10 5 0
3139 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+
3140 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt |
3141 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+
3143 * Rt: the result register
3144 * Rn: base address or SP
3145 * Rs: the source register for the operation
3146 * V: vector flag (always 0 as of v8.3)
3147 * A: acquire flag
3148 * R: release flag
3150 static void disas_ldst_atomic(DisasContext *s, uint32_t insn,
3151 int size, int rt, bool is_vector)
3153 int rs = extract32(insn, 16, 5);
3154 int rn = extract32(insn, 5, 5);
3155 int o3_opc = extract32(insn, 12, 4);
3156 bool r = extract32(insn, 22, 1);
3157 bool a = extract32(insn, 23, 1);
3158 TCGv_i64 tcg_rs, clean_addr;
3159 AtomicThreeOpFn *fn;
3161 if (is_vector || !dc_isar_feature(aa64_atomics, s)) {
3162 unallocated_encoding(s);
3163 return;
3165 switch (o3_opc) {
3166 case 000: /* LDADD */
3167 fn = tcg_gen_atomic_fetch_add_i64;
3168 break;
3169 case 001: /* LDCLR */
3170 fn = tcg_gen_atomic_fetch_and_i64;
3171 break;
3172 case 002: /* LDEOR */
3173 fn = tcg_gen_atomic_fetch_xor_i64;
3174 break;
3175 case 003: /* LDSET */
3176 fn = tcg_gen_atomic_fetch_or_i64;
3177 break;
3178 case 004: /* LDSMAX */
3179 fn = tcg_gen_atomic_fetch_smax_i64;
3180 break;
3181 case 005: /* LDSMIN */
3182 fn = tcg_gen_atomic_fetch_smin_i64;
3183 break;
3184 case 006: /* LDUMAX */
3185 fn = tcg_gen_atomic_fetch_umax_i64;
3186 break;
3187 case 007: /* LDUMIN */
3188 fn = tcg_gen_atomic_fetch_umin_i64;
3189 break;
3190 case 010: /* SWP */
3191 fn = tcg_gen_atomic_xchg_i64;
3192 break;
3193 case 014: /* LDAPR, LDAPRH, LDAPRB */
3194 if (!dc_isar_feature(aa64_rcpc_8_3, s) ||
3195 rs != 31 || a != 1 || r != 0) {
3196 unallocated_encoding(s);
3197 return;
3199 break;
3200 default:
3201 unallocated_encoding(s);
3202 return;
3205 if (rn == 31) {
3206 gen_check_sp_alignment(s);
3208 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
3210 if (o3_opc == 014) {
3212 * LDAPR* are a special case because they are a simple load, not a
3213 * fetch-and-do-something op.
3214 * The architectural consistency requirements here are weaker than
3215 * full load-acquire (we only need "load-acquire processor consistent"),
3216 * but we choose to implement them as full LDAQ.
3218 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false, false,
3219 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true);
3220 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3221 return;
3224 tcg_rs = read_cpu_reg(s, rs, true);
3226 if (o3_opc == 1) { /* LDCLR */
3227 tcg_gen_not_i64(tcg_rs, tcg_rs);
3230 /* The tcg atomic primitives are all full barriers. Therefore we
3231 * can ignore the Acquire and Release bits of this instruction.
3233 fn(cpu_reg(s, rt), clean_addr, tcg_rs, get_mem_index(s),
3234 s->be_data | size | MO_ALIGN);
3238 * PAC memory operations
3240 * 31 30 27 26 24 22 21 12 11 10 5 0
3241 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3242 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt |
3243 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3245 * Rt: the result register
3246 * Rn: base address or SP
3247 * V: vector flag (always 0 as of v8.3)
3248 * M: clear for key DA, set for key DB
3249 * W: pre-indexing flag
3250 * S: sign for imm9.
3252 static void disas_ldst_pac(DisasContext *s, uint32_t insn,
3253 int size, int rt, bool is_vector)
3255 int rn = extract32(insn, 5, 5);
3256 bool is_wback = extract32(insn, 11, 1);
3257 bool use_key_a = !extract32(insn, 23, 1);
3258 int offset;
3259 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3261 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) {
3262 unallocated_encoding(s);
3263 return;
3266 if (rn == 31) {
3267 gen_check_sp_alignment(s);
3269 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3271 if (s->pauth_active) {
3272 if (use_key_a) {
3273 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, cpu_X[31]);
3274 } else {
3275 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, cpu_X[31]);
3279 /* Form the 10-bit signed, scaled offset. */
3280 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9);
3281 offset = sextract32(offset << size, 0, 10 + size);
3282 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3284 /* Note that "clean" and "dirty" here refer to TBI not PAC. */
3285 clean_addr = clean_data_tbi(s, dirty_addr);
3287 tcg_rt = cpu_reg(s, rt);
3288 do_gpr_ld(s, tcg_rt, clean_addr, size, /* is_signed */ false,
3289 /* extend */ false, /* iss_valid */ !is_wback,
3290 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false);
3292 if (is_wback) {
3293 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3298 * LDAPR/STLR (unscaled immediate)
3300 * 31 30 24 22 21 12 10 5 0
3301 * +------+-------------+-----+---+--------+-----+----+-----+
3302 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt |
3303 * +------+-------------+-----+---+--------+-----+----+-----+
3305 * Rt: source or destination register
3306 * Rn: base register
3307 * imm9: unscaled immediate offset
3308 * opc: 00: STLUR*, 01/10/11: various LDAPUR*
3309 * size: size of load/store
3311 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn)
3313 int rt = extract32(insn, 0, 5);
3314 int rn = extract32(insn, 5, 5);
3315 int offset = sextract32(insn, 12, 9);
3316 int opc = extract32(insn, 22, 2);
3317 int size = extract32(insn, 30, 2);
3318 TCGv_i64 clean_addr, dirty_addr;
3319 bool is_store = false;
3320 bool is_signed = false;
3321 bool extend = false;
3322 bool iss_sf;
3324 if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3325 unallocated_encoding(s);
3326 return;
3329 switch (opc) {
3330 case 0: /* STLURB */
3331 is_store = true;
3332 break;
3333 case 1: /* LDAPUR* */
3334 break;
3335 case 2: /* LDAPURS* 64-bit variant */
3336 if (size == 3) {
3337 unallocated_encoding(s);
3338 return;
3340 is_signed = true;
3341 break;
3342 case 3: /* LDAPURS* 32-bit variant */
3343 if (size > 1) {
3344 unallocated_encoding(s);
3345 return;
3347 is_signed = true;
3348 extend = true; /* zero-extend 32->64 after signed load */
3349 break;
3350 default:
3351 g_assert_not_reached();
3354 iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3356 if (rn == 31) {
3357 gen_check_sp_alignment(s);
3360 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3361 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3362 clean_addr = clean_data_tbi(s, dirty_addr);
3364 if (is_store) {
3365 /* Store-Release semantics */
3366 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3367 do_gpr_st(s, cpu_reg(s, rt), clean_addr, size, true, rt, iss_sf, true);
3368 } else {
3370 * Load-AcquirePC semantics; we implement as the slightly more
3371 * restrictive Load-Acquire.
3373 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, is_signed, extend,
3374 true, rt, iss_sf, true);
3375 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3379 /* Load/store register (all forms) */
3380 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
3382 int rt = extract32(insn, 0, 5);
3383 int opc = extract32(insn, 22, 2);
3384 bool is_vector = extract32(insn, 26, 1);
3385 int size = extract32(insn, 30, 2);
3387 switch (extract32(insn, 24, 2)) {
3388 case 0:
3389 if (extract32(insn, 21, 1) == 0) {
3390 /* Load/store register (unscaled immediate)
3391 * Load/store immediate pre/post-indexed
3392 * Load/store register unprivileged
3394 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
3395 return;
3397 switch (extract32(insn, 10, 2)) {
3398 case 0:
3399 disas_ldst_atomic(s, insn, size, rt, is_vector);
3400 return;
3401 case 2:
3402 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
3403 return;
3404 default:
3405 disas_ldst_pac(s, insn, size, rt, is_vector);
3406 return;
3408 break;
3409 case 1:
3410 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
3411 return;
3413 unallocated_encoding(s);
3416 /* AdvSIMD load/store multiple structures
3418 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
3419 * +---+---+---------------+---+-------------+--------+------+------+------+
3420 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
3421 * +---+---+---------------+---+-------------+--------+------+------+------+
3423 * AdvSIMD load/store multiple structures (post-indexed)
3425 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
3426 * +---+---+---------------+---+---+---------+--------+------+------+------+
3427 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
3428 * +---+---+---------------+---+---+---------+--------+------+------+------+
3430 * Rt: first (or only) SIMD&FP register to be transferred
3431 * Rn: base address or SP
3432 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3434 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
3436 int rt = extract32(insn, 0, 5);
3437 int rn = extract32(insn, 5, 5);
3438 int rm = extract32(insn, 16, 5);
3439 int size = extract32(insn, 10, 2);
3440 int opcode = extract32(insn, 12, 4);
3441 bool is_store = !extract32(insn, 22, 1);
3442 bool is_postidx = extract32(insn, 23, 1);
3443 bool is_q = extract32(insn, 30, 1);
3444 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3445 MemOp endian = s->be_data;
3447 int ebytes; /* bytes per element */
3448 int elements; /* elements per vector */
3449 int rpt; /* num iterations */
3450 int selem; /* structure elements */
3451 int r;
3453 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
3454 unallocated_encoding(s);
3455 return;
3458 if (!is_postidx && rm != 0) {
3459 unallocated_encoding(s);
3460 return;
3463 /* From the shared decode logic */
3464 switch (opcode) {
3465 case 0x0:
3466 rpt = 1;
3467 selem = 4;
3468 break;
3469 case 0x2:
3470 rpt = 4;
3471 selem = 1;
3472 break;
3473 case 0x4:
3474 rpt = 1;
3475 selem = 3;
3476 break;
3477 case 0x6:
3478 rpt = 3;
3479 selem = 1;
3480 break;
3481 case 0x7:
3482 rpt = 1;
3483 selem = 1;
3484 break;
3485 case 0x8:
3486 rpt = 1;
3487 selem = 2;
3488 break;
3489 case 0xa:
3490 rpt = 2;
3491 selem = 1;
3492 break;
3493 default:
3494 unallocated_encoding(s);
3495 return;
3498 if (size == 3 && !is_q && selem != 1) {
3499 /* reserved */
3500 unallocated_encoding(s);
3501 return;
3504 if (!fp_access_check(s)) {
3505 return;
3508 if (rn == 31) {
3509 gen_check_sp_alignment(s);
3512 /* For our purposes, bytes are always little-endian. */
3513 if (size == 0) {
3514 endian = MO_LE;
3517 /* Consecutive little-endian elements from a single register
3518 * can be promoted to a larger little-endian operation.
3520 if (selem == 1 && endian == MO_LE) {
3521 size = 3;
3523 ebytes = 1 << size;
3524 elements = (is_q ? 16 : 8) / ebytes;
3526 tcg_rn = cpu_reg_sp(s, rn);
3527 clean_addr = clean_data_tbi(s, tcg_rn);
3528 tcg_ebytes = tcg_const_i64(ebytes);
3530 for (r = 0; r < rpt; r++) {
3531 int e;
3532 for (e = 0; e < elements; e++) {
3533 int xs;
3534 for (xs = 0; xs < selem; xs++) {
3535 int tt = (rt + r + xs) % 32;
3536 if (is_store) {
3537 do_vec_st(s, tt, e, clean_addr, size, endian);
3538 } else {
3539 do_vec_ld(s, tt, e, clean_addr, size, endian);
3541 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3545 tcg_temp_free_i64(tcg_ebytes);
3547 if (!is_store) {
3548 /* For non-quad operations, setting a slice of the low
3549 * 64 bits of the register clears the high 64 bits (in
3550 * the ARM ARM pseudocode this is implicit in the fact
3551 * that 'rval' is a 64 bit wide variable).
3552 * For quad operations, we might still need to zero the
3553 * high bits of SVE.
3555 for (r = 0; r < rpt * selem; r++) {
3556 int tt = (rt + r) % 32;
3557 clear_vec_high(s, is_q, tt);
3561 if (is_postidx) {
3562 if (rm == 31) {
3563 tcg_gen_addi_i64(tcg_rn, tcg_rn, rpt * elements * selem * ebytes);
3564 } else {
3565 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3570 /* AdvSIMD load/store single structure
3572 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3573 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3574 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
3575 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3577 * AdvSIMD load/store single structure (post-indexed)
3579 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3580 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3581 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
3582 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3584 * Rt: first (or only) SIMD&FP register to be transferred
3585 * Rn: base address or SP
3586 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3587 * index = encoded in Q:S:size dependent on size
3589 * lane_size = encoded in R, opc
3590 * transfer width = encoded in opc, S, size
3592 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
3594 int rt = extract32(insn, 0, 5);
3595 int rn = extract32(insn, 5, 5);
3596 int rm = extract32(insn, 16, 5);
3597 int size = extract32(insn, 10, 2);
3598 int S = extract32(insn, 12, 1);
3599 int opc = extract32(insn, 13, 3);
3600 int R = extract32(insn, 21, 1);
3601 int is_load = extract32(insn, 22, 1);
3602 int is_postidx = extract32(insn, 23, 1);
3603 int is_q = extract32(insn, 30, 1);
3605 int scale = extract32(opc, 1, 2);
3606 int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
3607 bool replicate = false;
3608 int index = is_q << 3 | S << 2 | size;
3609 int ebytes, xs;
3610 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3612 if (extract32(insn, 31, 1)) {
3613 unallocated_encoding(s);
3614 return;
3616 if (!is_postidx && rm != 0) {
3617 unallocated_encoding(s);
3618 return;
3621 switch (scale) {
3622 case 3:
3623 if (!is_load || S) {
3624 unallocated_encoding(s);
3625 return;
3627 scale = size;
3628 replicate = true;
3629 break;
3630 case 0:
3631 break;
3632 case 1:
3633 if (extract32(size, 0, 1)) {
3634 unallocated_encoding(s);
3635 return;
3637 index >>= 1;
3638 break;
3639 case 2:
3640 if (extract32(size, 1, 1)) {
3641 unallocated_encoding(s);
3642 return;
3644 if (!extract32(size, 0, 1)) {
3645 index >>= 2;
3646 } else {
3647 if (S) {
3648 unallocated_encoding(s);
3649 return;
3651 index >>= 3;
3652 scale = 3;
3654 break;
3655 default:
3656 g_assert_not_reached();
3659 if (!fp_access_check(s)) {
3660 return;
3663 ebytes = 1 << scale;
3665 if (rn == 31) {
3666 gen_check_sp_alignment(s);
3669 tcg_rn = cpu_reg_sp(s, rn);
3670 clean_addr = clean_data_tbi(s, tcg_rn);
3671 tcg_ebytes = tcg_const_i64(ebytes);
3673 for (xs = 0; xs < selem; xs++) {
3674 if (replicate) {
3675 /* Load and replicate to all elements */
3676 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3678 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr,
3679 get_mem_index(s), s->be_data + scale);
3680 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt),
3681 (is_q + 1) * 8, vec_full_reg_size(s),
3682 tcg_tmp);
3683 tcg_temp_free_i64(tcg_tmp);
3684 } else {
3685 /* Load/store one element per register */
3686 if (is_load) {
3687 do_vec_ld(s, rt, index, clean_addr, scale, s->be_data);
3688 } else {
3689 do_vec_st(s, rt, index, clean_addr, scale, s->be_data);
3692 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3693 rt = (rt + 1) % 32;
3695 tcg_temp_free_i64(tcg_ebytes);
3697 if (is_postidx) {
3698 if (rm == 31) {
3699 tcg_gen_addi_i64(tcg_rn, tcg_rn, selem * ebytes);
3700 } else {
3701 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3706 /* Loads and stores */
3707 static void disas_ldst(DisasContext *s, uint32_t insn)
3709 switch (extract32(insn, 24, 6)) {
3710 case 0x08: /* Load/store exclusive */
3711 disas_ldst_excl(s, insn);
3712 break;
3713 case 0x18: case 0x1c: /* Load register (literal) */
3714 disas_ld_lit(s, insn);
3715 break;
3716 case 0x28: case 0x29:
3717 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
3718 disas_ldst_pair(s, insn);
3719 break;
3720 case 0x38: case 0x39:
3721 case 0x3c: case 0x3d: /* Load/store register (all forms) */
3722 disas_ldst_reg(s, insn);
3723 break;
3724 case 0x0c: /* AdvSIMD load/store multiple structures */
3725 disas_ldst_multiple_struct(s, insn);
3726 break;
3727 case 0x0d: /* AdvSIMD load/store single structure */
3728 disas_ldst_single_struct(s, insn);
3729 break;
3730 case 0x19: /* LDAPR/STLR (unscaled immediate) */
3731 if (extract32(insn, 10, 2) != 0 ||
3732 extract32(insn, 21, 1) != 0) {
3733 unallocated_encoding(s);
3734 break;
3736 disas_ldst_ldapr_stlr(s, insn);
3737 break;
3738 default:
3739 unallocated_encoding(s);
3740 break;
3744 /* PC-rel. addressing
3745 * 31 30 29 28 24 23 5 4 0
3746 * +----+-------+-----------+-------------------+------+
3747 * | op | immlo | 1 0 0 0 0 | immhi | Rd |
3748 * +----+-------+-----------+-------------------+------+
3750 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
3752 unsigned int page, rd;
3753 uint64_t base;
3754 uint64_t offset;
3756 page = extract32(insn, 31, 1);
3757 /* SignExtend(immhi:immlo) -> offset */
3758 offset = sextract64(insn, 5, 19);
3759 offset = offset << 2 | extract32(insn, 29, 2);
3760 rd = extract32(insn, 0, 5);
3761 base = s->pc_curr;
3763 if (page) {
3764 /* ADRP (page based) */
3765 base &= ~0xfff;
3766 offset <<= 12;
3769 tcg_gen_movi_i64(cpu_reg(s, rd), base + offset);
3773 * Add/subtract (immediate)
3775 * 31 30 29 28 24 23 22 21 10 9 5 4 0
3776 * +--+--+--+-----------+-----+-------------+-----+-----+
3777 * |sf|op| S| 1 0 0 0 1 |shift| imm12 | Rn | Rd |
3778 * +--+--+--+-----------+-----+-------------+-----+-----+
3780 * sf: 0 -> 32bit, 1 -> 64bit
3781 * op: 0 -> add , 1 -> sub
3782 * S: 1 -> set flags
3783 * shift: 00 -> LSL imm by 0, 01 -> LSL imm by 12
3785 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
3787 int rd = extract32(insn, 0, 5);
3788 int rn = extract32(insn, 5, 5);
3789 uint64_t imm = extract32(insn, 10, 12);
3790 int shift = extract32(insn, 22, 2);
3791 bool setflags = extract32(insn, 29, 1);
3792 bool sub_op = extract32(insn, 30, 1);
3793 bool is_64bit = extract32(insn, 31, 1);
3795 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
3796 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
3797 TCGv_i64 tcg_result;
3799 switch (shift) {
3800 case 0x0:
3801 break;
3802 case 0x1:
3803 imm <<= 12;
3804 break;
3805 default:
3806 unallocated_encoding(s);
3807 return;
3810 tcg_result = tcg_temp_new_i64();
3811 if (!setflags) {
3812 if (sub_op) {
3813 tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
3814 } else {
3815 tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
3817 } else {
3818 TCGv_i64 tcg_imm = tcg_const_i64(imm);
3819 if (sub_op) {
3820 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
3821 } else {
3822 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
3824 tcg_temp_free_i64(tcg_imm);
3827 if (is_64bit) {
3828 tcg_gen_mov_i64(tcg_rd, tcg_result);
3829 } else {
3830 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3833 tcg_temp_free_i64(tcg_result);
3836 /* The input should be a value in the bottom e bits (with higher
3837 * bits zero); returns that value replicated into every element
3838 * of size e in a 64 bit integer.
3840 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
3842 assert(e != 0);
3843 while (e < 64) {
3844 mask |= mask << e;
3845 e *= 2;
3847 return mask;
3850 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
3851 static inline uint64_t bitmask64(unsigned int length)
3853 assert(length > 0 && length <= 64);
3854 return ~0ULL >> (64 - length);
3857 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
3858 * only require the wmask. Returns false if the imms/immr/immn are a reserved
3859 * value (ie should cause a guest UNDEF exception), and true if they are
3860 * valid, in which case the decoded bit pattern is written to result.
3862 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
3863 unsigned int imms, unsigned int immr)
3865 uint64_t mask;
3866 unsigned e, levels, s, r;
3867 int len;
3869 assert(immn < 2 && imms < 64 && immr < 64);
3871 /* The bit patterns we create here are 64 bit patterns which
3872 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
3873 * 64 bits each. Each element contains the same value: a run
3874 * of between 1 and e-1 non-zero bits, rotated within the
3875 * element by between 0 and e-1 bits.
3877 * The element size and run length are encoded into immn (1 bit)
3878 * and imms (6 bits) as follows:
3879 * 64 bit elements: immn = 1, imms = <length of run - 1>
3880 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
3881 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
3882 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
3883 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
3884 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
3885 * Notice that immn = 0, imms = 11111x is the only combination
3886 * not covered by one of the above options; this is reserved.
3887 * Further, <length of run - 1> all-ones is a reserved pattern.
3889 * In all cases the rotation is by immr % e (and immr is 6 bits).
3892 /* First determine the element size */
3893 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
3894 if (len < 1) {
3895 /* This is the immn == 0, imms == 0x11111x case */
3896 return false;
3898 e = 1 << len;
3900 levels = e - 1;
3901 s = imms & levels;
3902 r = immr & levels;
3904 if (s == levels) {
3905 /* <length of run - 1> mustn't be all-ones. */
3906 return false;
3909 /* Create the value of one element: s+1 set bits rotated
3910 * by r within the element (which is e bits wide)...
3912 mask = bitmask64(s + 1);
3913 if (r) {
3914 mask = (mask >> r) | (mask << (e - r));
3915 mask &= bitmask64(e);
3917 /* ...then replicate the element over the whole 64 bit value */
3918 mask = bitfield_replicate(mask, e);
3919 *result = mask;
3920 return true;
3923 /* Logical (immediate)
3924 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3925 * +----+-----+-------------+---+------+------+------+------+
3926 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
3927 * +----+-----+-------------+---+------+------+------+------+
3929 static void disas_logic_imm(DisasContext *s, uint32_t insn)
3931 unsigned int sf, opc, is_n, immr, imms, rn, rd;
3932 TCGv_i64 tcg_rd, tcg_rn;
3933 uint64_t wmask;
3934 bool is_and = false;
3936 sf = extract32(insn, 31, 1);
3937 opc = extract32(insn, 29, 2);
3938 is_n = extract32(insn, 22, 1);
3939 immr = extract32(insn, 16, 6);
3940 imms = extract32(insn, 10, 6);
3941 rn = extract32(insn, 5, 5);
3942 rd = extract32(insn, 0, 5);
3944 if (!sf && is_n) {
3945 unallocated_encoding(s);
3946 return;
3949 if (opc == 0x3) { /* ANDS */
3950 tcg_rd = cpu_reg(s, rd);
3951 } else {
3952 tcg_rd = cpu_reg_sp(s, rd);
3954 tcg_rn = cpu_reg(s, rn);
3956 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
3957 /* some immediate field values are reserved */
3958 unallocated_encoding(s);
3959 return;
3962 if (!sf) {
3963 wmask &= 0xffffffff;
3966 switch (opc) {
3967 case 0x3: /* ANDS */
3968 case 0x0: /* AND */
3969 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
3970 is_and = true;
3971 break;
3972 case 0x1: /* ORR */
3973 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
3974 break;
3975 case 0x2: /* EOR */
3976 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
3977 break;
3978 default:
3979 assert(FALSE); /* must handle all above */
3980 break;
3983 if (!sf && !is_and) {
3984 /* zero extend final result; we know we can skip this for AND
3985 * since the immediate had the high 32 bits clear.
3987 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3990 if (opc == 3) { /* ANDS */
3991 gen_logic_CC(sf, tcg_rd);
3996 * Move wide (immediate)
3998 * 31 30 29 28 23 22 21 20 5 4 0
3999 * +--+-----+-------------+-----+----------------+------+
4000 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
4001 * +--+-----+-------------+-----+----------------+------+
4003 * sf: 0 -> 32 bit, 1 -> 64 bit
4004 * opc: 00 -> N, 10 -> Z, 11 -> K
4005 * hw: shift/16 (0,16, and sf only 32, 48)
4007 static void disas_movw_imm(DisasContext *s, uint32_t insn)
4009 int rd = extract32(insn, 0, 5);
4010 uint64_t imm = extract32(insn, 5, 16);
4011 int sf = extract32(insn, 31, 1);
4012 int opc = extract32(insn, 29, 2);
4013 int pos = extract32(insn, 21, 2) << 4;
4014 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4015 TCGv_i64 tcg_imm;
4017 if (!sf && (pos >= 32)) {
4018 unallocated_encoding(s);
4019 return;
4022 switch (opc) {
4023 case 0: /* MOVN */
4024 case 2: /* MOVZ */
4025 imm <<= pos;
4026 if (opc == 0) {
4027 imm = ~imm;
4029 if (!sf) {
4030 imm &= 0xffffffffu;
4032 tcg_gen_movi_i64(tcg_rd, imm);
4033 break;
4034 case 3: /* MOVK */
4035 tcg_imm = tcg_const_i64(imm);
4036 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16);
4037 tcg_temp_free_i64(tcg_imm);
4038 if (!sf) {
4039 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4041 break;
4042 default:
4043 unallocated_encoding(s);
4044 break;
4048 /* Bitfield
4049 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
4050 * +----+-----+-------------+---+------+------+------+------+
4051 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
4052 * +----+-----+-------------+---+------+------+------+------+
4054 static void disas_bitfield(DisasContext *s, uint32_t insn)
4056 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
4057 TCGv_i64 tcg_rd, tcg_tmp;
4059 sf = extract32(insn, 31, 1);
4060 opc = extract32(insn, 29, 2);
4061 n = extract32(insn, 22, 1);
4062 ri = extract32(insn, 16, 6);
4063 si = extract32(insn, 10, 6);
4064 rn = extract32(insn, 5, 5);
4065 rd = extract32(insn, 0, 5);
4066 bitsize = sf ? 64 : 32;
4068 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
4069 unallocated_encoding(s);
4070 return;
4073 tcg_rd = cpu_reg(s, rd);
4075 /* Suppress the zero-extend for !sf. Since RI and SI are constrained
4076 to be smaller than bitsize, we'll never reference data outside the
4077 low 32-bits anyway. */
4078 tcg_tmp = read_cpu_reg(s, rn, 1);
4080 /* Recognize simple(r) extractions. */
4081 if (si >= ri) {
4082 /* Wd<s-r:0> = Wn<s:r> */
4083 len = (si - ri) + 1;
4084 if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */
4085 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4086 goto done;
4087 } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */
4088 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4089 return;
4091 /* opc == 1, BFXIL fall through to deposit */
4092 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4093 pos = 0;
4094 } else {
4095 /* Handle the ri > si case with a deposit
4096 * Wd<32+s-r,32-r> = Wn<s:0>
4098 len = si + 1;
4099 pos = (bitsize - ri) & (bitsize - 1);
4102 if (opc == 0 && len < ri) {
4103 /* SBFM: sign extend the destination field from len to fill
4104 the balance of the word. Let the deposit below insert all
4105 of those sign bits. */
4106 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4107 len = ri;
4110 if (opc == 1) { /* BFM, BFXIL */
4111 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4112 } else {
4113 /* SBFM or UBFM: We start with zero, and we haven't modified
4114 any bits outside bitsize, therefore the zero-extension
4115 below is unneeded. */
4116 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4117 return;
4120 done:
4121 if (!sf) { /* zero extend final result */
4122 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4126 /* Extract
4127 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
4128 * +----+------+-------------+---+----+------+--------+------+------+
4129 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
4130 * +----+------+-------------+---+----+------+--------+------+------+
4132 static void disas_extract(DisasContext *s, uint32_t insn)
4134 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
4136 sf = extract32(insn, 31, 1);
4137 n = extract32(insn, 22, 1);
4138 rm = extract32(insn, 16, 5);
4139 imm = extract32(insn, 10, 6);
4140 rn = extract32(insn, 5, 5);
4141 rd = extract32(insn, 0, 5);
4142 op21 = extract32(insn, 29, 2);
4143 op0 = extract32(insn, 21, 1);
4144 bitsize = sf ? 64 : 32;
4146 if (sf != n || op21 || op0 || imm >= bitsize) {
4147 unallocated_encoding(s);
4148 } else {
4149 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4151 tcg_rd = cpu_reg(s, rd);
4153 if (unlikely(imm == 0)) {
4154 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4155 * so an extract from bit 0 is a special case.
4157 if (sf) {
4158 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
4159 } else {
4160 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
4162 } else {
4163 tcg_rm = cpu_reg(s, rm);
4164 tcg_rn = cpu_reg(s, rn);
4166 if (sf) {
4167 /* Specialization to ROR happens in EXTRACT2. */
4168 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, imm);
4169 } else {
4170 TCGv_i32 t0 = tcg_temp_new_i32();
4172 tcg_gen_extrl_i64_i32(t0, tcg_rm);
4173 if (rm == rn) {
4174 tcg_gen_rotri_i32(t0, t0, imm);
4175 } else {
4176 TCGv_i32 t1 = tcg_temp_new_i32();
4177 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4178 tcg_gen_extract2_i32(t0, t0, t1, imm);
4179 tcg_temp_free_i32(t1);
4181 tcg_gen_extu_i32_i64(tcg_rd, t0);
4182 tcg_temp_free_i32(t0);
4188 /* Data processing - immediate */
4189 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
4191 switch (extract32(insn, 23, 6)) {
4192 case 0x20: case 0x21: /* PC-rel. addressing */
4193 disas_pc_rel_adr(s, insn);
4194 break;
4195 case 0x22: case 0x23: /* Add/subtract (immediate) */
4196 disas_add_sub_imm(s, insn);
4197 break;
4198 case 0x24: /* Logical (immediate) */
4199 disas_logic_imm(s, insn);
4200 break;
4201 case 0x25: /* Move wide (immediate) */
4202 disas_movw_imm(s, insn);
4203 break;
4204 case 0x26: /* Bitfield */
4205 disas_bitfield(s, insn);
4206 break;
4207 case 0x27: /* Extract */
4208 disas_extract(s, insn);
4209 break;
4210 default:
4211 unallocated_encoding(s);
4212 break;
4216 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
4217 * Note that it is the caller's responsibility to ensure that the
4218 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4219 * mandated semantics for out of range shifts.
4221 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
4222 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
4224 switch (shift_type) {
4225 case A64_SHIFT_TYPE_LSL:
4226 tcg_gen_shl_i64(dst, src, shift_amount);
4227 break;
4228 case A64_SHIFT_TYPE_LSR:
4229 tcg_gen_shr_i64(dst, src, shift_amount);
4230 break;
4231 case A64_SHIFT_TYPE_ASR:
4232 if (!sf) {
4233 tcg_gen_ext32s_i64(dst, src);
4235 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
4236 break;
4237 case A64_SHIFT_TYPE_ROR:
4238 if (sf) {
4239 tcg_gen_rotr_i64(dst, src, shift_amount);
4240 } else {
4241 TCGv_i32 t0, t1;
4242 t0 = tcg_temp_new_i32();
4243 t1 = tcg_temp_new_i32();
4244 tcg_gen_extrl_i64_i32(t0, src);
4245 tcg_gen_extrl_i64_i32(t1, shift_amount);
4246 tcg_gen_rotr_i32(t0, t0, t1);
4247 tcg_gen_extu_i32_i64(dst, t0);
4248 tcg_temp_free_i32(t0);
4249 tcg_temp_free_i32(t1);
4251 break;
4252 default:
4253 assert(FALSE); /* all shift types should be handled */
4254 break;
4257 if (!sf) { /* zero extend final result */
4258 tcg_gen_ext32u_i64(dst, dst);
4262 /* Shift a TCGv src by immediate, put result in dst.
4263 * The shift amount must be in range (this should always be true as the
4264 * relevant instructions will UNDEF on bad shift immediates).
4266 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
4267 enum a64_shift_type shift_type, unsigned int shift_i)
4269 assert(shift_i < (sf ? 64 : 32));
4271 if (shift_i == 0) {
4272 tcg_gen_mov_i64(dst, src);
4273 } else {
4274 TCGv_i64 shift_const;
4276 shift_const = tcg_const_i64(shift_i);
4277 shift_reg(dst, src, sf, shift_type, shift_const);
4278 tcg_temp_free_i64(shift_const);
4282 /* Logical (shifted register)
4283 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4284 * +----+-----+-----------+-------+---+------+--------+------+------+
4285 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
4286 * +----+-----+-----------+-------+---+------+--------+------+------+
4288 static void disas_logic_reg(DisasContext *s, uint32_t insn)
4290 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
4291 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
4293 sf = extract32(insn, 31, 1);
4294 opc = extract32(insn, 29, 2);
4295 shift_type = extract32(insn, 22, 2);
4296 invert = extract32(insn, 21, 1);
4297 rm = extract32(insn, 16, 5);
4298 shift_amount = extract32(insn, 10, 6);
4299 rn = extract32(insn, 5, 5);
4300 rd = extract32(insn, 0, 5);
4302 if (!sf && (shift_amount & (1 << 5))) {
4303 unallocated_encoding(s);
4304 return;
4307 tcg_rd = cpu_reg(s, rd);
4309 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
4310 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4311 * register-register MOV and MVN, so it is worth special casing.
4313 tcg_rm = cpu_reg(s, rm);
4314 if (invert) {
4315 tcg_gen_not_i64(tcg_rd, tcg_rm);
4316 if (!sf) {
4317 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4319 } else {
4320 if (sf) {
4321 tcg_gen_mov_i64(tcg_rd, tcg_rm);
4322 } else {
4323 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
4326 return;
4329 tcg_rm = read_cpu_reg(s, rm, sf);
4331 if (shift_amount) {
4332 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
4335 tcg_rn = cpu_reg(s, rn);
4337 switch (opc | (invert << 2)) {
4338 case 0: /* AND */
4339 case 3: /* ANDS */
4340 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
4341 break;
4342 case 1: /* ORR */
4343 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
4344 break;
4345 case 2: /* EOR */
4346 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
4347 break;
4348 case 4: /* BIC */
4349 case 7: /* BICS */
4350 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
4351 break;
4352 case 5: /* ORN */
4353 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
4354 break;
4355 case 6: /* EON */
4356 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
4357 break;
4358 default:
4359 assert(FALSE);
4360 break;
4363 if (!sf) {
4364 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4367 if (opc == 3) {
4368 gen_logic_CC(sf, tcg_rd);
4373 * Add/subtract (extended register)
4375 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
4376 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4377 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
4378 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4380 * sf: 0 -> 32bit, 1 -> 64bit
4381 * op: 0 -> add , 1 -> sub
4382 * S: 1 -> set flags
4383 * opt: 00
4384 * option: extension type (see DecodeRegExtend)
4385 * imm3: optional shift to Rm
4387 * Rd = Rn + LSL(extend(Rm), amount)
4389 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
4391 int rd = extract32(insn, 0, 5);
4392 int rn = extract32(insn, 5, 5);
4393 int imm3 = extract32(insn, 10, 3);
4394 int option = extract32(insn, 13, 3);
4395 int rm = extract32(insn, 16, 5);
4396 int opt = extract32(insn, 22, 2);
4397 bool setflags = extract32(insn, 29, 1);
4398 bool sub_op = extract32(insn, 30, 1);
4399 bool sf = extract32(insn, 31, 1);
4401 TCGv_i64 tcg_rm, tcg_rn; /* temps */
4402 TCGv_i64 tcg_rd;
4403 TCGv_i64 tcg_result;
4405 if (imm3 > 4 || opt != 0) {
4406 unallocated_encoding(s);
4407 return;
4410 /* non-flag setting ops may use SP */
4411 if (!setflags) {
4412 tcg_rd = cpu_reg_sp(s, rd);
4413 } else {
4414 tcg_rd = cpu_reg(s, rd);
4416 tcg_rn = read_cpu_reg_sp(s, rn, sf);
4418 tcg_rm = read_cpu_reg(s, rm, sf);
4419 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
4421 tcg_result = tcg_temp_new_i64();
4423 if (!setflags) {
4424 if (sub_op) {
4425 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4426 } else {
4427 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4429 } else {
4430 if (sub_op) {
4431 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4432 } else {
4433 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4437 if (sf) {
4438 tcg_gen_mov_i64(tcg_rd, tcg_result);
4439 } else {
4440 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4443 tcg_temp_free_i64(tcg_result);
4447 * Add/subtract (shifted register)
4449 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4450 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4451 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
4452 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4454 * sf: 0 -> 32bit, 1 -> 64bit
4455 * op: 0 -> add , 1 -> sub
4456 * S: 1 -> set flags
4457 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
4458 * imm6: Shift amount to apply to Rm before the add/sub
4460 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
4462 int rd = extract32(insn, 0, 5);
4463 int rn = extract32(insn, 5, 5);
4464 int imm6 = extract32(insn, 10, 6);
4465 int rm = extract32(insn, 16, 5);
4466 int shift_type = extract32(insn, 22, 2);
4467 bool setflags = extract32(insn, 29, 1);
4468 bool sub_op = extract32(insn, 30, 1);
4469 bool sf = extract32(insn, 31, 1);
4471 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4472 TCGv_i64 tcg_rn, tcg_rm;
4473 TCGv_i64 tcg_result;
4475 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
4476 unallocated_encoding(s);
4477 return;
4480 tcg_rn = read_cpu_reg(s, rn, sf);
4481 tcg_rm = read_cpu_reg(s, rm, sf);
4483 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
4485 tcg_result = tcg_temp_new_i64();
4487 if (!setflags) {
4488 if (sub_op) {
4489 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4490 } else {
4491 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4493 } else {
4494 if (sub_op) {
4495 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4496 } else {
4497 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4501 if (sf) {
4502 tcg_gen_mov_i64(tcg_rd, tcg_result);
4503 } else {
4504 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4507 tcg_temp_free_i64(tcg_result);
4510 /* Data-processing (3 source)
4512 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
4513 * +--+------+-----------+------+------+----+------+------+------+
4514 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
4515 * +--+------+-----------+------+------+----+------+------+------+
4517 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
4519 int rd = extract32(insn, 0, 5);
4520 int rn = extract32(insn, 5, 5);
4521 int ra = extract32(insn, 10, 5);
4522 int rm = extract32(insn, 16, 5);
4523 int op_id = (extract32(insn, 29, 3) << 4) |
4524 (extract32(insn, 21, 3) << 1) |
4525 extract32(insn, 15, 1);
4526 bool sf = extract32(insn, 31, 1);
4527 bool is_sub = extract32(op_id, 0, 1);
4528 bool is_high = extract32(op_id, 2, 1);
4529 bool is_signed = false;
4530 TCGv_i64 tcg_op1;
4531 TCGv_i64 tcg_op2;
4532 TCGv_i64 tcg_tmp;
4534 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
4535 switch (op_id) {
4536 case 0x42: /* SMADDL */
4537 case 0x43: /* SMSUBL */
4538 case 0x44: /* SMULH */
4539 is_signed = true;
4540 break;
4541 case 0x0: /* MADD (32bit) */
4542 case 0x1: /* MSUB (32bit) */
4543 case 0x40: /* MADD (64bit) */
4544 case 0x41: /* MSUB (64bit) */
4545 case 0x4a: /* UMADDL */
4546 case 0x4b: /* UMSUBL */
4547 case 0x4c: /* UMULH */
4548 break;
4549 default:
4550 unallocated_encoding(s);
4551 return;
4554 if (is_high) {
4555 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
4556 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4557 TCGv_i64 tcg_rn = cpu_reg(s, rn);
4558 TCGv_i64 tcg_rm = cpu_reg(s, rm);
4560 if (is_signed) {
4561 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4562 } else {
4563 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4566 tcg_temp_free_i64(low_bits);
4567 return;
4570 tcg_op1 = tcg_temp_new_i64();
4571 tcg_op2 = tcg_temp_new_i64();
4572 tcg_tmp = tcg_temp_new_i64();
4574 if (op_id < 0x42) {
4575 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
4576 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
4577 } else {
4578 if (is_signed) {
4579 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
4580 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
4581 } else {
4582 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
4583 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
4587 if (ra == 31 && !is_sub) {
4588 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
4589 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
4590 } else {
4591 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
4592 if (is_sub) {
4593 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4594 } else {
4595 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4599 if (!sf) {
4600 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
4603 tcg_temp_free_i64(tcg_op1);
4604 tcg_temp_free_i64(tcg_op2);
4605 tcg_temp_free_i64(tcg_tmp);
4608 /* Add/subtract (with carry)
4609 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
4610 * +--+--+--+------------------------+------+-------------+------+-----+
4611 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd |
4612 * +--+--+--+------------------------+------+-------------+------+-----+
4615 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
4617 unsigned int sf, op, setflags, rm, rn, rd;
4618 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
4620 sf = extract32(insn, 31, 1);
4621 op = extract32(insn, 30, 1);
4622 setflags = extract32(insn, 29, 1);
4623 rm = extract32(insn, 16, 5);
4624 rn = extract32(insn, 5, 5);
4625 rd = extract32(insn, 0, 5);
4627 tcg_rd = cpu_reg(s, rd);
4628 tcg_rn = cpu_reg(s, rn);
4630 if (op) {
4631 tcg_y = new_tmp_a64(s);
4632 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
4633 } else {
4634 tcg_y = cpu_reg(s, rm);
4637 if (setflags) {
4638 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
4639 } else {
4640 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
4645 * Rotate right into flags
4646 * 31 30 29 21 15 10 5 4 0
4647 * +--+--+--+-----------------+--------+-----------+------+--+------+
4648 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask |
4649 * +--+--+--+-----------------+--------+-----------+------+--+------+
4651 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
4653 int mask = extract32(insn, 0, 4);
4654 int o2 = extract32(insn, 4, 1);
4655 int rn = extract32(insn, 5, 5);
4656 int imm6 = extract32(insn, 15, 6);
4657 int sf_op_s = extract32(insn, 29, 3);
4658 TCGv_i64 tcg_rn;
4659 TCGv_i32 nzcv;
4661 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
4662 unallocated_encoding(s);
4663 return;
4666 tcg_rn = read_cpu_reg(s, rn, 1);
4667 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
4669 nzcv = tcg_temp_new_i32();
4670 tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
4672 if (mask & 8) { /* N */
4673 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
4675 if (mask & 4) { /* Z */
4676 tcg_gen_not_i32(cpu_ZF, nzcv);
4677 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
4679 if (mask & 2) { /* C */
4680 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
4682 if (mask & 1) { /* V */
4683 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
4686 tcg_temp_free_i32(nzcv);
4690 * Evaluate into flags
4691 * 31 30 29 21 15 14 10 5 4 0
4692 * +--+--+--+-----------------+---------+----+---------+------+--+------+
4693 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask |
4694 * +--+--+--+-----------------+---------+----+---------+------+--+------+
4696 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
4698 int o3_mask = extract32(insn, 0, 5);
4699 int rn = extract32(insn, 5, 5);
4700 int o2 = extract32(insn, 15, 6);
4701 int sz = extract32(insn, 14, 1);
4702 int sf_op_s = extract32(insn, 29, 3);
4703 TCGv_i32 tmp;
4704 int shift;
4706 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
4707 !dc_isar_feature(aa64_condm_4, s)) {
4708 unallocated_encoding(s);
4709 return;
4711 shift = sz ? 16 : 24; /* SETF16 or SETF8 */
4713 tmp = tcg_temp_new_i32();
4714 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
4715 tcg_gen_shli_i32(cpu_NF, tmp, shift);
4716 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
4717 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
4718 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
4719 tcg_temp_free_i32(tmp);
4722 /* Conditional compare (immediate / register)
4723 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
4724 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4725 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
4726 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4727 * [1] y [0] [0]
4729 static void disas_cc(DisasContext *s, uint32_t insn)
4731 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
4732 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
4733 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
4734 DisasCompare c;
4736 if (!extract32(insn, 29, 1)) {
4737 unallocated_encoding(s);
4738 return;
4740 if (insn & (1 << 10 | 1 << 4)) {
4741 unallocated_encoding(s);
4742 return;
4744 sf = extract32(insn, 31, 1);
4745 op = extract32(insn, 30, 1);
4746 is_imm = extract32(insn, 11, 1);
4747 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
4748 cond = extract32(insn, 12, 4);
4749 rn = extract32(insn, 5, 5);
4750 nzcv = extract32(insn, 0, 4);
4752 /* Set T0 = !COND. */
4753 tcg_t0 = tcg_temp_new_i32();
4754 arm_test_cc(&c, cond);
4755 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
4756 arm_free_cc(&c);
4758 /* Load the arguments for the new comparison. */
4759 if (is_imm) {
4760 tcg_y = new_tmp_a64(s);
4761 tcg_gen_movi_i64(tcg_y, y);
4762 } else {
4763 tcg_y = cpu_reg(s, y);
4765 tcg_rn = cpu_reg(s, rn);
4767 /* Set the flags for the new comparison. */
4768 tcg_tmp = tcg_temp_new_i64();
4769 if (op) {
4770 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4771 } else {
4772 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4774 tcg_temp_free_i64(tcg_tmp);
4776 /* If COND was false, force the flags to #nzcv. Compute two masks
4777 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
4778 * For tcg hosts that support ANDC, we can make do with just T1.
4779 * In either case, allow the tcg optimizer to delete any unused mask.
4781 tcg_t1 = tcg_temp_new_i32();
4782 tcg_t2 = tcg_temp_new_i32();
4783 tcg_gen_neg_i32(tcg_t1, tcg_t0);
4784 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
4786 if (nzcv & 8) { /* N */
4787 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
4788 } else {
4789 if (TCG_TARGET_HAS_andc_i32) {
4790 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
4791 } else {
4792 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
4795 if (nzcv & 4) { /* Z */
4796 if (TCG_TARGET_HAS_andc_i32) {
4797 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
4798 } else {
4799 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
4801 } else {
4802 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
4804 if (nzcv & 2) { /* C */
4805 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
4806 } else {
4807 if (TCG_TARGET_HAS_andc_i32) {
4808 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
4809 } else {
4810 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
4813 if (nzcv & 1) { /* V */
4814 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
4815 } else {
4816 if (TCG_TARGET_HAS_andc_i32) {
4817 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
4818 } else {
4819 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
4822 tcg_temp_free_i32(tcg_t0);
4823 tcg_temp_free_i32(tcg_t1);
4824 tcg_temp_free_i32(tcg_t2);
4827 /* Conditional select
4828 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
4829 * +----+----+---+-----------------+------+------+-----+------+------+
4830 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
4831 * +----+----+---+-----------------+------+------+-----+------+------+
4833 static void disas_cond_select(DisasContext *s, uint32_t insn)
4835 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
4836 TCGv_i64 tcg_rd, zero;
4837 DisasCompare64 c;
4839 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
4840 /* S == 1 or op2<1> == 1 */
4841 unallocated_encoding(s);
4842 return;
4844 sf = extract32(insn, 31, 1);
4845 else_inv = extract32(insn, 30, 1);
4846 rm = extract32(insn, 16, 5);
4847 cond = extract32(insn, 12, 4);
4848 else_inc = extract32(insn, 10, 1);
4849 rn = extract32(insn, 5, 5);
4850 rd = extract32(insn, 0, 5);
4852 tcg_rd = cpu_reg(s, rd);
4854 a64_test_cc(&c, cond);
4855 zero = tcg_const_i64(0);
4857 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
4858 /* CSET & CSETM. */
4859 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
4860 if (else_inv) {
4861 tcg_gen_neg_i64(tcg_rd, tcg_rd);
4863 } else {
4864 TCGv_i64 t_true = cpu_reg(s, rn);
4865 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
4866 if (else_inv && else_inc) {
4867 tcg_gen_neg_i64(t_false, t_false);
4868 } else if (else_inv) {
4869 tcg_gen_not_i64(t_false, t_false);
4870 } else if (else_inc) {
4871 tcg_gen_addi_i64(t_false, t_false, 1);
4873 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
4876 tcg_temp_free_i64(zero);
4877 a64_free_cc(&c);
4879 if (!sf) {
4880 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4884 static void handle_clz(DisasContext *s, unsigned int sf,
4885 unsigned int rn, unsigned int rd)
4887 TCGv_i64 tcg_rd, tcg_rn;
4888 tcg_rd = cpu_reg(s, rd);
4889 tcg_rn = cpu_reg(s, rn);
4891 if (sf) {
4892 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
4893 } else {
4894 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4895 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4896 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
4897 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4898 tcg_temp_free_i32(tcg_tmp32);
4902 static void handle_cls(DisasContext *s, unsigned int sf,
4903 unsigned int rn, unsigned int rd)
4905 TCGv_i64 tcg_rd, tcg_rn;
4906 tcg_rd = cpu_reg(s, rd);
4907 tcg_rn = cpu_reg(s, rn);
4909 if (sf) {
4910 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
4911 } else {
4912 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4913 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4914 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
4915 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4916 tcg_temp_free_i32(tcg_tmp32);
4920 static void handle_rbit(DisasContext *s, unsigned int sf,
4921 unsigned int rn, unsigned int rd)
4923 TCGv_i64 tcg_rd, tcg_rn;
4924 tcg_rd = cpu_reg(s, rd);
4925 tcg_rn = cpu_reg(s, rn);
4927 if (sf) {
4928 gen_helper_rbit64(tcg_rd, tcg_rn);
4929 } else {
4930 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4931 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4932 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
4933 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4934 tcg_temp_free_i32(tcg_tmp32);
4938 /* REV with sf==1, opcode==3 ("REV64") */
4939 static void handle_rev64(DisasContext *s, unsigned int sf,
4940 unsigned int rn, unsigned int rd)
4942 if (!sf) {
4943 unallocated_encoding(s);
4944 return;
4946 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
4949 /* REV with sf==0, opcode==2
4950 * REV32 (sf==1, opcode==2)
4952 static void handle_rev32(DisasContext *s, unsigned int sf,
4953 unsigned int rn, unsigned int rd)
4955 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4957 if (sf) {
4958 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4959 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4961 /* bswap32_i64 requires zero high word */
4962 tcg_gen_ext32u_i64(tcg_tmp, tcg_rn);
4963 tcg_gen_bswap32_i64(tcg_rd, tcg_tmp);
4964 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
4965 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
4966 tcg_gen_concat32_i64(tcg_rd, tcg_rd, tcg_tmp);
4968 tcg_temp_free_i64(tcg_tmp);
4969 } else {
4970 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rn));
4971 tcg_gen_bswap32_i64(tcg_rd, tcg_rd);
4975 /* REV16 (opcode==1) */
4976 static void handle_rev16(DisasContext *s, unsigned int sf,
4977 unsigned int rn, unsigned int rd)
4979 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4980 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4981 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4982 TCGv_i64 mask = tcg_const_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
4984 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
4985 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
4986 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
4987 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
4988 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
4990 tcg_temp_free_i64(mask);
4991 tcg_temp_free_i64(tcg_tmp);
4994 /* Data-processing (1 source)
4995 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4996 * +----+---+---+-----------------+---------+--------+------+------+
4997 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
4998 * +----+---+---+-----------------+---------+--------+------+------+
5000 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
5002 unsigned int sf, opcode, opcode2, rn, rd;
5003 TCGv_i64 tcg_rd;
5005 if (extract32(insn, 29, 1)) {
5006 unallocated_encoding(s);
5007 return;
5010 sf = extract32(insn, 31, 1);
5011 opcode = extract32(insn, 10, 6);
5012 opcode2 = extract32(insn, 16, 5);
5013 rn = extract32(insn, 5, 5);
5014 rd = extract32(insn, 0, 5);
5016 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
5018 switch (MAP(sf, opcode2, opcode)) {
5019 case MAP(0, 0x00, 0x00): /* RBIT */
5020 case MAP(1, 0x00, 0x00):
5021 handle_rbit(s, sf, rn, rd);
5022 break;
5023 case MAP(0, 0x00, 0x01): /* REV16 */
5024 case MAP(1, 0x00, 0x01):
5025 handle_rev16(s, sf, rn, rd);
5026 break;
5027 case MAP(0, 0x00, 0x02): /* REV/REV32 */
5028 case MAP(1, 0x00, 0x02):
5029 handle_rev32(s, sf, rn, rd);
5030 break;
5031 case MAP(1, 0x00, 0x03): /* REV64 */
5032 handle_rev64(s, sf, rn, rd);
5033 break;
5034 case MAP(0, 0x00, 0x04): /* CLZ */
5035 case MAP(1, 0x00, 0x04):
5036 handle_clz(s, sf, rn, rd);
5037 break;
5038 case MAP(0, 0x00, 0x05): /* CLS */
5039 case MAP(1, 0x00, 0x05):
5040 handle_cls(s, sf, rn, rd);
5041 break;
5042 case MAP(1, 0x01, 0x00): /* PACIA */
5043 if (s->pauth_active) {
5044 tcg_rd = cpu_reg(s, rd);
5045 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5046 } else if (!dc_isar_feature(aa64_pauth, s)) {
5047 goto do_unallocated;
5049 break;
5050 case MAP(1, 0x01, 0x01): /* PACIB */
5051 if (s->pauth_active) {
5052 tcg_rd = cpu_reg(s, rd);
5053 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5054 } else if (!dc_isar_feature(aa64_pauth, s)) {
5055 goto do_unallocated;
5057 break;
5058 case MAP(1, 0x01, 0x02): /* PACDA */
5059 if (s->pauth_active) {
5060 tcg_rd = cpu_reg(s, rd);
5061 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5062 } else if (!dc_isar_feature(aa64_pauth, s)) {
5063 goto do_unallocated;
5065 break;
5066 case MAP(1, 0x01, 0x03): /* PACDB */
5067 if (s->pauth_active) {
5068 tcg_rd = cpu_reg(s, rd);
5069 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5070 } else if (!dc_isar_feature(aa64_pauth, s)) {
5071 goto do_unallocated;
5073 break;
5074 case MAP(1, 0x01, 0x04): /* AUTIA */
5075 if (s->pauth_active) {
5076 tcg_rd = cpu_reg(s, rd);
5077 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5078 } else if (!dc_isar_feature(aa64_pauth, s)) {
5079 goto do_unallocated;
5081 break;
5082 case MAP(1, 0x01, 0x05): /* AUTIB */
5083 if (s->pauth_active) {
5084 tcg_rd = cpu_reg(s, rd);
5085 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5086 } else if (!dc_isar_feature(aa64_pauth, s)) {
5087 goto do_unallocated;
5089 break;
5090 case MAP(1, 0x01, 0x06): /* AUTDA */
5091 if (s->pauth_active) {
5092 tcg_rd = cpu_reg(s, rd);
5093 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5094 } else if (!dc_isar_feature(aa64_pauth, s)) {
5095 goto do_unallocated;
5097 break;
5098 case MAP(1, 0x01, 0x07): /* AUTDB */
5099 if (s->pauth_active) {
5100 tcg_rd = cpu_reg(s, rd);
5101 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5102 } else if (!dc_isar_feature(aa64_pauth, s)) {
5103 goto do_unallocated;
5105 break;
5106 case MAP(1, 0x01, 0x08): /* PACIZA */
5107 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5108 goto do_unallocated;
5109 } else if (s->pauth_active) {
5110 tcg_rd = cpu_reg(s, rd);
5111 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5113 break;
5114 case MAP(1, 0x01, 0x09): /* PACIZB */
5115 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5116 goto do_unallocated;
5117 } else if (s->pauth_active) {
5118 tcg_rd = cpu_reg(s, rd);
5119 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5121 break;
5122 case MAP(1, 0x01, 0x0a): /* PACDZA */
5123 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5124 goto do_unallocated;
5125 } else if (s->pauth_active) {
5126 tcg_rd = cpu_reg(s, rd);
5127 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5129 break;
5130 case MAP(1, 0x01, 0x0b): /* PACDZB */
5131 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5132 goto do_unallocated;
5133 } else if (s->pauth_active) {
5134 tcg_rd = cpu_reg(s, rd);
5135 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5137 break;
5138 case MAP(1, 0x01, 0x0c): /* AUTIZA */
5139 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5140 goto do_unallocated;
5141 } else if (s->pauth_active) {
5142 tcg_rd = cpu_reg(s, rd);
5143 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5145 break;
5146 case MAP(1, 0x01, 0x0d): /* AUTIZB */
5147 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5148 goto do_unallocated;
5149 } else if (s->pauth_active) {
5150 tcg_rd = cpu_reg(s, rd);
5151 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5153 break;
5154 case MAP(1, 0x01, 0x0e): /* AUTDZA */
5155 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5156 goto do_unallocated;
5157 } else if (s->pauth_active) {
5158 tcg_rd = cpu_reg(s, rd);
5159 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5161 break;
5162 case MAP(1, 0x01, 0x0f): /* AUTDZB */
5163 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5164 goto do_unallocated;
5165 } else if (s->pauth_active) {
5166 tcg_rd = cpu_reg(s, rd);
5167 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5169 break;
5170 case MAP(1, 0x01, 0x10): /* XPACI */
5171 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5172 goto do_unallocated;
5173 } else if (s->pauth_active) {
5174 tcg_rd = cpu_reg(s, rd);
5175 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd);
5177 break;
5178 case MAP(1, 0x01, 0x11): /* XPACD */
5179 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5180 goto do_unallocated;
5181 } else if (s->pauth_active) {
5182 tcg_rd = cpu_reg(s, rd);
5183 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd);
5185 break;
5186 default:
5187 do_unallocated:
5188 unallocated_encoding(s);
5189 break;
5192 #undef MAP
5195 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
5196 unsigned int rm, unsigned int rn, unsigned int rd)
5198 TCGv_i64 tcg_n, tcg_m, tcg_rd;
5199 tcg_rd = cpu_reg(s, rd);
5201 if (!sf && is_signed) {
5202 tcg_n = new_tmp_a64(s);
5203 tcg_m = new_tmp_a64(s);
5204 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
5205 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
5206 } else {
5207 tcg_n = read_cpu_reg(s, rn, sf);
5208 tcg_m = read_cpu_reg(s, rm, sf);
5211 if (is_signed) {
5212 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
5213 } else {
5214 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
5217 if (!sf) { /* zero extend final result */
5218 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5222 /* LSLV, LSRV, ASRV, RORV */
5223 static void handle_shift_reg(DisasContext *s,
5224 enum a64_shift_type shift_type, unsigned int sf,
5225 unsigned int rm, unsigned int rn, unsigned int rd)
5227 TCGv_i64 tcg_shift = tcg_temp_new_i64();
5228 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5229 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5231 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
5232 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
5233 tcg_temp_free_i64(tcg_shift);
5236 /* CRC32[BHWX], CRC32C[BHWX] */
5237 static void handle_crc32(DisasContext *s,
5238 unsigned int sf, unsigned int sz, bool crc32c,
5239 unsigned int rm, unsigned int rn, unsigned int rd)
5241 TCGv_i64 tcg_acc, tcg_val;
5242 TCGv_i32 tcg_bytes;
5244 if (!dc_isar_feature(aa64_crc32, s)
5245 || (sf == 1 && sz != 3)
5246 || (sf == 0 && sz == 3)) {
5247 unallocated_encoding(s);
5248 return;
5251 if (sz == 3) {
5252 tcg_val = cpu_reg(s, rm);
5253 } else {
5254 uint64_t mask;
5255 switch (sz) {
5256 case 0:
5257 mask = 0xFF;
5258 break;
5259 case 1:
5260 mask = 0xFFFF;
5261 break;
5262 case 2:
5263 mask = 0xFFFFFFFF;
5264 break;
5265 default:
5266 g_assert_not_reached();
5268 tcg_val = new_tmp_a64(s);
5269 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
5272 tcg_acc = cpu_reg(s, rn);
5273 tcg_bytes = tcg_const_i32(1 << sz);
5275 if (crc32c) {
5276 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5277 } else {
5278 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5281 tcg_temp_free_i32(tcg_bytes);
5284 /* Data-processing (2 source)
5285 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5286 * +----+---+---+-----------------+------+--------+------+------+
5287 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
5288 * +----+---+---+-----------------+------+--------+------+------+
5290 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
5292 unsigned int sf, rm, opcode, rn, rd;
5293 sf = extract32(insn, 31, 1);
5294 rm = extract32(insn, 16, 5);
5295 opcode = extract32(insn, 10, 6);
5296 rn = extract32(insn, 5, 5);
5297 rd = extract32(insn, 0, 5);
5299 if (extract32(insn, 29, 1)) {
5300 unallocated_encoding(s);
5301 return;
5304 switch (opcode) {
5305 case 2: /* UDIV */
5306 handle_div(s, false, sf, rm, rn, rd);
5307 break;
5308 case 3: /* SDIV */
5309 handle_div(s, true, sf, rm, rn, rd);
5310 break;
5311 case 8: /* LSLV */
5312 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
5313 break;
5314 case 9: /* LSRV */
5315 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
5316 break;
5317 case 10: /* ASRV */
5318 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
5319 break;
5320 case 11: /* RORV */
5321 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
5322 break;
5323 case 12: /* PACGA */
5324 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
5325 goto do_unallocated;
5327 gen_helper_pacga(cpu_reg(s, rd), cpu_env,
5328 cpu_reg(s, rn), cpu_reg_sp(s, rm));
5329 break;
5330 case 16:
5331 case 17:
5332 case 18:
5333 case 19:
5334 case 20:
5335 case 21:
5336 case 22:
5337 case 23: /* CRC32 */
5339 int sz = extract32(opcode, 0, 2);
5340 bool crc32c = extract32(opcode, 2, 1);
5341 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
5342 break;
5344 default:
5345 do_unallocated:
5346 unallocated_encoding(s);
5347 break;
5352 * Data processing - register
5353 * 31 30 29 28 25 21 20 16 10 0
5354 * +--+---+--+---+-------+-----+-------+-------+---------+
5355 * | |op0| |op1| 1 0 1 | op2 | | op3 | |
5356 * +--+---+--+---+-------+-----+-------+-------+---------+
5358 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
5360 int op0 = extract32(insn, 30, 1);
5361 int op1 = extract32(insn, 28, 1);
5362 int op2 = extract32(insn, 21, 4);
5363 int op3 = extract32(insn, 10, 6);
5365 if (!op1) {
5366 if (op2 & 8) {
5367 if (op2 & 1) {
5368 /* Add/sub (extended register) */
5369 disas_add_sub_ext_reg(s, insn);
5370 } else {
5371 /* Add/sub (shifted register) */
5372 disas_add_sub_reg(s, insn);
5374 } else {
5375 /* Logical (shifted register) */
5376 disas_logic_reg(s, insn);
5378 return;
5381 switch (op2) {
5382 case 0x0:
5383 switch (op3) {
5384 case 0x00: /* Add/subtract (with carry) */
5385 disas_adc_sbc(s, insn);
5386 break;
5388 case 0x01: /* Rotate right into flags */
5389 case 0x21:
5390 disas_rotate_right_into_flags(s, insn);
5391 break;
5393 case 0x02: /* Evaluate into flags */
5394 case 0x12:
5395 case 0x22:
5396 case 0x32:
5397 disas_evaluate_into_flags(s, insn);
5398 break;
5400 default:
5401 goto do_unallocated;
5403 break;
5405 case 0x2: /* Conditional compare */
5406 disas_cc(s, insn); /* both imm and reg forms */
5407 break;
5409 case 0x4: /* Conditional select */
5410 disas_cond_select(s, insn);
5411 break;
5413 case 0x6: /* Data-processing */
5414 if (op0) { /* (1 source) */
5415 disas_data_proc_1src(s, insn);
5416 } else { /* (2 source) */
5417 disas_data_proc_2src(s, insn);
5419 break;
5420 case 0x8 ... 0xf: /* (3 source) */
5421 disas_data_proc_3src(s, insn);
5422 break;
5424 default:
5425 do_unallocated:
5426 unallocated_encoding(s);
5427 break;
5431 static void handle_fp_compare(DisasContext *s, int size,
5432 unsigned int rn, unsigned int rm,
5433 bool cmp_with_zero, bool signal_all_nans)
5435 TCGv_i64 tcg_flags = tcg_temp_new_i64();
5436 TCGv_ptr fpst = get_fpstatus_ptr(size == MO_16);
5438 if (size == MO_64) {
5439 TCGv_i64 tcg_vn, tcg_vm;
5441 tcg_vn = read_fp_dreg(s, rn);
5442 if (cmp_with_zero) {
5443 tcg_vm = tcg_const_i64(0);
5444 } else {
5445 tcg_vm = read_fp_dreg(s, rm);
5447 if (signal_all_nans) {
5448 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5449 } else {
5450 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5452 tcg_temp_free_i64(tcg_vn);
5453 tcg_temp_free_i64(tcg_vm);
5454 } else {
5455 TCGv_i32 tcg_vn = tcg_temp_new_i32();
5456 TCGv_i32 tcg_vm = tcg_temp_new_i32();
5458 read_vec_element_i32(s, tcg_vn, rn, 0, size);
5459 if (cmp_with_zero) {
5460 tcg_gen_movi_i32(tcg_vm, 0);
5461 } else {
5462 read_vec_element_i32(s, tcg_vm, rm, 0, size);
5465 switch (size) {
5466 case MO_32:
5467 if (signal_all_nans) {
5468 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5469 } else {
5470 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5472 break;
5473 case MO_16:
5474 if (signal_all_nans) {
5475 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5476 } else {
5477 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5479 break;
5480 default:
5481 g_assert_not_reached();
5484 tcg_temp_free_i32(tcg_vn);
5485 tcg_temp_free_i32(tcg_vm);
5488 tcg_temp_free_ptr(fpst);
5490 gen_set_nzcv(tcg_flags);
5492 tcg_temp_free_i64(tcg_flags);
5495 /* Floating point compare
5496 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
5497 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5498 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
5499 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5501 static void disas_fp_compare(DisasContext *s, uint32_t insn)
5503 unsigned int mos, type, rm, op, rn, opc, op2r;
5504 int size;
5506 mos = extract32(insn, 29, 3);
5507 type = extract32(insn, 22, 2);
5508 rm = extract32(insn, 16, 5);
5509 op = extract32(insn, 14, 2);
5510 rn = extract32(insn, 5, 5);
5511 opc = extract32(insn, 3, 2);
5512 op2r = extract32(insn, 0, 3);
5514 if (mos || op || op2r) {
5515 unallocated_encoding(s);
5516 return;
5519 switch (type) {
5520 case 0:
5521 size = MO_32;
5522 break;
5523 case 1:
5524 size = MO_64;
5525 break;
5526 case 3:
5527 size = MO_16;
5528 if (dc_isar_feature(aa64_fp16, s)) {
5529 break;
5531 /* fallthru */
5532 default:
5533 unallocated_encoding(s);
5534 return;
5537 if (!fp_access_check(s)) {
5538 return;
5541 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
5544 /* Floating point conditional compare
5545 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
5546 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5547 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
5548 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5550 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
5552 unsigned int mos, type, rm, cond, rn, op, nzcv;
5553 TCGv_i64 tcg_flags;
5554 TCGLabel *label_continue = NULL;
5555 int size;
5557 mos = extract32(insn, 29, 3);
5558 type = extract32(insn, 22, 2);
5559 rm = extract32(insn, 16, 5);
5560 cond = extract32(insn, 12, 4);
5561 rn = extract32(insn, 5, 5);
5562 op = extract32(insn, 4, 1);
5563 nzcv = extract32(insn, 0, 4);
5565 if (mos) {
5566 unallocated_encoding(s);
5567 return;
5570 switch (type) {
5571 case 0:
5572 size = MO_32;
5573 break;
5574 case 1:
5575 size = MO_64;
5576 break;
5577 case 3:
5578 size = MO_16;
5579 if (dc_isar_feature(aa64_fp16, s)) {
5580 break;
5582 /* fallthru */
5583 default:
5584 unallocated_encoding(s);
5585 return;
5588 if (!fp_access_check(s)) {
5589 return;
5592 if (cond < 0x0e) { /* not always */
5593 TCGLabel *label_match = gen_new_label();
5594 label_continue = gen_new_label();
5595 arm_gen_test_cc(cond, label_match);
5596 /* nomatch: */
5597 tcg_flags = tcg_const_i64(nzcv << 28);
5598 gen_set_nzcv(tcg_flags);
5599 tcg_temp_free_i64(tcg_flags);
5600 tcg_gen_br(label_continue);
5601 gen_set_label(label_match);
5604 handle_fp_compare(s, size, rn, rm, false, op);
5606 if (cond < 0x0e) {
5607 gen_set_label(label_continue);
5611 /* Floating point conditional select
5612 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
5613 * +---+---+---+-----------+------+---+------+------+-----+------+------+
5614 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
5615 * +---+---+---+-----------+------+---+------+------+-----+------+------+
5617 static void disas_fp_csel(DisasContext *s, uint32_t insn)
5619 unsigned int mos, type, rm, cond, rn, rd;
5620 TCGv_i64 t_true, t_false, t_zero;
5621 DisasCompare64 c;
5622 MemOp sz;
5624 mos = extract32(insn, 29, 3);
5625 type = extract32(insn, 22, 2);
5626 rm = extract32(insn, 16, 5);
5627 cond = extract32(insn, 12, 4);
5628 rn = extract32(insn, 5, 5);
5629 rd = extract32(insn, 0, 5);
5631 if (mos) {
5632 unallocated_encoding(s);
5633 return;
5636 switch (type) {
5637 case 0:
5638 sz = MO_32;
5639 break;
5640 case 1:
5641 sz = MO_64;
5642 break;
5643 case 3:
5644 sz = MO_16;
5645 if (dc_isar_feature(aa64_fp16, s)) {
5646 break;
5648 /* fallthru */
5649 default:
5650 unallocated_encoding(s);
5651 return;
5654 if (!fp_access_check(s)) {
5655 return;
5658 /* Zero extend sreg & hreg inputs to 64 bits now. */
5659 t_true = tcg_temp_new_i64();
5660 t_false = tcg_temp_new_i64();
5661 read_vec_element(s, t_true, rn, 0, sz);
5662 read_vec_element(s, t_false, rm, 0, sz);
5664 a64_test_cc(&c, cond);
5665 t_zero = tcg_const_i64(0);
5666 tcg_gen_movcond_i64(c.cond, t_true, c.value, t_zero, t_true, t_false);
5667 tcg_temp_free_i64(t_zero);
5668 tcg_temp_free_i64(t_false);
5669 a64_free_cc(&c);
5671 /* Note that sregs & hregs write back zeros to the high bits,
5672 and we've already done the zero-extension. */
5673 write_fp_dreg(s, rd, t_true);
5674 tcg_temp_free_i64(t_true);
5677 /* Floating-point data-processing (1 source) - half precision */
5678 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
5680 TCGv_ptr fpst = NULL;
5681 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
5682 TCGv_i32 tcg_res = tcg_temp_new_i32();
5684 switch (opcode) {
5685 case 0x0: /* FMOV */
5686 tcg_gen_mov_i32(tcg_res, tcg_op);
5687 break;
5688 case 0x1: /* FABS */
5689 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
5690 break;
5691 case 0x2: /* FNEG */
5692 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
5693 break;
5694 case 0x3: /* FSQRT */
5695 fpst = get_fpstatus_ptr(true);
5696 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
5697 break;
5698 case 0x8: /* FRINTN */
5699 case 0x9: /* FRINTP */
5700 case 0xa: /* FRINTM */
5701 case 0xb: /* FRINTZ */
5702 case 0xc: /* FRINTA */
5704 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
5705 fpst = get_fpstatus_ptr(true);
5707 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5708 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
5710 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5711 tcg_temp_free_i32(tcg_rmode);
5712 break;
5714 case 0xe: /* FRINTX */
5715 fpst = get_fpstatus_ptr(true);
5716 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
5717 break;
5718 case 0xf: /* FRINTI */
5719 fpst = get_fpstatus_ptr(true);
5720 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
5721 break;
5722 default:
5723 abort();
5726 write_fp_sreg(s, rd, tcg_res);
5728 if (fpst) {
5729 tcg_temp_free_ptr(fpst);
5731 tcg_temp_free_i32(tcg_op);
5732 tcg_temp_free_i32(tcg_res);
5735 /* Floating-point data-processing (1 source) - single precision */
5736 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
5738 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
5739 TCGv_i32 tcg_op, tcg_res;
5740 TCGv_ptr fpst;
5741 int rmode = -1;
5743 tcg_op = read_fp_sreg(s, rn);
5744 tcg_res = tcg_temp_new_i32();
5746 switch (opcode) {
5747 case 0x0: /* FMOV */
5748 tcg_gen_mov_i32(tcg_res, tcg_op);
5749 goto done;
5750 case 0x1: /* FABS */
5751 gen_helper_vfp_abss(tcg_res, tcg_op);
5752 goto done;
5753 case 0x2: /* FNEG */
5754 gen_helper_vfp_negs(tcg_res, tcg_op);
5755 goto done;
5756 case 0x3: /* FSQRT */
5757 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
5758 goto done;
5759 case 0x8: /* FRINTN */
5760 case 0x9: /* FRINTP */
5761 case 0xa: /* FRINTM */
5762 case 0xb: /* FRINTZ */
5763 case 0xc: /* FRINTA */
5764 rmode = arm_rmode_to_sf(opcode & 7);
5765 gen_fpst = gen_helper_rints;
5766 break;
5767 case 0xe: /* FRINTX */
5768 gen_fpst = gen_helper_rints_exact;
5769 break;
5770 case 0xf: /* FRINTI */
5771 gen_fpst = gen_helper_rints;
5772 break;
5773 case 0x10: /* FRINT32Z */
5774 rmode = float_round_to_zero;
5775 gen_fpst = gen_helper_frint32_s;
5776 break;
5777 case 0x11: /* FRINT32X */
5778 gen_fpst = gen_helper_frint32_s;
5779 break;
5780 case 0x12: /* FRINT64Z */
5781 rmode = float_round_to_zero;
5782 gen_fpst = gen_helper_frint64_s;
5783 break;
5784 case 0x13: /* FRINT64X */
5785 gen_fpst = gen_helper_frint64_s;
5786 break;
5787 default:
5788 g_assert_not_reached();
5791 fpst = get_fpstatus_ptr(false);
5792 if (rmode >= 0) {
5793 TCGv_i32 tcg_rmode = tcg_const_i32(rmode);
5794 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5795 gen_fpst(tcg_res, tcg_op, fpst);
5796 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5797 tcg_temp_free_i32(tcg_rmode);
5798 } else {
5799 gen_fpst(tcg_res, tcg_op, fpst);
5801 tcg_temp_free_ptr(fpst);
5803 done:
5804 write_fp_sreg(s, rd, tcg_res);
5805 tcg_temp_free_i32(tcg_op);
5806 tcg_temp_free_i32(tcg_res);
5809 /* Floating-point data-processing (1 source) - double precision */
5810 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
5812 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
5813 TCGv_i64 tcg_op, tcg_res;
5814 TCGv_ptr fpst;
5815 int rmode = -1;
5817 switch (opcode) {
5818 case 0x0: /* FMOV */
5819 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
5820 return;
5823 tcg_op = read_fp_dreg(s, rn);
5824 tcg_res = tcg_temp_new_i64();
5826 switch (opcode) {
5827 case 0x1: /* FABS */
5828 gen_helper_vfp_absd(tcg_res, tcg_op);
5829 goto done;
5830 case 0x2: /* FNEG */
5831 gen_helper_vfp_negd(tcg_res, tcg_op);
5832 goto done;
5833 case 0x3: /* FSQRT */
5834 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
5835 goto done;
5836 case 0x8: /* FRINTN */
5837 case 0x9: /* FRINTP */
5838 case 0xa: /* FRINTM */
5839 case 0xb: /* FRINTZ */
5840 case 0xc: /* FRINTA */
5841 rmode = arm_rmode_to_sf(opcode & 7);
5842 gen_fpst = gen_helper_rintd;
5843 break;
5844 case 0xe: /* FRINTX */
5845 gen_fpst = gen_helper_rintd_exact;
5846 break;
5847 case 0xf: /* FRINTI */
5848 gen_fpst = gen_helper_rintd;
5849 break;
5850 case 0x10: /* FRINT32Z */
5851 rmode = float_round_to_zero;
5852 gen_fpst = gen_helper_frint32_d;
5853 break;
5854 case 0x11: /* FRINT32X */
5855 gen_fpst = gen_helper_frint32_d;
5856 break;
5857 case 0x12: /* FRINT64Z */
5858 rmode = float_round_to_zero;
5859 gen_fpst = gen_helper_frint64_d;
5860 break;
5861 case 0x13: /* FRINT64X */
5862 gen_fpst = gen_helper_frint64_d;
5863 break;
5864 default:
5865 g_assert_not_reached();
5868 fpst = get_fpstatus_ptr(false);
5869 if (rmode >= 0) {
5870 TCGv_i32 tcg_rmode = tcg_const_i32(rmode);
5871 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5872 gen_fpst(tcg_res, tcg_op, fpst);
5873 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5874 tcg_temp_free_i32(tcg_rmode);
5875 } else {
5876 gen_fpst(tcg_res, tcg_op, fpst);
5878 tcg_temp_free_ptr(fpst);
5880 done:
5881 write_fp_dreg(s, rd, tcg_res);
5882 tcg_temp_free_i64(tcg_op);
5883 tcg_temp_free_i64(tcg_res);
5886 static void handle_fp_fcvt(DisasContext *s, int opcode,
5887 int rd, int rn, int dtype, int ntype)
5889 switch (ntype) {
5890 case 0x0:
5892 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
5893 if (dtype == 1) {
5894 /* Single to double */
5895 TCGv_i64 tcg_rd = tcg_temp_new_i64();
5896 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
5897 write_fp_dreg(s, rd, tcg_rd);
5898 tcg_temp_free_i64(tcg_rd);
5899 } else {
5900 /* Single to half */
5901 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5902 TCGv_i32 ahp = get_ahp_flag();
5903 TCGv_ptr fpst = get_fpstatus_ptr(false);
5905 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
5906 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
5907 write_fp_sreg(s, rd, tcg_rd);
5908 tcg_temp_free_i32(tcg_rd);
5909 tcg_temp_free_i32(ahp);
5910 tcg_temp_free_ptr(fpst);
5912 tcg_temp_free_i32(tcg_rn);
5913 break;
5915 case 0x1:
5917 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
5918 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5919 if (dtype == 0) {
5920 /* Double to single */
5921 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
5922 } else {
5923 TCGv_ptr fpst = get_fpstatus_ptr(false);
5924 TCGv_i32 ahp = get_ahp_flag();
5925 /* Double to half */
5926 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
5927 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
5928 tcg_temp_free_ptr(fpst);
5929 tcg_temp_free_i32(ahp);
5931 write_fp_sreg(s, rd, tcg_rd);
5932 tcg_temp_free_i32(tcg_rd);
5933 tcg_temp_free_i64(tcg_rn);
5934 break;
5936 case 0x3:
5938 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
5939 TCGv_ptr tcg_fpst = get_fpstatus_ptr(false);
5940 TCGv_i32 tcg_ahp = get_ahp_flag();
5941 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
5942 if (dtype == 0) {
5943 /* Half to single */
5944 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5945 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
5946 write_fp_sreg(s, rd, tcg_rd);
5947 tcg_temp_free_i32(tcg_rd);
5948 } else {
5949 /* Half to double */
5950 TCGv_i64 tcg_rd = tcg_temp_new_i64();
5951 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
5952 write_fp_dreg(s, rd, tcg_rd);
5953 tcg_temp_free_i64(tcg_rd);
5955 tcg_temp_free_i32(tcg_rn);
5956 tcg_temp_free_ptr(tcg_fpst);
5957 tcg_temp_free_i32(tcg_ahp);
5958 break;
5960 default:
5961 abort();
5965 /* Floating point data-processing (1 source)
5966 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
5967 * +---+---+---+-----------+------+---+--------+-----------+------+------+
5968 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
5969 * +---+---+---+-----------+------+---+--------+-----------+------+------+
5971 static void disas_fp_1src(DisasContext *s, uint32_t insn)
5973 int mos = extract32(insn, 29, 3);
5974 int type = extract32(insn, 22, 2);
5975 int opcode = extract32(insn, 15, 6);
5976 int rn = extract32(insn, 5, 5);
5977 int rd = extract32(insn, 0, 5);
5979 if (mos) {
5980 unallocated_encoding(s);
5981 return;
5984 switch (opcode) {
5985 case 0x4: case 0x5: case 0x7:
5987 /* FCVT between half, single and double precision */
5988 int dtype = extract32(opcode, 0, 2);
5989 if (type == 2 || dtype == type) {
5990 unallocated_encoding(s);
5991 return;
5993 if (!fp_access_check(s)) {
5994 return;
5997 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
5998 break;
6001 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
6002 if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
6003 unallocated_encoding(s);
6004 return;
6006 /* fall through */
6007 case 0x0 ... 0x3:
6008 case 0x8 ... 0xc:
6009 case 0xe ... 0xf:
6010 /* 32-to-32 and 64-to-64 ops */
6011 switch (type) {
6012 case 0:
6013 if (!fp_access_check(s)) {
6014 return;
6016 handle_fp_1src_single(s, opcode, rd, rn);
6017 break;
6018 case 1:
6019 if (!fp_access_check(s)) {
6020 return;
6022 handle_fp_1src_double(s, opcode, rd, rn);
6023 break;
6024 case 3:
6025 if (!dc_isar_feature(aa64_fp16, s)) {
6026 unallocated_encoding(s);
6027 return;
6030 if (!fp_access_check(s)) {
6031 return;
6033 handle_fp_1src_half(s, opcode, rd, rn);
6034 break;
6035 default:
6036 unallocated_encoding(s);
6038 break;
6040 default:
6041 unallocated_encoding(s);
6042 break;
6046 /* Floating-point data-processing (2 source) - single precision */
6047 static void handle_fp_2src_single(DisasContext *s, int opcode,
6048 int rd, int rn, int rm)
6050 TCGv_i32 tcg_op1;
6051 TCGv_i32 tcg_op2;
6052 TCGv_i32 tcg_res;
6053 TCGv_ptr fpst;
6055 tcg_res = tcg_temp_new_i32();
6056 fpst = get_fpstatus_ptr(false);
6057 tcg_op1 = read_fp_sreg(s, rn);
6058 tcg_op2 = read_fp_sreg(s, rm);
6060 switch (opcode) {
6061 case 0x0: /* FMUL */
6062 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6063 break;
6064 case 0x1: /* FDIV */
6065 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
6066 break;
6067 case 0x2: /* FADD */
6068 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6069 break;
6070 case 0x3: /* FSUB */
6071 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
6072 break;
6073 case 0x4: /* FMAX */
6074 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6075 break;
6076 case 0x5: /* FMIN */
6077 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6078 break;
6079 case 0x6: /* FMAXNM */
6080 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6081 break;
6082 case 0x7: /* FMINNM */
6083 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6084 break;
6085 case 0x8: /* FNMUL */
6086 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6087 gen_helper_vfp_negs(tcg_res, tcg_res);
6088 break;
6091 write_fp_sreg(s, rd, tcg_res);
6093 tcg_temp_free_ptr(fpst);
6094 tcg_temp_free_i32(tcg_op1);
6095 tcg_temp_free_i32(tcg_op2);
6096 tcg_temp_free_i32(tcg_res);
6099 /* Floating-point data-processing (2 source) - double precision */
6100 static void handle_fp_2src_double(DisasContext *s, int opcode,
6101 int rd, int rn, int rm)
6103 TCGv_i64 tcg_op1;
6104 TCGv_i64 tcg_op2;
6105 TCGv_i64 tcg_res;
6106 TCGv_ptr fpst;
6108 tcg_res = tcg_temp_new_i64();
6109 fpst = get_fpstatus_ptr(false);
6110 tcg_op1 = read_fp_dreg(s, rn);
6111 tcg_op2 = read_fp_dreg(s, rm);
6113 switch (opcode) {
6114 case 0x0: /* FMUL */
6115 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6116 break;
6117 case 0x1: /* FDIV */
6118 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
6119 break;
6120 case 0x2: /* FADD */
6121 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6122 break;
6123 case 0x3: /* FSUB */
6124 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
6125 break;
6126 case 0x4: /* FMAX */
6127 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6128 break;
6129 case 0x5: /* FMIN */
6130 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6131 break;
6132 case 0x6: /* FMAXNM */
6133 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6134 break;
6135 case 0x7: /* FMINNM */
6136 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6137 break;
6138 case 0x8: /* FNMUL */
6139 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6140 gen_helper_vfp_negd(tcg_res, tcg_res);
6141 break;
6144 write_fp_dreg(s, rd, tcg_res);
6146 tcg_temp_free_ptr(fpst);
6147 tcg_temp_free_i64(tcg_op1);
6148 tcg_temp_free_i64(tcg_op2);
6149 tcg_temp_free_i64(tcg_res);
6152 /* Floating-point data-processing (2 source) - half precision */
6153 static void handle_fp_2src_half(DisasContext *s, int opcode,
6154 int rd, int rn, int rm)
6156 TCGv_i32 tcg_op1;
6157 TCGv_i32 tcg_op2;
6158 TCGv_i32 tcg_res;
6159 TCGv_ptr fpst;
6161 tcg_res = tcg_temp_new_i32();
6162 fpst = get_fpstatus_ptr(true);
6163 tcg_op1 = read_fp_hreg(s, rn);
6164 tcg_op2 = read_fp_hreg(s, rm);
6166 switch (opcode) {
6167 case 0x0: /* FMUL */
6168 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6169 break;
6170 case 0x1: /* FDIV */
6171 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
6172 break;
6173 case 0x2: /* FADD */
6174 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
6175 break;
6176 case 0x3: /* FSUB */
6177 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
6178 break;
6179 case 0x4: /* FMAX */
6180 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
6181 break;
6182 case 0x5: /* FMIN */
6183 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
6184 break;
6185 case 0x6: /* FMAXNM */
6186 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6187 break;
6188 case 0x7: /* FMINNM */
6189 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6190 break;
6191 case 0x8: /* FNMUL */
6192 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6193 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
6194 break;
6195 default:
6196 g_assert_not_reached();
6199 write_fp_sreg(s, rd, tcg_res);
6201 tcg_temp_free_ptr(fpst);
6202 tcg_temp_free_i32(tcg_op1);
6203 tcg_temp_free_i32(tcg_op2);
6204 tcg_temp_free_i32(tcg_res);
6207 /* Floating point data-processing (2 source)
6208 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
6209 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6210 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
6211 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6213 static void disas_fp_2src(DisasContext *s, uint32_t insn)
6215 int mos = extract32(insn, 29, 3);
6216 int type = extract32(insn, 22, 2);
6217 int rd = extract32(insn, 0, 5);
6218 int rn = extract32(insn, 5, 5);
6219 int rm = extract32(insn, 16, 5);
6220 int opcode = extract32(insn, 12, 4);
6222 if (opcode > 8 || mos) {
6223 unallocated_encoding(s);
6224 return;
6227 switch (type) {
6228 case 0:
6229 if (!fp_access_check(s)) {
6230 return;
6232 handle_fp_2src_single(s, opcode, rd, rn, rm);
6233 break;
6234 case 1:
6235 if (!fp_access_check(s)) {
6236 return;
6238 handle_fp_2src_double(s, opcode, rd, rn, rm);
6239 break;
6240 case 3:
6241 if (!dc_isar_feature(aa64_fp16, s)) {
6242 unallocated_encoding(s);
6243 return;
6245 if (!fp_access_check(s)) {
6246 return;
6248 handle_fp_2src_half(s, opcode, rd, rn, rm);
6249 break;
6250 default:
6251 unallocated_encoding(s);
6255 /* Floating-point data-processing (3 source) - single precision */
6256 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
6257 int rd, int rn, int rm, int ra)
6259 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6260 TCGv_i32 tcg_res = tcg_temp_new_i32();
6261 TCGv_ptr fpst = get_fpstatus_ptr(false);
6263 tcg_op1 = read_fp_sreg(s, rn);
6264 tcg_op2 = read_fp_sreg(s, rm);
6265 tcg_op3 = read_fp_sreg(s, ra);
6267 /* These are fused multiply-add, and must be done as one
6268 * floating point operation with no rounding between the
6269 * multiplication and addition steps.
6270 * NB that doing the negations here as separate steps is
6271 * correct : an input NaN should come out with its sign bit
6272 * flipped if it is a negated-input.
6274 if (o1 == true) {
6275 gen_helper_vfp_negs(tcg_op3, tcg_op3);
6278 if (o0 != o1) {
6279 gen_helper_vfp_negs(tcg_op1, tcg_op1);
6282 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6284 write_fp_sreg(s, rd, tcg_res);
6286 tcg_temp_free_ptr(fpst);
6287 tcg_temp_free_i32(tcg_op1);
6288 tcg_temp_free_i32(tcg_op2);
6289 tcg_temp_free_i32(tcg_op3);
6290 tcg_temp_free_i32(tcg_res);
6293 /* Floating-point data-processing (3 source) - double precision */
6294 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
6295 int rd, int rn, int rm, int ra)
6297 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
6298 TCGv_i64 tcg_res = tcg_temp_new_i64();
6299 TCGv_ptr fpst = get_fpstatus_ptr(false);
6301 tcg_op1 = read_fp_dreg(s, rn);
6302 tcg_op2 = read_fp_dreg(s, rm);
6303 tcg_op3 = read_fp_dreg(s, ra);
6305 /* These are fused multiply-add, and must be done as one
6306 * floating point operation with no rounding between the
6307 * multiplication and addition steps.
6308 * NB that doing the negations here as separate steps is
6309 * correct : an input NaN should come out with its sign bit
6310 * flipped if it is a negated-input.
6312 if (o1 == true) {
6313 gen_helper_vfp_negd(tcg_op3, tcg_op3);
6316 if (o0 != o1) {
6317 gen_helper_vfp_negd(tcg_op1, tcg_op1);
6320 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6322 write_fp_dreg(s, rd, tcg_res);
6324 tcg_temp_free_ptr(fpst);
6325 tcg_temp_free_i64(tcg_op1);
6326 tcg_temp_free_i64(tcg_op2);
6327 tcg_temp_free_i64(tcg_op3);
6328 tcg_temp_free_i64(tcg_res);
6331 /* Floating-point data-processing (3 source) - half precision */
6332 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
6333 int rd, int rn, int rm, int ra)
6335 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6336 TCGv_i32 tcg_res = tcg_temp_new_i32();
6337 TCGv_ptr fpst = get_fpstatus_ptr(true);
6339 tcg_op1 = read_fp_hreg(s, rn);
6340 tcg_op2 = read_fp_hreg(s, rm);
6341 tcg_op3 = read_fp_hreg(s, ra);
6343 /* These are fused multiply-add, and must be done as one
6344 * floating point operation with no rounding between the
6345 * multiplication and addition steps.
6346 * NB that doing the negations here as separate steps is
6347 * correct : an input NaN should come out with its sign bit
6348 * flipped if it is a negated-input.
6350 if (o1 == true) {
6351 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
6354 if (o0 != o1) {
6355 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
6358 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6360 write_fp_sreg(s, rd, tcg_res);
6362 tcg_temp_free_ptr(fpst);
6363 tcg_temp_free_i32(tcg_op1);
6364 tcg_temp_free_i32(tcg_op2);
6365 tcg_temp_free_i32(tcg_op3);
6366 tcg_temp_free_i32(tcg_res);
6369 /* Floating point data-processing (3 source)
6370 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
6371 * +---+---+---+-----------+------+----+------+----+------+------+------+
6372 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
6373 * +---+---+---+-----------+------+----+------+----+------+------+------+
6375 static void disas_fp_3src(DisasContext *s, uint32_t insn)
6377 int mos = extract32(insn, 29, 3);
6378 int type = extract32(insn, 22, 2);
6379 int rd = extract32(insn, 0, 5);
6380 int rn = extract32(insn, 5, 5);
6381 int ra = extract32(insn, 10, 5);
6382 int rm = extract32(insn, 16, 5);
6383 bool o0 = extract32(insn, 15, 1);
6384 bool o1 = extract32(insn, 21, 1);
6386 if (mos) {
6387 unallocated_encoding(s);
6388 return;
6391 switch (type) {
6392 case 0:
6393 if (!fp_access_check(s)) {
6394 return;
6396 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
6397 break;
6398 case 1:
6399 if (!fp_access_check(s)) {
6400 return;
6402 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
6403 break;
6404 case 3:
6405 if (!dc_isar_feature(aa64_fp16, s)) {
6406 unallocated_encoding(s);
6407 return;
6409 if (!fp_access_check(s)) {
6410 return;
6412 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
6413 break;
6414 default:
6415 unallocated_encoding(s);
6419 /* Floating point immediate
6420 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
6421 * +---+---+---+-----------+------+---+------------+-------+------+------+
6422 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
6423 * +---+---+---+-----------+------+---+------------+-------+------+------+
6425 static void disas_fp_imm(DisasContext *s, uint32_t insn)
6427 int rd = extract32(insn, 0, 5);
6428 int imm5 = extract32(insn, 5, 5);
6429 int imm8 = extract32(insn, 13, 8);
6430 int type = extract32(insn, 22, 2);
6431 int mos = extract32(insn, 29, 3);
6432 uint64_t imm;
6433 TCGv_i64 tcg_res;
6434 MemOp sz;
6436 if (mos || imm5) {
6437 unallocated_encoding(s);
6438 return;
6441 switch (type) {
6442 case 0:
6443 sz = MO_32;
6444 break;
6445 case 1:
6446 sz = MO_64;
6447 break;
6448 case 3:
6449 sz = MO_16;
6450 if (dc_isar_feature(aa64_fp16, s)) {
6451 break;
6453 /* fallthru */
6454 default:
6455 unallocated_encoding(s);
6456 return;
6459 if (!fp_access_check(s)) {
6460 return;
6463 imm = vfp_expand_imm(sz, imm8);
6465 tcg_res = tcg_const_i64(imm);
6466 write_fp_dreg(s, rd, tcg_res);
6467 tcg_temp_free_i64(tcg_res);
6470 /* Handle floating point <=> fixed point conversions. Note that we can
6471 * also deal with fp <=> integer conversions as a special case (scale == 64)
6472 * OPTME: consider handling that special case specially or at least skipping
6473 * the call to scalbn in the helpers for zero shifts.
6475 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
6476 bool itof, int rmode, int scale, int sf, int type)
6478 bool is_signed = !(opcode & 1);
6479 TCGv_ptr tcg_fpstatus;
6480 TCGv_i32 tcg_shift, tcg_single;
6481 TCGv_i64 tcg_double;
6483 tcg_fpstatus = get_fpstatus_ptr(type == 3);
6485 tcg_shift = tcg_const_i32(64 - scale);
6487 if (itof) {
6488 TCGv_i64 tcg_int = cpu_reg(s, rn);
6489 if (!sf) {
6490 TCGv_i64 tcg_extend = new_tmp_a64(s);
6492 if (is_signed) {
6493 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
6494 } else {
6495 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
6498 tcg_int = tcg_extend;
6501 switch (type) {
6502 case 1: /* float64 */
6503 tcg_double = tcg_temp_new_i64();
6504 if (is_signed) {
6505 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6506 tcg_shift, tcg_fpstatus);
6507 } else {
6508 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6509 tcg_shift, tcg_fpstatus);
6511 write_fp_dreg(s, rd, tcg_double);
6512 tcg_temp_free_i64(tcg_double);
6513 break;
6515 case 0: /* float32 */
6516 tcg_single = tcg_temp_new_i32();
6517 if (is_signed) {
6518 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6519 tcg_shift, tcg_fpstatus);
6520 } else {
6521 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6522 tcg_shift, tcg_fpstatus);
6524 write_fp_sreg(s, rd, tcg_single);
6525 tcg_temp_free_i32(tcg_single);
6526 break;
6528 case 3: /* float16 */
6529 tcg_single = tcg_temp_new_i32();
6530 if (is_signed) {
6531 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
6532 tcg_shift, tcg_fpstatus);
6533 } else {
6534 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
6535 tcg_shift, tcg_fpstatus);
6537 write_fp_sreg(s, rd, tcg_single);
6538 tcg_temp_free_i32(tcg_single);
6539 break;
6541 default:
6542 g_assert_not_reached();
6544 } else {
6545 TCGv_i64 tcg_int = cpu_reg(s, rd);
6546 TCGv_i32 tcg_rmode;
6548 if (extract32(opcode, 2, 1)) {
6549 /* There are too many rounding modes to all fit into rmode,
6550 * so FCVTA[US] is a special case.
6552 rmode = FPROUNDING_TIEAWAY;
6555 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
6557 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
6559 switch (type) {
6560 case 1: /* float64 */
6561 tcg_double = read_fp_dreg(s, rn);
6562 if (is_signed) {
6563 if (!sf) {
6564 gen_helper_vfp_tosld(tcg_int, tcg_double,
6565 tcg_shift, tcg_fpstatus);
6566 } else {
6567 gen_helper_vfp_tosqd(tcg_int, tcg_double,
6568 tcg_shift, tcg_fpstatus);
6570 } else {
6571 if (!sf) {
6572 gen_helper_vfp_tould(tcg_int, tcg_double,
6573 tcg_shift, tcg_fpstatus);
6574 } else {
6575 gen_helper_vfp_touqd(tcg_int, tcg_double,
6576 tcg_shift, tcg_fpstatus);
6579 if (!sf) {
6580 tcg_gen_ext32u_i64(tcg_int, tcg_int);
6582 tcg_temp_free_i64(tcg_double);
6583 break;
6585 case 0: /* float32 */
6586 tcg_single = read_fp_sreg(s, rn);
6587 if (sf) {
6588 if (is_signed) {
6589 gen_helper_vfp_tosqs(tcg_int, tcg_single,
6590 tcg_shift, tcg_fpstatus);
6591 } else {
6592 gen_helper_vfp_touqs(tcg_int, tcg_single,
6593 tcg_shift, tcg_fpstatus);
6595 } else {
6596 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6597 if (is_signed) {
6598 gen_helper_vfp_tosls(tcg_dest, tcg_single,
6599 tcg_shift, tcg_fpstatus);
6600 } else {
6601 gen_helper_vfp_touls(tcg_dest, tcg_single,
6602 tcg_shift, tcg_fpstatus);
6604 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6605 tcg_temp_free_i32(tcg_dest);
6607 tcg_temp_free_i32(tcg_single);
6608 break;
6610 case 3: /* float16 */
6611 tcg_single = read_fp_sreg(s, rn);
6612 if (sf) {
6613 if (is_signed) {
6614 gen_helper_vfp_tosqh(tcg_int, tcg_single,
6615 tcg_shift, tcg_fpstatus);
6616 } else {
6617 gen_helper_vfp_touqh(tcg_int, tcg_single,
6618 tcg_shift, tcg_fpstatus);
6620 } else {
6621 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6622 if (is_signed) {
6623 gen_helper_vfp_toslh(tcg_dest, tcg_single,
6624 tcg_shift, tcg_fpstatus);
6625 } else {
6626 gen_helper_vfp_toulh(tcg_dest, tcg_single,
6627 tcg_shift, tcg_fpstatus);
6629 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6630 tcg_temp_free_i32(tcg_dest);
6632 tcg_temp_free_i32(tcg_single);
6633 break;
6635 default:
6636 g_assert_not_reached();
6639 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
6640 tcg_temp_free_i32(tcg_rmode);
6643 tcg_temp_free_ptr(tcg_fpstatus);
6644 tcg_temp_free_i32(tcg_shift);
6647 /* Floating point <-> fixed point conversions
6648 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
6649 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6650 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
6651 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6653 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
6655 int rd = extract32(insn, 0, 5);
6656 int rn = extract32(insn, 5, 5);
6657 int scale = extract32(insn, 10, 6);
6658 int opcode = extract32(insn, 16, 3);
6659 int rmode = extract32(insn, 19, 2);
6660 int type = extract32(insn, 22, 2);
6661 bool sbit = extract32(insn, 29, 1);
6662 bool sf = extract32(insn, 31, 1);
6663 bool itof;
6665 if (sbit || (!sf && scale < 32)) {
6666 unallocated_encoding(s);
6667 return;
6670 switch (type) {
6671 case 0: /* float32 */
6672 case 1: /* float64 */
6673 break;
6674 case 3: /* float16 */
6675 if (dc_isar_feature(aa64_fp16, s)) {
6676 break;
6678 /* fallthru */
6679 default:
6680 unallocated_encoding(s);
6681 return;
6684 switch ((rmode << 3) | opcode) {
6685 case 0x2: /* SCVTF */
6686 case 0x3: /* UCVTF */
6687 itof = true;
6688 break;
6689 case 0x18: /* FCVTZS */
6690 case 0x19: /* FCVTZU */
6691 itof = false;
6692 break;
6693 default:
6694 unallocated_encoding(s);
6695 return;
6698 if (!fp_access_check(s)) {
6699 return;
6702 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
6705 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
6707 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
6708 * without conversion.
6711 if (itof) {
6712 TCGv_i64 tcg_rn = cpu_reg(s, rn);
6713 TCGv_i64 tmp;
6715 switch (type) {
6716 case 0:
6717 /* 32 bit */
6718 tmp = tcg_temp_new_i64();
6719 tcg_gen_ext32u_i64(tmp, tcg_rn);
6720 write_fp_dreg(s, rd, tmp);
6721 tcg_temp_free_i64(tmp);
6722 break;
6723 case 1:
6724 /* 64 bit */
6725 write_fp_dreg(s, rd, tcg_rn);
6726 break;
6727 case 2:
6728 /* 64 bit to top half. */
6729 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
6730 clear_vec_high(s, true, rd);
6731 break;
6732 case 3:
6733 /* 16 bit */
6734 tmp = tcg_temp_new_i64();
6735 tcg_gen_ext16u_i64(tmp, tcg_rn);
6736 write_fp_dreg(s, rd, tmp);
6737 tcg_temp_free_i64(tmp);
6738 break;
6739 default:
6740 g_assert_not_reached();
6742 } else {
6743 TCGv_i64 tcg_rd = cpu_reg(s, rd);
6745 switch (type) {
6746 case 0:
6747 /* 32 bit */
6748 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
6749 break;
6750 case 1:
6751 /* 64 bit */
6752 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
6753 break;
6754 case 2:
6755 /* 64 bits from top half */
6756 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
6757 break;
6758 case 3:
6759 /* 16 bit */
6760 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16));
6761 break;
6762 default:
6763 g_assert_not_reached();
6768 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
6770 TCGv_i64 t = read_fp_dreg(s, rn);
6771 TCGv_ptr fpstatus = get_fpstatus_ptr(false);
6773 gen_helper_fjcvtzs(t, t, fpstatus);
6775 tcg_temp_free_ptr(fpstatus);
6777 tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
6778 tcg_gen_extrh_i64_i32(cpu_ZF, t);
6779 tcg_gen_movi_i32(cpu_CF, 0);
6780 tcg_gen_movi_i32(cpu_NF, 0);
6781 tcg_gen_movi_i32(cpu_VF, 0);
6783 tcg_temp_free_i64(t);
6786 /* Floating point <-> integer conversions
6787 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
6788 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6789 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
6790 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6792 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
6794 int rd = extract32(insn, 0, 5);
6795 int rn = extract32(insn, 5, 5);
6796 int opcode = extract32(insn, 16, 3);
6797 int rmode = extract32(insn, 19, 2);
6798 int type = extract32(insn, 22, 2);
6799 bool sbit = extract32(insn, 29, 1);
6800 bool sf = extract32(insn, 31, 1);
6801 bool itof = false;
6803 if (sbit) {
6804 goto do_unallocated;
6807 switch (opcode) {
6808 case 2: /* SCVTF */
6809 case 3: /* UCVTF */
6810 itof = true;
6811 /* fallthru */
6812 case 4: /* FCVTAS */
6813 case 5: /* FCVTAU */
6814 if (rmode != 0) {
6815 goto do_unallocated;
6817 /* fallthru */
6818 case 0: /* FCVT[NPMZ]S */
6819 case 1: /* FCVT[NPMZ]U */
6820 switch (type) {
6821 case 0: /* float32 */
6822 case 1: /* float64 */
6823 break;
6824 case 3: /* float16 */
6825 if (!dc_isar_feature(aa64_fp16, s)) {
6826 goto do_unallocated;
6828 break;
6829 default:
6830 goto do_unallocated;
6832 if (!fp_access_check(s)) {
6833 return;
6835 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
6836 break;
6838 default:
6839 switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
6840 case 0b01100110: /* FMOV half <-> 32-bit int */
6841 case 0b01100111:
6842 case 0b11100110: /* FMOV half <-> 64-bit int */
6843 case 0b11100111:
6844 if (!dc_isar_feature(aa64_fp16, s)) {
6845 goto do_unallocated;
6847 /* fallthru */
6848 case 0b00000110: /* FMOV 32-bit */
6849 case 0b00000111:
6850 case 0b10100110: /* FMOV 64-bit */
6851 case 0b10100111:
6852 case 0b11001110: /* FMOV top half of 128-bit */
6853 case 0b11001111:
6854 if (!fp_access_check(s)) {
6855 return;
6857 itof = opcode & 1;
6858 handle_fmov(s, rd, rn, type, itof);
6859 break;
6861 case 0b00111110: /* FJCVTZS */
6862 if (!dc_isar_feature(aa64_jscvt, s)) {
6863 goto do_unallocated;
6864 } else if (fp_access_check(s)) {
6865 handle_fjcvtzs(s, rd, rn);
6867 break;
6869 default:
6870 do_unallocated:
6871 unallocated_encoding(s);
6872 return;
6874 break;
6878 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
6879 * 31 30 29 28 25 24 0
6880 * +---+---+---+---------+-----------------------------+
6881 * | | 0 | | 1 1 1 1 | |
6882 * +---+---+---+---------+-----------------------------+
6884 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
6886 if (extract32(insn, 24, 1)) {
6887 /* Floating point data-processing (3 source) */
6888 disas_fp_3src(s, insn);
6889 } else if (extract32(insn, 21, 1) == 0) {
6890 /* Floating point to fixed point conversions */
6891 disas_fp_fixed_conv(s, insn);
6892 } else {
6893 switch (extract32(insn, 10, 2)) {
6894 case 1:
6895 /* Floating point conditional compare */
6896 disas_fp_ccomp(s, insn);
6897 break;
6898 case 2:
6899 /* Floating point data-processing (2 source) */
6900 disas_fp_2src(s, insn);
6901 break;
6902 case 3:
6903 /* Floating point conditional select */
6904 disas_fp_csel(s, insn);
6905 break;
6906 case 0:
6907 switch (ctz32(extract32(insn, 12, 4))) {
6908 case 0: /* [15:12] == xxx1 */
6909 /* Floating point immediate */
6910 disas_fp_imm(s, insn);
6911 break;
6912 case 1: /* [15:12] == xx10 */
6913 /* Floating point compare */
6914 disas_fp_compare(s, insn);
6915 break;
6916 case 2: /* [15:12] == x100 */
6917 /* Floating point data-processing (1 source) */
6918 disas_fp_1src(s, insn);
6919 break;
6920 case 3: /* [15:12] == 1000 */
6921 unallocated_encoding(s);
6922 break;
6923 default: /* [15:12] == 0000 */
6924 /* Floating point <-> integer conversions */
6925 disas_fp_int_conv(s, insn);
6926 break;
6928 break;
6933 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
6934 int pos)
6936 /* Extract 64 bits from the middle of two concatenated 64 bit
6937 * vector register slices left:right. The extracted bits start
6938 * at 'pos' bits into the right (least significant) side.
6939 * We return the result in tcg_right, and guarantee not to
6940 * trash tcg_left.
6942 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
6943 assert(pos > 0 && pos < 64);
6945 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
6946 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
6947 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
6949 tcg_temp_free_i64(tcg_tmp);
6952 /* EXT
6953 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
6954 * +---+---+-------------+-----+---+------+---+------+---+------+------+
6955 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
6956 * +---+---+-------------+-----+---+------+---+------+---+------+------+
6958 static void disas_simd_ext(DisasContext *s, uint32_t insn)
6960 int is_q = extract32(insn, 30, 1);
6961 int op2 = extract32(insn, 22, 2);
6962 int imm4 = extract32(insn, 11, 4);
6963 int rm = extract32(insn, 16, 5);
6964 int rn = extract32(insn, 5, 5);
6965 int rd = extract32(insn, 0, 5);
6966 int pos = imm4 << 3;
6967 TCGv_i64 tcg_resl, tcg_resh;
6969 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
6970 unallocated_encoding(s);
6971 return;
6974 if (!fp_access_check(s)) {
6975 return;
6978 tcg_resh = tcg_temp_new_i64();
6979 tcg_resl = tcg_temp_new_i64();
6981 /* Vd gets bits starting at pos bits into Vm:Vn. This is
6982 * either extracting 128 bits from a 128:128 concatenation, or
6983 * extracting 64 bits from a 64:64 concatenation.
6985 if (!is_q) {
6986 read_vec_element(s, tcg_resl, rn, 0, MO_64);
6987 if (pos != 0) {
6988 read_vec_element(s, tcg_resh, rm, 0, MO_64);
6989 do_ext64(s, tcg_resh, tcg_resl, pos);
6991 tcg_gen_movi_i64(tcg_resh, 0);
6992 } else {
6993 TCGv_i64 tcg_hh;
6994 typedef struct {
6995 int reg;
6996 int elt;
6997 } EltPosns;
6998 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
6999 EltPosns *elt = eltposns;
7001 if (pos >= 64) {
7002 elt++;
7003 pos -= 64;
7006 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
7007 elt++;
7008 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7009 elt++;
7010 if (pos != 0) {
7011 do_ext64(s, tcg_resh, tcg_resl, pos);
7012 tcg_hh = tcg_temp_new_i64();
7013 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7014 do_ext64(s, tcg_hh, tcg_resh, pos);
7015 tcg_temp_free_i64(tcg_hh);
7019 write_vec_element(s, tcg_resl, rd, 0, MO_64);
7020 tcg_temp_free_i64(tcg_resl);
7021 write_vec_element(s, tcg_resh, rd, 1, MO_64);
7022 tcg_temp_free_i64(tcg_resh);
7023 clear_vec_high(s, true, rd);
7026 /* TBL/TBX
7027 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
7028 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7029 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
7030 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7032 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7034 int op2 = extract32(insn, 22, 2);
7035 int is_q = extract32(insn, 30, 1);
7036 int rm = extract32(insn, 16, 5);
7037 int rn = extract32(insn, 5, 5);
7038 int rd = extract32(insn, 0, 5);
7039 int is_tblx = extract32(insn, 12, 1);
7040 int len = extract32(insn, 13, 2);
7041 TCGv_i64 tcg_resl, tcg_resh, tcg_idx;
7042 TCGv_i32 tcg_regno, tcg_numregs;
7044 if (op2 != 0) {
7045 unallocated_encoding(s);
7046 return;
7049 if (!fp_access_check(s)) {
7050 return;
7053 /* This does a table lookup: for every byte element in the input
7054 * we index into a table formed from up to four vector registers,
7055 * and then the output is the result of the lookups. Our helper
7056 * function does the lookup operation for a single 64 bit part of
7057 * the input.
7059 tcg_resl = tcg_temp_new_i64();
7060 tcg_resh = tcg_temp_new_i64();
7062 if (is_tblx) {
7063 read_vec_element(s, tcg_resl, rd, 0, MO_64);
7064 } else {
7065 tcg_gen_movi_i64(tcg_resl, 0);
7067 if (is_tblx && is_q) {
7068 read_vec_element(s, tcg_resh, rd, 1, MO_64);
7069 } else {
7070 tcg_gen_movi_i64(tcg_resh, 0);
7073 tcg_idx = tcg_temp_new_i64();
7074 tcg_regno = tcg_const_i32(rn);
7075 tcg_numregs = tcg_const_i32(len + 1);
7076 read_vec_element(s, tcg_idx, rm, 0, MO_64);
7077 gen_helper_simd_tbl(tcg_resl, cpu_env, tcg_resl, tcg_idx,
7078 tcg_regno, tcg_numregs);
7079 if (is_q) {
7080 read_vec_element(s, tcg_idx, rm, 1, MO_64);
7081 gen_helper_simd_tbl(tcg_resh, cpu_env, tcg_resh, tcg_idx,
7082 tcg_regno, tcg_numregs);
7084 tcg_temp_free_i64(tcg_idx);
7085 tcg_temp_free_i32(tcg_regno);
7086 tcg_temp_free_i32(tcg_numregs);
7088 write_vec_element(s, tcg_resl, rd, 0, MO_64);
7089 tcg_temp_free_i64(tcg_resl);
7090 write_vec_element(s, tcg_resh, rd, 1, MO_64);
7091 tcg_temp_free_i64(tcg_resh);
7092 clear_vec_high(s, true, rd);
7095 /* ZIP/UZP/TRN
7096 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
7097 * +---+---+-------------+------+---+------+---+------------------+------+
7098 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
7099 * +---+---+-------------+------+---+------+---+------------------+------+
7101 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7103 int rd = extract32(insn, 0, 5);
7104 int rn = extract32(insn, 5, 5);
7105 int rm = extract32(insn, 16, 5);
7106 int size = extract32(insn, 22, 2);
7107 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7108 * bit 2 indicates 1 vs 2 variant of the insn.
7110 int opcode = extract32(insn, 12, 2);
7111 bool part = extract32(insn, 14, 1);
7112 bool is_q = extract32(insn, 30, 1);
7113 int esize = 8 << size;
7114 int i, ofs;
7115 int datasize = is_q ? 128 : 64;
7116 int elements = datasize / esize;
7117 TCGv_i64 tcg_res, tcg_resl, tcg_resh;
7119 if (opcode == 0 || (size == 3 && !is_q)) {
7120 unallocated_encoding(s);
7121 return;
7124 if (!fp_access_check(s)) {
7125 return;
7128 tcg_resl = tcg_const_i64(0);
7129 tcg_resh = tcg_const_i64(0);
7130 tcg_res = tcg_temp_new_i64();
7132 for (i = 0; i < elements; i++) {
7133 switch (opcode) {
7134 case 1: /* UZP1/2 */
7136 int midpoint = elements / 2;
7137 if (i < midpoint) {
7138 read_vec_element(s, tcg_res, rn, 2 * i + part, size);
7139 } else {
7140 read_vec_element(s, tcg_res, rm,
7141 2 * (i - midpoint) + part, size);
7143 break;
7145 case 2: /* TRN1/2 */
7146 if (i & 1) {
7147 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
7148 } else {
7149 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
7151 break;
7152 case 3: /* ZIP1/2 */
7154 int base = part * elements / 2;
7155 if (i & 1) {
7156 read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
7157 } else {
7158 read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
7160 break;
7162 default:
7163 g_assert_not_reached();
7166 ofs = i * esize;
7167 if (ofs < 64) {
7168 tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
7169 tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
7170 } else {
7171 tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
7172 tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
7176 tcg_temp_free_i64(tcg_res);
7178 write_vec_element(s, tcg_resl, rd, 0, MO_64);
7179 tcg_temp_free_i64(tcg_resl);
7180 write_vec_element(s, tcg_resh, rd, 1, MO_64);
7181 tcg_temp_free_i64(tcg_resh);
7182 clear_vec_high(s, true, rd);
7186 * do_reduction_op helper
7188 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7189 * important for correct NaN propagation that we do these
7190 * operations in exactly the order specified by the pseudocode.
7192 * This is a recursive function, TCG temps should be freed by the
7193 * calling function once it is done with the values.
7195 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
7196 int esize, int size, int vmap, TCGv_ptr fpst)
7198 if (esize == size) {
7199 int element;
7200 MemOp msize = esize == 16 ? MO_16 : MO_32;
7201 TCGv_i32 tcg_elem;
7203 /* We should have one register left here */
7204 assert(ctpop8(vmap) == 1);
7205 element = ctz32(vmap);
7206 assert(element < 8);
7208 tcg_elem = tcg_temp_new_i32();
7209 read_vec_element_i32(s, tcg_elem, rn, element, msize);
7210 return tcg_elem;
7211 } else {
7212 int bits = size / 2;
7213 int shift = ctpop8(vmap) / 2;
7214 int vmap_lo = (vmap >> shift) & vmap;
7215 int vmap_hi = (vmap & ~vmap_lo);
7216 TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7218 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
7219 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
7220 tcg_res = tcg_temp_new_i32();
7222 switch (fpopcode) {
7223 case 0x0c: /* fmaxnmv half-precision */
7224 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7225 break;
7226 case 0x0f: /* fmaxv half-precision */
7227 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
7228 break;
7229 case 0x1c: /* fminnmv half-precision */
7230 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7231 break;
7232 case 0x1f: /* fminv half-precision */
7233 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
7234 break;
7235 case 0x2c: /* fmaxnmv */
7236 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
7237 break;
7238 case 0x2f: /* fmaxv */
7239 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
7240 break;
7241 case 0x3c: /* fminnmv */
7242 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
7243 break;
7244 case 0x3f: /* fminv */
7245 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
7246 break;
7247 default:
7248 g_assert_not_reached();
7251 tcg_temp_free_i32(tcg_hi);
7252 tcg_temp_free_i32(tcg_lo);
7253 return tcg_res;
7257 /* AdvSIMD across lanes
7258 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7259 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7260 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
7261 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7263 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
7265 int rd = extract32(insn, 0, 5);
7266 int rn = extract32(insn, 5, 5);
7267 int size = extract32(insn, 22, 2);
7268 int opcode = extract32(insn, 12, 5);
7269 bool is_q = extract32(insn, 30, 1);
7270 bool is_u = extract32(insn, 29, 1);
7271 bool is_fp = false;
7272 bool is_min = false;
7273 int esize;
7274 int elements;
7275 int i;
7276 TCGv_i64 tcg_res, tcg_elt;
7278 switch (opcode) {
7279 case 0x1b: /* ADDV */
7280 if (is_u) {
7281 unallocated_encoding(s);
7282 return;
7284 /* fall through */
7285 case 0x3: /* SADDLV, UADDLV */
7286 case 0xa: /* SMAXV, UMAXV */
7287 case 0x1a: /* SMINV, UMINV */
7288 if (size == 3 || (size == 2 && !is_q)) {
7289 unallocated_encoding(s);
7290 return;
7292 break;
7293 case 0xc: /* FMAXNMV, FMINNMV */
7294 case 0xf: /* FMAXV, FMINV */
7295 /* Bit 1 of size field encodes min vs max and the actual size
7296 * depends on the encoding of the U bit. If not set (and FP16
7297 * enabled) then we do half-precision float instead of single
7298 * precision.
7300 is_min = extract32(size, 1, 1);
7301 is_fp = true;
7302 if (!is_u && dc_isar_feature(aa64_fp16, s)) {
7303 size = 1;
7304 } else if (!is_u || !is_q || extract32(size, 0, 1)) {
7305 unallocated_encoding(s);
7306 return;
7307 } else {
7308 size = 2;
7310 break;
7311 default:
7312 unallocated_encoding(s);
7313 return;
7316 if (!fp_access_check(s)) {
7317 return;
7320 esize = 8 << size;
7321 elements = (is_q ? 128 : 64) / esize;
7323 tcg_res = tcg_temp_new_i64();
7324 tcg_elt = tcg_temp_new_i64();
7326 /* These instructions operate across all lanes of a vector
7327 * to produce a single result. We can guarantee that a 64
7328 * bit intermediate is sufficient:
7329 * + for [US]ADDLV the maximum element size is 32 bits, and
7330 * the result type is 64 bits
7331 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
7332 * same as the element size, which is 32 bits at most
7333 * For the integer operations we can choose to work at 64
7334 * or 32 bits and truncate at the end; for simplicity
7335 * we use 64 bits always. The floating point
7336 * ops do require 32 bit intermediates, though.
7338 if (!is_fp) {
7339 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
7341 for (i = 1; i < elements; i++) {
7342 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
7344 switch (opcode) {
7345 case 0x03: /* SADDLV / UADDLV */
7346 case 0x1b: /* ADDV */
7347 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
7348 break;
7349 case 0x0a: /* SMAXV / UMAXV */
7350 if (is_u) {
7351 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
7352 } else {
7353 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
7355 break;
7356 case 0x1a: /* SMINV / UMINV */
7357 if (is_u) {
7358 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
7359 } else {
7360 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
7362 break;
7363 default:
7364 g_assert_not_reached();
7368 } else {
7369 /* Floating point vector reduction ops which work across 32
7370 * bit (single) or 16 bit (half-precision) intermediates.
7371 * Note that correct NaN propagation requires that we do these
7372 * operations in exactly the order specified by the pseudocode.
7374 TCGv_ptr fpst = get_fpstatus_ptr(size == MO_16);
7375 int fpopcode = opcode | is_min << 4 | is_u << 5;
7376 int vmap = (1 << elements) - 1;
7377 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
7378 (is_q ? 128 : 64), vmap, fpst);
7379 tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
7380 tcg_temp_free_i32(tcg_res32);
7381 tcg_temp_free_ptr(fpst);
7384 tcg_temp_free_i64(tcg_elt);
7386 /* Now truncate the result to the width required for the final output */
7387 if (opcode == 0x03) {
7388 /* SADDLV, UADDLV: result is 2*esize */
7389 size++;
7392 switch (size) {
7393 case 0:
7394 tcg_gen_ext8u_i64(tcg_res, tcg_res);
7395 break;
7396 case 1:
7397 tcg_gen_ext16u_i64(tcg_res, tcg_res);
7398 break;
7399 case 2:
7400 tcg_gen_ext32u_i64(tcg_res, tcg_res);
7401 break;
7402 case 3:
7403 break;
7404 default:
7405 g_assert_not_reached();
7408 write_fp_dreg(s, rd, tcg_res);
7409 tcg_temp_free_i64(tcg_res);
7412 /* DUP (Element, Vector)
7414 * 31 30 29 21 20 16 15 10 9 5 4 0
7415 * +---+---+-------------------+--------+-------------+------+------+
7416 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7417 * +---+---+-------------------+--------+-------------+------+------+
7419 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7421 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
7422 int imm5)
7424 int size = ctz32(imm5);
7425 int index;
7427 if (size > 3 || (size == 3 && !is_q)) {
7428 unallocated_encoding(s);
7429 return;
7432 if (!fp_access_check(s)) {
7433 return;
7436 index = imm5 >> (size + 1);
7437 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
7438 vec_reg_offset(s, rn, index, size),
7439 is_q ? 16 : 8, vec_full_reg_size(s));
7442 /* DUP (element, scalar)
7443 * 31 21 20 16 15 10 9 5 4 0
7444 * +-----------------------+--------+-------------+------+------+
7445 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7446 * +-----------------------+--------+-------------+------+------+
7448 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
7449 int imm5)
7451 int size = ctz32(imm5);
7452 int index;
7453 TCGv_i64 tmp;
7455 if (size > 3) {
7456 unallocated_encoding(s);
7457 return;
7460 if (!fp_access_check(s)) {
7461 return;
7464 index = imm5 >> (size + 1);
7466 /* This instruction just extracts the specified element and
7467 * zero-extends it into the bottom of the destination register.
7469 tmp = tcg_temp_new_i64();
7470 read_vec_element(s, tmp, rn, index, size);
7471 write_fp_dreg(s, rd, tmp);
7472 tcg_temp_free_i64(tmp);
7475 /* DUP (General)
7477 * 31 30 29 21 20 16 15 10 9 5 4 0
7478 * +---+---+-------------------+--------+-------------+------+------+
7479 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
7480 * +---+---+-------------------+--------+-------------+------+------+
7482 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7484 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
7485 int imm5)
7487 int size = ctz32(imm5);
7488 uint32_t dofs, oprsz, maxsz;
7490 if (size > 3 || ((size == 3) && !is_q)) {
7491 unallocated_encoding(s);
7492 return;
7495 if (!fp_access_check(s)) {
7496 return;
7499 dofs = vec_full_reg_offset(s, rd);
7500 oprsz = is_q ? 16 : 8;
7501 maxsz = vec_full_reg_size(s);
7503 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
7506 /* INS (Element)
7508 * 31 21 20 16 15 14 11 10 9 5 4 0
7509 * +-----------------------+--------+------------+---+------+------+
7510 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7511 * +-----------------------+--------+------------+---+------+------+
7513 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7514 * index: encoded in imm5<4:size+1>
7516 static void handle_simd_inse(DisasContext *s, int rd, int rn,
7517 int imm4, int imm5)
7519 int size = ctz32(imm5);
7520 int src_index, dst_index;
7521 TCGv_i64 tmp;
7523 if (size > 3) {
7524 unallocated_encoding(s);
7525 return;
7528 if (!fp_access_check(s)) {
7529 return;
7532 dst_index = extract32(imm5, 1+size, 5);
7533 src_index = extract32(imm4, size, 4);
7535 tmp = tcg_temp_new_i64();
7537 read_vec_element(s, tmp, rn, src_index, size);
7538 write_vec_element(s, tmp, rd, dst_index, size);
7540 tcg_temp_free_i64(tmp);
7542 /* INS is considered a 128-bit write for SVE. */
7543 clear_vec_high(s, true, rd);
7547 /* INS (General)
7549 * 31 21 20 16 15 10 9 5 4 0
7550 * +-----------------------+--------+-------------+------+------+
7551 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
7552 * +-----------------------+--------+-------------+------+------+
7554 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7555 * index: encoded in imm5<4:size+1>
7557 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
7559 int size = ctz32(imm5);
7560 int idx;
7562 if (size > 3) {
7563 unallocated_encoding(s);
7564 return;
7567 if (!fp_access_check(s)) {
7568 return;
7571 idx = extract32(imm5, 1 + size, 4 - size);
7572 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
7574 /* INS is considered a 128-bit write for SVE. */
7575 clear_vec_high(s, true, rd);
7579 * UMOV (General)
7580 * SMOV (General)
7582 * 31 30 29 21 20 16 15 12 10 9 5 4 0
7583 * +---+---+-------------------+--------+-------------+------+------+
7584 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
7585 * +---+---+-------------------+--------+-------------+------+------+
7587 * U: unsigned when set
7588 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7590 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
7591 int rn, int rd, int imm5)
7593 int size = ctz32(imm5);
7594 int element;
7595 TCGv_i64 tcg_rd;
7597 /* Check for UnallocatedEncodings */
7598 if (is_signed) {
7599 if (size > 2 || (size == 2 && !is_q)) {
7600 unallocated_encoding(s);
7601 return;
7603 } else {
7604 if (size > 3
7605 || (size < 3 && is_q)
7606 || (size == 3 && !is_q)) {
7607 unallocated_encoding(s);
7608 return;
7612 if (!fp_access_check(s)) {
7613 return;
7616 element = extract32(imm5, 1+size, 4);
7618 tcg_rd = cpu_reg(s, rd);
7619 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
7620 if (is_signed && !is_q) {
7621 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7625 /* AdvSIMD copy
7626 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
7627 * +---+---+----+-----------------+------+---+------+---+------+------+
7628 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7629 * +---+---+----+-----------------+------+---+------+---+------+------+
7631 static void disas_simd_copy(DisasContext *s, uint32_t insn)
7633 int rd = extract32(insn, 0, 5);
7634 int rn = extract32(insn, 5, 5);
7635 int imm4 = extract32(insn, 11, 4);
7636 int op = extract32(insn, 29, 1);
7637 int is_q = extract32(insn, 30, 1);
7638 int imm5 = extract32(insn, 16, 5);
7640 if (op) {
7641 if (is_q) {
7642 /* INS (element) */
7643 handle_simd_inse(s, rd, rn, imm4, imm5);
7644 } else {
7645 unallocated_encoding(s);
7647 } else {
7648 switch (imm4) {
7649 case 0:
7650 /* DUP (element - vector) */
7651 handle_simd_dupe(s, is_q, rd, rn, imm5);
7652 break;
7653 case 1:
7654 /* DUP (general) */
7655 handle_simd_dupg(s, is_q, rd, rn, imm5);
7656 break;
7657 case 3:
7658 if (is_q) {
7659 /* INS (general) */
7660 handle_simd_insg(s, rd, rn, imm5);
7661 } else {
7662 unallocated_encoding(s);
7664 break;
7665 case 5:
7666 case 7:
7667 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
7668 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
7669 break;
7670 default:
7671 unallocated_encoding(s);
7672 break;
7677 /* AdvSIMD modified immediate
7678 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
7679 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7680 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
7681 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7683 * There are a number of operations that can be carried out here:
7684 * MOVI - move (shifted) imm into register
7685 * MVNI - move inverted (shifted) imm into register
7686 * ORR - bitwise OR of (shifted) imm with register
7687 * BIC - bitwise clear of (shifted) imm with register
7688 * With ARMv8.2 we also have:
7689 * FMOV half-precision
7691 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
7693 int rd = extract32(insn, 0, 5);
7694 int cmode = extract32(insn, 12, 4);
7695 int cmode_3_1 = extract32(cmode, 1, 3);
7696 int cmode_0 = extract32(cmode, 0, 1);
7697 int o2 = extract32(insn, 11, 1);
7698 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
7699 bool is_neg = extract32(insn, 29, 1);
7700 bool is_q = extract32(insn, 30, 1);
7701 uint64_t imm = 0;
7703 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
7704 /* Check for FMOV (vector, immediate) - half-precision */
7705 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
7706 unallocated_encoding(s);
7707 return;
7711 if (!fp_access_check(s)) {
7712 return;
7715 /* See AdvSIMDExpandImm() in ARM ARM */
7716 switch (cmode_3_1) {
7717 case 0: /* Replicate(Zeros(24):imm8, 2) */
7718 case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */
7719 case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */
7720 case 3: /* Replicate(imm8:Zeros(24), 2) */
7722 int shift = cmode_3_1 * 8;
7723 imm = bitfield_replicate(abcdefgh << shift, 32);
7724 break;
7726 case 4: /* Replicate(Zeros(8):imm8, 4) */
7727 case 5: /* Replicate(imm8:Zeros(8), 4) */
7729 int shift = (cmode_3_1 & 0x1) * 8;
7730 imm = bitfield_replicate(abcdefgh << shift, 16);
7731 break;
7733 case 6:
7734 if (cmode_0) {
7735 /* Replicate(Zeros(8):imm8:Ones(16), 2) */
7736 imm = (abcdefgh << 16) | 0xffff;
7737 } else {
7738 /* Replicate(Zeros(16):imm8:Ones(8), 2) */
7739 imm = (abcdefgh << 8) | 0xff;
7741 imm = bitfield_replicate(imm, 32);
7742 break;
7743 case 7:
7744 if (!cmode_0 && !is_neg) {
7745 imm = bitfield_replicate(abcdefgh, 8);
7746 } else if (!cmode_0 && is_neg) {
7747 int i;
7748 imm = 0;
7749 for (i = 0; i < 8; i++) {
7750 if ((abcdefgh) & (1 << i)) {
7751 imm |= 0xffULL << (i * 8);
7754 } else if (cmode_0) {
7755 if (is_neg) {
7756 imm = (abcdefgh & 0x3f) << 48;
7757 if (abcdefgh & 0x80) {
7758 imm |= 0x8000000000000000ULL;
7760 if (abcdefgh & 0x40) {
7761 imm |= 0x3fc0000000000000ULL;
7762 } else {
7763 imm |= 0x4000000000000000ULL;
7765 } else {
7766 if (o2) {
7767 /* FMOV (vector, immediate) - half-precision */
7768 imm = vfp_expand_imm(MO_16, abcdefgh);
7769 /* now duplicate across the lanes */
7770 imm = bitfield_replicate(imm, 16);
7771 } else {
7772 imm = (abcdefgh & 0x3f) << 19;
7773 if (abcdefgh & 0x80) {
7774 imm |= 0x80000000;
7776 if (abcdefgh & 0x40) {
7777 imm |= 0x3e000000;
7778 } else {
7779 imm |= 0x40000000;
7781 imm |= (imm << 32);
7785 break;
7786 default:
7787 fprintf(stderr, "%s: cmode_3_1: %x\n", __func__, cmode_3_1);
7788 g_assert_not_reached();
7791 if (cmode_3_1 != 7 && is_neg) {
7792 imm = ~imm;
7795 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
7796 /* MOVI or MVNI, with MVNI negation handled above. */
7797 tcg_gen_gvec_dup64i(vec_full_reg_offset(s, rd), is_q ? 16 : 8,
7798 vec_full_reg_size(s), imm);
7799 } else {
7800 /* ORR or BIC, with BIC negation to AND handled above. */
7801 if (is_neg) {
7802 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
7803 } else {
7804 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
7809 /* AdvSIMD scalar copy
7810 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
7811 * +-----+----+-----------------+------+---+------+---+------+------+
7812 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7813 * +-----+----+-----------------+------+---+------+---+------+------+
7815 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
7817 int rd = extract32(insn, 0, 5);
7818 int rn = extract32(insn, 5, 5);
7819 int imm4 = extract32(insn, 11, 4);
7820 int imm5 = extract32(insn, 16, 5);
7821 int op = extract32(insn, 29, 1);
7823 if (op != 0 || imm4 != 0) {
7824 unallocated_encoding(s);
7825 return;
7828 /* DUP (element, scalar) */
7829 handle_simd_dupes(s, rd, rn, imm5);
7832 /* AdvSIMD scalar pairwise
7833 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7834 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7835 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
7836 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7838 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
7840 int u = extract32(insn, 29, 1);
7841 int size = extract32(insn, 22, 2);
7842 int opcode = extract32(insn, 12, 5);
7843 int rn = extract32(insn, 5, 5);
7844 int rd = extract32(insn, 0, 5);
7845 TCGv_ptr fpst;
7847 /* For some ops (the FP ones), size[1] is part of the encoding.
7848 * For ADDP strictly it is not but size[1] is always 1 for valid
7849 * encodings.
7851 opcode |= (extract32(size, 1, 1) << 5);
7853 switch (opcode) {
7854 case 0x3b: /* ADDP */
7855 if (u || size != 3) {
7856 unallocated_encoding(s);
7857 return;
7859 if (!fp_access_check(s)) {
7860 return;
7863 fpst = NULL;
7864 break;
7865 case 0xc: /* FMAXNMP */
7866 case 0xd: /* FADDP */
7867 case 0xf: /* FMAXP */
7868 case 0x2c: /* FMINNMP */
7869 case 0x2f: /* FMINP */
7870 /* FP op, size[0] is 32 or 64 bit*/
7871 if (!u) {
7872 if (!dc_isar_feature(aa64_fp16, s)) {
7873 unallocated_encoding(s);
7874 return;
7875 } else {
7876 size = MO_16;
7878 } else {
7879 size = extract32(size, 0, 1) ? MO_64 : MO_32;
7882 if (!fp_access_check(s)) {
7883 return;
7886 fpst = get_fpstatus_ptr(size == MO_16);
7887 break;
7888 default:
7889 unallocated_encoding(s);
7890 return;
7893 if (size == MO_64) {
7894 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7895 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7896 TCGv_i64 tcg_res = tcg_temp_new_i64();
7898 read_vec_element(s, tcg_op1, rn, 0, MO_64);
7899 read_vec_element(s, tcg_op2, rn, 1, MO_64);
7901 switch (opcode) {
7902 case 0x3b: /* ADDP */
7903 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
7904 break;
7905 case 0xc: /* FMAXNMP */
7906 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7907 break;
7908 case 0xd: /* FADDP */
7909 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
7910 break;
7911 case 0xf: /* FMAXP */
7912 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
7913 break;
7914 case 0x2c: /* FMINNMP */
7915 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7916 break;
7917 case 0x2f: /* FMINP */
7918 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
7919 break;
7920 default:
7921 g_assert_not_reached();
7924 write_fp_dreg(s, rd, tcg_res);
7926 tcg_temp_free_i64(tcg_op1);
7927 tcg_temp_free_i64(tcg_op2);
7928 tcg_temp_free_i64(tcg_res);
7929 } else {
7930 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7931 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7932 TCGv_i32 tcg_res = tcg_temp_new_i32();
7934 read_vec_element_i32(s, tcg_op1, rn, 0, size);
7935 read_vec_element_i32(s, tcg_op2, rn, 1, size);
7937 if (size == MO_16) {
7938 switch (opcode) {
7939 case 0xc: /* FMAXNMP */
7940 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7941 break;
7942 case 0xd: /* FADDP */
7943 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
7944 break;
7945 case 0xf: /* FMAXP */
7946 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
7947 break;
7948 case 0x2c: /* FMINNMP */
7949 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7950 break;
7951 case 0x2f: /* FMINP */
7952 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
7953 break;
7954 default:
7955 g_assert_not_reached();
7957 } else {
7958 switch (opcode) {
7959 case 0xc: /* FMAXNMP */
7960 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
7961 break;
7962 case 0xd: /* FADDP */
7963 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
7964 break;
7965 case 0xf: /* FMAXP */
7966 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
7967 break;
7968 case 0x2c: /* FMINNMP */
7969 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
7970 break;
7971 case 0x2f: /* FMINP */
7972 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
7973 break;
7974 default:
7975 g_assert_not_reached();
7979 write_fp_sreg(s, rd, tcg_res);
7981 tcg_temp_free_i32(tcg_op1);
7982 tcg_temp_free_i32(tcg_op2);
7983 tcg_temp_free_i32(tcg_res);
7986 if (fpst) {
7987 tcg_temp_free_ptr(fpst);
7992 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
7994 * This code is handles the common shifting code and is used by both
7995 * the vector and scalar code.
7997 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
7998 TCGv_i64 tcg_rnd, bool accumulate,
7999 bool is_u, int size, int shift)
8001 bool extended_result = false;
8002 bool round = tcg_rnd != NULL;
8003 int ext_lshift = 0;
8004 TCGv_i64 tcg_src_hi;
8006 if (round && size == 3) {
8007 extended_result = true;
8008 ext_lshift = 64 - shift;
8009 tcg_src_hi = tcg_temp_new_i64();
8010 } else if (shift == 64) {
8011 if (!accumulate && is_u) {
8012 /* result is zero */
8013 tcg_gen_movi_i64(tcg_res, 0);
8014 return;
8018 /* Deal with the rounding step */
8019 if (round) {
8020 if (extended_result) {
8021 TCGv_i64 tcg_zero = tcg_const_i64(0);
8022 if (!is_u) {
8023 /* take care of sign extending tcg_res */
8024 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8025 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8026 tcg_src, tcg_src_hi,
8027 tcg_rnd, tcg_zero);
8028 } else {
8029 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8030 tcg_src, tcg_zero,
8031 tcg_rnd, tcg_zero);
8033 tcg_temp_free_i64(tcg_zero);
8034 } else {
8035 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8039 /* Now do the shift right */
8040 if (round && extended_result) {
8041 /* extended case, >64 bit precision required */
8042 if (ext_lshift == 0) {
8043 /* special case, only high bits matter */
8044 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8045 } else {
8046 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8047 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8048 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8050 } else {
8051 if (is_u) {
8052 if (shift == 64) {
8053 /* essentially shifting in 64 zeros */
8054 tcg_gen_movi_i64(tcg_src, 0);
8055 } else {
8056 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8058 } else {
8059 if (shift == 64) {
8060 /* effectively extending the sign-bit */
8061 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8062 } else {
8063 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8068 if (accumulate) {
8069 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8070 } else {
8071 tcg_gen_mov_i64(tcg_res, tcg_src);
8074 if (extended_result) {
8075 tcg_temp_free_i64(tcg_src_hi);
8079 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8080 static void handle_scalar_simd_shri(DisasContext *s,
8081 bool is_u, int immh, int immb,
8082 int opcode, int rn, int rd)
8084 const int size = 3;
8085 int immhb = immh << 3 | immb;
8086 int shift = 2 * (8 << size) - immhb;
8087 bool accumulate = false;
8088 bool round = false;
8089 bool insert = false;
8090 TCGv_i64 tcg_rn;
8091 TCGv_i64 tcg_rd;
8092 TCGv_i64 tcg_round;
8094 if (!extract32(immh, 3, 1)) {
8095 unallocated_encoding(s);
8096 return;
8099 if (!fp_access_check(s)) {
8100 return;
8103 switch (opcode) {
8104 case 0x02: /* SSRA / USRA (accumulate) */
8105 accumulate = true;
8106 break;
8107 case 0x04: /* SRSHR / URSHR (rounding) */
8108 round = true;
8109 break;
8110 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8111 accumulate = round = true;
8112 break;
8113 case 0x08: /* SRI */
8114 insert = true;
8115 break;
8118 if (round) {
8119 uint64_t round_const = 1ULL << (shift - 1);
8120 tcg_round = tcg_const_i64(round_const);
8121 } else {
8122 tcg_round = NULL;
8125 tcg_rn = read_fp_dreg(s, rn);
8126 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8128 if (insert) {
8129 /* shift count same as element size is valid but does nothing;
8130 * special case to avoid potential shift by 64.
8132 int esize = 8 << size;
8133 if (shift != esize) {
8134 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8135 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8137 } else {
8138 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8139 accumulate, is_u, size, shift);
8142 write_fp_dreg(s, rd, tcg_rd);
8144 tcg_temp_free_i64(tcg_rn);
8145 tcg_temp_free_i64(tcg_rd);
8146 if (round) {
8147 tcg_temp_free_i64(tcg_round);
8151 /* SHL/SLI - Scalar shift left */
8152 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8153 int immh, int immb, int opcode,
8154 int rn, int rd)
8156 int size = 32 - clz32(immh) - 1;
8157 int immhb = immh << 3 | immb;
8158 int shift = immhb - (8 << size);
8159 TCGv_i64 tcg_rn = new_tmp_a64(s);
8160 TCGv_i64 tcg_rd = new_tmp_a64(s);
8162 if (!extract32(immh, 3, 1)) {
8163 unallocated_encoding(s);
8164 return;
8167 if (!fp_access_check(s)) {
8168 return;
8171 tcg_rn = read_fp_dreg(s, rn);
8172 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8174 if (insert) {
8175 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8176 } else {
8177 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8180 write_fp_dreg(s, rd, tcg_rd);
8182 tcg_temp_free_i64(tcg_rn);
8183 tcg_temp_free_i64(tcg_rd);
8186 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8187 * (signed/unsigned) narrowing */
8188 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8189 bool is_u_shift, bool is_u_narrow,
8190 int immh, int immb, int opcode,
8191 int rn, int rd)
8193 int immhb = immh << 3 | immb;
8194 int size = 32 - clz32(immh) - 1;
8195 int esize = 8 << size;
8196 int shift = (2 * esize) - immhb;
8197 int elements = is_scalar ? 1 : (64 / esize);
8198 bool round = extract32(opcode, 0, 1);
8199 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8200 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8201 TCGv_i32 tcg_rd_narrowed;
8202 TCGv_i64 tcg_final;
8204 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8205 { gen_helper_neon_narrow_sat_s8,
8206 gen_helper_neon_unarrow_sat8 },
8207 { gen_helper_neon_narrow_sat_s16,
8208 gen_helper_neon_unarrow_sat16 },
8209 { gen_helper_neon_narrow_sat_s32,
8210 gen_helper_neon_unarrow_sat32 },
8211 { NULL, NULL },
8213 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8214 gen_helper_neon_narrow_sat_u8,
8215 gen_helper_neon_narrow_sat_u16,
8216 gen_helper_neon_narrow_sat_u32,
8217 NULL
8219 NeonGenNarrowEnvFn *narrowfn;
8221 int i;
8223 assert(size < 4);
8225 if (extract32(immh, 3, 1)) {
8226 unallocated_encoding(s);
8227 return;
8230 if (!fp_access_check(s)) {
8231 return;
8234 if (is_u_shift) {
8235 narrowfn = unsigned_narrow_fns[size];
8236 } else {
8237 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8240 tcg_rn = tcg_temp_new_i64();
8241 tcg_rd = tcg_temp_new_i64();
8242 tcg_rd_narrowed = tcg_temp_new_i32();
8243 tcg_final = tcg_const_i64(0);
8245 if (round) {
8246 uint64_t round_const = 1ULL << (shift - 1);
8247 tcg_round = tcg_const_i64(round_const);
8248 } else {
8249 tcg_round = NULL;
8252 for (i = 0; i < elements; i++) {
8253 read_vec_element(s, tcg_rn, rn, i, ldop);
8254 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8255 false, is_u_shift, size+1, shift);
8256 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
8257 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8258 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8261 if (!is_q) {
8262 write_vec_element(s, tcg_final, rd, 0, MO_64);
8263 } else {
8264 write_vec_element(s, tcg_final, rd, 1, MO_64);
8267 if (round) {
8268 tcg_temp_free_i64(tcg_round);
8270 tcg_temp_free_i64(tcg_rn);
8271 tcg_temp_free_i64(tcg_rd);
8272 tcg_temp_free_i32(tcg_rd_narrowed);
8273 tcg_temp_free_i64(tcg_final);
8275 clear_vec_high(s, is_q, rd);
8278 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8279 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8280 bool src_unsigned, bool dst_unsigned,
8281 int immh, int immb, int rn, int rd)
8283 int immhb = immh << 3 | immb;
8284 int size = 32 - clz32(immh) - 1;
8285 int shift = immhb - (8 << size);
8286 int pass;
8288 assert(immh != 0);
8289 assert(!(scalar && is_q));
8291 if (!scalar) {
8292 if (!is_q && extract32(immh, 3, 1)) {
8293 unallocated_encoding(s);
8294 return;
8297 /* Since we use the variable-shift helpers we must
8298 * replicate the shift count into each element of
8299 * the tcg_shift value.
8301 switch (size) {
8302 case 0:
8303 shift |= shift << 8;
8304 /* fall through */
8305 case 1:
8306 shift |= shift << 16;
8307 break;
8308 case 2:
8309 case 3:
8310 break;
8311 default:
8312 g_assert_not_reached();
8316 if (!fp_access_check(s)) {
8317 return;
8320 if (size == 3) {
8321 TCGv_i64 tcg_shift = tcg_const_i64(shift);
8322 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8323 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8324 { NULL, gen_helper_neon_qshl_u64 },
8326 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8327 int maxpass = is_q ? 2 : 1;
8329 for (pass = 0; pass < maxpass; pass++) {
8330 TCGv_i64 tcg_op = tcg_temp_new_i64();
8332 read_vec_element(s, tcg_op, rn, pass, MO_64);
8333 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8334 write_vec_element(s, tcg_op, rd, pass, MO_64);
8336 tcg_temp_free_i64(tcg_op);
8338 tcg_temp_free_i64(tcg_shift);
8339 clear_vec_high(s, is_q, rd);
8340 } else {
8341 TCGv_i32 tcg_shift = tcg_const_i32(shift);
8342 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8344 { gen_helper_neon_qshl_s8,
8345 gen_helper_neon_qshl_s16,
8346 gen_helper_neon_qshl_s32 },
8347 { gen_helper_neon_qshlu_s8,
8348 gen_helper_neon_qshlu_s16,
8349 gen_helper_neon_qshlu_s32 }
8350 }, {
8351 { NULL, NULL, NULL },
8352 { gen_helper_neon_qshl_u8,
8353 gen_helper_neon_qshl_u16,
8354 gen_helper_neon_qshl_u32 }
8357 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8358 MemOp memop = scalar ? size : MO_32;
8359 int maxpass = scalar ? 1 : is_q ? 4 : 2;
8361 for (pass = 0; pass < maxpass; pass++) {
8362 TCGv_i32 tcg_op = tcg_temp_new_i32();
8364 read_vec_element_i32(s, tcg_op, rn, pass, memop);
8365 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8366 if (scalar) {
8367 switch (size) {
8368 case 0:
8369 tcg_gen_ext8u_i32(tcg_op, tcg_op);
8370 break;
8371 case 1:
8372 tcg_gen_ext16u_i32(tcg_op, tcg_op);
8373 break;
8374 case 2:
8375 break;
8376 default:
8377 g_assert_not_reached();
8379 write_fp_sreg(s, rd, tcg_op);
8380 } else {
8381 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8384 tcg_temp_free_i32(tcg_op);
8386 tcg_temp_free_i32(tcg_shift);
8388 if (!scalar) {
8389 clear_vec_high(s, is_q, rd);
8394 /* Common vector code for handling integer to FP conversion */
8395 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8396 int elements, int is_signed,
8397 int fracbits, int size)
8399 TCGv_ptr tcg_fpst = get_fpstatus_ptr(size == MO_16);
8400 TCGv_i32 tcg_shift = NULL;
8402 MemOp mop = size | (is_signed ? MO_SIGN : 0);
8403 int pass;
8405 if (fracbits || size == MO_64) {
8406 tcg_shift = tcg_const_i32(fracbits);
8409 if (size == MO_64) {
8410 TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8411 TCGv_i64 tcg_double = tcg_temp_new_i64();
8413 for (pass = 0; pass < elements; pass++) {
8414 read_vec_element(s, tcg_int64, rn, pass, mop);
8416 if (is_signed) {
8417 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8418 tcg_shift, tcg_fpst);
8419 } else {
8420 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8421 tcg_shift, tcg_fpst);
8423 if (elements == 1) {
8424 write_fp_dreg(s, rd, tcg_double);
8425 } else {
8426 write_vec_element(s, tcg_double, rd, pass, MO_64);
8430 tcg_temp_free_i64(tcg_int64);
8431 tcg_temp_free_i64(tcg_double);
8433 } else {
8434 TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8435 TCGv_i32 tcg_float = tcg_temp_new_i32();
8437 for (pass = 0; pass < elements; pass++) {
8438 read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8440 switch (size) {
8441 case MO_32:
8442 if (fracbits) {
8443 if (is_signed) {
8444 gen_helper_vfp_sltos(tcg_float, tcg_int32,
8445 tcg_shift, tcg_fpst);
8446 } else {
8447 gen_helper_vfp_ultos(tcg_float, tcg_int32,
8448 tcg_shift, tcg_fpst);
8450 } else {
8451 if (is_signed) {
8452 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8453 } else {
8454 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8457 break;
8458 case MO_16:
8459 if (fracbits) {
8460 if (is_signed) {
8461 gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8462 tcg_shift, tcg_fpst);
8463 } else {
8464 gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8465 tcg_shift, tcg_fpst);
8467 } else {
8468 if (is_signed) {
8469 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8470 } else {
8471 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8474 break;
8475 default:
8476 g_assert_not_reached();
8479 if (elements == 1) {
8480 write_fp_sreg(s, rd, tcg_float);
8481 } else {
8482 write_vec_element_i32(s, tcg_float, rd, pass, size);
8486 tcg_temp_free_i32(tcg_int32);
8487 tcg_temp_free_i32(tcg_float);
8490 tcg_temp_free_ptr(tcg_fpst);
8491 if (tcg_shift) {
8492 tcg_temp_free_i32(tcg_shift);
8495 clear_vec_high(s, elements << size == 16, rd);
8498 /* UCVTF/SCVTF - Integer to FP conversion */
8499 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8500 bool is_q, bool is_u,
8501 int immh, int immb, int opcode,
8502 int rn, int rd)
8504 int size, elements, fracbits;
8505 int immhb = immh << 3 | immb;
8507 if (immh & 8) {
8508 size = MO_64;
8509 if (!is_scalar && !is_q) {
8510 unallocated_encoding(s);
8511 return;
8513 } else if (immh & 4) {
8514 size = MO_32;
8515 } else if (immh & 2) {
8516 size = MO_16;
8517 if (!dc_isar_feature(aa64_fp16, s)) {
8518 unallocated_encoding(s);
8519 return;
8521 } else {
8522 /* immh == 0 would be a failure of the decode logic */
8523 g_assert(immh == 1);
8524 unallocated_encoding(s);
8525 return;
8528 if (is_scalar) {
8529 elements = 1;
8530 } else {
8531 elements = (8 << is_q) >> size;
8533 fracbits = (16 << size) - immhb;
8535 if (!fp_access_check(s)) {
8536 return;
8539 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8542 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8543 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8544 bool is_q, bool is_u,
8545 int immh, int immb, int rn, int rd)
8547 int immhb = immh << 3 | immb;
8548 int pass, size, fracbits;
8549 TCGv_ptr tcg_fpstatus;
8550 TCGv_i32 tcg_rmode, tcg_shift;
8552 if (immh & 0x8) {
8553 size = MO_64;
8554 if (!is_scalar && !is_q) {
8555 unallocated_encoding(s);
8556 return;
8558 } else if (immh & 0x4) {
8559 size = MO_32;
8560 } else if (immh & 0x2) {
8561 size = MO_16;
8562 if (!dc_isar_feature(aa64_fp16, s)) {
8563 unallocated_encoding(s);
8564 return;
8566 } else {
8567 /* Should have split out AdvSIMD modified immediate earlier. */
8568 assert(immh == 1);
8569 unallocated_encoding(s);
8570 return;
8573 if (!fp_access_check(s)) {
8574 return;
8577 assert(!(is_scalar && is_q));
8579 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
8580 tcg_fpstatus = get_fpstatus_ptr(size == MO_16);
8581 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
8582 fracbits = (16 << size) - immhb;
8583 tcg_shift = tcg_const_i32(fracbits);
8585 if (size == MO_64) {
8586 int maxpass = is_scalar ? 1 : 2;
8588 for (pass = 0; pass < maxpass; pass++) {
8589 TCGv_i64 tcg_op = tcg_temp_new_i64();
8591 read_vec_element(s, tcg_op, rn, pass, MO_64);
8592 if (is_u) {
8593 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8594 } else {
8595 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8597 write_vec_element(s, tcg_op, rd, pass, MO_64);
8598 tcg_temp_free_i64(tcg_op);
8600 clear_vec_high(s, is_q, rd);
8601 } else {
8602 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
8603 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
8605 switch (size) {
8606 case MO_16:
8607 if (is_u) {
8608 fn = gen_helper_vfp_touhh;
8609 } else {
8610 fn = gen_helper_vfp_toshh;
8612 break;
8613 case MO_32:
8614 if (is_u) {
8615 fn = gen_helper_vfp_touls;
8616 } else {
8617 fn = gen_helper_vfp_tosls;
8619 break;
8620 default:
8621 g_assert_not_reached();
8624 for (pass = 0; pass < maxpass; pass++) {
8625 TCGv_i32 tcg_op = tcg_temp_new_i32();
8627 read_vec_element_i32(s, tcg_op, rn, pass, size);
8628 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8629 if (is_scalar) {
8630 write_fp_sreg(s, rd, tcg_op);
8631 } else {
8632 write_vec_element_i32(s, tcg_op, rd, pass, size);
8634 tcg_temp_free_i32(tcg_op);
8636 if (!is_scalar) {
8637 clear_vec_high(s, is_q, rd);
8641 tcg_temp_free_ptr(tcg_fpstatus);
8642 tcg_temp_free_i32(tcg_shift);
8643 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
8644 tcg_temp_free_i32(tcg_rmode);
8647 /* AdvSIMD scalar shift by immediate
8648 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
8649 * +-----+---+-------------+------+------+--------+---+------+------+
8650 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
8651 * +-----+---+-------------+------+------+--------+---+------+------+
8653 * This is the scalar version so it works on a fixed sized registers
8655 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
8657 int rd = extract32(insn, 0, 5);
8658 int rn = extract32(insn, 5, 5);
8659 int opcode = extract32(insn, 11, 5);
8660 int immb = extract32(insn, 16, 3);
8661 int immh = extract32(insn, 19, 4);
8662 bool is_u = extract32(insn, 29, 1);
8664 if (immh == 0) {
8665 unallocated_encoding(s);
8666 return;
8669 switch (opcode) {
8670 case 0x08: /* SRI */
8671 if (!is_u) {
8672 unallocated_encoding(s);
8673 return;
8675 /* fall through */
8676 case 0x00: /* SSHR / USHR */
8677 case 0x02: /* SSRA / USRA */
8678 case 0x04: /* SRSHR / URSHR */
8679 case 0x06: /* SRSRA / URSRA */
8680 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
8681 break;
8682 case 0x0a: /* SHL / SLI */
8683 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
8684 break;
8685 case 0x1c: /* SCVTF, UCVTF */
8686 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
8687 opcode, rn, rd);
8688 break;
8689 case 0x10: /* SQSHRUN, SQSHRUN2 */
8690 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
8691 if (!is_u) {
8692 unallocated_encoding(s);
8693 return;
8695 handle_vec_simd_sqshrn(s, true, false, false, true,
8696 immh, immb, opcode, rn, rd);
8697 break;
8698 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
8699 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
8700 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
8701 immh, immb, opcode, rn, rd);
8702 break;
8703 case 0xc: /* SQSHLU */
8704 if (!is_u) {
8705 unallocated_encoding(s);
8706 return;
8708 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
8709 break;
8710 case 0xe: /* SQSHL, UQSHL */
8711 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
8712 break;
8713 case 0x1f: /* FCVTZS, FCVTZU */
8714 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
8715 break;
8716 default:
8717 unallocated_encoding(s);
8718 break;
8722 /* AdvSIMD scalar three different
8723 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
8724 * +-----+---+-----------+------+---+------+--------+-----+------+------+
8725 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
8726 * +-----+---+-----------+------+---+------+--------+-----+------+------+
8728 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
8730 bool is_u = extract32(insn, 29, 1);
8731 int size = extract32(insn, 22, 2);
8732 int opcode = extract32(insn, 12, 4);
8733 int rm = extract32(insn, 16, 5);
8734 int rn = extract32(insn, 5, 5);
8735 int rd = extract32(insn, 0, 5);
8737 if (is_u) {
8738 unallocated_encoding(s);
8739 return;
8742 switch (opcode) {
8743 case 0x9: /* SQDMLAL, SQDMLAL2 */
8744 case 0xb: /* SQDMLSL, SQDMLSL2 */
8745 case 0xd: /* SQDMULL, SQDMULL2 */
8746 if (size == 0 || size == 3) {
8747 unallocated_encoding(s);
8748 return;
8750 break;
8751 default:
8752 unallocated_encoding(s);
8753 return;
8756 if (!fp_access_check(s)) {
8757 return;
8760 if (size == 2) {
8761 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8762 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8763 TCGv_i64 tcg_res = tcg_temp_new_i64();
8765 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
8766 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
8768 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
8769 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
8771 switch (opcode) {
8772 case 0xd: /* SQDMULL, SQDMULL2 */
8773 break;
8774 case 0xb: /* SQDMLSL, SQDMLSL2 */
8775 tcg_gen_neg_i64(tcg_res, tcg_res);
8776 /* fall through */
8777 case 0x9: /* SQDMLAL, SQDMLAL2 */
8778 read_vec_element(s, tcg_op1, rd, 0, MO_64);
8779 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
8780 tcg_res, tcg_op1);
8781 break;
8782 default:
8783 g_assert_not_reached();
8786 write_fp_dreg(s, rd, tcg_res);
8788 tcg_temp_free_i64(tcg_op1);
8789 tcg_temp_free_i64(tcg_op2);
8790 tcg_temp_free_i64(tcg_res);
8791 } else {
8792 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
8793 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
8794 TCGv_i64 tcg_res = tcg_temp_new_i64();
8796 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
8797 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
8799 switch (opcode) {
8800 case 0xd: /* SQDMULL, SQDMULL2 */
8801 break;
8802 case 0xb: /* SQDMLSL, SQDMLSL2 */
8803 gen_helper_neon_negl_u32(tcg_res, tcg_res);
8804 /* fall through */
8805 case 0x9: /* SQDMLAL, SQDMLAL2 */
8807 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
8808 read_vec_element(s, tcg_op3, rd, 0, MO_32);
8809 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
8810 tcg_res, tcg_op3);
8811 tcg_temp_free_i64(tcg_op3);
8812 break;
8814 default:
8815 g_assert_not_reached();
8818 tcg_gen_ext32u_i64(tcg_res, tcg_res);
8819 write_fp_dreg(s, rd, tcg_res);
8821 tcg_temp_free_i32(tcg_op1);
8822 tcg_temp_free_i32(tcg_op2);
8823 tcg_temp_free_i64(tcg_res);
8827 static void handle_3same_64(DisasContext *s, int opcode, bool u,
8828 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
8830 /* Handle 64x64->64 opcodes which are shared between the scalar
8831 * and vector 3-same groups. We cover every opcode where size == 3
8832 * is valid in either the three-reg-same (integer, not pairwise)
8833 * or scalar-three-reg-same groups.
8835 TCGCond cond;
8837 switch (opcode) {
8838 case 0x1: /* SQADD */
8839 if (u) {
8840 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8841 } else {
8842 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8844 break;
8845 case 0x5: /* SQSUB */
8846 if (u) {
8847 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8848 } else {
8849 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8851 break;
8852 case 0x6: /* CMGT, CMHI */
8853 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
8854 * We implement this using setcond (test) and then negating.
8856 cond = u ? TCG_COND_GTU : TCG_COND_GT;
8857 do_cmop:
8858 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
8859 tcg_gen_neg_i64(tcg_rd, tcg_rd);
8860 break;
8861 case 0x7: /* CMGE, CMHS */
8862 cond = u ? TCG_COND_GEU : TCG_COND_GE;
8863 goto do_cmop;
8864 case 0x11: /* CMTST, CMEQ */
8865 if (u) {
8866 cond = TCG_COND_EQ;
8867 goto do_cmop;
8869 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
8870 break;
8871 case 0x8: /* SSHL, USHL */
8872 if (u) {
8873 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
8874 } else {
8875 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
8877 break;
8878 case 0x9: /* SQSHL, UQSHL */
8879 if (u) {
8880 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8881 } else {
8882 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8884 break;
8885 case 0xa: /* SRSHL, URSHL */
8886 if (u) {
8887 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
8888 } else {
8889 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
8891 break;
8892 case 0xb: /* SQRSHL, UQRSHL */
8893 if (u) {
8894 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8895 } else {
8896 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8898 break;
8899 case 0x10: /* ADD, SUB */
8900 if (u) {
8901 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
8902 } else {
8903 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
8905 break;
8906 default:
8907 g_assert_not_reached();
8911 /* Handle the 3-same-operands float operations; shared by the scalar
8912 * and vector encodings. The caller must filter out any encodings
8913 * not allocated for the encoding it is dealing with.
8915 static void handle_3same_float(DisasContext *s, int size, int elements,
8916 int fpopcode, int rd, int rn, int rm)
8918 int pass;
8919 TCGv_ptr fpst = get_fpstatus_ptr(false);
8921 for (pass = 0; pass < elements; pass++) {
8922 if (size) {
8923 /* Double */
8924 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8925 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8926 TCGv_i64 tcg_res = tcg_temp_new_i64();
8928 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8929 read_vec_element(s, tcg_op2, rm, pass, MO_64);
8931 switch (fpopcode) {
8932 case 0x39: /* FMLS */
8933 /* As usual for ARM, separate negation for fused multiply-add */
8934 gen_helper_vfp_negd(tcg_op1, tcg_op1);
8935 /* fall through */
8936 case 0x19: /* FMLA */
8937 read_vec_element(s, tcg_res, rd, pass, MO_64);
8938 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
8939 tcg_res, fpst);
8940 break;
8941 case 0x18: /* FMAXNM */
8942 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8943 break;
8944 case 0x1a: /* FADD */
8945 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8946 break;
8947 case 0x1b: /* FMULX */
8948 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
8949 break;
8950 case 0x1c: /* FCMEQ */
8951 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8952 break;
8953 case 0x1e: /* FMAX */
8954 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8955 break;
8956 case 0x1f: /* FRECPS */
8957 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8958 break;
8959 case 0x38: /* FMINNM */
8960 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8961 break;
8962 case 0x3a: /* FSUB */
8963 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8964 break;
8965 case 0x3e: /* FMIN */
8966 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8967 break;
8968 case 0x3f: /* FRSQRTS */
8969 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8970 break;
8971 case 0x5b: /* FMUL */
8972 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
8973 break;
8974 case 0x5c: /* FCMGE */
8975 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8976 break;
8977 case 0x5d: /* FACGE */
8978 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8979 break;
8980 case 0x5f: /* FDIV */
8981 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
8982 break;
8983 case 0x7a: /* FABD */
8984 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8985 gen_helper_vfp_absd(tcg_res, tcg_res);
8986 break;
8987 case 0x7c: /* FCMGT */
8988 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8989 break;
8990 case 0x7d: /* FACGT */
8991 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8992 break;
8993 default:
8994 g_assert_not_reached();
8997 write_vec_element(s, tcg_res, rd, pass, MO_64);
8999 tcg_temp_free_i64(tcg_res);
9000 tcg_temp_free_i64(tcg_op1);
9001 tcg_temp_free_i64(tcg_op2);
9002 } else {
9003 /* Single */
9004 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9005 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9006 TCGv_i32 tcg_res = tcg_temp_new_i32();
9008 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9009 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9011 switch (fpopcode) {
9012 case 0x39: /* FMLS */
9013 /* As usual for ARM, separate negation for fused multiply-add */
9014 gen_helper_vfp_negs(tcg_op1, tcg_op1);
9015 /* fall through */
9016 case 0x19: /* FMLA */
9017 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9018 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
9019 tcg_res, fpst);
9020 break;
9021 case 0x1a: /* FADD */
9022 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
9023 break;
9024 case 0x1b: /* FMULX */
9025 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
9026 break;
9027 case 0x1c: /* FCMEQ */
9028 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9029 break;
9030 case 0x1e: /* FMAX */
9031 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
9032 break;
9033 case 0x1f: /* FRECPS */
9034 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9035 break;
9036 case 0x18: /* FMAXNM */
9037 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
9038 break;
9039 case 0x38: /* FMINNM */
9040 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
9041 break;
9042 case 0x3a: /* FSUB */
9043 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9044 break;
9045 case 0x3e: /* FMIN */
9046 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
9047 break;
9048 case 0x3f: /* FRSQRTS */
9049 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9050 break;
9051 case 0x5b: /* FMUL */
9052 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
9053 break;
9054 case 0x5c: /* FCMGE */
9055 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9056 break;
9057 case 0x5d: /* FACGE */
9058 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9059 break;
9060 case 0x5f: /* FDIV */
9061 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
9062 break;
9063 case 0x7a: /* FABD */
9064 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9065 gen_helper_vfp_abss(tcg_res, tcg_res);
9066 break;
9067 case 0x7c: /* FCMGT */
9068 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9069 break;
9070 case 0x7d: /* FACGT */
9071 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9072 break;
9073 default:
9074 g_assert_not_reached();
9077 if (elements == 1) {
9078 /* scalar single so clear high part */
9079 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9081 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
9082 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
9083 tcg_temp_free_i64(tcg_tmp);
9084 } else {
9085 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9088 tcg_temp_free_i32(tcg_res);
9089 tcg_temp_free_i32(tcg_op1);
9090 tcg_temp_free_i32(tcg_op2);
9094 tcg_temp_free_ptr(fpst);
9096 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
9099 /* AdvSIMD scalar three same
9100 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
9101 * +-----+---+-----------+------+---+------+--------+---+------+------+
9102 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
9103 * +-----+---+-----------+------+---+------+--------+---+------+------+
9105 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9107 int rd = extract32(insn, 0, 5);
9108 int rn = extract32(insn, 5, 5);
9109 int opcode = extract32(insn, 11, 5);
9110 int rm = extract32(insn, 16, 5);
9111 int size = extract32(insn, 22, 2);
9112 bool u = extract32(insn, 29, 1);
9113 TCGv_i64 tcg_rd;
9115 if (opcode >= 0x18) {
9116 /* Floating point: U, size[1] and opcode indicate operation */
9117 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
9118 switch (fpopcode) {
9119 case 0x1b: /* FMULX */
9120 case 0x1f: /* FRECPS */
9121 case 0x3f: /* FRSQRTS */
9122 case 0x5d: /* FACGE */
9123 case 0x7d: /* FACGT */
9124 case 0x1c: /* FCMEQ */
9125 case 0x5c: /* FCMGE */
9126 case 0x7c: /* FCMGT */
9127 case 0x7a: /* FABD */
9128 break;
9129 default:
9130 unallocated_encoding(s);
9131 return;
9134 if (!fp_access_check(s)) {
9135 return;
9138 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
9139 return;
9142 switch (opcode) {
9143 case 0x1: /* SQADD, UQADD */
9144 case 0x5: /* SQSUB, UQSUB */
9145 case 0x9: /* SQSHL, UQSHL */
9146 case 0xb: /* SQRSHL, UQRSHL */
9147 break;
9148 case 0x8: /* SSHL, USHL */
9149 case 0xa: /* SRSHL, URSHL */
9150 case 0x6: /* CMGT, CMHI */
9151 case 0x7: /* CMGE, CMHS */
9152 case 0x11: /* CMTST, CMEQ */
9153 case 0x10: /* ADD, SUB (vector) */
9154 if (size != 3) {
9155 unallocated_encoding(s);
9156 return;
9158 break;
9159 case 0x16: /* SQDMULH, SQRDMULH (vector) */
9160 if (size != 1 && size != 2) {
9161 unallocated_encoding(s);
9162 return;
9164 break;
9165 default:
9166 unallocated_encoding(s);
9167 return;
9170 if (!fp_access_check(s)) {
9171 return;
9174 tcg_rd = tcg_temp_new_i64();
9176 if (size == 3) {
9177 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9178 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9180 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9181 tcg_temp_free_i64(tcg_rn);
9182 tcg_temp_free_i64(tcg_rm);
9183 } else {
9184 /* Do a single operation on the lowest element in the vector.
9185 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9186 * no side effects for all these operations.
9187 * OPTME: special-purpose helpers would avoid doing some
9188 * unnecessary work in the helper for the 8 and 16 bit cases.
9190 NeonGenTwoOpEnvFn *genenvfn;
9191 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9192 TCGv_i32 tcg_rm = tcg_temp_new_i32();
9193 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9195 read_vec_element_i32(s, tcg_rn, rn, 0, size);
9196 read_vec_element_i32(s, tcg_rm, rm, 0, size);
9198 switch (opcode) {
9199 case 0x1: /* SQADD, UQADD */
9201 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9202 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9203 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9204 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9206 genenvfn = fns[size][u];
9207 break;
9209 case 0x5: /* SQSUB, UQSUB */
9211 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9212 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9213 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9214 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9216 genenvfn = fns[size][u];
9217 break;
9219 case 0x9: /* SQSHL, UQSHL */
9221 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9222 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9223 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9224 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9226 genenvfn = fns[size][u];
9227 break;
9229 case 0xb: /* SQRSHL, UQRSHL */
9231 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9232 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9233 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9234 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9236 genenvfn = fns[size][u];
9237 break;
9239 case 0x16: /* SQDMULH, SQRDMULH */
9241 static NeonGenTwoOpEnvFn * const fns[2][2] = {
9242 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9243 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9245 assert(size == 1 || size == 2);
9246 genenvfn = fns[size - 1][u];
9247 break;
9249 default:
9250 g_assert_not_reached();
9253 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
9254 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9255 tcg_temp_free_i32(tcg_rd32);
9256 tcg_temp_free_i32(tcg_rn);
9257 tcg_temp_free_i32(tcg_rm);
9260 write_fp_dreg(s, rd, tcg_rd);
9262 tcg_temp_free_i64(tcg_rd);
9265 /* AdvSIMD scalar three same FP16
9266 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
9267 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9268 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
9269 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9270 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9271 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9273 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9274 uint32_t insn)
9276 int rd = extract32(insn, 0, 5);
9277 int rn = extract32(insn, 5, 5);
9278 int opcode = extract32(insn, 11, 3);
9279 int rm = extract32(insn, 16, 5);
9280 bool u = extract32(insn, 29, 1);
9281 bool a = extract32(insn, 23, 1);
9282 int fpopcode = opcode | (a << 3) | (u << 4);
9283 TCGv_ptr fpst;
9284 TCGv_i32 tcg_op1;
9285 TCGv_i32 tcg_op2;
9286 TCGv_i32 tcg_res;
9288 switch (fpopcode) {
9289 case 0x03: /* FMULX */
9290 case 0x04: /* FCMEQ (reg) */
9291 case 0x07: /* FRECPS */
9292 case 0x0f: /* FRSQRTS */
9293 case 0x14: /* FCMGE (reg) */
9294 case 0x15: /* FACGE */
9295 case 0x1a: /* FABD */
9296 case 0x1c: /* FCMGT (reg) */
9297 case 0x1d: /* FACGT */
9298 break;
9299 default:
9300 unallocated_encoding(s);
9301 return;
9304 if (!dc_isar_feature(aa64_fp16, s)) {
9305 unallocated_encoding(s);
9308 if (!fp_access_check(s)) {
9309 return;
9312 fpst = get_fpstatus_ptr(true);
9314 tcg_op1 = read_fp_hreg(s, rn);
9315 tcg_op2 = read_fp_hreg(s, rm);
9316 tcg_res = tcg_temp_new_i32();
9318 switch (fpopcode) {
9319 case 0x03: /* FMULX */
9320 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
9321 break;
9322 case 0x04: /* FCMEQ (reg) */
9323 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9324 break;
9325 case 0x07: /* FRECPS */
9326 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9327 break;
9328 case 0x0f: /* FRSQRTS */
9329 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9330 break;
9331 case 0x14: /* FCMGE (reg) */
9332 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9333 break;
9334 case 0x15: /* FACGE */
9335 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9336 break;
9337 case 0x1a: /* FABD */
9338 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9339 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9340 break;
9341 case 0x1c: /* FCMGT (reg) */
9342 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9343 break;
9344 case 0x1d: /* FACGT */
9345 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9346 break;
9347 default:
9348 g_assert_not_reached();
9351 write_fp_sreg(s, rd, tcg_res);
9354 tcg_temp_free_i32(tcg_res);
9355 tcg_temp_free_i32(tcg_op1);
9356 tcg_temp_free_i32(tcg_op2);
9357 tcg_temp_free_ptr(fpst);
9360 /* AdvSIMD scalar three same extra
9361 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
9362 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9363 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
9364 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9366 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9367 uint32_t insn)
9369 int rd = extract32(insn, 0, 5);
9370 int rn = extract32(insn, 5, 5);
9371 int opcode = extract32(insn, 11, 4);
9372 int rm = extract32(insn, 16, 5);
9373 int size = extract32(insn, 22, 2);
9374 bool u = extract32(insn, 29, 1);
9375 TCGv_i32 ele1, ele2, ele3;
9376 TCGv_i64 res;
9377 bool feature;
9379 switch (u * 16 + opcode) {
9380 case 0x10: /* SQRDMLAH (vector) */
9381 case 0x11: /* SQRDMLSH (vector) */
9382 if (size != 1 && size != 2) {
9383 unallocated_encoding(s);
9384 return;
9386 feature = dc_isar_feature(aa64_rdm, s);
9387 break;
9388 default:
9389 unallocated_encoding(s);
9390 return;
9392 if (!feature) {
9393 unallocated_encoding(s);
9394 return;
9396 if (!fp_access_check(s)) {
9397 return;
9400 /* Do a single operation on the lowest element in the vector.
9401 * We use the standard Neon helpers and rely on 0 OP 0 == 0
9402 * with no side effects for all these operations.
9403 * OPTME: special-purpose helpers would avoid doing some
9404 * unnecessary work in the helper for the 16 bit cases.
9406 ele1 = tcg_temp_new_i32();
9407 ele2 = tcg_temp_new_i32();
9408 ele3 = tcg_temp_new_i32();
9410 read_vec_element_i32(s, ele1, rn, 0, size);
9411 read_vec_element_i32(s, ele2, rm, 0, size);
9412 read_vec_element_i32(s, ele3, rd, 0, size);
9414 switch (opcode) {
9415 case 0x0: /* SQRDMLAH */
9416 if (size == 1) {
9417 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3);
9418 } else {
9419 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3);
9421 break;
9422 case 0x1: /* SQRDMLSH */
9423 if (size == 1) {
9424 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3);
9425 } else {
9426 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3);
9428 break;
9429 default:
9430 g_assert_not_reached();
9432 tcg_temp_free_i32(ele1);
9433 tcg_temp_free_i32(ele2);
9435 res = tcg_temp_new_i64();
9436 tcg_gen_extu_i32_i64(res, ele3);
9437 tcg_temp_free_i32(ele3);
9439 write_fp_dreg(s, rd, res);
9440 tcg_temp_free_i64(res);
9443 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9444 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9445 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9447 /* Handle 64->64 opcodes which are shared between the scalar and
9448 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9449 * is valid in either group and also the double-precision fp ops.
9450 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9451 * requires them.
9453 TCGCond cond;
9455 switch (opcode) {
9456 case 0x4: /* CLS, CLZ */
9457 if (u) {
9458 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9459 } else {
9460 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9462 break;
9463 case 0x5: /* NOT */
9464 /* This opcode is shared with CNT and RBIT but we have earlier
9465 * enforced that size == 3 if and only if this is the NOT insn.
9467 tcg_gen_not_i64(tcg_rd, tcg_rn);
9468 break;
9469 case 0x7: /* SQABS, SQNEG */
9470 if (u) {
9471 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
9472 } else {
9473 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
9475 break;
9476 case 0xa: /* CMLT */
9477 /* 64 bit integer comparison against zero, result is
9478 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
9479 * subtracting 1.
9481 cond = TCG_COND_LT;
9482 do_cmop:
9483 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
9484 tcg_gen_neg_i64(tcg_rd, tcg_rd);
9485 break;
9486 case 0x8: /* CMGT, CMGE */
9487 cond = u ? TCG_COND_GE : TCG_COND_GT;
9488 goto do_cmop;
9489 case 0x9: /* CMEQ, CMLE */
9490 cond = u ? TCG_COND_LE : TCG_COND_EQ;
9491 goto do_cmop;
9492 case 0xb: /* ABS, NEG */
9493 if (u) {
9494 tcg_gen_neg_i64(tcg_rd, tcg_rn);
9495 } else {
9496 tcg_gen_abs_i64(tcg_rd, tcg_rn);
9498 break;
9499 case 0x2f: /* FABS */
9500 gen_helper_vfp_absd(tcg_rd, tcg_rn);
9501 break;
9502 case 0x6f: /* FNEG */
9503 gen_helper_vfp_negd(tcg_rd, tcg_rn);
9504 break;
9505 case 0x7f: /* FSQRT */
9506 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
9507 break;
9508 case 0x1a: /* FCVTNS */
9509 case 0x1b: /* FCVTMS */
9510 case 0x1c: /* FCVTAS */
9511 case 0x3a: /* FCVTPS */
9512 case 0x3b: /* FCVTZS */
9514 TCGv_i32 tcg_shift = tcg_const_i32(0);
9515 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9516 tcg_temp_free_i32(tcg_shift);
9517 break;
9519 case 0x5a: /* FCVTNU */
9520 case 0x5b: /* FCVTMU */
9521 case 0x5c: /* FCVTAU */
9522 case 0x7a: /* FCVTPU */
9523 case 0x7b: /* FCVTZU */
9525 TCGv_i32 tcg_shift = tcg_const_i32(0);
9526 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9527 tcg_temp_free_i32(tcg_shift);
9528 break;
9530 case 0x18: /* FRINTN */
9531 case 0x19: /* FRINTM */
9532 case 0x38: /* FRINTP */
9533 case 0x39: /* FRINTZ */
9534 case 0x58: /* FRINTA */
9535 case 0x79: /* FRINTI */
9536 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9537 break;
9538 case 0x59: /* FRINTX */
9539 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9540 break;
9541 case 0x1e: /* FRINT32Z */
9542 case 0x5e: /* FRINT32X */
9543 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9544 break;
9545 case 0x1f: /* FRINT64Z */
9546 case 0x5f: /* FRINT64X */
9547 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9548 break;
9549 default:
9550 g_assert_not_reached();
9554 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9555 bool is_scalar, bool is_u, bool is_q,
9556 int size, int rn, int rd)
9558 bool is_double = (size == MO_64);
9559 TCGv_ptr fpst;
9561 if (!fp_access_check(s)) {
9562 return;
9565 fpst = get_fpstatus_ptr(size == MO_16);
9567 if (is_double) {
9568 TCGv_i64 tcg_op = tcg_temp_new_i64();
9569 TCGv_i64 tcg_zero = tcg_const_i64(0);
9570 TCGv_i64 tcg_res = tcg_temp_new_i64();
9571 NeonGenTwoDoubleOPFn *genfn;
9572 bool swap = false;
9573 int pass;
9575 switch (opcode) {
9576 case 0x2e: /* FCMLT (zero) */
9577 swap = true;
9578 /* fallthrough */
9579 case 0x2c: /* FCMGT (zero) */
9580 genfn = gen_helper_neon_cgt_f64;
9581 break;
9582 case 0x2d: /* FCMEQ (zero) */
9583 genfn = gen_helper_neon_ceq_f64;
9584 break;
9585 case 0x6d: /* FCMLE (zero) */
9586 swap = true;
9587 /* fall through */
9588 case 0x6c: /* FCMGE (zero) */
9589 genfn = gen_helper_neon_cge_f64;
9590 break;
9591 default:
9592 g_assert_not_reached();
9595 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9596 read_vec_element(s, tcg_op, rn, pass, MO_64);
9597 if (swap) {
9598 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9599 } else {
9600 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9602 write_vec_element(s, tcg_res, rd, pass, MO_64);
9604 tcg_temp_free_i64(tcg_res);
9605 tcg_temp_free_i64(tcg_zero);
9606 tcg_temp_free_i64(tcg_op);
9608 clear_vec_high(s, !is_scalar, rd);
9609 } else {
9610 TCGv_i32 tcg_op = tcg_temp_new_i32();
9611 TCGv_i32 tcg_zero = tcg_const_i32(0);
9612 TCGv_i32 tcg_res = tcg_temp_new_i32();
9613 NeonGenTwoSingleOPFn *genfn;
9614 bool swap = false;
9615 int pass, maxpasses;
9617 if (size == MO_16) {
9618 switch (opcode) {
9619 case 0x2e: /* FCMLT (zero) */
9620 swap = true;
9621 /* fall through */
9622 case 0x2c: /* FCMGT (zero) */
9623 genfn = gen_helper_advsimd_cgt_f16;
9624 break;
9625 case 0x2d: /* FCMEQ (zero) */
9626 genfn = gen_helper_advsimd_ceq_f16;
9627 break;
9628 case 0x6d: /* FCMLE (zero) */
9629 swap = true;
9630 /* fall through */
9631 case 0x6c: /* FCMGE (zero) */
9632 genfn = gen_helper_advsimd_cge_f16;
9633 break;
9634 default:
9635 g_assert_not_reached();
9637 } else {
9638 switch (opcode) {
9639 case 0x2e: /* FCMLT (zero) */
9640 swap = true;
9641 /* fall through */
9642 case 0x2c: /* FCMGT (zero) */
9643 genfn = gen_helper_neon_cgt_f32;
9644 break;
9645 case 0x2d: /* FCMEQ (zero) */
9646 genfn = gen_helper_neon_ceq_f32;
9647 break;
9648 case 0x6d: /* FCMLE (zero) */
9649 swap = true;
9650 /* fall through */
9651 case 0x6c: /* FCMGE (zero) */
9652 genfn = gen_helper_neon_cge_f32;
9653 break;
9654 default:
9655 g_assert_not_reached();
9659 if (is_scalar) {
9660 maxpasses = 1;
9661 } else {
9662 int vector_size = 8 << is_q;
9663 maxpasses = vector_size >> size;
9666 for (pass = 0; pass < maxpasses; pass++) {
9667 read_vec_element_i32(s, tcg_op, rn, pass, size);
9668 if (swap) {
9669 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9670 } else {
9671 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9673 if (is_scalar) {
9674 write_fp_sreg(s, rd, tcg_res);
9675 } else {
9676 write_vec_element_i32(s, tcg_res, rd, pass, size);
9679 tcg_temp_free_i32(tcg_res);
9680 tcg_temp_free_i32(tcg_zero);
9681 tcg_temp_free_i32(tcg_op);
9682 if (!is_scalar) {
9683 clear_vec_high(s, is_q, rd);
9687 tcg_temp_free_ptr(fpst);
9690 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9691 bool is_scalar, bool is_u, bool is_q,
9692 int size, int rn, int rd)
9694 bool is_double = (size == 3);
9695 TCGv_ptr fpst = get_fpstatus_ptr(false);
9697 if (is_double) {
9698 TCGv_i64 tcg_op = tcg_temp_new_i64();
9699 TCGv_i64 tcg_res = tcg_temp_new_i64();
9700 int pass;
9702 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9703 read_vec_element(s, tcg_op, rn, pass, MO_64);
9704 switch (opcode) {
9705 case 0x3d: /* FRECPE */
9706 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9707 break;
9708 case 0x3f: /* FRECPX */
9709 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9710 break;
9711 case 0x7d: /* FRSQRTE */
9712 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9713 break;
9714 default:
9715 g_assert_not_reached();
9717 write_vec_element(s, tcg_res, rd, pass, MO_64);
9719 tcg_temp_free_i64(tcg_res);
9720 tcg_temp_free_i64(tcg_op);
9721 clear_vec_high(s, !is_scalar, rd);
9722 } else {
9723 TCGv_i32 tcg_op = tcg_temp_new_i32();
9724 TCGv_i32 tcg_res = tcg_temp_new_i32();
9725 int pass, maxpasses;
9727 if (is_scalar) {
9728 maxpasses = 1;
9729 } else {
9730 maxpasses = is_q ? 4 : 2;
9733 for (pass = 0; pass < maxpasses; pass++) {
9734 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9736 switch (opcode) {
9737 case 0x3c: /* URECPE */
9738 gen_helper_recpe_u32(tcg_res, tcg_op, fpst);
9739 break;
9740 case 0x3d: /* FRECPE */
9741 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9742 break;
9743 case 0x3f: /* FRECPX */
9744 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9745 break;
9746 case 0x7d: /* FRSQRTE */
9747 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9748 break;
9749 default:
9750 g_assert_not_reached();
9753 if (is_scalar) {
9754 write_fp_sreg(s, rd, tcg_res);
9755 } else {
9756 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9759 tcg_temp_free_i32(tcg_res);
9760 tcg_temp_free_i32(tcg_op);
9761 if (!is_scalar) {
9762 clear_vec_high(s, is_q, rd);
9765 tcg_temp_free_ptr(fpst);
9768 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9769 int opcode, bool u, bool is_q,
9770 int size, int rn, int rd)
9772 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9773 * in the source becomes a size element in the destination).
9775 int pass;
9776 TCGv_i32 tcg_res[2];
9777 int destelt = is_q ? 2 : 0;
9778 int passes = scalar ? 1 : 2;
9780 if (scalar) {
9781 tcg_res[1] = tcg_const_i32(0);
9784 for (pass = 0; pass < passes; pass++) {
9785 TCGv_i64 tcg_op = tcg_temp_new_i64();
9786 NeonGenNarrowFn *genfn = NULL;
9787 NeonGenNarrowEnvFn *genenvfn = NULL;
9789 if (scalar) {
9790 read_vec_element(s, tcg_op, rn, pass, size + 1);
9791 } else {
9792 read_vec_element(s, tcg_op, rn, pass, MO_64);
9794 tcg_res[pass] = tcg_temp_new_i32();
9796 switch (opcode) {
9797 case 0x12: /* XTN, SQXTUN */
9799 static NeonGenNarrowFn * const xtnfns[3] = {
9800 gen_helper_neon_narrow_u8,
9801 gen_helper_neon_narrow_u16,
9802 tcg_gen_extrl_i64_i32,
9804 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9805 gen_helper_neon_unarrow_sat8,
9806 gen_helper_neon_unarrow_sat16,
9807 gen_helper_neon_unarrow_sat32,
9809 if (u) {
9810 genenvfn = sqxtunfns[size];
9811 } else {
9812 genfn = xtnfns[size];
9814 break;
9816 case 0x14: /* SQXTN, UQXTN */
9818 static NeonGenNarrowEnvFn * const fns[3][2] = {
9819 { gen_helper_neon_narrow_sat_s8,
9820 gen_helper_neon_narrow_sat_u8 },
9821 { gen_helper_neon_narrow_sat_s16,
9822 gen_helper_neon_narrow_sat_u16 },
9823 { gen_helper_neon_narrow_sat_s32,
9824 gen_helper_neon_narrow_sat_u32 },
9826 genenvfn = fns[size][u];
9827 break;
9829 case 0x16: /* FCVTN, FCVTN2 */
9830 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9831 if (size == 2) {
9832 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
9833 } else {
9834 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9835 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9836 TCGv_ptr fpst = get_fpstatus_ptr(false);
9837 TCGv_i32 ahp = get_ahp_flag();
9839 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9840 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9841 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9842 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9843 tcg_temp_free_i32(tcg_lo);
9844 tcg_temp_free_i32(tcg_hi);
9845 tcg_temp_free_ptr(fpst);
9846 tcg_temp_free_i32(ahp);
9848 break;
9849 case 0x56: /* FCVTXN, FCVTXN2 */
9850 /* 64 bit to 32 bit float conversion
9851 * with von Neumann rounding (round to odd)
9853 assert(size == 2);
9854 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
9855 break;
9856 default:
9857 g_assert_not_reached();
9860 if (genfn) {
9861 genfn(tcg_res[pass], tcg_op);
9862 } else if (genenvfn) {
9863 genenvfn(tcg_res[pass], cpu_env, tcg_op);
9866 tcg_temp_free_i64(tcg_op);
9869 for (pass = 0; pass < 2; pass++) {
9870 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
9871 tcg_temp_free_i32(tcg_res[pass]);
9873 clear_vec_high(s, is_q, rd);
9876 /* Remaining saturating accumulating ops */
9877 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
9878 bool is_q, int size, int rn, int rd)
9880 bool is_double = (size == 3);
9882 if (is_double) {
9883 TCGv_i64 tcg_rn = tcg_temp_new_i64();
9884 TCGv_i64 tcg_rd = tcg_temp_new_i64();
9885 int pass;
9887 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9888 read_vec_element(s, tcg_rn, rn, pass, MO_64);
9889 read_vec_element(s, tcg_rd, rd, pass, MO_64);
9891 if (is_u) { /* USQADD */
9892 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9893 } else { /* SUQADD */
9894 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9896 write_vec_element(s, tcg_rd, rd, pass, MO_64);
9898 tcg_temp_free_i64(tcg_rd);
9899 tcg_temp_free_i64(tcg_rn);
9900 clear_vec_high(s, !is_scalar, rd);
9901 } else {
9902 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9903 TCGv_i32 tcg_rd = tcg_temp_new_i32();
9904 int pass, maxpasses;
9906 if (is_scalar) {
9907 maxpasses = 1;
9908 } else {
9909 maxpasses = is_q ? 4 : 2;
9912 for (pass = 0; pass < maxpasses; pass++) {
9913 if (is_scalar) {
9914 read_vec_element_i32(s, tcg_rn, rn, pass, size);
9915 read_vec_element_i32(s, tcg_rd, rd, pass, size);
9916 } else {
9917 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
9918 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9921 if (is_u) { /* USQADD */
9922 switch (size) {
9923 case 0:
9924 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9925 break;
9926 case 1:
9927 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9928 break;
9929 case 2:
9930 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9931 break;
9932 default:
9933 g_assert_not_reached();
9935 } else { /* SUQADD */
9936 switch (size) {
9937 case 0:
9938 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9939 break;
9940 case 1:
9941 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9942 break;
9943 case 2:
9944 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9945 break;
9946 default:
9947 g_assert_not_reached();
9951 if (is_scalar) {
9952 TCGv_i64 tcg_zero = tcg_const_i64(0);
9953 write_vec_element(s, tcg_zero, rd, 0, MO_64);
9954 tcg_temp_free_i64(tcg_zero);
9956 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9958 tcg_temp_free_i32(tcg_rd);
9959 tcg_temp_free_i32(tcg_rn);
9960 clear_vec_high(s, is_q, rd);
9964 /* AdvSIMD scalar two reg misc
9965 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
9966 * +-----+---+-----------+------+-----------+--------+-----+------+------+
9967 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
9968 * +-----+---+-----------+------+-----------+--------+-----+------+------+
9970 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
9972 int rd = extract32(insn, 0, 5);
9973 int rn = extract32(insn, 5, 5);
9974 int opcode = extract32(insn, 12, 5);
9975 int size = extract32(insn, 22, 2);
9976 bool u = extract32(insn, 29, 1);
9977 bool is_fcvt = false;
9978 int rmode;
9979 TCGv_i32 tcg_rmode;
9980 TCGv_ptr tcg_fpstatus;
9982 switch (opcode) {
9983 case 0x3: /* USQADD / SUQADD*/
9984 if (!fp_access_check(s)) {
9985 return;
9987 handle_2misc_satacc(s, true, u, false, size, rn, rd);
9988 return;
9989 case 0x7: /* SQABS / SQNEG */
9990 break;
9991 case 0xa: /* CMLT */
9992 if (u) {
9993 unallocated_encoding(s);
9994 return;
9996 /* fall through */
9997 case 0x8: /* CMGT, CMGE */
9998 case 0x9: /* CMEQ, CMLE */
9999 case 0xb: /* ABS, NEG */
10000 if (size != 3) {
10001 unallocated_encoding(s);
10002 return;
10004 break;
10005 case 0x12: /* SQXTUN */
10006 if (!u) {
10007 unallocated_encoding(s);
10008 return;
10010 /* fall through */
10011 case 0x14: /* SQXTN, UQXTN */
10012 if (size == 3) {
10013 unallocated_encoding(s);
10014 return;
10016 if (!fp_access_check(s)) {
10017 return;
10019 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10020 return;
10021 case 0xc ... 0xf:
10022 case 0x16 ... 0x1d:
10023 case 0x1f:
10024 /* Floating point: U, size[1] and opcode indicate operation;
10025 * size[0] indicates single or double precision.
10027 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10028 size = extract32(size, 0, 1) ? 3 : 2;
10029 switch (opcode) {
10030 case 0x2c: /* FCMGT (zero) */
10031 case 0x2d: /* FCMEQ (zero) */
10032 case 0x2e: /* FCMLT (zero) */
10033 case 0x6c: /* FCMGE (zero) */
10034 case 0x6d: /* FCMLE (zero) */
10035 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10036 return;
10037 case 0x1d: /* SCVTF */
10038 case 0x5d: /* UCVTF */
10040 bool is_signed = (opcode == 0x1d);
10041 if (!fp_access_check(s)) {
10042 return;
10044 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10045 return;
10047 case 0x3d: /* FRECPE */
10048 case 0x3f: /* FRECPX */
10049 case 0x7d: /* FRSQRTE */
10050 if (!fp_access_check(s)) {
10051 return;
10053 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10054 return;
10055 case 0x1a: /* FCVTNS */
10056 case 0x1b: /* FCVTMS */
10057 case 0x3a: /* FCVTPS */
10058 case 0x3b: /* FCVTZS */
10059 case 0x5a: /* FCVTNU */
10060 case 0x5b: /* FCVTMU */
10061 case 0x7a: /* FCVTPU */
10062 case 0x7b: /* FCVTZU */
10063 is_fcvt = true;
10064 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10065 break;
10066 case 0x1c: /* FCVTAS */
10067 case 0x5c: /* FCVTAU */
10068 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10069 is_fcvt = true;
10070 rmode = FPROUNDING_TIEAWAY;
10071 break;
10072 case 0x56: /* FCVTXN, FCVTXN2 */
10073 if (size == 2) {
10074 unallocated_encoding(s);
10075 return;
10077 if (!fp_access_check(s)) {
10078 return;
10080 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10081 return;
10082 default:
10083 unallocated_encoding(s);
10084 return;
10086 break;
10087 default:
10088 unallocated_encoding(s);
10089 return;
10092 if (!fp_access_check(s)) {
10093 return;
10096 if (is_fcvt) {
10097 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
10098 tcg_fpstatus = get_fpstatus_ptr(false);
10099 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
10100 } else {
10101 tcg_rmode = NULL;
10102 tcg_fpstatus = NULL;
10105 if (size == 3) {
10106 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10107 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10109 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10110 write_fp_dreg(s, rd, tcg_rd);
10111 tcg_temp_free_i64(tcg_rd);
10112 tcg_temp_free_i64(tcg_rn);
10113 } else {
10114 TCGv_i32 tcg_rn = tcg_temp_new_i32();
10115 TCGv_i32 tcg_rd = tcg_temp_new_i32();
10117 read_vec_element_i32(s, tcg_rn, rn, 0, size);
10119 switch (opcode) {
10120 case 0x7: /* SQABS, SQNEG */
10122 NeonGenOneOpEnvFn *genfn;
10123 static NeonGenOneOpEnvFn * const fns[3][2] = {
10124 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10125 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10126 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10128 genfn = fns[size][u];
10129 genfn(tcg_rd, cpu_env, tcg_rn);
10130 break;
10132 case 0x1a: /* FCVTNS */
10133 case 0x1b: /* FCVTMS */
10134 case 0x1c: /* FCVTAS */
10135 case 0x3a: /* FCVTPS */
10136 case 0x3b: /* FCVTZS */
10138 TCGv_i32 tcg_shift = tcg_const_i32(0);
10139 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
10140 tcg_temp_free_i32(tcg_shift);
10141 break;
10143 case 0x5a: /* FCVTNU */
10144 case 0x5b: /* FCVTMU */
10145 case 0x5c: /* FCVTAU */
10146 case 0x7a: /* FCVTPU */
10147 case 0x7b: /* FCVTZU */
10149 TCGv_i32 tcg_shift = tcg_const_i32(0);
10150 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
10151 tcg_temp_free_i32(tcg_shift);
10152 break;
10154 default:
10155 g_assert_not_reached();
10158 write_fp_sreg(s, rd, tcg_rd);
10159 tcg_temp_free_i32(tcg_rd);
10160 tcg_temp_free_i32(tcg_rn);
10163 if (is_fcvt) {
10164 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
10165 tcg_temp_free_i32(tcg_rmode);
10166 tcg_temp_free_ptr(tcg_fpstatus);
10170 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10171 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10172 int immh, int immb, int opcode, int rn, int rd)
10174 int size = 32 - clz32(immh) - 1;
10175 int immhb = immh << 3 | immb;
10176 int shift = 2 * (8 << size) - immhb;
10177 bool accumulate = false;
10178 int dsize = is_q ? 128 : 64;
10179 int esize = 8 << size;
10180 int elements = dsize/esize;
10181 MemOp memop = size | (is_u ? 0 : MO_SIGN);
10182 TCGv_i64 tcg_rn = new_tmp_a64(s);
10183 TCGv_i64 tcg_rd = new_tmp_a64(s);
10184 TCGv_i64 tcg_round;
10185 uint64_t round_const;
10186 int i;
10188 if (extract32(immh, 3, 1) && !is_q) {
10189 unallocated_encoding(s);
10190 return;
10192 tcg_debug_assert(size <= 3);
10194 if (!fp_access_check(s)) {
10195 return;
10198 switch (opcode) {
10199 case 0x02: /* SSRA / USRA (accumulate) */
10200 if (is_u) {
10201 /* Shift count same as element size produces zero to add. */
10202 if (shift == 8 << size) {
10203 goto done;
10205 gen_gvec_op2i(s, is_q, rd, rn, shift, &usra_op[size]);
10206 } else {
10207 /* Shift count same as element size produces all sign to add. */
10208 if (shift == 8 << size) {
10209 shift -= 1;
10211 gen_gvec_op2i(s, is_q, rd, rn, shift, &ssra_op[size]);
10213 return;
10214 case 0x08: /* SRI */
10215 /* Shift count same as element size is valid but does nothing. */
10216 if (shift == 8 << size) {
10217 goto done;
10219 gen_gvec_op2i(s, is_q, rd, rn, shift, &sri_op[size]);
10220 return;
10222 case 0x00: /* SSHR / USHR */
10223 if (is_u) {
10224 if (shift == 8 << size) {
10225 /* Shift count the same size as element size produces zero. */
10226 tcg_gen_gvec_dup8i(vec_full_reg_offset(s, rd),
10227 is_q ? 16 : 8, vec_full_reg_size(s), 0);
10228 } else {
10229 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shri, size);
10231 } else {
10232 /* Shift count the same size as element size produces all sign. */
10233 if (shift == 8 << size) {
10234 shift -= 1;
10236 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_sari, size);
10238 return;
10240 case 0x04: /* SRSHR / URSHR (rounding) */
10241 break;
10242 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10243 accumulate = true;
10244 break;
10245 default:
10246 g_assert_not_reached();
10249 round_const = 1ULL << (shift - 1);
10250 tcg_round = tcg_const_i64(round_const);
10252 for (i = 0; i < elements; i++) {
10253 read_vec_element(s, tcg_rn, rn, i, memop);
10254 if (accumulate) {
10255 read_vec_element(s, tcg_rd, rd, i, memop);
10258 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10259 accumulate, is_u, size, shift);
10261 write_vec_element(s, tcg_rd, rd, i, size);
10263 tcg_temp_free_i64(tcg_round);
10265 done:
10266 clear_vec_high(s, is_q, rd);
10269 /* SHL/SLI - Vector shift left */
10270 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10271 int immh, int immb, int opcode, int rn, int rd)
10273 int size = 32 - clz32(immh) - 1;
10274 int immhb = immh << 3 | immb;
10275 int shift = immhb - (8 << size);
10277 /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10278 assert(size >= 0 && size <= 3);
10280 if (extract32(immh, 3, 1) && !is_q) {
10281 unallocated_encoding(s);
10282 return;
10285 if (!fp_access_check(s)) {
10286 return;
10289 if (insert) {
10290 gen_gvec_op2i(s, is_q, rd, rn, shift, &sli_op[size]);
10291 } else {
10292 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10296 /* USHLL/SHLL - Vector shift left with widening */
10297 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10298 int immh, int immb, int opcode, int rn, int rd)
10300 int size = 32 - clz32(immh) - 1;
10301 int immhb = immh << 3 | immb;
10302 int shift = immhb - (8 << size);
10303 int dsize = 64;
10304 int esize = 8 << size;
10305 int elements = dsize/esize;
10306 TCGv_i64 tcg_rn = new_tmp_a64(s);
10307 TCGv_i64 tcg_rd = new_tmp_a64(s);
10308 int i;
10310 if (size >= 3) {
10311 unallocated_encoding(s);
10312 return;
10315 if (!fp_access_check(s)) {
10316 return;
10319 /* For the LL variants the store is larger than the load,
10320 * so if rd == rn we would overwrite parts of our input.
10321 * So load everything right now and use shifts in the main loop.
10323 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10325 for (i = 0; i < elements; i++) {
10326 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10327 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10328 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10329 write_vec_element(s, tcg_rd, rd, i, size + 1);
10333 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10334 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10335 int immh, int immb, int opcode, int rn, int rd)
10337 int immhb = immh << 3 | immb;
10338 int size = 32 - clz32(immh) - 1;
10339 int dsize = 64;
10340 int esize = 8 << size;
10341 int elements = dsize/esize;
10342 int shift = (2 * esize) - immhb;
10343 bool round = extract32(opcode, 0, 1);
10344 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10345 TCGv_i64 tcg_round;
10346 int i;
10348 if (extract32(immh, 3, 1)) {
10349 unallocated_encoding(s);
10350 return;
10353 if (!fp_access_check(s)) {
10354 return;
10357 tcg_rn = tcg_temp_new_i64();
10358 tcg_rd = tcg_temp_new_i64();
10359 tcg_final = tcg_temp_new_i64();
10360 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10362 if (round) {
10363 uint64_t round_const = 1ULL << (shift - 1);
10364 tcg_round = tcg_const_i64(round_const);
10365 } else {
10366 tcg_round = NULL;
10369 for (i = 0; i < elements; i++) {
10370 read_vec_element(s, tcg_rn, rn, i, size+1);
10371 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10372 false, true, size+1, shift);
10374 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10377 if (!is_q) {
10378 write_vec_element(s, tcg_final, rd, 0, MO_64);
10379 } else {
10380 write_vec_element(s, tcg_final, rd, 1, MO_64);
10382 if (round) {
10383 tcg_temp_free_i64(tcg_round);
10385 tcg_temp_free_i64(tcg_rn);
10386 tcg_temp_free_i64(tcg_rd);
10387 tcg_temp_free_i64(tcg_final);
10389 clear_vec_high(s, is_q, rd);
10393 /* AdvSIMD shift by immediate
10394 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
10395 * +---+---+---+-------------+------+------+--------+---+------+------+
10396 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
10397 * +---+---+---+-------------+------+------+--------+---+------+------+
10399 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10401 int rd = extract32(insn, 0, 5);
10402 int rn = extract32(insn, 5, 5);
10403 int opcode = extract32(insn, 11, 5);
10404 int immb = extract32(insn, 16, 3);
10405 int immh = extract32(insn, 19, 4);
10406 bool is_u = extract32(insn, 29, 1);
10407 bool is_q = extract32(insn, 30, 1);
10409 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10410 assert(immh != 0);
10412 switch (opcode) {
10413 case 0x08: /* SRI */
10414 if (!is_u) {
10415 unallocated_encoding(s);
10416 return;
10418 /* fall through */
10419 case 0x00: /* SSHR / USHR */
10420 case 0x02: /* SSRA / USRA (accumulate) */
10421 case 0x04: /* SRSHR / URSHR (rounding) */
10422 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10423 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10424 break;
10425 case 0x0a: /* SHL / SLI */
10426 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10427 break;
10428 case 0x10: /* SHRN */
10429 case 0x11: /* RSHRN / SQRSHRUN */
10430 if (is_u) {
10431 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10432 opcode, rn, rd);
10433 } else {
10434 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10436 break;
10437 case 0x12: /* SQSHRN / UQSHRN */
10438 case 0x13: /* SQRSHRN / UQRSHRN */
10439 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10440 opcode, rn, rd);
10441 break;
10442 case 0x14: /* SSHLL / USHLL */
10443 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10444 break;
10445 case 0x1c: /* SCVTF / UCVTF */
10446 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10447 opcode, rn, rd);
10448 break;
10449 case 0xc: /* SQSHLU */
10450 if (!is_u) {
10451 unallocated_encoding(s);
10452 return;
10454 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10455 break;
10456 case 0xe: /* SQSHL, UQSHL */
10457 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10458 break;
10459 case 0x1f: /* FCVTZS/ FCVTZU */
10460 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10461 return;
10462 default:
10463 unallocated_encoding(s);
10464 return;
10468 /* Generate code to do a "long" addition or subtraction, ie one done in
10469 * TCGv_i64 on vector lanes twice the width specified by size.
10471 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10472 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10474 static NeonGenTwo64OpFn * const fns[3][2] = {
10475 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10476 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10477 { tcg_gen_add_i64, tcg_gen_sub_i64 },
10479 NeonGenTwo64OpFn *genfn;
10480 assert(size < 3);
10482 genfn = fns[size][is_sub];
10483 genfn(tcg_res, tcg_op1, tcg_op2);
10486 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10487 int opcode, int rd, int rn, int rm)
10489 /* 3-reg-different widening insns: 64 x 64 -> 128 */
10490 TCGv_i64 tcg_res[2];
10491 int pass, accop;
10493 tcg_res[0] = tcg_temp_new_i64();
10494 tcg_res[1] = tcg_temp_new_i64();
10496 /* Does this op do an adding accumulate, a subtracting accumulate,
10497 * or no accumulate at all?
10499 switch (opcode) {
10500 case 5:
10501 case 8:
10502 case 9:
10503 accop = 1;
10504 break;
10505 case 10:
10506 case 11:
10507 accop = -1;
10508 break;
10509 default:
10510 accop = 0;
10511 break;
10514 if (accop != 0) {
10515 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10516 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10519 /* size == 2 means two 32x32->64 operations; this is worth special
10520 * casing because we can generally handle it inline.
10522 if (size == 2) {
10523 for (pass = 0; pass < 2; pass++) {
10524 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10525 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10526 TCGv_i64 tcg_passres;
10527 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10529 int elt = pass + is_q * 2;
10531 read_vec_element(s, tcg_op1, rn, elt, memop);
10532 read_vec_element(s, tcg_op2, rm, elt, memop);
10534 if (accop == 0) {
10535 tcg_passres = tcg_res[pass];
10536 } else {
10537 tcg_passres = tcg_temp_new_i64();
10540 switch (opcode) {
10541 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10542 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10543 break;
10544 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10545 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10546 break;
10547 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10548 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10550 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10551 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10553 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10554 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10555 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10556 tcg_passres,
10557 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10558 tcg_temp_free_i64(tcg_tmp1);
10559 tcg_temp_free_i64(tcg_tmp2);
10560 break;
10562 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10563 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10564 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10565 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10566 break;
10567 case 9: /* SQDMLAL, SQDMLAL2 */
10568 case 11: /* SQDMLSL, SQDMLSL2 */
10569 case 13: /* SQDMULL, SQDMULL2 */
10570 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10571 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10572 tcg_passres, tcg_passres);
10573 break;
10574 default:
10575 g_assert_not_reached();
10578 if (opcode == 9 || opcode == 11) {
10579 /* saturating accumulate ops */
10580 if (accop < 0) {
10581 tcg_gen_neg_i64(tcg_passres, tcg_passres);
10583 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10584 tcg_res[pass], tcg_passres);
10585 } else if (accop > 0) {
10586 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10587 } else if (accop < 0) {
10588 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10591 if (accop != 0) {
10592 tcg_temp_free_i64(tcg_passres);
10595 tcg_temp_free_i64(tcg_op1);
10596 tcg_temp_free_i64(tcg_op2);
10598 } else {
10599 /* size 0 or 1, generally helper functions */
10600 for (pass = 0; pass < 2; pass++) {
10601 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10602 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10603 TCGv_i64 tcg_passres;
10604 int elt = pass + is_q * 2;
10606 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10607 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10609 if (accop == 0) {
10610 tcg_passres = tcg_res[pass];
10611 } else {
10612 tcg_passres = tcg_temp_new_i64();
10615 switch (opcode) {
10616 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10617 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10619 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10620 static NeonGenWidenFn * const widenfns[2][2] = {
10621 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10622 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10624 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10626 widenfn(tcg_op2_64, tcg_op2);
10627 widenfn(tcg_passres, tcg_op1);
10628 gen_neon_addl(size, (opcode == 2), tcg_passres,
10629 tcg_passres, tcg_op2_64);
10630 tcg_temp_free_i64(tcg_op2_64);
10631 break;
10633 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10634 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10635 if (size == 0) {
10636 if (is_u) {
10637 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10638 } else {
10639 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10641 } else {
10642 if (is_u) {
10643 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10644 } else {
10645 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10648 break;
10649 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10650 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10651 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10652 if (size == 0) {
10653 if (is_u) {
10654 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10655 } else {
10656 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10658 } else {
10659 if (is_u) {
10660 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10661 } else {
10662 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10665 break;
10666 case 9: /* SQDMLAL, SQDMLAL2 */
10667 case 11: /* SQDMLSL, SQDMLSL2 */
10668 case 13: /* SQDMULL, SQDMULL2 */
10669 assert(size == 1);
10670 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10671 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
10672 tcg_passres, tcg_passres);
10673 break;
10674 default:
10675 g_assert_not_reached();
10677 tcg_temp_free_i32(tcg_op1);
10678 tcg_temp_free_i32(tcg_op2);
10680 if (accop != 0) {
10681 if (opcode == 9 || opcode == 11) {
10682 /* saturating accumulate ops */
10683 if (accop < 0) {
10684 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10686 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
10687 tcg_res[pass],
10688 tcg_passres);
10689 } else {
10690 gen_neon_addl(size, (accop < 0), tcg_res[pass],
10691 tcg_res[pass], tcg_passres);
10693 tcg_temp_free_i64(tcg_passres);
10698 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10699 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10700 tcg_temp_free_i64(tcg_res[0]);
10701 tcg_temp_free_i64(tcg_res[1]);
10704 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10705 int opcode, int rd, int rn, int rm)
10707 TCGv_i64 tcg_res[2];
10708 int part = is_q ? 2 : 0;
10709 int pass;
10711 for (pass = 0; pass < 2; pass++) {
10712 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10713 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10714 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10715 static NeonGenWidenFn * const widenfns[3][2] = {
10716 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10717 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10718 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10720 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10722 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10723 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10724 widenfn(tcg_op2_wide, tcg_op2);
10725 tcg_temp_free_i32(tcg_op2);
10726 tcg_res[pass] = tcg_temp_new_i64();
10727 gen_neon_addl(size, (opcode == 3),
10728 tcg_res[pass], tcg_op1, tcg_op2_wide);
10729 tcg_temp_free_i64(tcg_op1);
10730 tcg_temp_free_i64(tcg_op2_wide);
10733 for (pass = 0; pass < 2; pass++) {
10734 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10735 tcg_temp_free_i64(tcg_res[pass]);
10739 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10741 tcg_gen_addi_i64(in, in, 1U << 31);
10742 tcg_gen_extrh_i64_i32(res, in);
10745 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10746 int opcode, int rd, int rn, int rm)
10748 TCGv_i32 tcg_res[2];
10749 int part = is_q ? 2 : 0;
10750 int pass;
10752 for (pass = 0; pass < 2; pass++) {
10753 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10754 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10755 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10756 static NeonGenNarrowFn * const narrowfns[3][2] = {
10757 { gen_helper_neon_narrow_high_u8,
10758 gen_helper_neon_narrow_round_high_u8 },
10759 { gen_helper_neon_narrow_high_u16,
10760 gen_helper_neon_narrow_round_high_u16 },
10761 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10763 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10765 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10766 read_vec_element(s, tcg_op2, rm, pass, MO_64);
10768 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10770 tcg_temp_free_i64(tcg_op1);
10771 tcg_temp_free_i64(tcg_op2);
10773 tcg_res[pass] = tcg_temp_new_i32();
10774 gennarrow(tcg_res[pass], tcg_wideres);
10775 tcg_temp_free_i64(tcg_wideres);
10778 for (pass = 0; pass < 2; pass++) {
10779 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10780 tcg_temp_free_i32(tcg_res[pass]);
10782 clear_vec_high(s, is_q, rd);
10785 /* AdvSIMD three different
10786 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
10787 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10788 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
10789 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10791 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10793 /* Instructions in this group fall into three basic classes
10794 * (in each case with the operation working on each element in
10795 * the input vectors):
10796 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10797 * 128 bit input)
10798 * (2) wide 64 x 128 -> 128
10799 * (3) narrowing 128 x 128 -> 64
10800 * Here we do initial decode, catch unallocated cases and
10801 * dispatch to separate functions for each class.
10803 int is_q = extract32(insn, 30, 1);
10804 int is_u = extract32(insn, 29, 1);
10805 int size = extract32(insn, 22, 2);
10806 int opcode = extract32(insn, 12, 4);
10807 int rm = extract32(insn, 16, 5);
10808 int rn = extract32(insn, 5, 5);
10809 int rd = extract32(insn, 0, 5);
10811 switch (opcode) {
10812 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10813 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10814 /* 64 x 128 -> 128 */
10815 if (size == 3) {
10816 unallocated_encoding(s);
10817 return;
10819 if (!fp_access_check(s)) {
10820 return;
10822 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10823 break;
10824 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10825 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10826 /* 128 x 128 -> 64 */
10827 if (size == 3) {
10828 unallocated_encoding(s);
10829 return;
10831 if (!fp_access_check(s)) {
10832 return;
10834 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10835 break;
10836 case 14: /* PMULL, PMULL2 */
10837 if (is_u) {
10838 unallocated_encoding(s);
10839 return;
10841 switch (size) {
10842 case 0: /* PMULL.P8 */
10843 if (!fp_access_check(s)) {
10844 return;
10846 /* The Q field specifies lo/hi half input for this insn. */
10847 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10848 gen_helper_neon_pmull_h);
10849 break;
10851 case 3: /* PMULL.P64 */
10852 if (!dc_isar_feature(aa64_pmull, s)) {
10853 unallocated_encoding(s);
10854 return;
10856 if (!fp_access_check(s)) {
10857 return;
10859 /* The Q field specifies lo/hi half input for this insn. */
10860 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10861 gen_helper_gvec_pmull_q);
10862 break;
10864 default:
10865 unallocated_encoding(s);
10866 break;
10868 return;
10869 case 9: /* SQDMLAL, SQDMLAL2 */
10870 case 11: /* SQDMLSL, SQDMLSL2 */
10871 case 13: /* SQDMULL, SQDMULL2 */
10872 if (is_u || size == 0) {
10873 unallocated_encoding(s);
10874 return;
10876 /* fall through */
10877 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10878 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10879 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10880 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10881 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10882 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10883 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10884 /* 64 x 64 -> 128 */
10885 if (size == 3) {
10886 unallocated_encoding(s);
10887 return;
10889 if (!fp_access_check(s)) {
10890 return;
10893 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10894 break;
10895 default:
10896 /* opcode 15 not allocated */
10897 unallocated_encoding(s);
10898 break;
10902 /* Logic op (opcode == 3) subgroup of C3.6.16. */
10903 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
10905 int rd = extract32(insn, 0, 5);
10906 int rn = extract32(insn, 5, 5);
10907 int rm = extract32(insn, 16, 5);
10908 int size = extract32(insn, 22, 2);
10909 bool is_u = extract32(insn, 29, 1);
10910 bool is_q = extract32(insn, 30, 1);
10912 if (!fp_access_check(s)) {
10913 return;
10916 switch (size + 4 * is_u) {
10917 case 0: /* AND */
10918 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
10919 return;
10920 case 1: /* BIC */
10921 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
10922 return;
10923 case 2: /* ORR */
10924 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
10925 return;
10926 case 3: /* ORN */
10927 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
10928 return;
10929 case 4: /* EOR */
10930 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
10931 return;
10933 case 5: /* BSL bitwise select */
10934 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
10935 return;
10936 case 6: /* BIT, bitwise insert if true */
10937 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
10938 return;
10939 case 7: /* BIF, bitwise insert if false */
10940 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
10941 return;
10943 default:
10944 g_assert_not_reached();
10948 /* Pairwise op subgroup of C3.6.16.
10950 * This is called directly or via the handle_3same_float for float pairwise
10951 * operations where the opcode and size are calculated differently.
10953 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
10954 int size, int rn, int rm, int rd)
10956 TCGv_ptr fpst;
10957 int pass;
10959 /* Floating point operations need fpst */
10960 if (opcode >= 0x58) {
10961 fpst = get_fpstatus_ptr(false);
10962 } else {
10963 fpst = NULL;
10966 if (!fp_access_check(s)) {
10967 return;
10970 /* These operations work on the concatenated rm:rn, with each pair of
10971 * adjacent elements being operated on to produce an element in the result.
10973 if (size == 3) {
10974 TCGv_i64 tcg_res[2];
10976 for (pass = 0; pass < 2; pass++) {
10977 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10978 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10979 int passreg = (pass == 0) ? rn : rm;
10981 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
10982 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
10983 tcg_res[pass] = tcg_temp_new_i64();
10985 switch (opcode) {
10986 case 0x17: /* ADDP */
10987 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
10988 break;
10989 case 0x58: /* FMAXNMP */
10990 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10991 break;
10992 case 0x5a: /* FADDP */
10993 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10994 break;
10995 case 0x5e: /* FMAXP */
10996 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10997 break;
10998 case 0x78: /* FMINNMP */
10999 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11000 break;
11001 case 0x7e: /* FMINP */
11002 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11003 break;
11004 default:
11005 g_assert_not_reached();
11008 tcg_temp_free_i64(tcg_op1);
11009 tcg_temp_free_i64(tcg_op2);
11012 for (pass = 0; pass < 2; pass++) {
11013 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11014 tcg_temp_free_i64(tcg_res[pass]);
11016 } else {
11017 int maxpass = is_q ? 4 : 2;
11018 TCGv_i32 tcg_res[4];
11020 for (pass = 0; pass < maxpass; pass++) {
11021 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11022 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11023 NeonGenTwoOpFn *genfn = NULL;
11024 int passreg = pass < (maxpass / 2) ? rn : rm;
11025 int passelt = (is_q && (pass & 1)) ? 2 : 0;
11027 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
11028 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
11029 tcg_res[pass] = tcg_temp_new_i32();
11031 switch (opcode) {
11032 case 0x17: /* ADDP */
11034 static NeonGenTwoOpFn * const fns[3] = {
11035 gen_helper_neon_padd_u8,
11036 gen_helper_neon_padd_u16,
11037 tcg_gen_add_i32,
11039 genfn = fns[size];
11040 break;
11042 case 0x14: /* SMAXP, UMAXP */
11044 static NeonGenTwoOpFn * const fns[3][2] = {
11045 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
11046 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
11047 { tcg_gen_smax_i32, tcg_gen_umax_i32 },
11049 genfn = fns[size][u];
11050 break;
11052 case 0x15: /* SMINP, UMINP */
11054 static NeonGenTwoOpFn * const fns[3][2] = {
11055 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
11056 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
11057 { tcg_gen_smin_i32, tcg_gen_umin_i32 },
11059 genfn = fns[size][u];
11060 break;
11062 /* The FP operations are all on single floats (32 bit) */
11063 case 0x58: /* FMAXNMP */
11064 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11065 break;
11066 case 0x5a: /* FADDP */
11067 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11068 break;
11069 case 0x5e: /* FMAXP */
11070 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11071 break;
11072 case 0x78: /* FMINNMP */
11073 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11074 break;
11075 case 0x7e: /* FMINP */
11076 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11077 break;
11078 default:
11079 g_assert_not_reached();
11082 /* FP ops called directly, otherwise call now */
11083 if (genfn) {
11084 genfn(tcg_res[pass], tcg_op1, tcg_op2);
11087 tcg_temp_free_i32(tcg_op1);
11088 tcg_temp_free_i32(tcg_op2);
11091 for (pass = 0; pass < maxpass; pass++) {
11092 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11093 tcg_temp_free_i32(tcg_res[pass]);
11095 clear_vec_high(s, is_q, rd);
11098 if (fpst) {
11099 tcg_temp_free_ptr(fpst);
11103 /* Floating point op subgroup of C3.6.16. */
11104 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
11106 /* For floating point ops, the U, size[1] and opcode bits
11107 * together indicate the operation. size[0] indicates single
11108 * or double.
11110 int fpopcode = extract32(insn, 11, 5)
11111 | (extract32(insn, 23, 1) << 5)
11112 | (extract32(insn, 29, 1) << 6);
11113 int is_q = extract32(insn, 30, 1);
11114 int size = extract32(insn, 22, 1);
11115 int rm = extract32(insn, 16, 5);
11116 int rn = extract32(insn, 5, 5);
11117 int rd = extract32(insn, 0, 5);
11119 int datasize = is_q ? 128 : 64;
11120 int esize = 32 << size;
11121 int elements = datasize / esize;
11123 if (size == 1 && !is_q) {
11124 unallocated_encoding(s);
11125 return;
11128 switch (fpopcode) {
11129 case 0x58: /* FMAXNMP */
11130 case 0x5a: /* FADDP */
11131 case 0x5e: /* FMAXP */
11132 case 0x78: /* FMINNMP */
11133 case 0x7e: /* FMINP */
11134 if (size && !is_q) {
11135 unallocated_encoding(s);
11136 return;
11138 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
11139 rn, rm, rd);
11140 return;
11141 case 0x1b: /* FMULX */
11142 case 0x1f: /* FRECPS */
11143 case 0x3f: /* FRSQRTS */
11144 case 0x5d: /* FACGE */
11145 case 0x7d: /* FACGT */
11146 case 0x19: /* FMLA */
11147 case 0x39: /* FMLS */
11148 case 0x18: /* FMAXNM */
11149 case 0x1a: /* FADD */
11150 case 0x1c: /* FCMEQ */
11151 case 0x1e: /* FMAX */
11152 case 0x38: /* FMINNM */
11153 case 0x3a: /* FSUB */
11154 case 0x3e: /* FMIN */
11155 case 0x5b: /* FMUL */
11156 case 0x5c: /* FCMGE */
11157 case 0x5f: /* FDIV */
11158 case 0x7a: /* FABD */
11159 case 0x7c: /* FCMGT */
11160 if (!fp_access_check(s)) {
11161 return;
11163 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
11164 return;
11166 case 0x1d: /* FMLAL */
11167 case 0x3d: /* FMLSL */
11168 case 0x59: /* FMLAL2 */
11169 case 0x79: /* FMLSL2 */
11170 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
11171 unallocated_encoding(s);
11172 return;
11174 if (fp_access_check(s)) {
11175 int is_s = extract32(insn, 23, 1);
11176 int is_2 = extract32(insn, 29, 1);
11177 int data = (is_2 << 1) | is_s;
11178 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
11179 vec_full_reg_offset(s, rn),
11180 vec_full_reg_offset(s, rm), cpu_env,
11181 is_q ? 16 : 8, vec_full_reg_size(s),
11182 data, gen_helper_gvec_fmlal_a64);
11184 return;
11186 default:
11187 unallocated_encoding(s);
11188 return;
11192 /* Integer op subgroup of C3.6.16. */
11193 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
11195 int is_q = extract32(insn, 30, 1);
11196 int u = extract32(insn, 29, 1);
11197 int size = extract32(insn, 22, 2);
11198 int opcode = extract32(insn, 11, 5);
11199 int rm = extract32(insn, 16, 5);
11200 int rn = extract32(insn, 5, 5);
11201 int rd = extract32(insn, 0, 5);
11202 int pass;
11203 TCGCond cond;
11205 switch (opcode) {
11206 case 0x13: /* MUL, PMUL */
11207 if (u && size != 0) {
11208 unallocated_encoding(s);
11209 return;
11211 /* fall through */
11212 case 0x0: /* SHADD, UHADD */
11213 case 0x2: /* SRHADD, URHADD */
11214 case 0x4: /* SHSUB, UHSUB */
11215 case 0xc: /* SMAX, UMAX */
11216 case 0xd: /* SMIN, UMIN */
11217 case 0xe: /* SABD, UABD */
11218 case 0xf: /* SABA, UABA */
11219 case 0x12: /* MLA, MLS */
11220 if (size == 3) {
11221 unallocated_encoding(s);
11222 return;
11224 break;
11225 case 0x16: /* SQDMULH, SQRDMULH */
11226 if (size == 0 || size == 3) {
11227 unallocated_encoding(s);
11228 return;
11230 break;
11231 default:
11232 if (size == 3 && !is_q) {
11233 unallocated_encoding(s);
11234 return;
11236 break;
11239 if (!fp_access_check(s)) {
11240 return;
11243 switch (opcode) {
11244 case 0x01: /* SQADD, UQADD */
11245 tcg_gen_gvec_4(vec_full_reg_offset(s, rd),
11246 offsetof(CPUARMState, vfp.qc),
11247 vec_full_reg_offset(s, rn),
11248 vec_full_reg_offset(s, rm),
11249 is_q ? 16 : 8, vec_full_reg_size(s),
11250 (u ? uqadd_op : sqadd_op) + size);
11251 return;
11252 case 0x05: /* SQSUB, UQSUB */
11253 tcg_gen_gvec_4(vec_full_reg_offset(s, rd),
11254 offsetof(CPUARMState, vfp.qc),
11255 vec_full_reg_offset(s, rn),
11256 vec_full_reg_offset(s, rm),
11257 is_q ? 16 : 8, vec_full_reg_size(s),
11258 (u ? uqsub_op : sqsub_op) + size);
11259 return;
11260 case 0x08: /* SSHL, USHL */
11261 gen_gvec_op3(s, is_q, rd, rn, rm,
11262 u ? &ushl_op[size] : &sshl_op[size]);
11263 return;
11264 case 0x0c: /* SMAX, UMAX */
11265 if (u) {
11266 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11267 } else {
11268 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11270 return;
11271 case 0x0d: /* SMIN, UMIN */
11272 if (u) {
11273 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11274 } else {
11275 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11277 return;
11278 case 0x10: /* ADD, SUB */
11279 if (u) {
11280 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11281 } else {
11282 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11284 return;
11285 case 0x13: /* MUL, PMUL */
11286 if (!u) { /* MUL */
11287 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11288 } else { /* PMUL */
11289 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11291 return;
11292 case 0x12: /* MLA, MLS */
11293 if (u) {
11294 gen_gvec_op3(s, is_q, rd, rn, rm, &mls_op[size]);
11295 } else {
11296 gen_gvec_op3(s, is_q, rd, rn, rm, &mla_op[size]);
11298 return;
11299 case 0x11:
11300 if (!u) { /* CMTST */
11301 gen_gvec_op3(s, is_q, rd, rn, rm, &cmtst_op[size]);
11302 return;
11304 /* else CMEQ */
11305 cond = TCG_COND_EQ;
11306 goto do_gvec_cmp;
11307 case 0x06: /* CMGT, CMHI */
11308 cond = u ? TCG_COND_GTU : TCG_COND_GT;
11309 goto do_gvec_cmp;
11310 case 0x07: /* CMGE, CMHS */
11311 cond = u ? TCG_COND_GEU : TCG_COND_GE;
11312 do_gvec_cmp:
11313 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11314 vec_full_reg_offset(s, rn),
11315 vec_full_reg_offset(s, rm),
11316 is_q ? 16 : 8, vec_full_reg_size(s));
11317 return;
11320 if (size == 3) {
11321 assert(is_q);
11322 for (pass = 0; pass < 2; pass++) {
11323 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11324 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11325 TCGv_i64 tcg_res = tcg_temp_new_i64();
11327 read_vec_element(s, tcg_op1, rn, pass, MO_64);
11328 read_vec_element(s, tcg_op2, rm, pass, MO_64);
11330 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11332 write_vec_element(s, tcg_res, rd, pass, MO_64);
11334 tcg_temp_free_i64(tcg_res);
11335 tcg_temp_free_i64(tcg_op1);
11336 tcg_temp_free_i64(tcg_op2);
11338 } else {
11339 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11340 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11341 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11342 TCGv_i32 tcg_res = tcg_temp_new_i32();
11343 NeonGenTwoOpFn *genfn = NULL;
11344 NeonGenTwoOpEnvFn *genenvfn = NULL;
11346 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11347 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11349 switch (opcode) {
11350 case 0x0: /* SHADD, UHADD */
11352 static NeonGenTwoOpFn * const fns[3][2] = {
11353 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11354 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11355 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11357 genfn = fns[size][u];
11358 break;
11360 case 0x2: /* SRHADD, URHADD */
11362 static NeonGenTwoOpFn * const fns[3][2] = {
11363 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11364 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11365 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11367 genfn = fns[size][u];
11368 break;
11370 case 0x4: /* SHSUB, UHSUB */
11372 static NeonGenTwoOpFn * const fns[3][2] = {
11373 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11374 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11375 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11377 genfn = fns[size][u];
11378 break;
11380 case 0x9: /* SQSHL, UQSHL */
11382 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11383 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11384 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11385 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11387 genenvfn = fns[size][u];
11388 break;
11390 case 0xa: /* SRSHL, URSHL */
11392 static NeonGenTwoOpFn * const fns[3][2] = {
11393 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11394 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11395 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11397 genfn = fns[size][u];
11398 break;
11400 case 0xb: /* SQRSHL, UQRSHL */
11402 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11403 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11404 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11405 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11407 genenvfn = fns[size][u];
11408 break;
11410 case 0xe: /* SABD, UABD */
11411 case 0xf: /* SABA, UABA */
11413 static NeonGenTwoOpFn * const fns[3][2] = {
11414 { gen_helper_neon_abd_s8, gen_helper_neon_abd_u8 },
11415 { gen_helper_neon_abd_s16, gen_helper_neon_abd_u16 },
11416 { gen_helper_neon_abd_s32, gen_helper_neon_abd_u32 },
11418 genfn = fns[size][u];
11419 break;
11421 case 0x16: /* SQDMULH, SQRDMULH */
11423 static NeonGenTwoOpEnvFn * const fns[2][2] = {
11424 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
11425 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
11427 assert(size == 1 || size == 2);
11428 genenvfn = fns[size - 1][u];
11429 break;
11431 default:
11432 g_assert_not_reached();
11435 if (genenvfn) {
11436 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
11437 } else {
11438 genfn(tcg_res, tcg_op1, tcg_op2);
11441 if (opcode == 0xf) {
11442 /* SABA, UABA: accumulating ops */
11443 static NeonGenTwoOpFn * const fns[3] = {
11444 gen_helper_neon_add_u8,
11445 gen_helper_neon_add_u16,
11446 tcg_gen_add_i32,
11449 read_vec_element_i32(s, tcg_op1, rd, pass, MO_32);
11450 fns[size](tcg_res, tcg_op1, tcg_res);
11453 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11455 tcg_temp_free_i32(tcg_res);
11456 tcg_temp_free_i32(tcg_op1);
11457 tcg_temp_free_i32(tcg_op2);
11460 clear_vec_high(s, is_q, rd);
11463 /* AdvSIMD three same
11464 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
11465 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11466 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
11467 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11469 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11471 int opcode = extract32(insn, 11, 5);
11473 switch (opcode) {
11474 case 0x3: /* logic ops */
11475 disas_simd_3same_logic(s, insn);
11476 break;
11477 case 0x17: /* ADDP */
11478 case 0x14: /* SMAXP, UMAXP */
11479 case 0x15: /* SMINP, UMINP */
11481 /* Pairwise operations */
11482 int is_q = extract32(insn, 30, 1);
11483 int u = extract32(insn, 29, 1);
11484 int size = extract32(insn, 22, 2);
11485 int rm = extract32(insn, 16, 5);
11486 int rn = extract32(insn, 5, 5);
11487 int rd = extract32(insn, 0, 5);
11488 if (opcode == 0x17) {
11489 if (u || (size == 3 && !is_q)) {
11490 unallocated_encoding(s);
11491 return;
11493 } else {
11494 if (size == 3) {
11495 unallocated_encoding(s);
11496 return;
11499 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11500 break;
11502 case 0x18 ... 0x31:
11503 /* floating point ops, sz[1] and U are part of opcode */
11504 disas_simd_3same_float(s, insn);
11505 break;
11506 default:
11507 disas_simd_3same_int(s, insn);
11508 break;
11513 * Advanced SIMD three same (ARMv8.2 FP16 variants)
11515 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
11516 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11517 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
11518 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11520 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11521 * (register), FACGE, FABD, FCMGT (register) and FACGT.
11524 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11526 int opcode, fpopcode;
11527 int is_q, u, a, rm, rn, rd;
11528 int datasize, elements;
11529 int pass;
11530 TCGv_ptr fpst;
11531 bool pairwise = false;
11533 if (!dc_isar_feature(aa64_fp16, s)) {
11534 unallocated_encoding(s);
11535 return;
11538 if (!fp_access_check(s)) {
11539 return;
11542 /* For these floating point ops, the U, a and opcode bits
11543 * together indicate the operation.
11545 opcode = extract32(insn, 11, 3);
11546 u = extract32(insn, 29, 1);
11547 a = extract32(insn, 23, 1);
11548 is_q = extract32(insn, 30, 1);
11549 rm = extract32(insn, 16, 5);
11550 rn = extract32(insn, 5, 5);
11551 rd = extract32(insn, 0, 5);
11553 fpopcode = opcode | (a << 3) | (u << 4);
11554 datasize = is_q ? 128 : 64;
11555 elements = datasize / 16;
11557 switch (fpopcode) {
11558 case 0x10: /* FMAXNMP */
11559 case 0x12: /* FADDP */
11560 case 0x16: /* FMAXP */
11561 case 0x18: /* FMINNMP */
11562 case 0x1e: /* FMINP */
11563 pairwise = true;
11564 break;
11567 fpst = get_fpstatus_ptr(true);
11569 if (pairwise) {
11570 int maxpass = is_q ? 8 : 4;
11571 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11572 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11573 TCGv_i32 tcg_res[8];
11575 for (pass = 0; pass < maxpass; pass++) {
11576 int passreg = pass < (maxpass / 2) ? rn : rm;
11577 int passelt = (pass << 1) & (maxpass - 1);
11579 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11580 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11581 tcg_res[pass] = tcg_temp_new_i32();
11583 switch (fpopcode) {
11584 case 0x10: /* FMAXNMP */
11585 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11586 fpst);
11587 break;
11588 case 0x12: /* FADDP */
11589 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11590 break;
11591 case 0x16: /* FMAXP */
11592 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11593 break;
11594 case 0x18: /* FMINNMP */
11595 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11596 fpst);
11597 break;
11598 case 0x1e: /* FMINP */
11599 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11600 break;
11601 default:
11602 g_assert_not_reached();
11606 for (pass = 0; pass < maxpass; pass++) {
11607 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11608 tcg_temp_free_i32(tcg_res[pass]);
11611 tcg_temp_free_i32(tcg_op1);
11612 tcg_temp_free_i32(tcg_op2);
11614 } else {
11615 for (pass = 0; pass < elements; pass++) {
11616 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11617 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11618 TCGv_i32 tcg_res = tcg_temp_new_i32();
11620 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
11621 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
11623 switch (fpopcode) {
11624 case 0x0: /* FMAXNM */
11625 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11626 break;
11627 case 0x1: /* FMLA */
11628 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11629 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11630 fpst);
11631 break;
11632 case 0x2: /* FADD */
11633 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
11634 break;
11635 case 0x3: /* FMULX */
11636 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
11637 break;
11638 case 0x4: /* FCMEQ */
11639 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11640 break;
11641 case 0x6: /* FMAX */
11642 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
11643 break;
11644 case 0x7: /* FRECPS */
11645 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11646 break;
11647 case 0x8: /* FMINNM */
11648 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11649 break;
11650 case 0x9: /* FMLS */
11651 /* As usual for ARM, separate negation for fused multiply-add */
11652 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
11653 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11654 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11655 fpst);
11656 break;
11657 case 0xa: /* FSUB */
11658 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11659 break;
11660 case 0xe: /* FMIN */
11661 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
11662 break;
11663 case 0xf: /* FRSQRTS */
11664 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11665 break;
11666 case 0x13: /* FMUL */
11667 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
11668 break;
11669 case 0x14: /* FCMGE */
11670 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11671 break;
11672 case 0x15: /* FACGE */
11673 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11674 break;
11675 case 0x17: /* FDIV */
11676 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
11677 break;
11678 case 0x1a: /* FABD */
11679 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11680 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
11681 break;
11682 case 0x1c: /* FCMGT */
11683 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11684 break;
11685 case 0x1d: /* FACGT */
11686 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11687 break;
11688 default:
11689 fprintf(stderr, "%s: insn %#04x, fpop %#2x @ %#" PRIx64 "\n",
11690 __func__, insn, fpopcode, s->pc_curr);
11691 g_assert_not_reached();
11694 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11695 tcg_temp_free_i32(tcg_res);
11696 tcg_temp_free_i32(tcg_op1);
11697 tcg_temp_free_i32(tcg_op2);
11701 tcg_temp_free_ptr(fpst);
11703 clear_vec_high(s, is_q, rd);
11706 /* AdvSIMD three same extra
11707 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
11708 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11709 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
11710 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11712 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11714 int rd = extract32(insn, 0, 5);
11715 int rn = extract32(insn, 5, 5);
11716 int opcode = extract32(insn, 11, 4);
11717 int rm = extract32(insn, 16, 5);
11718 int size = extract32(insn, 22, 2);
11719 bool u = extract32(insn, 29, 1);
11720 bool is_q = extract32(insn, 30, 1);
11721 bool feature;
11722 int rot;
11724 switch (u * 16 + opcode) {
11725 case 0x10: /* SQRDMLAH (vector) */
11726 case 0x11: /* SQRDMLSH (vector) */
11727 if (size != 1 && size != 2) {
11728 unallocated_encoding(s);
11729 return;
11731 feature = dc_isar_feature(aa64_rdm, s);
11732 break;
11733 case 0x02: /* SDOT (vector) */
11734 case 0x12: /* UDOT (vector) */
11735 if (size != MO_32) {
11736 unallocated_encoding(s);
11737 return;
11739 feature = dc_isar_feature(aa64_dp, s);
11740 break;
11741 case 0x18: /* FCMLA, #0 */
11742 case 0x19: /* FCMLA, #90 */
11743 case 0x1a: /* FCMLA, #180 */
11744 case 0x1b: /* FCMLA, #270 */
11745 case 0x1c: /* FCADD, #90 */
11746 case 0x1e: /* FCADD, #270 */
11747 if (size == 0
11748 || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11749 || (size == 3 && !is_q)) {
11750 unallocated_encoding(s);
11751 return;
11753 feature = dc_isar_feature(aa64_fcma, s);
11754 break;
11755 default:
11756 unallocated_encoding(s);
11757 return;
11759 if (!feature) {
11760 unallocated_encoding(s);
11761 return;
11763 if (!fp_access_check(s)) {
11764 return;
11767 switch (opcode) {
11768 case 0x0: /* SQRDMLAH (vector) */
11769 switch (size) {
11770 case 1:
11771 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlah_s16);
11772 break;
11773 case 2:
11774 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlah_s32);
11775 break;
11776 default:
11777 g_assert_not_reached();
11779 return;
11781 case 0x1: /* SQRDMLSH (vector) */
11782 switch (size) {
11783 case 1:
11784 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlsh_s16);
11785 break;
11786 case 2:
11787 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlsh_s32);
11788 break;
11789 default:
11790 g_assert_not_reached();
11792 return;
11794 case 0x2: /* SDOT / UDOT */
11795 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0,
11796 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11797 return;
11799 case 0x8: /* FCMLA, #0 */
11800 case 0x9: /* FCMLA, #90 */
11801 case 0xa: /* FCMLA, #180 */
11802 case 0xb: /* FCMLA, #270 */
11803 rot = extract32(opcode, 0, 2);
11804 switch (size) {
11805 case 1:
11806 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, true, rot,
11807 gen_helper_gvec_fcmlah);
11808 break;
11809 case 2:
11810 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
11811 gen_helper_gvec_fcmlas);
11812 break;
11813 case 3:
11814 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
11815 gen_helper_gvec_fcmlad);
11816 break;
11817 default:
11818 g_assert_not_reached();
11820 return;
11822 case 0xc: /* FCADD, #90 */
11823 case 0xe: /* FCADD, #270 */
11824 rot = extract32(opcode, 1, 1);
11825 switch (size) {
11826 case 1:
11827 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11828 gen_helper_gvec_fcaddh);
11829 break;
11830 case 2:
11831 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11832 gen_helper_gvec_fcadds);
11833 break;
11834 case 3:
11835 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11836 gen_helper_gvec_fcaddd);
11837 break;
11838 default:
11839 g_assert_not_reached();
11841 return;
11843 default:
11844 g_assert_not_reached();
11848 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11849 int size, int rn, int rd)
11851 /* Handle 2-reg-misc ops which are widening (so each size element
11852 * in the source becomes a 2*size element in the destination.
11853 * The only instruction like this is FCVTL.
11855 int pass;
11857 if (size == 3) {
11858 /* 32 -> 64 bit fp conversion */
11859 TCGv_i64 tcg_res[2];
11860 int srcelt = is_q ? 2 : 0;
11862 for (pass = 0; pass < 2; pass++) {
11863 TCGv_i32 tcg_op = tcg_temp_new_i32();
11864 tcg_res[pass] = tcg_temp_new_i64();
11866 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11867 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
11868 tcg_temp_free_i32(tcg_op);
11870 for (pass = 0; pass < 2; pass++) {
11871 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11872 tcg_temp_free_i64(tcg_res[pass]);
11874 } else {
11875 /* 16 -> 32 bit fp conversion */
11876 int srcelt = is_q ? 4 : 0;
11877 TCGv_i32 tcg_res[4];
11878 TCGv_ptr fpst = get_fpstatus_ptr(false);
11879 TCGv_i32 ahp = get_ahp_flag();
11881 for (pass = 0; pass < 4; pass++) {
11882 tcg_res[pass] = tcg_temp_new_i32();
11884 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11885 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11886 fpst, ahp);
11888 for (pass = 0; pass < 4; pass++) {
11889 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11890 tcg_temp_free_i32(tcg_res[pass]);
11893 tcg_temp_free_ptr(fpst);
11894 tcg_temp_free_i32(ahp);
11898 static void handle_rev(DisasContext *s, int opcode, bool u,
11899 bool is_q, int size, int rn, int rd)
11901 int op = (opcode << 1) | u;
11902 int opsz = op + size;
11903 int grp_size = 3 - opsz;
11904 int dsize = is_q ? 128 : 64;
11905 int i;
11907 if (opsz >= 3) {
11908 unallocated_encoding(s);
11909 return;
11912 if (!fp_access_check(s)) {
11913 return;
11916 if (size == 0) {
11917 /* Special case bytes, use bswap op on each group of elements */
11918 int groups = dsize / (8 << grp_size);
11920 for (i = 0; i < groups; i++) {
11921 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11923 read_vec_element(s, tcg_tmp, rn, i, grp_size);
11924 switch (grp_size) {
11925 case MO_16:
11926 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
11927 break;
11928 case MO_32:
11929 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
11930 break;
11931 case MO_64:
11932 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11933 break;
11934 default:
11935 g_assert_not_reached();
11937 write_vec_element(s, tcg_tmp, rd, i, grp_size);
11938 tcg_temp_free_i64(tcg_tmp);
11940 clear_vec_high(s, is_q, rd);
11941 } else {
11942 int revmask = (1 << grp_size) - 1;
11943 int esize = 8 << size;
11944 int elements = dsize / esize;
11945 TCGv_i64 tcg_rn = tcg_temp_new_i64();
11946 TCGv_i64 tcg_rd = tcg_const_i64(0);
11947 TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
11949 for (i = 0; i < elements; i++) {
11950 int e_rev = (i & 0xf) ^ revmask;
11951 int off = e_rev * esize;
11952 read_vec_element(s, tcg_rn, rn, i, size);
11953 if (off >= 64) {
11954 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
11955 tcg_rn, off - 64, esize);
11956 } else {
11957 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
11960 write_vec_element(s, tcg_rd, rd, 0, MO_64);
11961 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
11963 tcg_temp_free_i64(tcg_rd_hi);
11964 tcg_temp_free_i64(tcg_rd);
11965 tcg_temp_free_i64(tcg_rn);
11969 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11970 bool is_q, int size, int rn, int rd)
11972 /* Implement the pairwise operations from 2-misc:
11973 * SADDLP, UADDLP, SADALP, UADALP.
11974 * These all add pairs of elements in the input to produce a
11975 * double-width result element in the output (possibly accumulating).
11977 bool accum = (opcode == 0x6);
11978 int maxpass = is_q ? 2 : 1;
11979 int pass;
11980 TCGv_i64 tcg_res[2];
11982 if (size == 2) {
11983 /* 32 + 32 -> 64 op */
11984 MemOp memop = size + (u ? 0 : MO_SIGN);
11986 for (pass = 0; pass < maxpass; pass++) {
11987 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11988 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11990 tcg_res[pass] = tcg_temp_new_i64();
11992 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11993 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11994 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11995 if (accum) {
11996 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11997 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
12000 tcg_temp_free_i64(tcg_op1);
12001 tcg_temp_free_i64(tcg_op2);
12003 } else {
12004 for (pass = 0; pass < maxpass; pass++) {
12005 TCGv_i64 tcg_op = tcg_temp_new_i64();
12006 NeonGenOneOpFn *genfn;
12007 static NeonGenOneOpFn * const fns[2][2] = {
12008 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
12009 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
12012 genfn = fns[size][u];
12014 tcg_res[pass] = tcg_temp_new_i64();
12016 read_vec_element(s, tcg_op, rn, pass, MO_64);
12017 genfn(tcg_res[pass], tcg_op);
12019 if (accum) {
12020 read_vec_element(s, tcg_op, rd, pass, MO_64);
12021 if (size == 0) {
12022 gen_helper_neon_addl_u16(tcg_res[pass],
12023 tcg_res[pass], tcg_op);
12024 } else {
12025 gen_helper_neon_addl_u32(tcg_res[pass],
12026 tcg_res[pass], tcg_op);
12029 tcg_temp_free_i64(tcg_op);
12032 if (!is_q) {
12033 tcg_res[1] = tcg_const_i64(0);
12035 for (pass = 0; pass < 2; pass++) {
12036 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12037 tcg_temp_free_i64(tcg_res[pass]);
12041 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
12043 /* Implement SHLL and SHLL2 */
12044 int pass;
12045 int part = is_q ? 2 : 0;
12046 TCGv_i64 tcg_res[2];
12048 for (pass = 0; pass < 2; pass++) {
12049 static NeonGenWidenFn * const widenfns[3] = {
12050 gen_helper_neon_widen_u8,
12051 gen_helper_neon_widen_u16,
12052 tcg_gen_extu_i32_i64,
12054 NeonGenWidenFn *widenfn = widenfns[size];
12055 TCGv_i32 tcg_op = tcg_temp_new_i32();
12057 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
12058 tcg_res[pass] = tcg_temp_new_i64();
12059 widenfn(tcg_res[pass], tcg_op);
12060 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
12062 tcg_temp_free_i32(tcg_op);
12065 for (pass = 0; pass < 2; pass++) {
12066 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12067 tcg_temp_free_i64(tcg_res[pass]);
12071 /* AdvSIMD two reg misc
12072 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
12073 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12074 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
12075 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12077 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
12079 int size = extract32(insn, 22, 2);
12080 int opcode = extract32(insn, 12, 5);
12081 bool u = extract32(insn, 29, 1);
12082 bool is_q = extract32(insn, 30, 1);
12083 int rn = extract32(insn, 5, 5);
12084 int rd = extract32(insn, 0, 5);
12085 bool need_fpstatus = false;
12086 bool need_rmode = false;
12087 int rmode = -1;
12088 TCGv_i32 tcg_rmode;
12089 TCGv_ptr tcg_fpstatus;
12091 switch (opcode) {
12092 case 0x0: /* REV64, REV32 */
12093 case 0x1: /* REV16 */
12094 handle_rev(s, opcode, u, is_q, size, rn, rd);
12095 return;
12096 case 0x5: /* CNT, NOT, RBIT */
12097 if (u && size == 0) {
12098 /* NOT */
12099 break;
12100 } else if (u && size == 1) {
12101 /* RBIT */
12102 break;
12103 } else if (!u && size == 0) {
12104 /* CNT */
12105 break;
12107 unallocated_encoding(s);
12108 return;
12109 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
12110 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
12111 if (size == 3) {
12112 unallocated_encoding(s);
12113 return;
12115 if (!fp_access_check(s)) {
12116 return;
12119 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
12120 return;
12121 case 0x4: /* CLS, CLZ */
12122 if (size == 3) {
12123 unallocated_encoding(s);
12124 return;
12126 break;
12127 case 0x2: /* SADDLP, UADDLP */
12128 case 0x6: /* SADALP, UADALP */
12129 if (size == 3) {
12130 unallocated_encoding(s);
12131 return;
12133 if (!fp_access_check(s)) {
12134 return;
12136 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
12137 return;
12138 case 0x13: /* SHLL, SHLL2 */
12139 if (u == 0 || size == 3) {
12140 unallocated_encoding(s);
12141 return;
12143 if (!fp_access_check(s)) {
12144 return;
12146 handle_shll(s, is_q, size, rn, rd);
12147 return;
12148 case 0xa: /* CMLT */
12149 if (u == 1) {
12150 unallocated_encoding(s);
12151 return;
12153 /* fall through */
12154 case 0x8: /* CMGT, CMGE */
12155 case 0x9: /* CMEQ, CMLE */
12156 case 0xb: /* ABS, NEG */
12157 if (size == 3 && !is_q) {
12158 unallocated_encoding(s);
12159 return;
12161 break;
12162 case 0x3: /* SUQADD, USQADD */
12163 if (size == 3 && !is_q) {
12164 unallocated_encoding(s);
12165 return;
12167 if (!fp_access_check(s)) {
12168 return;
12170 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
12171 return;
12172 case 0x7: /* SQABS, SQNEG */
12173 if (size == 3 && !is_q) {
12174 unallocated_encoding(s);
12175 return;
12177 break;
12178 case 0xc ... 0xf:
12179 case 0x16 ... 0x1f:
12181 /* Floating point: U, size[1] and opcode indicate operation;
12182 * size[0] indicates single or double precision.
12184 int is_double = extract32(size, 0, 1);
12185 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
12186 size = is_double ? 3 : 2;
12187 switch (opcode) {
12188 case 0x2f: /* FABS */
12189 case 0x6f: /* FNEG */
12190 if (size == 3 && !is_q) {
12191 unallocated_encoding(s);
12192 return;
12194 break;
12195 case 0x1d: /* SCVTF */
12196 case 0x5d: /* UCVTF */
12198 bool is_signed = (opcode == 0x1d) ? true : false;
12199 int elements = is_double ? 2 : is_q ? 4 : 2;
12200 if (is_double && !is_q) {
12201 unallocated_encoding(s);
12202 return;
12204 if (!fp_access_check(s)) {
12205 return;
12207 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
12208 return;
12210 case 0x2c: /* FCMGT (zero) */
12211 case 0x2d: /* FCMEQ (zero) */
12212 case 0x2e: /* FCMLT (zero) */
12213 case 0x6c: /* FCMGE (zero) */
12214 case 0x6d: /* FCMLE (zero) */
12215 if (size == 3 && !is_q) {
12216 unallocated_encoding(s);
12217 return;
12219 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12220 return;
12221 case 0x7f: /* FSQRT */
12222 if (size == 3 && !is_q) {
12223 unallocated_encoding(s);
12224 return;
12226 break;
12227 case 0x1a: /* FCVTNS */
12228 case 0x1b: /* FCVTMS */
12229 case 0x3a: /* FCVTPS */
12230 case 0x3b: /* FCVTZS */
12231 case 0x5a: /* FCVTNU */
12232 case 0x5b: /* FCVTMU */
12233 case 0x7a: /* FCVTPU */
12234 case 0x7b: /* FCVTZU */
12235 need_fpstatus = true;
12236 need_rmode = true;
12237 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12238 if (size == 3 && !is_q) {
12239 unallocated_encoding(s);
12240 return;
12242 break;
12243 case 0x5c: /* FCVTAU */
12244 case 0x1c: /* FCVTAS */
12245 need_fpstatus = true;
12246 need_rmode = true;
12247 rmode = FPROUNDING_TIEAWAY;
12248 if (size == 3 && !is_q) {
12249 unallocated_encoding(s);
12250 return;
12252 break;
12253 case 0x3c: /* URECPE */
12254 if (size == 3) {
12255 unallocated_encoding(s);
12256 return;
12258 /* fall through */
12259 case 0x3d: /* FRECPE */
12260 case 0x7d: /* FRSQRTE */
12261 if (size == 3 && !is_q) {
12262 unallocated_encoding(s);
12263 return;
12265 if (!fp_access_check(s)) {
12266 return;
12268 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12269 return;
12270 case 0x56: /* FCVTXN, FCVTXN2 */
12271 if (size == 2) {
12272 unallocated_encoding(s);
12273 return;
12275 /* fall through */
12276 case 0x16: /* FCVTN, FCVTN2 */
12277 /* handle_2misc_narrow does a 2*size -> size operation, but these
12278 * instructions encode the source size rather than dest size.
12280 if (!fp_access_check(s)) {
12281 return;
12283 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12284 return;
12285 case 0x17: /* FCVTL, FCVTL2 */
12286 if (!fp_access_check(s)) {
12287 return;
12289 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12290 return;
12291 case 0x18: /* FRINTN */
12292 case 0x19: /* FRINTM */
12293 case 0x38: /* FRINTP */
12294 case 0x39: /* FRINTZ */
12295 need_rmode = true;
12296 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12297 /* fall through */
12298 case 0x59: /* FRINTX */
12299 case 0x79: /* FRINTI */
12300 need_fpstatus = true;
12301 if (size == 3 && !is_q) {
12302 unallocated_encoding(s);
12303 return;
12305 break;
12306 case 0x58: /* FRINTA */
12307 need_rmode = true;
12308 rmode = FPROUNDING_TIEAWAY;
12309 need_fpstatus = true;
12310 if (size == 3 && !is_q) {
12311 unallocated_encoding(s);
12312 return;
12314 break;
12315 case 0x7c: /* URSQRTE */
12316 if (size == 3) {
12317 unallocated_encoding(s);
12318 return;
12320 need_fpstatus = true;
12321 break;
12322 case 0x1e: /* FRINT32Z */
12323 case 0x1f: /* FRINT64Z */
12324 need_rmode = true;
12325 rmode = FPROUNDING_ZERO;
12326 /* fall through */
12327 case 0x5e: /* FRINT32X */
12328 case 0x5f: /* FRINT64X */
12329 need_fpstatus = true;
12330 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12331 unallocated_encoding(s);
12332 return;
12334 break;
12335 default:
12336 unallocated_encoding(s);
12337 return;
12339 break;
12341 default:
12342 unallocated_encoding(s);
12343 return;
12346 if (!fp_access_check(s)) {
12347 return;
12350 if (need_fpstatus || need_rmode) {
12351 tcg_fpstatus = get_fpstatus_ptr(false);
12352 } else {
12353 tcg_fpstatus = NULL;
12355 if (need_rmode) {
12356 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
12357 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12358 } else {
12359 tcg_rmode = NULL;
12362 switch (opcode) {
12363 case 0x5:
12364 if (u && size == 0) { /* NOT */
12365 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12366 return;
12368 break;
12369 case 0xb:
12370 if (u) { /* ABS, NEG */
12371 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12372 } else {
12373 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12375 return;
12378 if (size == 3) {
12379 /* All 64-bit element operations can be shared with scalar 2misc */
12380 int pass;
12382 /* Coverity claims (size == 3 && !is_q) has been eliminated
12383 * from all paths leading to here.
12385 tcg_debug_assert(is_q);
12386 for (pass = 0; pass < 2; pass++) {
12387 TCGv_i64 tcg_op = tcg_temp_new_i64();
12388 TCGv_i64 tcg_res = tcg_temp_new_i64();
12390 read_vec_element(s, tcg_op, rn, pass, MO_64);
12392 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12393 tcg_rmode, tcg_fpstatus);
12395 write_vec_element(s, tcg_res, rd, pass, MO_64);
12397 tcg_temp_free_i64(tcg_res);
12398 tcg_temp_free_i64(tcg_op);
12400 } else {
12401 int pass;
12403 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12404 TCGv_i32 tcg_op = tcg_temp_new_i32();
12405 TCGv_i32 tcg_res = tcg_temp_new_i32();
12406 TCGCond cond;
12408 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12410 if (size == 2) {
12411 /* Special cases for 32 bit elements */
12412 switch (opcode) {
12413 case 0xa: /* CMLT */
12414 /* 32 bit integer comparison against zero, result is
12415 * test ? (2^32 - 1) : 0. We implement via setcond(test)
12416 * and inverting.
12418 cond = TCG_COND_LT;
12419 do_cmop:
12420 tcg_gen_setcondi_i32(cond, tcg_res, tcg_op, 0);
12421 tcg_gen_neg_i32(tcg_res, tcg_res);
12422 break;
12423 case 0x8: /* CMGT, CMGE */
12424 cond = u ? TCG_COND_GE : TCG_COND_GT;
12425 goto do_cmop;
12426 case 0x9: /* CMEQ, CMLE */
12427 cond = u ? TCG_COND_LE : TCG_COND_EQ;
12428 goto do_cmop;
12429 case 0x4: /* CLS */
12430 if (u) {
12431 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12432 } else {
12433 tcg_gen_clrsb_i32(tcg_res, tcg_op);
12435 break;
12436 case 0x7: /* SQABS, SQNEG */
12437 if (u) {
12438 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
12439 } else {
12440 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
12442 break;
12443 case 0x2f: /* FABS */
12444 gen_helper_vfp_abss(tcg_res, tcg_op);
12445 break;
12446 case 0x6f: /* FNEG */
12447 gen_helper_vfp_negs(tcg_res, tcg_op);
12448 break;
12449 case 0x7f: /* FSQRT */
12450 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
12451 break;
12452 case 0x1a: /* FCVTNS */
12453 case 0x1b: /* FCVTMS */
12454 case 0x1c: /* FCVTAS */
12455 case 0x3a: /* FCVTPS */
12456 case 0x3b: /* FCVTZS */
12458 TCGv_i32 tcg_shift = tcg_const_i32(0);
12459 gen_helper_vfp_tosls(tcg_res, tcg_op,
12460 tcg_shift, tcg_fpstatus);
12461 tcg_temp_free_i32(tcg_shift);
12462 break;
12464 case 0x5a: /* FCVTNU */
12465 case 0x5b: /* FCVTMU */
12466 case 0x5c: /* FCVTAU */
12467 case 0x7a: /* FCVTPU */
12468 case 0x7b: /* FCVTZU */
12470 TCGv_i32 tcg_shift = tcg_const_i32(0);
12471 gen_helper_vfp_touls(tcg_res, tcg_op,
12472 tcg_shift, tcg_fpstatus);
12473 tcg_temp_free_i32(tcg_shift);
12474 break;
12476 case 0x18: /* FRINTN */
12477 case 0x19: /* FRINTM */
12478 case 0x38: /* FRINTP */
12479 case 0x39: /* FRINTZ */
12480 case 0x58: /* FRINTA */
12481 case 0x79: /* FRINTI */
12482 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12483 break;
12484 case 0x59: /* FRINTX */
12485 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12486 break;
12487 case 0x7c: /* URSQRTE */
12488 gen_helper_rsqrte_u32(tcg_res, tcg_op, tcg_fpstatus);
12489 break;
12490 case 0x1e: /* FRINT32Z */
12491 case 0x5e: /* FRINT32X */
12492 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12493 break;
12494 case 0x1f: /* FRINT64Z */
12495 case 0x5f: /* FRINT64X */
12496 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12497 break;
12498 default:
12499 g_assert_not_reached();
12501 } else {
12502 /* Use helpers for 8 and 16 bit elements */
12503 switch (opcode) {
12504 case 0x5: /* CNT, RBIT */
12505 /* For these two insns size is part of the opcode specifier
12506 * (handled earlier); they always operate on byte elements.
12508 if (u) {
12509 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12510 } else {
12511 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12513 break;
12514 case 0x7: /* SQABS, SQNEG */
12516 NeonGenOneOpEnvFn *genfn;
12517 static NeonGenOneOpEnvFn * const fns[2][2] = {
12518 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12519 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12521 genfn = fns[size][u];
12522 genfn(tcg_res, cpu_env, tcg_op);
12523 break;
12525 case 0x8: /* CMGT, CMGE */
12526 case 0x9: /* CMEQ, CMLE */
12527 case 0xa: /* CMLT */
12529 static NeonGenTwoOpFn * const fns[3][2] = {
12530 { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_s16 },
12531 { gen_helper_neon_cge_s8, gen_helper_neon_cge_s16 },
12532 { gen_helper_neon_ceq_u8, gen_helper_neon_ceq_u16 },
12534 NeonGenTwoOpFn *genfn;
12535 int comp;
12536 bool reverse;
12537 TCGv_i32 tcg_zero = tcg_const_i32(0);
12539 /* comp = index into [CMGT, CMGE, CMEQ, CMLE, CMLT] */
12540 comp = (opcode - 0x8) * 2 + u;
12541 /* ...but LE, LT are implemented as reverse GE, GT */
12542 reverse = (comp > 2);
12543 if (reverse) {
12544 comp = 4 - comp;
12546 genfn = fns[comp][size];
12547 if (reverse) {
12548 genfn(tcg_res, tcg_zero, tcg_op);
12549 } else {
12550 genfn(tcg_res, tcg_op, tcg_zero);
12552 tcg_temp_free_i32(tcg_zero);
12553 break;
12555 case 0x4: /* CLS, CLZ */
12556 if (u) {
12557 if (size == 0) {
12558 gen_helper_neon_clz_u8(tcg_res, tcg_op);
12559 } else {
12560 gen_helper_neon_clz_u16(tcg_res, tcg_op);
12562 } else {
12563 if (size == 0) {
12564 gen_helper_neon_cls_s8(tcg_res, tcg_op);
12565 } else {
12566 gen_helper_neon_cls_s16(tcg_res, tcg_op);
12569 break;
12570 default:
12571 g_assert_not_reached();
12575 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12577 tcg_temp_free_i32(tcg_res);
12578 tcg_temp_free_i32(tcg_op);
12581 clear_vec_high(s, is_q, rd);
12583 if (need_rmode) {
12584 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12585 tcg_temp_free_i32(tcg_rmode);
12587 if (need_fpstatus) {
12588 tcg_temp_free_ptr(tcg_fpstatus);
12592 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12594 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
12595 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12596 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
12597 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12598 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12599 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12601 * This actually covers two groups where scalar access is governed by
12602 * bit 28. A bunch of the instructions (float to integral) only exist
12603 * in the vector form and are un-allocated for the scalar decode. Also
12604 * in the scalar decode Q is always 1.
12606 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12608 int fpop, opcode, a, u;
12609 int rn, rd;
12610 bool is_q;
12611 bool is_scalar;
12612 bool only_in_vector = false;
12614 int pass;
12615 TCGv_i32 tcg_rmode = NULL;
12616 TCGv_ptr tcg_fpstatus = NULL;
12617 bool need_rmode = false;
12618 bool need_fpst = true;
12619 int rmode;
12621 if (!dc_isar_feature(aa64_fp16, s)) {
12622 unallocated_encoding(s);
12623 return;
12626 rd = extract32(insn, 0, 5);
12627 rn = extract32(insn, 5, 5);
12629 a = extract32(insn, 23, 1);
12630 u = extract32(insn, 29, 1);
12631 is_scalar = extract32(insn, 28, 1);
12632 is_q = extract32(insn, 30, 1);
12634 opcode = extract32(insn, 12, 5);
12635 fpop = deposit32(opcode, 5, 1, a);
12636 fpop = deposit32(fpop, 6, 1, u);
12638 rd = extract32(insn, 0, 5);
12639 rn = extract32(insn, 5, 5);
12641 switch (fpop) {
12642 case 0x1d: /* SCVTF */
12643 case 0x5d: /* UCVTF */
12645 int elements;
12647 if (is_scalar) {
12648 elements = 1;
12649 } else {
12650 elements = (is_q ? 8 : 4);
12653 if (!fp_access_check(s)) {
12654 return;
12656 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12657 return;
12659 break;
12660 case 0x2c: /* FCMGT (zero) */
12661 case 0x2d: /* FCMEQ (zero) */
12662 case 0x2e: /* FCMLT (zero) */
12663 case 0x6c: /* FCMGE (zero) */
12664 case 0x6d: /* FCMLE (zero) */
12665 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12666 return;
12667 case 0x3d: /* FRECPE */
12668 case 0x3f: /* FRECPX */
12669 break;
12670 case 0x18: /* FRINTN */
12671 need_rmode = true;
12672 only_in_vector = true;
12673 rmode = FPROUNDING_TIEEVEN;
12674 break;
12675 case 0x19: /* FRINTM */
12676 need_rmode = true;
12677 only_in_vector = true;
12678 rmode = FPROUNDING_NEGINF;
12679 break;
12680 case 0x38: /* FRINTP */
12681 need_rmode = true;
12682 only_in_vector = true;
12683 rmode = FPROUNDING_POSINF;
12684 break;
12685 case 0x39: /* FRINTZ */
12686 need_rmode = true;
12687 only_in_vector = true;
12688 rmode = FPROUNDING_ZERO;
12689 break;
12690 case 0x58: /* FRINTA */
12691 need_rmode = true;
12692 only_in_vector = true;
12693 rmode = FPROUNDING_TIEAWAY;
12694 break;
12695 case 0x59: /* FRINTX */
12696 case 0x79: /* FRINTI */
12697 only_in_vector = true;
12698 /* current rounding mode */
12699 break;
12700 case 0x1a: /* FCVTNS */
12701 need_rmode = true;
12702 rmode = FPROUNDING_TIEEVEN;
12703 break;
12704 case 0x1b: /* FCVTMS */
12705 need_rmode = true;
12706 rmode = FPROUNDING_NEGINF;
12707 break;
12708 case 0x1c: /* FCVTAS */
12709 need_rmode = true;
12710 rmode = FPROUNDING_TIEAWAY;
12711 break;
12712 case 0x3a: /* FCVTPS */
12713 need_rmode = true;
12714 rmode = FPROUNDING_POSINF;
12715 break;
12716 case 0x3b: /* FCVTZS */
12717 need_rmode = true;
12718 rmode = FPROUNDING_ZERO;
12719 break;
12720 case 0x5a: /* FCVTNU */
12721 need_rmode = true;
12722 rmode = FPROUNDING_TIEEVEN;
12723 break;
12724 case 0x5b: /* FCVTMU */
12725 need_rmode = true;
12726 rmode = FPROUNDING_NEGINF;
12727 break;
12728 case 0x5c: /* FCVTAU */
12729 need_rmode = true;
12730 rmode = FPROUNDING_TIEAWAY;
12731 break;
12732 case 0x7a: /* FCVTPU */
12733 need_rmode = true;
12734 rmode = FPROUNDING_POSINF;
12735 break;
12736 case 0x7b: /* FCVTZU */
12737 need_rmode = true;
12738 rmode = FPROUNDING_ZERO;
12739 break;
12740 case 0x2f: /* FABS */
12741 case 0x6f: /* FNEG */
12742 need_fpst = false;
12743 break;
12744 case 0x7d: /* FRSQRTE */
12745 case 0x7f: /* FSQRT (vector) */
12746 break;
12747 default:
12748 fprintf(stderr, "%s: insn %#04x fpop %#2x\n", __func__, insn, fpop);
12749 g_assert_not_reached();
12753 /* Check additional constraints for the scalar encoding */
12754 if (is_scalar) {
12755 if (!is_q) {
12756 unallocated_encoding(s);
12757 return;
12759 /* FRINTxx is only in the vector form */
12760 if (only_in_vector) {
12761 unallocated_encoding(s);
12762 return;
12766 if (!fp_access_check(s)) {
12767 return;
12770 if (need_rmode || need_fpst) {
12771 tcg_fpstatus = get_fpstatus_ptr(true);
12774 if (need_rmode) {
12775 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
12776 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12779 if (is_scalar) {
12780 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12781 TCGv_i32 tcg_res = tcg_temp_new_i32();
12783 switch (fpop) {
12784 case 0x1a: /* FCVTNS */
12785 case 0x1b: /* FCVTMS */
12786 case 0x1c: /* FCVTAS */
12787 case 0x3a: /* FCVTPS */
12788 case 0x3b: /* FCVTZS */
12789 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12790 break;
12791 case 0x3d: /* FRECPE */
12792 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12793 break;
12794 case 0x3f: /* FRECPX */
12795 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12796 break;
12797 case 0x5a: /* FCVTNU */
12798 case 0x5b: /* FCVTMU */
12799 case 0x5c: /* FCVTAU */
12800 case 0x7a: /* FCVTPU */
12801 case 0x7b: /* FCVTZU */
12802 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12803 break;
12804 case 0x6f: /* FNEG */
12805 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12806 break;
12807 case 0x7d: /* FRSQRTE */
12808 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12809 break;
12810 default:
12811 g_assert_not_reached();
12814 /* limit any sign extension going on */
12815 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12816 write_fp_sreg(s, rd, tcg_res);
12818 tcg_temp_free_i32(tcg_res);
12819 tcg_temp_free_i32(tcg_op);
12820 } else {
12821 for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12822 TCGv_i32 tcg_op = tcg_temp_new_i32();
12823 TCGv_i32 tcg_res = tcg_temp_new_i32();
12825 read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12827 switch (fpop) {
12828 case 0x1a: /* FCVTNS */
12829 case 0x1b: /* FCVTMS */
12830 case 0x1c: /* FCVTAS */
12831 case 0x3a: /* FCVTPS */
12832 case 0x3b: /* FCVTZS */
12833 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12834 break;
12835 case 0x3d: /* FRECPE */
12836 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12837 break;
12838 case 0x5a: /* FCVTNU */
12839 case 0x5b: /* FCVTMU */
12840 case 0x5c: /* FCVTAU */
12841 case 0x7a: /* FCVTPU */
12842 case 0x7b: /* FCVTZU */
12843 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12844 break;
12845 case 0x18: /* FRINTN */
12846 case 0x19: /* FRINTM */
12847 case 0x38: /* FRINTP */
12848 case 0x39: /* FRINTZ */
12849 case 0x58: /* FRINTA */
12850 case 0x79: /* FRINTI */
12851 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12852 break;
12853 case 0x59: /* FRINTX */
12854 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12855 break;
12856 case 0x2f: /* FABS */
12857 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12858 break;
12859 case 0x6f: /* FNEG */
12860 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12861 break;
12862 case 0x7d: /* FRSQRTE */
12863 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12864 break;
12865 case 0x7f: /* FSQRT */
12866 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12867 break;
12868 default:
12869 g_assert_not_reached();
12872 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12874 tcg_temp_free_i32(tcg_res);
12875 tcg_temp_free_i32(tcg_op);
12878 clear_vec_high(s, is_q, rd);
12881 if (tcg_rmode) {
12882 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12883 tcg_temp_free_i32(tcg_rmode);
12886 if (tcg_fpstatus) {
12887 tcg_temp_free_ptr(tcg_fpstatus);
12891 /* AdvSIMD scalar x indexed element
12892 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12893 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12894 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12895 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12896 * AdvSIMD vector x indexed element
12897 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12898 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12899 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12900 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12902 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12904 /* This encoding has two kinds of instruction:
12905 * normal, where we perform elt x idxelt => elt for each
12906 * element in the vector
12907 * long, where we perform elt x idxelt and generate a result of
12908 * double the width of the input element
12909 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12911 bool is_scalar = extract32(insn, 28, 1);
12912 bool is_q = extract32(insn, 30, 1);
12913 bool u = extract32(insn, 29, 1);
12914 int size = extract32(insn, 22, 2);
12915 int l = extract32(insn, 21, 1);
12916 int m = extract32(insn, 20, 1);
12917 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12918 int rm = extract32(insn, 16, 4);
12919 int opcode = extract32(insn, 12, 4);
12920 int h = extract32(insn, 11, 1);
12921 int rn = extract32(insn, 5, 5);
12922 int rd = extract32(insn, 0, 5);
12923 bool is_long = false;
12924 int is_fp = 0;
12925 bool is_fp16 = false;
12926 int index;
12927 TCGv_ptr fpst;
12929 switch (16 * u + opcode) {
12930 case 0x08: /* MUL */
12931 case 0x10: /* MLA */
12932 case 0x14: /* MLS */
12933 if (is_scalar) {
12934 unallocated_encoding(s);
12935 return;
12937 break;
12938 case 0x02: /* SMLAL, SMLAL2 */
12939 case 0x12: /* UMLAL, UMLAL2 */
12940 case 0x06: /* SMLSL, SMLSL2 */
12941 case 0x16: /* UMLSL, UMLSL2 */
12942 case 0x0a: /* SMULL, SMULL2 */
12943 case 0x1a: /* UMULL, UMULL2 */
12944 if (is_scalar) {
12945 unallocated_encoding(s);
12946 return;
12948 is_long = true;
12949 break;
12950 case 0x03: /* SQDMLAL, SQDMLAL2 */
12951 case 0x07: /* SQDMLSL, SQDMLSL2 */
12952 case 0x0b: /* SQDMULL, SQDMULL2 */
12953 is_long = true;
12954 break;
12955 case 0x0c: /* SQDMULH */
12956 case 0x0d: /* SQRDMULH */
12957 break;
12958 case 0x01: /* FMLA */
12959 case 0x05: /* FMLS */
12960 case 0x09: /* FMUL */
12961 case 0x19: /* FMULX */
12962 is_fp = 1;
12963 break;
12964 case 0x1d: /* SQRDMLAH */
12965 case 0x1f: /* SQRDMLSH */
12966 if (!dc_isar_feature(aa64_rdm, s)) {
12967 unallocated_encoding(s);
12968 return;
12970 break;
12971 case 0x0e: /* SDOT */
12972 case 0x1e: /* UDOT */
12973 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12974 unallocated_encoding(s);
12975 return;
12977 break;
12978 case 0x11: /* FCMLA #0 */
12979 case 0x13: /* FCMLA #90 */
12980 case 0x15: /* FCMLA #180 */
12981 case 0x17: /* FCMLA #270 */
12982 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12983 unallocated_encoding(s);
12984 return;
12986 is_fp = 2;
12987 break;
12988 case 0x00: /* FMLAL */
12989 case 0x04: /* FMLSL */
12990 case 0x18: /* FMLAL2 */
12991 case 0x1c: /* FMLSL2 */
12992 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
12993 unallocated_encoding(s);
12994 return;
12996 size = MO_16;
12997 /* is_fp, but we pass cpu_env not fp_status. */
12998 break;
12999 default:
13000 unallocated_encoding(s);
13001 return;
13004 switch (is_fp) {
13005 case 1: /* normal fp */
13006 /* convert insn encoded size to MemOp size */
13007 switch (size) {
13008 case 0: /* half-precision */
13009 size = MO_16;
13010 is_fp16 = true;
13011 break;
13012 case MO_32: /* single precision */
13013 case MO_64: /* double precision */
13014 break;
13015 default:
13016 unallocated_encoding(s);
13017 return;
13019 break;
13021 case 2: /* complex fp */
13022 /* Each indexable element is a complex pair. */
13023 size += 1;
13024 switch (size) {
13025 case MO_32:
13026 if (h && !is_q) {
13027 unallocated_encoding(s);
13028 return;
13030 is_fp16 = true;
13031 break;
13032 case MO_64:
13033 break;
13034 default:
13035 unallocated_encoding(s);
13036 return;
13038 break;
13040 default: /* integer */
13041 switch (size) {
13042 case MO_8:
13043 case MO_64:
13044 unallocated_encoding(s);
13045 return;
13047 break;
13049 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
13050 unallocated_encoding(s);
13051 return;
13054 /* Given MemOp size, adjust register and indexing. */
13055 switch (size) {
13056 case MO_16:
13057 index = h << 2 | l << 1 | m;
13058 break;
13059 case MO_32:
13060 index = h << 1 | l;
13061 rm |= m << 4;
13062 break;
13063 case MO_64:
13064 if (l || !is_q) {
13065 unallocated_encoding(s);
13066 return;
13068 index = h;
13069 rm |= m << 4;
13070 break;
13071 default:
13072 g_assert_not_reached();
13075 if (!fp_access_check(s)) {
13076 return;
13079 if (is_fp) {
13080 fpst = get_fpstatus_ptr(is_fp16);
13081 } else {
13082 fpst = NULL;
13085 switch (16 * u + opcode) {
13086 case 0x0e: /* SDOT */
13087 case 0x1e: /* UDOT */
13088 gen_gvec_op3_ool(s, is_q, rd, rn, rm, index,
13089 u ? gen_helper_gvec_udot_idx_b
13090 : gen_helper_gvec_sdot_idx_b);
13091 return;
13092 case 0x11: /* FCMLA #0 */
13093 case 0x13: /* FCMLA #90 */
13094 case 0x15: /* FCMLA #180 */
13095 case 0x17: /* FCMLA #270 */
13097 int rot = extract32(insn, 13, 2);
13098 int data = (index << 2) | rot;
13099 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13100 vec_full_reg_offset(s, rn),
13101 vec_full_reg_offset(s, rm), fpst,
13102 is_q ? 16 : 8, vec_full_reg_size(s), data,
13103 size == MO_64
13104 ? gen_helper_gvec_fcmlas_idx
13105 : gen_helper_gvec_fcmlah_idx);
13106 tcg_temp_free_ptr(fpst);
13108 return;
13110 case 0x00: /* FMLAL */
13111 case 0x04: /* FMLSL */
13112 case 0x18: /* FMLAL2 */
13113 case 0x1c: /* FMLSL2 */
13115 int is_s = extract32(opcode, 2, 1);
13116 int is_2 = u;
13117 int data = (index << 2) | (is_2 << 1) | is_s;
13118 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13119 vec_full_reg_offset(s, rn),
13120 vec_full_reg_offset(s, rm), cpu_env,
13121 is_q ? 16 : 8, vec_full_reg_size(s),
13122 data, gen_helper_gvec_fmlal_idx_a64);
13124 return;
13127 if (size == 3) {
13128 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13129 int pass;
13131 assert(is_fp && is_q && !is_long);
13133 read_vec_element(s, tcg_idx, rm, index, MO_64);
13135 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13136 TCGv_i64 tcg_op = tcg_temp_new_i64();
13137 TCGv_i64 tcg_res = tcg_temp_new_i64();
13139 read_vec_element(s, tcg_op, rn, pass, MO_64);
13141 switch (16 * u + opcode) {
13142 case 0x05: /* FMLS */
13143 /* As usual for ARM, separate negation for fused multiply-add */
13144 gen_helper_vfp_negd(tcg_op, tcg_op);
13145 /* fall through */
13146 case 0x01: /* FMLA */
13147 read_vec_element(s, tcg_res, rd, pass, MO_64);
13148 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
13149 break;
13150 case 0x09: /* FMUL */
13151 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
13152 break;
13153 case 0x19: /* FMULX */
13154 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
13155 break;
13156 default:
13157 g_assert_not_reached();
13160 write_vec_element(s, tcg_res, rd, pass, MO_64);
13161 tcg_temp_free_i64(tcg_op);
13162 tcg_temp_free_i64(tcg_res);
13165 tcg_temp_free_i64(tcg_idx);
13166 clear_vec_high(s, !is_scalar, rd);
13167 } else if (!is_long) {
13168 /* 32 bit floating point, or 16 or 32 bit integer.
13169 * For the 16 bit scalar case we use the usual Neon helpers and
13170 * rely on the fact that 0 op 0 == 0 with no side effects.
13172 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13173 int pass, maxpasses;
13175 if (is_scalar) {
13176 maxpasses = 1;
13177 } else {
13178 maxpasses = is_q ? 4 : 2;
13181 read_vec_element_i32(s, tcg_idx, rm, index, size);
13183 if (size == 1 && !is_scalar) {
13184 /* The simplest way to handle the 16x16 indexed ops is to duplicate
13185 * the index into both halves of the 32 bit tcg_idx and then use
13186 * the usual Neon helpers.
13188 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13191 for (pass = 0; pass < maxpasses; pass++) {
13192 TCGv_i32 tcg_op = tcg_temp_new_i32();
13193 TCGv_i32 tcg_res = tcg_temp_new_i32();
13195 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13197 switch (16 * u + opcode) {
13198 case 0x08: /* MUL */
13199 case 0x10: /* MLA */
13200 case 0x14: /* MLS */
13202 static NeonGenTwoOpFn * const fns[2][2] = {
13203 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13204 { tcg_gen_add_i32, tcg_gen_sub_i32 },
13206 NeonGenTwoOpFn *genfn;
13207 bool is_sub = opcode == 0x4;
13209 if (size == 1) {
13210 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13211 } else {
13212 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13214 if (opcode == 0x8) {
13215 break;
13217 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13218 genfn = fns[size - 1][is_sub];
13219 genfn(tcg_res, tcg_op, tcg_res);
13220 break;
13222 case 0x05: /* FMLS */
13223 case 0x01: /* FMLA */
13224 read_vec_element_i32(s, tcg_res, rd, pass,
13225 is_scalar ? size : MO_32);
13226 switch (size) {
13227 case 1:
13228 if (opcode == 0x5) {
13229 /* As usual for ARM, separate negation for fused
13230 * multiply-add */
13231 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
13233 if (is_scalar) {
13234 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
13235 tcg_res, fpst);
13236 } else {
13237 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
13238 tcg_res, fpst);
13240 break;
13241 case 2:
13242 if (opcode == 0x5) {
13243 /* As usual for ARM, separate negation for
13244 * fused multiply-add */
13245 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
13247 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
13248 tcg_res, fpst);
13249 break;
13250 default:
13251 g_assert_not_reached();
13253 break;
13254 case 0x09: /* FMUL */
13255 switch (size) {
13256 case 1:
13257 if (is_scalar) {
13258 gen_helper_advsimd_mulh(tcg_res, tcg_op,
13259 tcg_idx, fpst);
13260 } else {
13261 gen_helper_advsimd_mul2h(tcg_res, tcg_op,
13262 tcg_idx, fpst);
13264 break;
13265 case 2:
13266 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
13267 break;
13268 default:
13269 g_assert_not_reached();
13271 break;
13272 case 0x19: /* FMULX */
13273 switch (size) {
13274 case 1:
13275 if (is_scalar) {
13276 gen_helper_advsimd_mulxh(tcg_res, tcg_op,
13277 tcg_idx, fpst);
13278 } else {
13279 gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
13280 tcg_idx, fpst);
13282 break;
13283 case 2:
13284 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
13285 break;
13286 default:
13287 g_assert_not_reached();
13289 break;
13290 case 0x0c: /* SQDMULH */
13291 if (size == 1) {
13292 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
13293 tcg_op, tcg_idx);
13294 } else {
13295 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
13296 tcg_op, tcg_idx);
13298 break;
13299 case 0x0d: /* SQRDMULH */
13300 if (size == 1) {
13301 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
13302 tcg_op, tcg_idx);
13303 } else {
13304 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
13305 tcg_op, tcg_idx);
13307 break;
13308 case 0x1d: /* SQRDMLAH */
13309 read_vec_element_i32(s, tcg_res, rd, pass,
13310 is_scalar ? size : MO_32);
13311 if (size == 1) {
13312 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env,
13313 tcg_op, tcg_idx, tcg_res);
13314 } else {
13315 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env,
13316 tcg_op, tcg_idx, tcg_res);
13318 break;
13319 case 0x1f: /* SQRDMLSH */
13320 read_vec_element_i32(s, tcg_res, rd, pass,
13321 is_scalar ? size : MO_32);
13322 if (size == 1) {
13323 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env,
13324 tcg_op, tcg_idx, tcg_res);
13325 } else {
13326 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env,
13327 tcg_op, tcg_idx, tcg_res);
13329 break;
13330 default:
13331 g_assert_not_reached();
13334 if (is_scalar) {
13335 write_fp_sreg(s, rd, tcg_res);
13336 } else {
13337 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13340 tcg_temp_free_i32(tcg_op);
13341 tcg_temp_free_i32(tcg_res);
13344 tcg_temp_free_i32(tcg_idx);
13345 clear_vec_high(s, is_q, rd);
13346 } else {
13347 /* long ops: 16x16->32 or 32x32->64 */
13348 TCGv_i64 tcg_res[2];
13349 int pass;
13350 bool satop = extract32(opcode, 0, 1);
13351 MemOp memop = MO_32;
13353 if (satop || !u) {
13354 memop |= MO_SIGN;
13357 if (size == 2) {
13358 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13360 read_vec_element(s, tcg_idx, rm, index, memop);
13362 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13363 TCGv_i64 tcg_op = tcg_temp_new_i64();
13364 TCGv_i64 tcg_passres;
13365 int passelt;
13367 if (is_scalar) {
13368 passelt = 0;
13369 } else {
13370 passelt = pass + (is_q * 2);
13373 read_vec_element(s, tcg_op, rn, passelt, memop);
13375 tcg_res[pass] = tcg_temp_new_i64();
13377 if (opcode == 0xa || opcode == 0xb) {
13378 /* Non-accumulating ops */
13379 tcg_passres = tcg_res[pass];
13380 } else {
13381 tcg_passres = tcg_temp_new_i64();
13384 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13385 tcg_temp_free_i64(tcg_op);
13387 if (satop) {
13388 /* saturating, doubling */
13389 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
13390 tcg_passres, tcg_passres);
13393 if (opcode == 0xa || opcode == 0xb) {
13394 continue;
13397 /* Accumulating op: handle accumulate step */
13398 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13400 switch (opcode) {
13401 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13402 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13403 break;
13404 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13405 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13406 break;
13407 case 0x7: /* SQDMLSL, SQDMLSL2 */
13408 tcg_gen_neg_i64(tcg_passres, tcg_passres);
13409 /* fall through */
13410 case 0x3: /* SQDMLAL, SQDMLAL2 */
13411 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
13412 tcg_res[pass],
13413 tcg_passres);
13414 break;
13415 default:
13416 g_assert_not_reached();
13418 tcg_temp_free_i64(tcg_passres);
13420 tcg_temp_free_i64(tcg_idx);
13422 clear_vec_high(s, !is_scalar, rd);
13423 } else {
13424 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13426 assert(size == 1);
13427 read_vec_element_i32(s, tcg_idx, rm, index, size);
13429 if (!is_scalar) {
13430 /* The simplest way to handle the 16x16 indexed ops is to
13431 * duplicate the index into both halves of the 32 bit tcg_idx
13432 * and then use the usual Neon helpers.
13434 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13437 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13438 TCGv_i32 tcg_op = tcg_temp_new_i32();
13439 TCGv_i64 tcg_passres;
13441 if (is_scalar) {
13442 read_vec_element_i32(s, tcg_op, rn, pass, size);
13443 } else {
13444 read_vec_element_i32(s, tcg_op, rn,
13445 pass + (is_q * 2), MO_32);
13448 tcg_res[pass] = tcg_temp_new_i64();
13450 if (opcode == 0xa || opcode == 0xb) {
13451 /* Non-accumulating ops */
13452 tcg_passres = tcg_res[pass];
13453 } else {
13454 tcg_passres = tcg_temp_new_i64();
13457 if (memop & MO_SIGN) {
13458 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13459 } else {
13460 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13462 if (satop) {
13463 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
13464 tcg_passres, tcg_passres);
13466 tcg_temp_free_i32(tcg_op);
13468 if (opcode == 0xa || opcode == 0xb) {
13469 continue;
13472 /* Accumulating op: handle accumulate step */
13473 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13475 switch (opcode) {
13476 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13477 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13478 tcg_passres);
13479 break;
13480 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13481 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13482 tcg_passres);
13483 break;
13484 case 0x7: /* SQDMLSL, SQDMLSL2 */
13485 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13486 /* fall through */
13487 case 0x3: /* SQDMLAL, SQDMLAL2 */
13488 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
13489 tcg_res[pass],
13490 tcg_passres);
13491 break;
13492 default:
13493 g_assert_not_reached();
13495 tcg_temp_free_i64(tcg_passres);
13497 tcg_temp_free_i32(tcg_idx);
13499 if (is_scalar) {
13500 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13504 if (is_scalar) {
13505 tcg_res[1] = tcg_const_i64(0);
13508 for (pass = 0; pass < 2; pass++) {
13509 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13510 tcg_temp_free_i64(tcg_res[pass]);
13514 if (fpst) {
13515 tcg_temp_free_ptr(fpst);
13519 /* Crypto AES
13520 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13521 * +-----------------+------+-----------+--------+-----+------+------+
13522 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13523 * +-----------------+------+-----------+--------+-----+------+------+
13525 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
13527 int size = extract32(insn, 22, 2);
13528 int opcode = extract32(insn, 12, 5);
13529 int rn = extract32(insn, 5, 5);
13530 int rd = extract32(insn, 0, 5);
13531 int decrypt;
13532 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
13533 TCGv_i32 tcg_decrypt;
13534 CryptoThreeOpIntFn *genfn;
13536 if (!dc_isar_feature(aa64_aes, s) || size != 0) {
13537 unallocated_encoding(s);
13538 return;
13541 switch (opcode) {
13542 case 0x4: /* AESE */
13543 decrypt = 0;
13544 genfn = gen_helper_crypto_aese;
13545 break;
13546 case 0x6: /* AESMC */
13547 decrypt = 0;
13548 genfn = gen_helper_crypto_aesmc;
13549 break;
13550 case 0x5: /* AESD */
13551 decrypt = 1;
13552 genfn = gen_helper_crypto_aese;
13553 break;
13554 case 0x7: /* AESIMC */
13555 decrypt = 1;
13556 genfn = gen_helper_crypto_aesmc;
13557 break;
13558 default:
13559 unallocated_encoding(s);
13560 return;
13563 if (!fp_access_check(s)) {
13564 return;
13567 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13568 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13569 tcg_decrypt = tcg_const_i32(decrypt);
13571 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_decrypt);
13573 tcg_temp_free_ptr(tcg_rd_ptr);
13574 tcg_temp_free_ptr(tcg_rn_ptr);
13575 tcg_temp_free_i32(tcg_decrypt);
13578 /* Crypto three-reg SHA
13579 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
13580 * +-----------------+------+---+------+---+--------+-----+------+------+
13581 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
13582 * +-----------------+------+---+------+---+--------+-----+------+------+
13584 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
13586 int size = extract32(insn, 22, 2);
13587 int opcode = extract32(insn, 12, 3);
13588 int rm = extract32(insn, 16, 5);
13589 int rn = extract32(insn, 5, 5);
13590 int rd = extract32(insn, 0, 5);
13591 CryptoThreeOpFn *genfn;
13592 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
13593 bool feature;
13595 if (size != 0) {
13596 unallocated_encoding(s);
13597 return;
13600 switch (opcode) {
13601 case 0: /* SHA1C */
13602 case 1: /* SHA1P */
13603 case 2: /* SHA1M */
13604 case 3: /* SHA1SU0 */
13605 genfn = NULL;
13606 feature = dc_isar_feature(aa64_sha1, s);
13607 break;
13608 case 4: /* SHA256H */
13609 genfn = gen_helper_crypto_sha256h;
13610 feature = dc_isar_feature(aa64_sha256, s);
13611 break;
13612 case 5: /* SHA256H2 */
13613 genfn = gen_helper_crypto_sha256h2;
13614 feature = dc_isar_feature(aa64_sha256, s);
13615 break;
13616 case 6: /* SHA256SU1 */
13617 genfn = gen_helper_crypto_sha256su1;
13618 feature = dc_isar_feature(aa64_sha256, s);
13619 break;
13620 default:
13621 unallocated_encoding(s);
13622 return;
13625 if (!feature) {
13626 unallocated_encoding(s);
13627 return;
13630 if (!fp_access_check(s)) {
13631 return;
13634 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13635 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13636 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
13638 if (genfn) {
13639 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr);
13640 } else {
13641 TCGv_i32 tcg_opcode = tcg_const_i32(opcode);
13643 gen_helper_crypto_sha1_3reg(tcg_rd_ptr, tcg_rn_ptr,
13644 tcg_rm_ptr, tcg_opcode);
13645 tcg_temp_free_i32(tcg_opcode);
13648 tcg_temp_free_ptr(tcg_rd_ptr);
13649 tcg_temp_free_ptr(tcg_rn_ptr);
13650 tcg_temp_free_ptr(tcg_rm_ptr);
13653 /* Crypto two-reg SHA
13654 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13655 * +-----------------+------+-----------+--------+-----+------+------+
13656 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13657 * +-----------------+------+-----------+--------+-----+------+------+
13659 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
13661 int size = extract32(insn, 22, 2);
13662 int opcode = extract32(insn, 12, 5);
13663 int rn = extract32(insn, 5, 5);
13664 int rd = extract32(insn, 0, 5);
13665 CryptoTwoOpFn *genfn;
13666 bool feature;
13667 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
13669 if (size != 0) {
13670 unallocated_encoding(s);
13671 return;
13674 switch (opcode) {
13675 case 0: /* SHA1H */
13676 feature = dc_isar_feature(aa64_sha1, s);
13677 genfn = gen_helper_crypto_sha1h;
13678 break;
13679 case 1: /* SHA1SU1 */
13680 feature = dc_isar_feature(aa64_sha1, s);
13681 genfn = gen_helper_crypto_sha1su1;
13682 break;
13683 case 2: /* SHA256SU0 */
13684 feature = dc_isar_feature(aa64_sha256, s);
13685 genfn = gen_helper_crypto_sha256su0;
13686 break;
13687 default:
13688 unallocated_encoding(s);
13689 return;
13692 if (!feature) {
13693 unallocated_encoding(s);
13694 return;
13697 if (!fp_access_check(s)) {
13698 return;
13701 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13702 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13704 genfn(tcg_rd_ptr, tcg_rn_ptr);
13706 tcg_temp_free_ptr(tcg_rd_ptr);
13707 tcg_temp_free_ptr(tcg_rn_ptr);
13710 /* Crypto three-reg SHA512
13711 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
13712 * +-----------------------+------+---+---+-----+--------+------+------+
13713 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd |
13714 * +-----------------------+------+---+---+-----+--------+------+------+
13716 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
13718 int opcode = extract32(insn, 10, 2);
13719 int o = extract32(insn, 14, 1);
13720 int rm = extract32(insn, 16, 5);
13721 int rn = extract32(insn, 5, 5);
13722 int rd = extract32(insn, 0, 5);
13723 bool feature;
13724 CryptoThreeOpFn *genfn;
13726 if (o == 0) {
13727 switch (opcode) {
13728 case 0: /* SHA512H */
13729 feature = dc_isar_feature(aa64_sha512, s);
13730 genfn = gen_helper_crypto_sha512h;
13731 break;
13732 case 1: /* SHA512H2 */
13733 feature = dc_isar_feature(aa64_sha512, s);
13734 genfn = gen_helper_crypto_sha512h2;
13735 break;
13736 case 2: /* SHA512SU1 */
13737 feature = dc_isar_feature(aa64_sha512, s);
13738 genfn = gen_helper_crypto_sha512su1;
13739 break;
13740 case 3: /* RAX1 */
13741 feature = dc_isar_feature(aa64_sha3, s);
13742 genfn = NULL;
13743 break;
13744 default:
13745 g_assert_not_reached();
13747 } else {
13748 switch (opcode) {
13749 case 0: /* SM3PARTW1 */
13750 feature = dc_isar_feature(aa64_sm3, s);
13751 genfn = gen_helper_crypto_sm3partw1;
13752 break;
13753 case 1: /* SM3PARTW2 */
13754 feature = dc_isar_feature(aa64_sm3, s);
13755 genfn = gen_helper_crypto_sm3partw2;
13756 break;
13757 case 2: /* SM4EKEY */
13758 feature = dc_isar_feature(aa64_sm4, s);
13759 genfn = gen_helper_crypto_sm4ekey;
13760 break;
13761 default:
13762 unallocated_encoding(s);
13763 return;
13767 if (!feature) {
13768 unallocated_encoding(s);
13769 return;
13772 if (!fp_access_check(s)) {
13773 return;
13776 if (genfn) {
13777 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
13779 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13780 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13781 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
13783 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr);
13785 tcg_temp_free_ptr(tcg_rd_ptr);
13786 tcg_temp_free_ptr(tcg_rn_ptr);
13787 tcg_temp_free_ptr(tcg_rm_ptr);
13788 } else {
13789 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
13790 int pass;
13792 tcg_op1 = tcg_temp_new_i64();
13793 tcg_op2 = tcg_temp_new_i64();
13794 tcg_res[0] = tcg_temp_new_i64();
13795 tcg_res[1] = tcg_temp_new_i64();
13797 for (pass = 0; pass < 2; pass++) {
13798 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13799 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13801 tcg_gen_rotli_i64(tcg_res[pass], tcg_op2, 1);
13802 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13804 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13805 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13807 tcg_temp_free_i64(tcg_op1);
13808 tcg_temp_free_i64(tcg_op2);
13809 tcg_temp_free_i64(tcg_res[0]);
13810 tcg_temp_free_i64(tcg_res[1]);
13814 /* Crypto two-reg SHA512
13815 * 31 12 11 10 9 5 4 0
13816 * +-----------------------------------------+--------+------+------+
13817 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd |
13818 * +-----------------------------------------+--------+------+------+
13820 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
13822 int opcode = extract32(insn, 10, 2);
13823 int rn = extract32(insn, 5, 5);
13824 int rd = extract32(insn, 0, 5);
13825 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
13826 bool feature;
13827 CryptoTwoOpFn *genfn;
13829 switch (opcode) {
13830 case 0: /* SHA512SU0 */
13831 feature = dc_isar_feature(aa64_sha512, s);
13832 genfn = gen_helper_crypto_sha512su0;
13833 break;
13834 case 1: /* SM4E */
13835 feature = dc_isar_feature(aa64_sm4, s);
13836 genfn = gen_helper_crypto_sm4e;
13837 break;
13838 default:
13839 unallocated_encoding(s);
13840 return;
13843 if (!feature) {
13844 unallocated_encoding(s);
13845 return;
13848 if (!fp_access_check(s)) {
13849 return;
13852 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13853 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13855 genfn(tcg_rd_ptr, tcg_rn_ptr);
13857 tcg_temp_free_ptr(tcg_rd_ptr);
13858 tcg_temp_free_ptr(tcg_rn_ptr);
13861 /* Crypto four-register
13862 * 31 23 22 21 20 16 15 14 10 9 5 4 0
13863 * +-------------------+-----+------+---+------+------+------+
13864 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd |
13865 * +-------------------+-----+------+---+------+------+------+
13867 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
13869 int op0 = extract32(insn, 21, 2);
13870 int rm = extract32(insn, 16, 5);
13871 int ra = extract32(insn, 10, 5);
13872 int rn = extract32(insn, 5, 5);
13873 int rd = extract32(insn, 0, 5);
13874 bool feature;
13876 switch (op0) {
13877 case 0: /* EOR3 */
13878 case 1: /* BCAX */
13879 feature = dc_isar_feature(aa64_sha3, s);
13880 break;
13881 case 2: /* SM3SS1 */
13882 feature = dc_isar_feature(aa64_sm3, s);
13883 break;
13884 default:
13885 unallocated_encoding(s);
13886 return;
13889 if (!feature) {
13890 unallocated_encoding(s);
13891 return;
13894 if (!fp_access_check(s)) {
13895 return;
13898 if (op0 < 2) {
13899 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
13900 int pass;
13902 tcg_op1 = tcg_temp_new_i64();
13903 tcg_op2 = tcg_temp_new_i64();
13904 tcg_op3 = tcg_temp_new_i64();
13905 tcg_res[0] = tcg_temp_new_i64();
13906 tcg_res[1] = tcg_temp_new_i64();
13908 for (pass = 0; pass < 2; pass++) {
13909 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13910 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13911 read_vec_element(s, tcg_op3, ra, pass, MO_64);
13913 if (op0 == 0) {
13914 /* EOR3 */
13915 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
13916 } else {
13917 /* BCAX */
13918 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
13920 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13922 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13923 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13925 tcg_temp_free_i64(tcg_op1);
13926 tcg_temp_free_i64(tcg_op2);
13927 tcg_temp_free_i64(tcg_op3);
13928 tcg_temp_free_i64(tcg_res[0]);
13929 tcg_temp_free_i64(tcg_res[1]);
13930 } else {
13931 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
13933 tcg_op1 = tcg_temp_new_i32();
13934 tcg_op2 = tcg_temp_new_i32();
13935 tcg_op3 = tcg_temp_new_i32();
13936 tcg_res = tcg_temp_new_i32();
13937 tcg_zero = tcg_const_i32(0);
13939 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
13940 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
13941 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
13943 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
13944 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
13945 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
13946 tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
13948 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
13949 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
13950 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
13951 write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
13953 tcg_temp_free_i32(tcg_op1);
13954 tcg_temp_free_i32(tcg_op2);
13955 tcg_temp_free_i32(tcg_op3);
13956 tcg_temp_free_i32(tcg_res);
13957 tcg_temp_free_i32(tcg_zero);
13961 /* Crypto XAR
13962 * 31 21 20 16 15 10 9 5 4 0
13963 * +-----------------------+------+--------+------+------+
13964 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd |
13965 * +-----------------------+------+--------+------+------+
13967 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
13969 int rm = extract32(insn, 16, 5);
13970 int imm6 = extract32(insn, 10, 6);
13971 int rn = extract32(insn, 5, 5);
13972 int rd = extract32(insn, 0, 5);
13973 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
13974 int pass;
13976 if (!dc_isar_feature(aa64_sha3, s)) {
13977 unallocated_encoding(s);
13978 return;
13981 if (!fp_access_check(s)) {
13982 return;
13985 tcg_op1 = tcg_temp_new_i64();
13986 tcg_op2 = tcg_temp_new_i64();
13987 tcg_res[0] = tcg_temp_new_i64();
13988 tcg_res[1] = tcg_temp_new_i64();
13990 for (pass = 0; pass < 2; pass++) {
13991 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13992 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13994 tcg_gen_xor_i64(tcg_res[pass], tcg_op1, tcg_op2);
13995 tcg_gen_rotri_i64(tcg_res[pass], tcg_res[pass], imm6);
13997 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13998 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
14000 tcg_temp_free_i64(tcg_op1);
14001 tcg_temp_free_i64(tcg_op2);
14002 tcg_temp_free_i64(tcg_res[0]);
14003 tcg_temp_free_i64(tcg_res[1]);
14006 /* Crypto three-reg imm2
14007 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
14008 * +-----------------------+------+-----+------+--------+------+------+
14009 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd |
14010 * +-----------------------+------+-----+------+--------+------+------+
14012 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
14014 int opcode = extract32(insn, 10, 2);
14015 int imm2 = extract32(insn, 12, 2);
14016 int rm = extract32(insn, 16, 5);
14017 int rn = extract32(insn, 5, 5);
14018 int rd = extract32(insn, 0, 5);
14019 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
14020 TCGv_i32 tcg_imm2, tcg_opcode;
14022 if (!dc_isar_feature(aa64_sm3, s)) {
14023 unallocated_encoding(s);
14024 return;
14027 if (!fp_access_check(s)) {
14028 return;
14031 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
14032 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
14033 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
14034 tcg_imm2 = tcg_const_i32(imm2);
14035 tcg_opcode = tcg_const_i32(opcode);
14037 gen_helper_crypto_sm3tt(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr, tcg_imm2,
14038 tcg_opcode);
14040 tcg_temp_free_ptr(tcg_rd_ptr);
14041 tcg_temp_free_ptr(tcg_rn_ptr);
14042 tcg_temp_free_ptr(tcg_rm_ptr);
14043 tcg_temp_free_i32(tcg_imm2);
14044 tcg_temp_free_i32(tcg_opcode);
14047 /* C3.6 Data processing - SIMD, inc Crypto
14049 * As the decode gets a little complex we are using a table based
14050 * approach for this part of the decode.
14052 static const AArch64DecodeTable data_proc_simd[] = {
14053 /* pattern , mask , fn */
14054 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
14055 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
14056 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
14057 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
14058 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
14059 { 0x0e000400, 0x9fe08400, disas_simd_copy },
14060 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
14061 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
14062 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
14063 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
14064 { 0x0e000000, 0xbf208c00, disas_simd_tb },
14065 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
14066 { 0x2e000000, 0xbf208400, disas_simd_ext },
14067 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
14068 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
14069 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
14070 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
14071 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
14072 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
14073 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
14074 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
14075 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
14076 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
14077 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
14078 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
14079 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
14080 { 0xce000000, 0xff808000, disas_crypto_four_reg },
14081 { 0xce800000, 0xffe00000, disas_crypto_xar },
14082 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
14083 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
14084 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
14085 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
14086 { 0x00000000, 0x00000000, NULL }
14089 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
14091 /* Note that this is called with all non-FP cases from
14092 * table C3-6 so it must UNDEF for entries not specifically
14093 * allocated to instructions in that table.
14095 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
14096 if (fn) {
14097 fn(s, insn);
14098 } else {
14099 unallocated_encoding(s);
14103 /* C3.6 Data processing - SIMD and floating point */
14104 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
14106 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
14107 disas_data_proc_fp(s, insn);
14108 } else {
14109 /* SIMD, including crypto */
14110 disas_data_proc_simd(s, insn);
14115 * is_guarded_page:
14116 * @env: The cpu environment
14117 * @s: The DisasContext
14119 * Return true if the page is guarded.
14121 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
14123 #ifdef CONFIG_USER_ONLY
14124 return false; /* FIXME */
14125 #else
14126 uint64_t addr = s->base.pc_first;
14127 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
14128 unsigned int index = tlb_index(env, mmu_idx, addr);
14129 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
14132 * We test this immediately after reading an insn, which means
14133 * that any normal page must be in the TLB. The only exception
14134 * would be for executing from flash or device memory, which
14135 * does not retain the TLB entry.
14137 * FIXME: Assume false for those, for now. We could use
14138 * arm_cpu_get_phys_page_attrs_debug to re-read the page
14139 * table entry even for that case.
14141 return (tlb_hit(entry->addr_code, addr) &&
14142 env_tlb(env)->d[mmu_idx].iotlb[index].attrs.target_tlb_bit0);
14143 #endif
14147 * btype_destination_ok:
14148 * @insn: The instruction at the branch destination
14149 * @bt: SCTLR_ELx.BT
14150 * @btype: PSTATE.BTYPE, and is non-zero
14152 * On a guarded page, there are a limited number of insns
14153 * that may be present at the branch target:
14154 * - branch target identifiers,
14155 * - paciasp, pacibsp,
14156 * - BRK insn
14157 * - HLT insn
14158 * Anything else causes a Branch Target Exception.
14160 * Return true if the branch is compatible, false to raise BTITRAP.
14162 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
14164 if ((insn & 0xfffff01fu) == 0xd503201fu) {
14165 /* HINT space */
14166 switch (extract32(insn, 5, 7)) {
14167 case 0b011001: /* PACIASP */
14168 case 0b011011: /* PACIBSP */
14170 * If SCTLR_ELx.BT, then PACI*SP are not compatible
14171 * with btype == 3. Otherwise all btype are ok.
14173 return !bt || btype != 3;
14174 case 0b100000: /* BTI */
14175 /* Not compatible with any btype. */
14176 return false;
14177 case 0b100010: /* BTI c */
14178 /* Not compatible with btype == 3 */
14179 return btype != 3;
14180 case 0b100100: /* BTI j */
14181 /* Not compatible with btype == 2 */
14182 return btype != 2;
14183 case 0b100110: /* BTI jc */
14184 /* Compatible with any btype. */
14185 return true;
14187 } else {
14188 switch (insn & 0xffe0001fu) {
14189 case 0xd4200000u: /* BRK */
14190 case 0xd4400000u: /* HLT */
14191 /* Give priority to the breakpoint exception. */
14192 return true;
14195 return false;
14198 /* C3.1 A64 instruction index by encoding */
14199 static void disas_a64_insn(CPUARMState *env, DisasContext *s)
14201 uint32_t insn;
14203 s->pc_curr = s->base.pc_next;
14204 insn = arm_ldl_code(env, s->base.pc_next, s->sctlr_b);
14205 s->insn = insn;
14206 s->base.pc_next += 4;
14208 s->fp_access_checked = false;
14210 if (dc_isar_feature(aa64_bti, s)) {
14211 if (s->base.num_insns == 1) {
14213 * At the first insn of the TB, compute s->guarded_page.
14214 * We delayed computing this until successfully reading
14215 * the first insn of the TB, above. This (mostly) ensures
14216 * that the softmmu tlb entry has been populated, and the
14217 * page table GP bit is available.
14219 * Note that we need to compute this even if btype == 0,
14220 * because this value is used for BR instructions later
14221 * where ENV is not available.
14223 s->guarded_page = is_guarded_page(env, s);
14225 /* First insn can have btype set to non-zero. */
14226 tcg_debug_assert(s->btype >= 0);
14229 * Note that the Branch Target Exception has fairly high
14230 * priority -- below debugging exceptions but above most
14231 * everything else. This allows us to handle this now
14232 * instead of waiting until the insn is otherwise decoded.
14234 if (s->btype != 0
14235 && s->guarded_page
14236 && !btype_destination_ok(insn, s->bt, s->btype)) {
14237 gen_exception_insn(s, s->pc_curr, EXCP_UDEF,
14238 syn_btitrap(s->btype),
14239 default_exception_el(s));
14240 return;
14242 } else {
14243 /* Not the first insn: btype must be 0. */
14244 tcg_debug_assert(s->btype == 0);
14248 switch (extract32(insn, 25, 4)) {
14249 case 0x0: case 0x1: case 0x3: /* UNALLOCATED */
14250 unallocated_encoding(s);
14251 break;
14252 case 0x2:
14253 if (!dc_isar_feature(aa64_sve, s) || !disas_sve(s, insn)) {
14254 unallocated_encoding(s);
14256 break;
14257 case 0x8: case 0x9: /* Data processing - immediate */
14258 disas_data_proc_imm(s, insn);
14259 break;
14260 case 0xa: case 0xb: /* Branch, exception generation and system insns */
14261 disas_b_exc_sys(s, insn);
14262 break;
14263 case 0x4:
14264 case 0x6:
14265 case 0xc:
14266 case 0xe: /* Loads and stores */
14267 disas_ldst(s, insn);
14268 break;
14269 case 0x5:
14270 case 0xd: /* Data processing - register */
14271 disas_data_proc_reg(s, insn);
14272 break;
14273 case 0x7:
14274 case 0xf: /* Data processing - SIMD and floating point */
14275 disas_data_proc_simd_fp(s, insn);
14276 break;
14277 default:
14278 assert(FALSE); /* all 15 cases should be handled above */
14279 break;
14282 /* if we allocated any temporaries, free them here */
14283 free_tmp_a64(s);
14286 * After execution of most insns, btype is reset to 0.
14287 * Note that we set btype == -1 when the insn sets btype.
14289 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
14290 reset_btype(s);
14294 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
14295 CPUState *cpu)
14297 DisasContext *dc = container_of(dcbase, DisasContext, base);
14298 CPUARMState *env = cpu->env_ptr;
14299 ARMCPU *arm_cpu = env_archcpu(env);
14300 uint32_t tb_flags = dc->base.tb->flags;
14301 int bound, core_mmu_idx;
14303 dc->isar = &arm_cpu->isar;
14304 dc->condjmp = 0;
14306 dc->aarch64 = 1;
14307 /* If we are coming from secure EL0 in a system with a 32-bit EL3, then
14308 * there is no secure EL1, so we route exceptions to EL3.
14310 dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
14311 !arm_el_is_aa64(env, 3);
14312 dc->thumb = 0;
14313 dc->sctlr_b = 0;
14314 dc->be_data = FIELD_EX32(tb_flags, TBFLAG_ANY, BE_DATA) ? MO_BE : MO_LE;
14315 dc->condexec_mask = 0;
14316 dc->condexec_cond = 0;
14317 core_mmu_idx = FIELD_EX32(tb_flags, TBFLAG_ANY, MMUIDX);
14318 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
14319 dc->tbii = FIELD_EX32(tb_flags, TBFLAG_A64, TBII);
14320 dc->tbid = FIELD_EX32(tb_flags, TBFLAG_A64, TBID);
14321 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
14322 #if !defined(CONFIG_USER_ONLY)
14323 dc->user = (dc->current_el == 0);
14324 #endif
14325 dc->fp_excp_el = FIELD_EX32(tb_flags, TBFLAG_ANY, FPEXC_EL);
14326 dc->sve_excp_el = FIELD_EX32(tb_flags, TBFLAG_A64, SVEEXC_EL);
14327 dc->sve_len = (FIELD_EX32(tb_flags, TBFLAG_A64, ZCR_LEN) + 1) * 16;
14328 dc->pauth_active = FIELD_EX32(tb_flags, TBFLAG_A64, PAUTH_ACTIVE);
14329 dc->bt = FIELD_EX32(tb_flags, TBFLAG_A64, BT);
14330 dc->btype = FIELD_EX32(tb_flags, TBFLAG_A64, BTYPE);
14331 dc->unpriv = FIELD_EX32(tb_flags, TBFLAG_A64, UNPRIV);
14332 dc->vec_len = 0;
14333 dc->vec_stride = 0;
14334 dc->cp_regs = arm_cpu->cp_regs;
14335 dc->features = env->features;
14337 /* Single step state. The code-generation logic here is:
14338 * SS_ACTIVE == 0:
14339 * generate code with no special handling for single-stepping (except
14340 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
14341 * this happens anyway because those changes are all system register or
14342 * PSTATE writes).
14343 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
14344 * emit code for one insn
14345 * emit code to clear PSTATE.SS
14346 * emit code to generate software step exception for completed step
14347 * end TB (as usual for having generated an exception)
14348 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
14349 * emit code to generate a software step exception
14350 * end the TB
14352 dc->ss_active = FIELD_EX32(tb_flags, TBFLAG_ANY, SS_ACTIVE);
14353 dc->pstate_ss = FIELD_EX32(tb_flags, TBFLAG_ANY, PSTATE_SS);
14354 dc->is_ldex = false;
14355 dc->debug_target_el = FIELD_EX32(tb_flags, TBFLAG_ANY, DEBUG_TARGET_EL);
14357 /* Bound the number of insns to execute to those left on the page. */
14358 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
14360 /* If architectural single step active, limit to 1. */
14361 if (dc->ss_active) {
14362 bound = 1;
14364 dc->base.max_insns = MIN(dc->base.max_insns, bound);
14366 init_tmp_a64_array(dc);
14369 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
14373 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
14375 DisasContext *dc = container_of(dcbase, DisasContext, base);
14377 tcg_gen_insn_start(dc->base.pc_next, 0, 0);
14378 dc->insn_start = tcg_last_op();
14381 static bool aarch64_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cpu,
14382 const CPUBreakpoint *bp)
14384 DisasContext *dc = container_of(dcbase, DisasContext, base);
14386 if (bp->flags & BP_CPU) {
14387 gen_a64_set_pc_im(dc->base.pc_next);
14388 gen_helper_check_breakpoints(cpu_env);
14389 /* End the TB early; it likely won't be executed */
14390 dc->base.is_jmp = DISAS_TOO_MANY;
14391 } else {
14392 gen_exception_internal_insn(dc, dc->base.pc_next, EXCP_DEBUG);
14393 /* The address covered by the breakpoint must be
14394 included in [tb->pc, tb->pc + tb->size) in order
14395 to for it to be properly cleared -- thus we
14396 increment the PC here so that the logic setting
14397 tb->size below does the right thing. */
14398 dc->base.pc_next += 4;
14399 dc->base.is_jmp = DISAS_NORETURN;
14402 return true;
14405 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
14407 DisasContext *dc = container_of(dcbase, DisasContext, base);
14408 CPUARMState *env = cpu->env_ptr;
14410 if (dc->ss_active && !dc->pstate_ss) {
14411 /* Singlestep state is Active-pending.
14412 * If we're in this state at the start of a TB then either
14413 * a) we just took an exception to an EL which is being debugged
14414 * and this is the first insn in the exception handler
14415 * b) debug exceptions were masked and we just unmasked them
14416 * without changing EL (eg by clearing PSTATE.D)
14417 * In either case we're going to take a swstep exception in the
14418 * "did not step an insn" case, and so the syndrome ISV and EX
14419 * bits should be zero.
14421 assert(dc->base.num_insns == 1);
14422 gen_swstep_exception(dc, 0, 0);
14423 dc->base.is_jmp = DISAS_NORETURN;
14424 } else {
14425 disas_a64_insn(env, dc);
14428 translator_loop_temp_check(&dc->base);
14431 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14433 DisasContext *dc = container_of(dcbase, DisasContext, base);
14435 if (unlikely(dc->base.singlestep_enabled || dc->ss_active)) {
14436 /* Note that this means single stepping WFI doesn't halt the CPU.
14437 * For conditional branch insns this is harmless unreachable code as
14438 * gen_goto_tb() has already handled emitting the debug exception
14439 * (and thus a tb-jump is not possible when singlestepping).
14441 switch (dc->base.is_jmp) {
14442 default:
14443 gen_a64_set_pc_im(dc->base.pc_next);
14444 /* fall through */
14445 case DISAS_EXIT:
14446 case DISAS_JUMP:
14447 if (dc->base.singlestep_enabled) {
14448 gen_exception_internal(EXCP_DEBUG);
14449 } else {
14450 gen_step_complete_exception(dc);
14452 break;
14453 case DISAS_NORETURN:
14454 break;
14456 } else {
14457 switch (dc->base.is_jmp) {
14458 case DISAS_NEXT:
14459 case DISAS_TOO_MANY:
14460 gen_goto_tb(dc, 1, dc->base.pc_next);
14461 break;
14462 default:
14463 case DISAS_UPDATE:
14464 gen_a64_set_pc_im(dc->base.pc_next);
14465 /* fall through */
14466 case DISAS_EXIT:
14467 tcg_gen_exit_tb(NULL, 0);
14468 break;
14469 case DISAS_JUMP:
14470 tcg_gen_lookup_and_goto_ptr();
14471 break;
14472 case DISAS_NORETURN:
14473 case DISAS_SWI:
14474 break;
14475 case DISAS_WFE:
14476 gen_a64_set_pc_im(dc->base.pc_next);
14477 gen_helper_wfe(cpu_env);
14478 break;
14479 case DISAS_YIELD:
14480 gen_a64_set_pc_im(dc->base.pc_next);
14481 gen_helper_yield(cpu_env);
14482 break;
14483 case DISAS_WFI:
14485 /* This is a special case because we don't want to just halt the CPU
14486 * if trying to debug across a WFI.
14488 TCGv_i32 tmp = tcg_const_i32(4);
14490 gen_a64_set_pc_im(dc->base.pc_next);
14491 gen_helper_wfi(cpu_env, tmp);
14492 tcg_temp_free_i32(tmp);
14493 /* The helper doesn't necessarily throw an exception, but we
14494 * must go back to the main loop to check for interrupts anyway.
14496 tcg_gen_exit_tb(NULL, 0);
14497 break;
14503 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
14504 CPUState *cpu)
14506 DisasContext *dc = container_of(dcbase, DisasContext, base);
14508 qemu_log("IN: %s\n", lookup_symbol(dc->base.pc_first));
14509 log_target_disas(cpu, dc->base.pc_first, dc->base.tb->size);
14512 const TranslatorOps aarch64_translator_ops = {
14513 .init_disas_context = aarch64_tr_init_disas_context,
14514 .tb_start = aarch64_tr_tb_start,
14515 .insn_start = aarch64_tr_insn_start,
14516 .breakpoint_check = aarch64_tr_breakpoint_check,
14517 .translate_insn = aarch64_tr_translate_insn,
14518 .tb_stop = aarch64_tr_tb_stop,
14519 .disas_log = aarch64_tr_disas_log,