Merge tag 'accel-sh4-ui-20240503' of https://github.com/philmd/qemu into staging
[qemu/armbru.git] / migration / ram.c
bloba975c5af16f1239b5540e312b13f77149929c873
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
29 #include "qemu/osdep.h"
30 #include "qemu/cutils.h"
31 #include "qemu/bitops.h"
32 #include "qemu/bitmap.h"
33 #include "qemu/madvise.h"
34 #include "qemu/main-loop.h"
35 #include "xbzrle.h"
36 #include "ram-compress.h"
37 #include "ram.h"
38 #include "migration.h"
39 #include "migration-stats.h"
40 #include "migration/register.h"
41 #include "migration/misc.h"
42 #include "qemu-file.h"
43 #include "postcopy-ram.h"
44 #include "page_cache.h"
45 #include "qemu/error-report.h"
46 #include "qapi/error.h"
47 #include "qapi/qapi-types-migration.h"
48 #include "qapi/qapi-events-migration.h"
49 #include "qapi/qapi-commands-migration.h"
50 #include "qapi/qmp/qerror.h"
51 #include "trace.h"
52 #include "exec/ram_addr.h"
53 #include "exec/target_page.h"
54 #include "qemu/rcu_queue.h"
55 #include "migration/colo.h"
56 #include "block.h"
57 #include "sysemu/cpu-throttle.h"
58 #include "savevm.h"
59 #include "qemu/iov.h"
60 #include "multifd.h"
61 #include "sysemu/runstate.h"
62 #include "rdma.h"
63 #include "options.h"
64 #include "sysemu/dirtylimit.h"
65 #include "sysemu/kvm.h"
67 #include "hw/boards.h" /* for machine_dump_guest_core() */
69 #if defined(__linux__)
70 #include "qemu/userfaultfd.h"
71 #endif /* defined(__linux__) */
73 /***********************************************************/
74 /* ram save/restore */
77 * RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
78 * worked for pages that were filled with the same char. We switched
79 * it to only search for the zero value. And to avoid confusion with
80 * RAM_SAVE_FLAG_COMPRESS_PAGE just rename it.
83 * RAM_SAVE_FLAG_FULL was obsoleted in 2009, it can be reused now
85 #define RAM_SAVE_FLAG_FULL 0x01
86 #define RAM_SAVE_FLAG_ZERO 0x02
87 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
88 #define RAM_SAVE_FLAG_PAGE 0x08
89 #define RAM_SAVE_FLAG_EOS 0x10
90 #define RAM_SAVE_FLAG_CONTINUE 0x20
91 #define RAM_SAVE_FLAG_XBZRLE 0x40
92 /* 0x80 is reserved in rdma.h for RAM_SAVE_FLAG_HOOK */
93 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
94 #define RAM_SAVE_FLAG_MULTIFD_FLUSH 0x200
95 /* We can't use any flag that is bigger than 0x200 */
98 * mapped-ram migration supports O_DIRECT, so we need to make sure the
99 * userspace buffer, the IO operation size and the file offset are
100 * aligned according to the underlying device's block size. The first
101 * two are already aligned to page size, but we need to add padding to
102 * the file to align the offset. We cannot read the block size
103 * dynamically because the migration file can be moved between
104 * different systems, so use 1M to cover most block sizes and to keep
105 * the file offset aligned at page size as well.
107 #define MAPPED_RAM_FILE_OFFSET_ALIGNMENT 0x100000
110 * When doing mapped-ram migration, this is the amount we read from
111 * the pages region in the migration file at a time.
113 #define MAPPED_RAM_LOAD_BUF_SIZE 0x100000
115 XBZRLECacheStats xbzrle_counters;
117 /* used by the search for pages to send */
118 struct PageSearchStatus {
119 /* The migration channel used for a specific host page */
120 QEMUFile *pss_channel;
121 /* Last block from where we have sent data */
122 RAMBlock *last_sent_block;
123 /* Current block being searched */
124 RAMBlock *block;
125 /* Current page to search from */
126 unsigned long page;
127 /* Set once we wrap around */
128 bool complete_round;
129 /* Whether we're sending a host page */
130 bool host_page_sending;
131 /* The start/end of current host page. Invalid if host_page_sending==false */
132 unsigned long host_page_start;
133 unsigned long host_page_end;
135 typedef struct PageSearchStatus PageSearchStatus;
137 /* struct contains XBZRLE cache and a static page
138 used by the compression */
139 static struct {
140 /* buffer used for XBZRLE encoding */
141 uint8_t *encoded_buf;
142 /* buffer for storing page content */
143 uint8_t *current_buf;
144 /* Cache for XBZRLE, Protected by lock. */
145 PageCache *cache;
146 QemuMutex lock;
147 /* it will store a page full of zeros */
148 uint8_t *zero_target_page;
149 /* buffer used for XBZRLE decoding */
150 uint8_t *decoded_buf;
151 } XBZRLE;
153 static void XBZRLE_cache_lock(void)
155 if (migrate_xbzrle()) {
156 qemu_mutex_lock(&XBZRLE.lock);
160 static void XBZRLE_cache_unlock(void)
162 if (migrate_xbzrle()) {
163 qemu_mutex_unlock(&XBZRLE.lock);
168 * xbzrle_cache_resize: resize the xbzrle cache
170 * This function is called from migrate_params_apply in main
171 * thread, possibly while a migration is in progress. A running
172 * migration may be using the cache and might finish during this call,
173 * hence changes to the cache are protected by XBZRLE.lock().
175 * Returns 0 for success or -1 for error
177 * @new_size: new cache size
178 * @errp: set *errp if the check failed, with reason
180 int xbzrle_cache_resize(uint64_t new_size, Error **errp)
182 PageCache *new_cache;
183 int64_t ret = 0;
185 /* Check for truncation */
186 if (new_size != (size_t)new_size) {
187 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
188 "exceeding address space");
189 return -1;
192 if (new_size == migrate_xbzrle_cache_size()) {
193 /* nothing to do */
194 return 0;
197 XBZRLE_cache_lock();
199 if (XBZRLE.cache != NULL) {
200 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
201 if (!new_cache) {
202 ret = -1;
203 goto out;
206 cache_fini(XBZRLE.cache);
207 XBZRLE.cache = new_cache;
209 out:
210 XBZRLE_cache_unlock();
211 return ret;
214 static bool postcopy_preempt_active(void)
216 return migrate_postcopy_preempt() && migration_in_postcopy();
219 bool migrate_ram_is_ignored(RAMBlock *block)
221 return !qemu_ram_is_migratable(block) ||
222 (migrate_ignore_shared() && qemu_ram_is_shared(block)
223 && qemu_ram_is_named_file(block));
226 #undef RAMBLOCK_FOREACH
228 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
230 RAMBlock *block;
231 int ret = 0;
233 RCU_READ_LOCK_GUARD();
235 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
236 ret = func(block, opaque);
237 if (ret) {
238 break;
241 return ret;
244 static void ramblock_recv_map_init(void)
246 RAMBlock *rb;
248 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
249 assert(!rb->receivedmap);
250 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
254 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
256 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
257 rb->receivedmap);
260 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
262 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
265 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
267 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
270 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
271 size_t nr)
273 bitmap_set_atomic(rb->receivedmap,
274 ramblock_recv_bitmap_offset(host_addr, rb),
275 nr);
278 void ramblock_recv_bitmap_set_offset(RAMBlock *rb, uint64_t byte_offset)
280 set_bit_atomic(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
282 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
285 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
287 * Returns >0 if success with sent bytes, or <0 if error.
289 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
290 const char *block_name)
292 RAMBlock *block = qemu_ram_block_by_name(block_name);
293 unsigned long *le_bitmap, nbits;
294 uint64_t size;
296 if (!block) {
297 error_report("%s: invalid block name: %s", __func__, block_name);
298 return -1;
301 nbits = block->postcopy_length >> TARGET_PAGE_BITS;
304 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
305 * machines we may need 4 more bytes for padding (see below
306 * comment). So extend it a bit before hand.
308 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
311 * Always use little endian when sending the bitmap. This is
312 * required that when source and destination VMs are not using the
313 * same endianness. (Note: big endian won't work.)
315 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
317 /* Size of the bitmap, in bytes */
318 size = DIV_ROUND_UP(nbits, 8);
321 * size is always aligned to 8 bytes for 64bit machines, but it
322 * may not be true for 32bit machines. We need this padding to
323 * make sure the migration can survive even between 32bit and
324 * 64bit machines.
326 size = ROUND_UP(size, 8);
328 qemu_put_be64(file, size);
329 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
330 g_free(le_bitmap);
332 * Mark as an end, in case the middle part is screwed up due to
333 * some "mysterious" reason.
335 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
336 int ret = qemu_fflush(file);
337 if (ret) {
338 return ret;
341 return size + sizeof(size);
345 * An outstanding page request, on the source, having been received
346 * and queued
348 struct RAMSrcPageRequest {
349 RAMBlock *rb;
350 hwaddr offset;
351 hwaddr len;
353 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
356 /* State of RAM for migration */
357 struct RAMState {
359 * PageSearchStatus structures for the channels when send pages.
360 * Protected by the bitmap_mutex.
362 PageSearchStatus pss[RAM_CHANNEL_MAX];
363 /* UFFD file descriptor, used in 'write-tracking' migration */
364 int uffdio_fd;
365 /* total ram size in bytes */
366 uint64_t ram_bytes_total;
367 /* Last block that we have visited searching for dirty pages */
368 RAMBlock *last_seen_block;
369 /* Last dirty target page we have sent */
370 ram_addr_t last_page;
371 /* last ram version we have seen */
372 uint32_t last_version;
373 /* How many times we have dirty too many pages */
374 int dirty_rate_high_cnt;
375 /* these variables are used for bitmap sync */
376 /* last time we did a full bitmap_sync */
377 int64_t time_last_bitmap_sync;
378 /* bytes transferred at start_time */
379 uint64_t bytes_xfer_prev;
380 /* number of dirty pages since start_time */
381 uint64_t num_dirty_pages_period;
382 /* xbzrle misses since the beginning of the period */
383 uint64_t xbzrle_cache_miss_prev;
384 /* Amount of xbzrle pages since the beginning of the period */
385 uint64_t xbzrle_pages_prev;
386 /* Amount of xbzrle encoded bytes since the beginning of the period */
387 uint64_t xbzrle_bytes_prev;
388 /* Are we really using XBZRLE (e.g., after the first round). */
389 bool xbzrle_started;
390 /* Are we on the last stage of migration */
391 bool last_stage;
393 /* total handled target pages at the beginning of period */
394 uint64_t target_page_count_prev;
395 /* total handled target pages since start */
396 uint64_t target_page_count;
397 /* number of dirty bits in the bitmap */
398 uint64_t migration_dirty_pages;
400 * Protects:
401 * - dirty/clear bitmap
402 * - migration_dirty_pages
403 * - pss structures
405 QemuMutex bitmap_mutex;
406 /* The RAMBlock used in the last src_page_requests */
407 RAMBlock *last_req_rb;
408 /* Queue of outstanding page requests from the destination */
409 QemuMutex src_page_req_mutex;
410 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
413 * This is only used when postcopy is in recovery phase, to communicate
414 * between the migration thread and the return path thread on dirty
415 * bitmap synchronizations. This field is unused in other stages of
416 * RAM migration.
418 unsigned int postcopy_bmap_sync_requested;
420 typedef struct RAMState RAMState;
422 static RAMState *ram_state;
424 static NotifierWithReturnList precopy_notifier_list;
426 /* Whether postcopy has queued requests? */
427 static bool postcopy_has_request(RAMState *rs)
429 return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests);
432 void precopy_infrastructure_init(void)
434 notifier_with_return_list_init(&precopy_notifier_list);
437 void precopy_add_notifier(NotifierWithReturn *n)
439 notifier_with_return_list_add(&precopy_notifier_list, n);
442 void precopy_remove_notifier(NotifierWithReturn *n)
444 notifier_with_return_remove(n);
447 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
449 PrecopyNotifyData pnd;
450 pnd.reason = reason;
452 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd, errp);
455 uint64_t ram_bytes_remaining(void)
457 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
461 void ram_transferred_add(uint64_t bytes)
463 if (runstate_is_running()) {
464 stat64_add(&mig_stats.precopy_bytes, bytes);
465 } else if (migration_in_postcopy()) {
466 stat64_add(&mig_stats.postcopy_bytes, bytes);
467 } else {
468 stat64_add(&mig_stats.downtime_bytes, bytes);
472 struct MigrationOps {
473 int (*ram_save_target_page)(RAMState *rs, PageSearchStatus *pss);
475 typedef struct MigrationOps MigrationOps;
477 MigrationOps *migration_ops;
479 static int ram_save_host_page_urgent(PageSearchStatus *pss);
481 /* NOTE: page is the PFN not real ram_addr_t. */
482 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page)
484 pss->block = rb;
485 pss->page = page;
486 pss->complete_round = false;
490 * Check whether two PSSs are actively sending the same page. Return true
491 * if it is, false otherwise.
493 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2)
495 return pss1->host_page_sending && pss2->host_page_sending &&
496 (pss1->host_page_start == pss2->host_page_start);
500 * save_page_header: write page header to wire
502 * If this is the 1st block, it also writes the block identification
504 * Returns the number of bytes written
506 * @pss: current PSS channel status
507 * @block: block that contains the page we want to send
508 * @offset: offset inside the block for the page
509 * in the lower bits, it contains flags
511 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f,
512 RAMBlock *block, ram_addr_t offset)
514 size_t size, len;
515 bool same_block = (block == pss->last_sent_block);
517 if (same_block) {
518 offset |= RAM_SAVE_FLAG_CONTINUE;
520 qemu_put_be64(f, offset);
521 size = 8;
523 if (!same_block) {
524 len = strlen(block->idstr);
525 qemu_put_byte(f, len);
526 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
527 size += 1 + len;
528 pss->last_sent_block = block;
530 return size;
534 * mig_throttle_guest_down: throttle down the guest
536 * Reduce amount of guest cpu execution to hopefully slow down memory
537 * writes. If guest dirty memory rate is reduced below the rate at
538 * which we can transfer pages to the destination then we should be
539 * able to complete migration. Some workloads dirty memory way too
540 * fast and will not effectively converge, even with auto-converge.
542 static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
543 uint64_t bytes_dirty_threshold)
545 uint64_t pct_initial = migrate_cpu_throttle_initial();
546 uint64_t pct_increment = migrate_cpu_throttle_increment();
547 bool pct_tailslow = migrate_cpu_throttle_tailslow();
548 int pct_max = migrate_max_cpu_throttle();
550 uint64_t throttle_now = cpu_throttle_get_percentage();
551 uint64_t cpu_now, cpu_ideal, throttle_inc;
553 /* We have not started throttling yet. Let's start it. */
554 if (!cpu_throttle_active()) {
555 cpu_throttle_set(pct_initial);
556 } else {
557 /* Throttling already on, just increase the rate */
558 if (!pct_tailslow) {
559 throttle_inc = pct_increment;
560 } else {
561 /* Compute the ideal CPU percentage used by Guest, which may
562 * make the dirty rate match the dirty rate threshold. */
563 cpu_now = 100 - throttle_now;
564 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
565 bytes_dirty_period);
566 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
568 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
572 void mig_throttle_counter_reset(void)
574 RAMState *rs = ram_state;
576 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
577 rs->num_dirty_pages_period = 0;
578 rs->bytes_xfer_prev = migration_transferred_bytes();
582 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
584 * @current_addr: address for the zero page
586 * Update the xbzrle cache to reflect a page that's been sent as all 0.
587 * The important thing is that a stale (not-yet-0'd) page be replaced
588 * by the new data.
589 * As a bonus, if the page wasn't in the cache it gets added so that
590 * when a small write is made into the 0'd page it gets XBZRLE sent.
592 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
594 /* We don't care if this fails to allocate a new cache page
595 * as long as it updated an old one */
596 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
597 stat64_get(&mig_stats.dirty_sync_count));
600 #define ENCODING_FLAG_XBZRLE 0x1
603 * save_xbzrle_page: compress and send current page
605 * Returns: 1 means that we wrote the page
606 * 0 means that page is identical to the one already sent
607 * -1 means that xbzrle would be longer than normal
609 * @rs: current RAM state
610 * @pss: current PSS channel
611 * @current_data: pointer to the address of the page contents
612 * @current_addr: addr of the page
613 * @block: block that contains the page we want to send
614 * @offset: offset inside the block for the page
616 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss,
617 uint8_t **current_data, ram_addr_t current_addr,
618 RAMBlock *block, ram_addr_t offset)
620 int encoded_len = 0, bytes_xbzrle;
621 uint8_t *prev_cached_page;
622 QEMUFile *file = pss->pss_channel;
623 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
625 if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) {
626 xbzrle_counters.cache_miss++;
627 if (!rs->last_stage) {
628 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
629 generation) == -1) {
630 return -1;
631 } else {
632 /* update *current_data when the page has been
633 inserted into cache */
634 *current_data = get_cached_data(XBZRLE.cache, current_addr);
637 return -1;
641 * Reaching here means the page has hit the xbzrle cache, no matter what
642 * encoding result it is (normal encoding, overflow or skipping the page),
643 * count the page as encoded. This is used to calculate the encoding rate.
645 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
646 * 2nd page turns out to be skipped (i.e. no new bytes written to the
647 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
648 * skipped page included. In this way, the encoding rate can tell if the
649 * guest page is good for xbzrle encoding.
651 xbzrle_counters.pages++;
652 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
654 /* save current buffer into memory */
655 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
657 /* XBZRLE encoding (if there is no overflow) */
658 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
659 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
660 TARGET_PAGE_SIZE);
663 * Update the cache contents, so that it corresponds to the data
664 * sent, in all cases except where we skip the page.
666 if (!rs->last_stage && encoded_len != 0) {
667 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
669 * In the case where we couldn't compress, ensure that the caller
670 * sends the data from the cache, since the guest might have
671 * changed the RAM since we copied it.
673 *current_data = prev_cached_page;
676 if (encoded_len == 0) {
677 trace_save_xbzrle_page_skipping();
678 return 0;
679 } else if (encoded_len == -1) {
680 trace_save_xbzrle_page_overflow();
681 xbzrle_counters.overflow++;
682 xbzrle_counters.bytes += TARGET_PAGE_SIZE;
683 return -1;
686 /* Send XBZRLE based compressed page */
687 bytes_xbzrle = save_page_header(pss, pss->pss_channel, block,
688 offset | RAM_SAVE_FLAG_XBZRLE);
689 qemu_put_byte(file, ENCODING_FLAG_XBZRLE);
690 qemu_put_be16(file, encoded_len);
691 qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len);
692 bytes_xbzrle += encoded_len + 1 + 2;
694 * Like compressed_size (please see update_compress_thread_counts),
695 * the xbzrle encoded bytes don't count the 8 byte header with
696 * RAM_SAVE_FLAG_CONTINUE.
698 xbzrle_counters.bytes += bytes_xbzrle - 8;
699 ram_transferred_add(bytes_xbzrle);
701 return 1;
705 * pss_find_next_dirty: find the next dirty page of current ramblock
707 * This function updates pss->page to point to the next dirty page index
708 * within the ramblock to migrate, or the end of ramblock when nothing
709 * found. Note that when pss->host_page_sending==true it means we're
710 * during sending a host page, so we won't look for dirty page that is
711 * outside the host page boundary.
713 * @pss: the current page search status
715 static void pss_find_next_dirty(PageSearchStatus *pss)
717 RAMBlock *rb = pss->block;
718 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
719 unsigned long *bitmap = rb->bmap;
721 if (migrate_ram_is_ignored(rb)) {
722 /* Points directly to the end, so we know no dirty page */
723 pss->page = size;
724 return;
728 * If during sending a host page, only look for dirty pages within the
729 * current host page being send.
731 if (pss->host_page_sending) {
732 assert(pss->host_page_end);
733 size = MIN(size, pss->host_page_end);
736 pss->page = find_next_bit(bitmap, size, pss->page);
739 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb,
740 unsigned long page)
742 uint8_t shift;
743 hwaddr size, start;
745 if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) {
746 return;
749 shift = rb->clear_bmap_shift;
751 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
752 * can make things easier sometimes since then start address
753 * of the small chunk will always be 64 pages aligned so the
754 * bitmap will always be aligned to unsigned long. We should
755 * even be able to remove this restriction but I'm simply
756 * keeping it.
758 assert(shift >= 6);
760 size = 1ULL << (TARGET_PAGE_BITS + shift);
761 start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size);
762 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
763 memory_region_clear_dirty_bitmap(rb->mr, start, size);
766 static void
767 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb,
768 unsigned long start,
769 unsigned long npages)
771 unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift;
772 unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages);
773 unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages);
776 * Clear pages from start to start + npages - 1, so the end boundary is
777 * exclusive.
779 for (i = chunk_start; i < chunk_end; i += chunk_pages) {
780 migration_clear_memory_region_dirty_bitmap(rb, i);
785 * colo_bitmap_find_diry:find contiguous dirty pages from start
787 * Returns the page offset within memory region of the start of the contiguout
788 * dirty page
790 * @rs: current RAM state
791 * @rb: RAMBlock where to search for dirty pages
792 * @start: page where we start the search
793 * @num: the number of contiguous dirty pages
795 static inline
796 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
797 unsigned long start, unsigned long *num)
799 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
800 unsigned long *bitmap = rb->bmap;
801 unsigned long first, next;
803 *num = 0;
805 if (migrate_ram_is_ignored(rb)) {
806 return size;
809 first = find_next_bit(bitmap, size, start);
810 if (first >= size) {
811 return first;
813 next = find_next_zero_bit(bitmap, size, first + 1);
814 assert(next >= first);
815 *num = next - first;
816 return first;
819 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
820 RAMBlock *rb,
821 unsigned long page)
823 bool ret;
826 * Clear dirty bitmap if needed. This _must_ be called before we
827 * send any of the page in the chunk because we need to make sure
828 * we can capture further page content changes when we sync dirty
829 * log the next time. So as long as we are going to send any of
830 * the page in the chunk we clear the remote dirty bitmap for all.
831 * Clearing it earlier won't be a problem, but too late will.
833 migration_clear_memory_region_dirty_bitmap(rb, page);
835 ret = test_and_clear_bit(page, rb->bmap);
836 if (ret) {
837 rs->migration_dirty_pages--;
840 return ret;
843 static void dirty_bitmap_clear_section(MemoryRegionSection *section,
844 void *opaque)
846 const hwaddr offset = section->offset_within_region;
847 const hwaddr size = int128_get64(section->size);
848 const unsigned long start = offset >> TARGET_PAGE_BITS;
849 const unsigned long npages = size >> TARGET_PAGE_BITS;
850 RAMBlock *rb = section->mr->ram_block;
851 uint64_t *cleared_bits = opaque;
854 * We don't grab ram_state->bitmap_mutex because we expect to run
855 * only when starting migration or during postcopy recovery where
856 * we don't have concurrent access.
858 if (!migration_in_postcopy() && !migrate_background_snapshot()) {
859 migration_clear_memory_region_dirty_bitmap_range(rb, start, npages);
861 *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages);
862 bitmap_clear(rb->bmap, start, npages);
866 * Exclude all dirty pages from migration that fall into a discarded range as
867 * managed by a RamDiscardManager responsible for the mapped memory region of
868 * the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
870 * Discarded pages ("logically unplugged") have undefined content and must
871 * not get migrated, because even reading these pages for migration might
872 * result in undesired behavior.
874 * Returns the number of cleared bits in the RAMBlock dirty bitmap.
876 * Note: The result is only stable while migrating (precopy/postcopy).
878 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb)
880 uint64_t cleared_bits = 0;
882 if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) {
883 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
884 MemoryRegionSection section = {
885 .mr = rb->mr,
886 .offset_within_region = 0,
887 .size = int128_make64(qemu_ram_get_used_length(rb)),
890 ram_discard_manager_replay_discarded(rdm, &section,
891 dirty_bitmap_clear_section,
892 &cleared_bits);
894 return cleared_bits;
898 * Check if a host-page aligned page falls into a discarded range as managed by
899 * a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
901 * Note: The result is only stable while migrating (precopy/postcopy).
903 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start)
905 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
906 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
907 MemoryRegionSection section = {
908 .mr = rb->mr,
909 .offset_within_region = start,
910 .size = int128_make64(qemu_ram_pagesize(rb)),
913 return !ram_discard_manager_is_populated(rdm, &section);
915 return false;
918 /* Called with RCU critical section */
919 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
921 uint64_t new_dirty_pages =
922 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
924 rs->migration_dirty_pages += new_dirty_pages;
925 rs->num_dirty_pages_period += new_dirty_pages;
929 * ram_pagesize_summary: calculate all the pagesizes of a VM
931 * Returns a summary bitmap of the page sizes of all RAMBlocks
933 * For VMs with just normal pages this is equivalent to the host page
934 * size. If it's got some huge pages then it's the OR of all the
935 * different page sizes.
937 uint64_t ram_pagesize_summary(void)
939 RAMBlock *block;
940 uint64_t summary = 0;
942 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
943 summary |= block->page_size;
946 return summary;
949 uint64_t ram_get_total_transferred_pages(void)
951 return stat64_get(&mig_stats.normal_pages) +
952 stat64_get(&mig_stats.zero_pages) +
953 compress_ram_pages() + xbzrle_counters.pages;
956 static void migration_update_rates(RAMState *rs, int64_t end_time)
958 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
960 /* calculate period counters */
961 stat64_set(&mig_stats.dirty_pages_rate,
962 rs->num_dirty_pages_period * 1000 /
963 (end_time - rs->time_last_bitmap_sync));
965 if (!page_count) {
966 return;
969 if (migrate_xbzrle()) {
970 double encoded_size, unencoded_size;
972 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
973 rs->xbzrle_cache_miss_prev) / page_count;
974 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
975 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
976 TARGET_PAGE_SIZE;
977 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
978 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
979 xbzrle_counters.encoding_rate = 0;
980 } else {
981 xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
983 rs->xbzrle_pages_prev = xbzrle_counters.pages;
984 rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
986 compress_update_rates(page_count);
990 * Enable dirty-limit to throttle down the guest
992 static void migration_dirty_limit_guest(void)
995 * dirty page rate quota for all vCPUs fetched from
996 * migration parameter 'vcpu_dirty_limit'
998 static int64_t quota_dirtyrate;
999 MigrationState *s = migrate_get_current();
1002 * If dirty limit already enabled and migration parameter
1003 * vcpu-dirty-limit untouched.
1005 if (dirtylimit_in_service() &&
1006 quota_dirtyrate == s->parameters.vcpu_dirty_limit) {
1007 return;
1010 quota_dirtyrate = s->parameters.vcpu_dirty_limit;
1013 * Set all vCPU a quota dirtyrate, note that the second
1014 * parameter will be ignored if setting all vCPU for the vm
1016 qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL);
1017 trace_migration_dirty_limit_guest(quota_dirtyrate);
1020 static void migration_trigger_throttle(RAMState *rs)
1022 uint64_t threshold = migrate_throttle_trigger_threshold();
1023 uint64_t bytes_xfer_period =
1024 migration_transferred_bytes() - rs->bytes_xfer_prev;
1025 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
1026 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
1028 /* During block migration the auto-converge logic incorrectly detects
1029 * that ram migration makes no progress. Avoid this by disabling the
1030 * throttling logic during the bulk phase of block migration. */
1031 if (blk_mig_bulk_active()) {
1032 return;
1036 * The following detection logic can be refined later. For now:
1037 * Check to see if the ratio between dirtied bytes and the approx.
1038 * amount of bytes that just got transferred since the last time
1039 * we were in this routine reaches the threshold. If that happens
1040 * twice, start or increase throttling.
1042 if ((bytes_dirty_period > bytes_dirty_threshold) &&
1043 (++rs->dirty_rate_high_cnt >= 2)) {
1044 rs->dirty_rate_high_cnt = 0;
1045 if (migrate_auto_converge()) {
1046 trace_migration_throttle();
1047 mig_throttle_guest_down(bytes_dirty_period,
1048 bytes_dirty_threshold);
1049 } else if (migrate_dirty_limit()) {
1050 migration_dirty_limit_guest();
1055 static void migration_bitmap_sync(RAMState *rs, bool last_stage)
1057 RAMBlock *block;
1058 int64_t end_time;
1060 stat64_add(&mig_stats.dirty_sync_count, 1);
1062 if (!rs->time_last_bitmap_sync) {
1063 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1066 trace_migration_bitmap_sync_start();
1067 memory_global_dirty_log_sync(last_stage);
1069 qemu_mutex_lock(&rs->bitmap_mutex);
1070 WITH_RCU_READ_LOCK_GUARD() {
1071 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1072 ramblock_sync_dirty_bitmap(rs, block);
1074 stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining());
1076 qemu_mutex_unlock(&rs->bitmap_mutex);
1078 memory_global_after_dirty_log_sync();
1079 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1081 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1083 /* more than 1 second = 1000 millisecons */
1084 if (end_time > rs->time_last_bitmap_sync + 1000) {
1085 migration_trigger_throttle(rs);
1087 migration_update_rates(rs, end_time);
1089 rs->target_page_count_prev = rs->target_page_count;
1091 /* reset period counters */
1092 rs->time_last_bitmap_sync = end_time;
1093 rs->num_dirty_pages_period = 0;
1094 rs->bytes_xfer_prev = migration_transferred_bytes();
1096 if (migrate_events()) {
1097 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
1098 qapi_event_send_migration_pass(generation);
1102 static void migration_bitmap_sync_precopy(RAMState *rs, bool last_stage)
1104 Error *local_err = NULL;
1107 * The current notifier usage is just an optimization to migration, so we
1108 * don't stop the normal migration process in the error case.
1110 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1111 error_report_err(local_err);
1112 local_err = NULL;
1115 migration_bitmap_sync(rs, last_stage);
1117 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1118 error_report_err(local_err);
1122 void ram_release_page(const char *rbname, uint64_t offset)
1124 if (!migrate_release_ram() || !migration_in_postcopy()) {
1125 return;
1128 ram_discard_range(rbname, offset, TARGET_PAGE_SIZE);
1132 * save_zero_page: send the zero page to the stream
1134 * Returns the number of pages written.
1136 * @rs: current RAM state
1137 * @pss: current PSS channel
1138 * @offset: offset inside the block for the page
1140 static int save_zero_page(RAMState *rs, PageSearchStatus *pss,
1141 ram_addr_t offset)
1143 uint8_t *p = pss->block->host + offset;
1144 QEMUFile *file = pss->pss_channel;
1145 int len = 0;
1147 if (migrate_zero_page_detection() == ZERO_PAGE_DETECTION_NONE) {
1148 return 0;
1151 if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) {
1152 return 0;
1155 stat64_add(&mig_stats.zero_pages, 1);
1157 if (migrate_mapped_ram()) {
1158 /* zero pages are not transferred with mapped-ram */
1159 clear_bit_atomic(offset >> TARGET_PAGE_BITS, pss->block->file_bmap);
1160 return 1;
1163 len += save_page_header(pss, file, pss->block, offset | RAM_SAVE_FLAG_ZERO);
1164 qemu_put_byte(file, 0);
1165 len += 1;
1166 ram_release_page(pss->block->idstr, offset);
1167 ram_transferred_add(len);
1170 * Must let xbzrle know, otherwise a previous (now 0'd) cached
1171 * page would be stale.
1173 if (rs->xbzrle_started) {
1174 XBZRLE_cache_lock();
1175 xbzrle_cache_zero_page(pss->block->offset + offset);
1176 XBZRLE_cache_unlock();
1179 return len;
1183 * @pages: the number of pages written by the control path,
1184 * < 0 - error
1185 * > 0 - number of pages written
1187 * Return true if the pages has been saved, otherwise false is returned.
1189 static bool control_save_page(PageSearchStatus *pss,
1190 ram_addr_t offset, int *pages)
1192 int ret;
1194 ret = rdma_control_save_page(pss->pss_channel, pss->block->offset, offset,
1195 TARGET_PAGE_SIZE);
1196 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1197 return false;
1200 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1201 *pages = 1;
1202 return true;
1204 *pages = ret;
1205 return true;
1209 * directly send the page to the stream
1211 * Returns the number of pages written.
1213 * @pss: current PSS channel
1214 * @block: block that contains the page we want to send
1215 * @offset: offset inside the block for the page
1216 * @buf: the page to be sent
1217 * @async: send to page asyncly
1219 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block,
1220 ram_addr_t offset, uint8_t *buf, bool async)
1222 QEMUFile *file = pss->pss_channel;
1224 if (migrate_mapped_ram()) {
1225 qemu_put_buffer_at(file, buf, TARGET_PAGE_SIZE,
1226 block->pages_offset + offset);
1227 set_bit(offset >> TARGET_PAGE_BITS, block->file_bmap);
1228 } else {
1229 ram_transferred_add(save_page_header(pss, pss->pss_channel, block,
1230 offset | RAM_SAVE_FLAG_PAGE));
1231 if (async) {
1232 qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE,
1233 migrate_release_ram() &&
1234 migration_in_postcopy());
1235 } else {
1236 qemu_put_buffer(file, buf, TARGET_PAGE_SIZE);
1239 ram_transferred_add(TARGET_PAGE_SIZE);
1240 stat64_add(&mig_stats.normal_pages, 1);
1241 return 1;
1245 * ram_save_page: send the given page to the stream
1247 * Returns the number of pages written.
1248 * < 0 - error
1249 * >=0 - Number of pages written - this might legally be 0
1250 * if xbzrle noticed the page was the same.
1252 * @rs: current RAM state
1253 * @block: block that contains the page we want to send
1254 * @offset: offset inside the block for the page
1256 static int ram_save_page(RAMState *rs, PageSearchStatus *pss)
1258 int pages = -1;
1259 uint8_t *p;
1260 bool send_async = true;
1261 RAMBlock *block = pss->block;
1262 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1263 ram_addr_t current_addr = block->offset + offset;
1265 p = block->host + offset;
1266 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1268 XBZRLE_cache_lock();
1269 if (rs->xbzrle_started && !migration_in_postcopy()) {
1270 pages = save_xbzrle_page(rs, pss, &p, current_addr,
1271 block, offset);
1272 if (!rs->last_stage) {
1273 /* Can't send this cached data async, since the cache page
1274 * might get updated before it gets to the wire
1276 send_async = false;
1280 /* XBZRLE overflow or normal page */
1281 if (pages == -1) {
1282 pages = save_normal_page(pss, block, offset, p, send_async);
1285 XBZRLE_cache_unlock();
1287 return pages;
1290 static int ram_save_multifd_page(RAMBlock *block, ram_addr_t offset)
1292 if (!multifd_queue_page(block, offset)) {
1293 return -1;
1296 return 1;
1299 int compress_send_queued_data(CompressParam *param)
1301 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_PRECOPY];
1302 MigrationState *ms = migrate_get_current();
1303 QEMUFile *file = ms->to_dst_file;
1304 int len = 0;
1306 RAMBlock *block = param->block;
1307 ram_addr_t offset = param->offset;
1309 if (param->result == RES_NONE) {
1310 return 0;
1313 assert(block == pss->last_sent_block);
1315 if (param->result == RES_ZEROPAGE) {
1316 assert(qemu_file_buffer_empty(param->file));
1317 len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO);
1318 qemu_put_byte(file, 0);
1319 len += 1;
1320 ram_release_page(block->idstr, offset);
1321 } else if (param->result == RES_COMPRESS) {
1322 assert(!qemu_file_buffer_empty(param->file));
1323 len += save_page_header(pss, file, block,
1324 offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
1325 len += qemu_put_qemu_file(file, param->file);
1326 } else {
1327 abort();
1330 update_compress_thread_counts(param, len);
1332 return len;
1335 #define PAGE_ALL_CLEAN 0
1336 #define PAGE_TRY_AGAIN 1
1337 #define PAGE_DIRTY_FOUND 2
1339 * find_dirty_block: find the next dirty page and update any state
1340 * associated with the search process.
1342 * Returns:
1343 * <0: An error happened
1344 * PAGE_ALL_CLEAN: no dirty page found, give up
1345 * PAGE_TRY_AGAIN: no dirty page found, retry for next block
1346 * PAGE_DIRTY_FOUND: dirty page found
1348 * @rs: current RAM state
1349 * @pss: data about the state of the current dirty page scan
1350 * @again: set to false if the search has scanned the whole of RAM
1352 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss)
1354 /* Update pss->page for the next dirty bit in ramblock */
1355 pss_find_next_dirty(pss);
1357 if (pss->complete_round && pss->block == rs->last_seen_block &&
1358 pss->page >= rs->last_page) {
1360 * We've been once around the RAM and haven't found anything.
1361 * Give up.
1363 return PAGE_ALL_CLEAN;
1365 if (!offset_in_ramblock(pss->block,
1366 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
1367 /* Didn't find anything in this RAM Block */
1368 pss->page = 0;
1369 pss->block = QLIST_NEXT_RCU(pss->block, next);
1370 if (!pss->block) {
1371 if (migrate_multifd() &&
1372 (!migrate_multifd_flush_after_each_section() ||
1373 migrate_mapped_ram())) {
1374 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel;
1375 int ret = multifd_send_sync_main();
1376 if (ret < 0) {
1377 return ret;
1380 if (!migrate_mapped_ram()) {
1381 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
1382 qemu_fflush(f);
1386 * If memory migration starts over, we will meet a dirtied page
1387 * which may still exists in compression threads's ring, so we
1388 * should flush the compressed data to make sure the new page
1389 * is not overwritten by the old one in the destination.
1391 * Also If xbzrle is on, stop using the data compression at this
1392 * point. In theory, xbzrle can do better than compression.
1394 compress_flush_data();
1396 /* Hit the end of the list */
1397 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1398 /* Flag that we've looped */
1399 pss->complete_round = true;
1400 /* After the first round, enable XBZRLE. */
1401 if (migrate_xbzrle()) {
1402 rs->xbzrle_started = true;
1405 /* Didn't find anything this time, but try again on the new block */
1406 return PAGE_TRY_AGAIN;
1407 } else {
1408 /* We've found something */
1409 return PAGE_DIRTY_FOUND;
1414 * unqueue_page: gets a page of the queue
1416 * Helper for 'get_queued_page' - gets a page off the queue
1418 * Returns the block of the page (or NULL if none available)
1420 * @rs: current RAM state
1421 * @offset: used to return the offset within the RAMBlock
1423 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1425 struct RAMSrcPageRequest *entry;
1426 RAMBlock *block = NULL;
1428 if (!postcopy_has_request(rs)) {
1429 return NULL;
1432 QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
1435 * This should _never_ change even after we take the lock, because no one
1436 * should be taking anything off the request list other than us.
1438 assert(postcopy_has_request(rs));
1440 entry = QSIMPLEQ_FIRST(&rs->src_page_requests);
1441 block = entry->rb;
1442 *offset = entry->offset;
1444 if (entry->len > TARGET_PAGE_SIZE) {
1445 entry->len -= TARGET_PAGE_SIZE;
1446 entry->offset += TARGET_PAGE_SIZE;
1447 } else {
1448 memory_region_unref(block->mr);
1449 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1450 g_free(entry);
1451 migration_consume_urgent_request();
1454 return block;
1457 #if defined(__linux__)
1459 * poll_fault_page: try to get next UFFD write fault page and, if pending fault
1460 * is found, return RAM block pointer and page offset
1462 * Returns pointer to the RAMBlock containing faulting page,
1463 * NULL if no write faults are pending
1465 * @rs: current RAM state
1466 * @offset: page offset from the beginning of the block
1468 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1470 struct uffd_msg uffd_msg;
1471 void *page_address;
1472 RAMBlock *block;
1473 int res;
1475 if (!migrate_background_snapshot()) {
1476 return NULL;
1479 res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
1480 if (res <= 0) {
1481 return NULL;
1484 page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
1485 block = qemu_ram_block_from_host(page_address, false, offset);
1486 assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
1487 return block;
1491 * ram_save_release_protection: release UFFD write protection after
1492 * a range of pages has been saved
1494 * @rs: current RAM state
1495 * @pss: page-search-status structure
1496 * @start_page: index of the first page in the range relative to pss->block
1498 * Returns 0 on success, negative value in case of an error
1500 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1501 unsigned long start_page)
1503 int res = 0;
1505 /* Check if page is from UFFD-managed region. */
1506 if (pss->block->flags & RAM_UF_WRITEPROTECT) {
1507 void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
1508 uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS;
1510 /* Flush async buffers before un-protect. */
1511 qemu_fflush(pss->pss_channel);
1512 /* Un-protect memory range. */
1513 res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
1514 false, false);
1517 return res;
1520 /* ram_write_tracking_available: check if kernel supports required UFFD features
1522 * Returns true if supports, false otherwise
1524 bool ram_write_tracking_available(void)
1526 uint64_t uffd_features;
1527 int res;
1529 res = uffd_query_features(&uffd_features);
1530 return (res == 0 &&
1531 (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
1534 /* ram_write_tracking_compatible: check if guest configuration is
1535 * compatible with 'write-tracking'
1537 * Returns true if compatible, false otherwise
1539 bool ram_write_tracking_compatible(void)
1541 const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
1542 int uffd_fd;
1543 RAMBlock *block;
1544 bool ret = false;
1546 /* Open UFFD file descriptor */
1547 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
1548 if (uffd_fd < 0) {
1549 return false;
1552 RCU_READ_LOCK_GUARD();
1554 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1555 uint64_t uffd_ioctls;
1557 /* Nothing to do with read-only and MMIO-writable regions */
1558 if (block->mr->readonly || block->mr->rom_device) {
1559 continue;
1561 /* Try to register block memory via UFFD-IO to track writes */
1562 if (uffd_register_memory(uffd_fd, block->host, block->max_length,
1563 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
1564 goto out;
1566 if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
1567 goto out;
1570 ret = true;
1572 out:
1573 uffd_close_fd(uffd_fd);
1574 return ret;
1577 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset,
1578 ram_addr_t size)
1580 const ram_addr_t end = offset + size;
1583 * We read one byte of each page; this will preallocate page tables if
1584 * required and populate the shared zeropage on MAP_PRIVATE anonymous memory
1585 * where no page was populated yet. This might require adaption when
1586 * supporting other mappings, like shmem.
1588 for (; offset < end; offset += block->page_size) {
1589 char tmp = *((char *)block->host + offset);
1591 /* Don't optimize the read out */
1592 asm volatile("" : "+r" (tmp));
1596 static inline int populate_read_section(MemoryRegionSection *section,
1597 void *opaque)
1599 const hwaddr size = int128_get64(section->size);
1600 hwaddr offset = section->offset_within_region;
1601 RAMBlock *block = section->mr->ram_block;
1603 populate_read_range(block, offset, size);
1604 return 0;
1608 * ram_block_populate_read: preallocate page tables and populate pages in the
1609 * RAM block by reading a byte of each page.
1611 * Since it's solely used for userfault_fd WP feature, here we just
1612 * hardcode page size to qemu_real_host_page_size.
1614 * @block: RAM block to populate
1616 static void ram_block_populate_read(RAMBlock *rb)
1619 * Skip populating all pages that fall into a discarded range as managed by
1620 * a RamDiscardManager responsible for the mapped memory region of the
1621 * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
1622 * must not get populated automatically. We don't have to track
1623 * modifications via userfaultfd WP reliably, because these pages will
1624 * not be part of the migration stream either way -- see
1625 * ramblock_dirty_bitmap_exclude_discarded_pages().
1627 * Note: The result is only stable while migrating (precopy/postcopy).
1629 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1630 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1631 MemoryRegionSection section = {
1632 .mr = rb->mr,
1633 .offset_within_region = 0,
1634 .size = rb->mr->size,
1637 ram_discard_manager_replay_populated(rdm, &section,
1638 populate_read_section, NULL);
1639 } else {
1640 populate_read_range(rb, 0, rb->used_length);
1645 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
1647 void ram_write_tracking_prepare(void)
1649 RAMBlock *block;
1651 RCU_READ_LOCK_GUARD();
1653 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1654 /* Nothing to do with read-only and MMIO-writable regions */
1655 if (block->mr->readonly || block->mr->rom_device) {
1656 continue;
1660 * Populate pages of the RAM block before enabling userfault_fd
1661 * write protection.
1663 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
1664 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
1665 * pages with pte_none() entries in page table.
1667 ram_block_populate_read(block);
1671 static inline int uffd_protect_section(MemoryRegionSection *section,
1672 void *opaque)
1674 const hwaddr size = int128_get64(section->size);
1675 const hwaddr offset = section->offset_within_region;
1676 RAMBlock *rb = section->mr->ram_block;
1677 int uffd_fd = (uintptr_t)opaque;
1679 return uffd_change_protection(uffd_fd, rb->host + offset, size, true,
1680 false);
1683 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd)
1685 assert(rb->flags & RAM_UF_WRITEPROTECT);
1687 /* See ram_block_populate_read() */
1688 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1689 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1690 MemoryRegionSection section = {
1691 .mr = rb->mr,
1692 .offset_within_region = 0,
1693 .size = rb->mr->size,
1696 return ram_discard_manager_replay_populated(rdm, &section,
1697 uffd_protect_section,
1698 (void *)(uintptr_t)uffd_fd);
1700 return uffd_change_protection(uffd_fd, rb->host,
1701 rb->used_length, true, false);
1705 * ram_write_tracking_start: start UFFD-WP memory tracking
1707 * Returns 0 for success or negative value in case of error
1709 int ram_write_tracking_start(void)
1711 int uffd_fd;
1712 RAMState *rs = ram_state;
1713 RAMBlock *block;
1715 /* Open UFFD file descriptor */
1716 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
1717 if (uffd_fd < 0) {
1718 return uffd_fd;
1720 rs->uffdio_fd = uffd_fd;
1722 RCU_READ_LOCK_GUARD();
1724 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1725 /* Nothing to do with read-only and MMIO-writable regions */
1726 if (block->mr->readonly || block->mr->rom_device) {
1727 continue;
1730 /* Register block memory with UFFD to track writes */
1731 if (uffd_register_memory(rs->uffdio_fd, block->host,
1732 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
1733 goto fail;
1735 block->flags |= RAM_UF_WRITEPROTECT;
1736 memory_region_ref(block->mr);
1738 /* Apply UFFD write protection to the block memory range */
1739 if (ram_block_uffd_protect(block, uffd_fd)) {
1740 goto fail;
1743 trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
1744 block->host, block->max_length);
1747 return 0;
1749 fail:
1750 error_report("ram_write_tracking_start() failed: restoring initial memory state");
1752 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1753 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1754 continue;
1756 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1757 /* Cleanup flags and remove reference */
1758 block->flags &= ~RAM_UF_WRITEPROTECT;
1759 memory_region_unref(block->mr);
1762 uffd_close_fd(uffd_fd);
1763 rs->uffdio_fd = -1;
1764 return -1;
1768 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
1770 void ram_write_tracking_stop(void)
1772 RAMState *rs = ram_state;
1773 RAMBlock *block;
1775 RCU_READ_LOCK_GUARD();
1777 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1778 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1779 continue;
1781 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1783 trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
1784 block->host, block->max_length);
1786 /* Cleanup flags and remove reference */
1787 block->flags &= ~RAM_UF_WRITEPROTECT;
1788 memory_region_unref(block->mr);
1791 /* Finally close UFFD file descriptor */
1792 uffd_close_fd(rs->uffdio_fd);
1793 rs->uffdio_fd = -1;
1796 #else
1797 /* No target OS support, stubs just fail or ignore */
1799 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1801 (void) rs;
1802 (void) offset;
1804 return NULL;
1807 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1808 unsigned long start_page)
1810 (void) rs;
1811 (void) pss;
1812 (void) start_page;
1814 return 0;
1817 bool ram_write_tracking_available(void)
1819 return false;
1822 bool ram_write_tracking_compatible(void)
1824 assert(0);
1825 return false;
1828 int ram_write_tracking_start(void)
1830 assert(0);
1831 return -1;
1834 void ram_write_tracking_stop(void)
1836 assert(0);
1838 #endif /* defined(__linux__) */
1841 * get_queued_page: unqueue a page from the postcopy requests
1843 * Skips pages that are already sent (!dirty)
1845 * Returns true if a queued page is found
1847 * @rs: current RAM state
1848 * @pss: data about the state of the current dirty page scan
1850 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
1852 RAMBlock *block;
1853 ram_addr_t offset;
1854 bool dirty;
1856 do {
1857 block = unqueue_page(rs, &offset);
1859 * We're sending this page, and since it's postcopy nothing else
1860 * will dirty it, and we must make sure it doesn't get sent again
1861 * even if this queue request was received after the background
1862 * search already sent it.
1864 if (block) {
1865 unsigned long page;
1867 page = offset >> TARGET_PAGE_BITS;
1868 dirty = test_bit(page, block->bmap);
1869 if (!dirty) {
1870 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
1871 page);
1872 } else {
1873 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
1877 } while (block && !dirty);
1879 if (!block) {
1881 * Poll write faults too if background snapshot is enabled; that's
1882 * when we have vcpus got blocked by the write protected pages.
1884 block = poll_fault_page(rs, &offset);
1887 if (block) {
1889 * We want the background search to continue from the queued page
1890 * since the guest is likely to want other pages near to the page
1891 * it just requested.
1893 pss->block = block;
1894 pss->page = offset >> TARGET_PAGE_BITS;
1897 * This unqueued page would break the "one round" check, even is
1898 * really rare.
1900 pss->complete_round = false;
1903 return !!block;
1907 * migration_page_queue_free: drop any remaining pages in the ram
1908 * request queue
1910 * It should be empty at the end anyway, but in error cases there may
1911 * be some left. in case that there is any page left, we drop it.
1914 static void migration_page_queue_free(RAMState *rs)
1916 struct RAMSrcPageRequest *mspr, *next_mspr;
1917 /* This queue generally should be empty - but in the case of a failed
1918 * migration might have some droppings in.
1920 RCU_READ_LOCK_GUARD();
1921 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
1922 memory_region_unref(mspr->rb->mr);
1923 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1924 g_free(mspr);
1929 * ram_save_queue_pages: queue the page for transmission
1931 * A request from postcopy destination for example.
1933 * Returns zero on success or negative on error
1935 * @rbname: Name of the RAMBLock of the request. NULL means the
1936 * same that last one.
1937 * @start: starting address from the start of the RAMBlock
1938 * @len: length (in bytes) to send
1940 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len,
1941 Error **errp)
1943 RAMBlock *ramblock;
1944 RAMState *rs = ram_state;
1946 stat64_add(&mig_stats.postcopy_requests, 1);
1947 RCU_READ_LOCK_GUARD();
1949 if (!rbname) {
1950 /* Reuse last RAMBlock */
1951 ramblock = rs->last_req_rb;
1953 if (!ramblock) {
1955 * Shouldn't happen, we can't reuse the last RAMBlock if
1956 * it's the 1st request.
1958 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no previous block");
1959 return -1;
1961 } else {
1962 ramblock = qemu_ram_block_by_name(rbname);
1964 if (!ramblock) {
1965 /* We shouldn't be asked for a non-existent RAMBlock */
1966 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no block '%s'", rbname);
1967 return -1;
1969 rs->last_req_rb = ramblock;
1971 trace_ram_save_queue_pages(ramblock->idstr, start, len);
1972 if (!offset_in_ramblock(ramblock, start + len - 1)) {
1973 error_setg(errp, "MIG_RP_MSG_REQ_PAGES request overrun, "
1974 "start=" RAM_ADDR_FMT " len="
1975 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1976 start, len, ramblock->used_length);
1977 return -1;
1981 * When with postcopy preempt, we send back the page directly in the
1982 * rp-return thread.
1984 if (postcopy_preempt_active()) {
1985 ram_addr_t page_start = start >> TARGET_PAGE_BITS;
1986 size_t page_size = qemu_ram_pagesize(ramblock);
1987 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY];
1988 int ret = 0;
1990 qemu_mutex_lock(&rs->bitmap_mutex);
1992 pss_init(pss, ramblock, page_start);
1994 * Always use the preempt channel, and make sure it's there. It's
1995 * safe to access without lock, because when rp-thread is running
1996 * we should be the only one who operates on the qemufile
1998 pss->pss_channel = migrate_get_current()->postcopy_qemufile_src;
1999 assert(pss->pss_channel);
2002 * It must be either one or multiple of host page size. Just
2003 * assert; if something wrong we're mostly split brain anyway.
2005 assert(len % page_size == 0);
2006 while (len) {
2007 if (ram_save_host_page_urgent(pss)) {
2008 error_setg(errp, "ram_save_host_page_urgent() failed: "
2009 "ramblock=%s, start_addr=0x"RAM_ADDR_FMT,
2010 ramblock->idstr, start);
2011 ret = -1;
2012 break;
2015 * NOTE: after ram_save_host_page_urgent() succeeded, pss->page
2016 * will automatically be moved and point to the next host page
2017 * we're going to send, so no need to update here.
2019 * Normally QEMU never sends >1 host page in requests, so
2020 * logically we don't even need that as the loop should only
2021 * run once, but just to be consistent.
2023 len -= page_size;
2025 qemu_mutex_unlock(&rs->bitmap_mutex);
2027 return ret;
2030 struct RAMSrcPageRequest *new_entry =
2031 g_new0(struct RAMSrcPageRequest, 1);
2032 new_entry->rb = ramblock;
2033 new_entry->offset = start;
2034 new_entry->len = len;
2036 memory_region_ref(ramblock->mr);
2037 qemu_mutex_lock(&rs->src_page_req_mutex);
2038 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2039 migration_make_urgent_request();
2040 qemu_mutex_unlock(&rs->src_page_req_mutex);
2042 return 0;
2046 * try to compress the page before posting it out, return true if the page
2047 * has been properly handled by compression, otherwise needs other
2048 * paths to handle it
2050 static bool save_compress_page(RAMState *rs, PageSearchStatus *pss,
2051 ram_addr_t offset)
2053 if (!migrate_compress()) {
2054 return false;
2058 * When starting the process of a new block, the first page of
2059 * the block should be sent out before other pages in the same
2060 * block, and all the pages in last block should have been sent
2061 * out, keeping this order is important, because the 'cont' flag
2062 * is used to avoid resending the block name.
2064 * We post the fist page as normal page as compression will take
2065 * much CPU resource.
2067 if (pss->block != pss->last_sent_block) {
2068 compress_flush_data();
2069 return false;
2072 return compress_page_with_multi_thread(pss->block, offset,
2073 compress_send_queued_data);
2077 * ram_save_target_page_legacy: save one target page
2079 * Returns the number of pages written
2081 * @rs: current RAM state
2082 * @pss: data about the page we want to send
2084 static int ram_save_target_page_legacy(RAMState *rs, PageSearchStatus *pss)
2086 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2087 int res;
2089 if (control_save_page(pss, offset, &res)) {
2090 return res;
2093 if (save_compress_page(rs, pss, offset)) {
2094 return 1;
2097 if (save_zero_page(rs, pss, offset)) {
2098 return 1;
2101 return ram_save_page(rs, pss);
2105 * ram_save_target_page_multifd: send one target page to multifd workers
2107 * Returns 1 if the page was queued, -1 otherwise.
2109 * @rs: current RAM state
2110 * @pss: data about the page we want to send
2112 static int ram_save_target_page_multifd(RAMState *rs, PageSearchStatus *pss)
2114 RAMBlock *block = pss->block;
2115 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2118 * While using multifd live migration, we still need to handle zero
2119 * page checking on the migration main thread.
2121 if (migrate_zero_page_detection() == ZERO_PAGE_DETECTION_LEGACY) {
2122 if (save_zero_page(rs, pss, offset)) {
2123 return 1;
2127 return ram_save_multifd_page(block, offset);
2130 /* Should be called before sending a host page */
2131 static void pss_host_page_prepare(PageSearchStatus *pss)
2133 /* How many guest pages are there in one host page? */
2134 size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2136 pss->host_page_sending = true;
2137 if (guest_pfns <= 1) {
2139 * This covers both when guest psize == host psize, or when guest
2140 * has larger psize than the host (guest_pfns==0).
2142 * For the latter, we always send one whole guest page per
2143 * iteration of the host page (example: an Alpha VM on x86 host
2144 * will have guest psize 8K while host psize 4K).
2146 pss->host_page_start = pss->page;
2147 pss->host_page_end = pss->page + 1;
2148 } else {
2150 * The host page spans over multiple guest pages, we send them
2151 * within the same host page iteration.
2153 pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns);
2154 pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns);
2159 * Whether the page pointed by PSS is within the host page being sent.
2160 * Must be called after a previous pss_host_page_prepare().
2162 static bool pss_within_range(PageSearchStatus *pss)
2164 ram_addr_t ram_addr;
2166 assert(pss->host_page_sending);
2168 /* Over host-page boundary? */
2169 if (pss->page >= pss->host_page_end) {
2170 return false;
2173 ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2175 return offset_in_ramblock(pss->block, ram_addr);
2178 static void pss_host_page_finish(PageSearchStatus *pss)
2180 pss->host_page_sending = false;
2181 /* This is not needed, but just to reset it */
2182 pss->host_page_start = pss->host_page_end = 0;
2186 * Send an urgent host page specified by `pss'. Need to be called with
2187 * bitmap_mutex held.
2189 * Returns 0 if save host page succeeded, false otherwise.
2191 static int ram_save_host_page_urgent(PageSearchStatus *pss)
2193 bool page_dirty, sent = false;
2194 RAMState *rs = ram_state;
2195 int ret = 0;
2197 trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page);
2198 pss_host_page_prepare(pss);
2201 * If precopy is sending the same page, let it be done in precopy, or
2202 * we could send the same page in two channels and none of them will
2203 * receive the whole page.
2205 if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) {
2206 trace_postcopy_preempt_hit(pss->block->idstr,
2207 pss->page << TARGET_PAGE_BITS);
2208 return 0;
2211 do {
2212 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2214 if (page_dirty) {
2215 /* Be strict to return code; it must be 1, or what else? */
2216 if (migration_ops->ram_save_target_page(rs, pss) != 1) {
2217 error_report_once("%s: ram_save_target_page failed", __func__);
2218 ret = -1;
2219 goto out;
2221 sent = true;
2223 pss_find_next_dirty(pss);
2224 } while (pss_within_range(pss));
2225 out:
2226 pss_host_page_finish(pss);
2227 /* For urgent requests, flush immediately if sent */
2228 if (sent) {
2229 qemu_fflush(pss->pss_channel);
2231 return ret;
2235 * ram_save_host_page: save a whole host page
2237 * Starting at *offset send pages up to the end of the current host
2238 * page. It's valid for the initial offset to point into the middle of
2239 * a host page in which case the remainder of the hostpage is sent.
2240 * Only dirty target pages are sent. Note that the host page size may
2241 * be a huge page for this block.
2243 * The saving stops at the boundary of the used_length of the block
2244 * if the RAMBlock isn't a multiple of the host page size.
2246 * The caller must be with ram_state.bitmap_mutex held to call this
2247 * function. Note that this function can temporarily release the lock, but
2248 * when the function is returned it'll make sure the lock is still held.
2250 * Returns the number of pages written or negative on error
2252 * @rs: current RAM state
2253 * @pss: data about the page we want to send
2255 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss)
2257 bool page_dirty, preempt_active = postcopy_preempt_active();
2258 int tmppages, pages = 0;
2259 size_t pagesize_bits =
2260 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2261 unsigned long start_page = pss->page;
2262 int res;
2264 if (migrate_ram_is_ignored(pss->block)) {
2265 error_report("block %s should not be migrated !", pss->block->idstr);
2266 return 0;
2269 /* Update host page boundary information */
2270 pss_host_page_prepare(pss);
2272 do {
2273 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2275 /* Check the pages is dirty and if it is send it */
2276 if (page_dirty) {
2278 * Properly yield the lock only in postcopy preempt mode
2279 * because both migration thread and rp-return thread can
2280 * operate on the bitmaps.
2282 if (preempt_active) {
2283 qemu_mutex_unlock(&rs->bitmap_mutex);
2285 tmppages = migration_ops->ram_save_target_page(rs, pss);
2286 if (tmppages >= 0) {
2287 pages += tmppages;
2289 * Allow rate limiting to happen in the middle of huge pages if
2290 * something is sent in the current iteration.
2292 if (pagesize_bits > 1 && tmppages > 0) {
2293 migration_rate_limit();
2296 if (preempt_active) {
2297 qemu_mutex_lock(&rs->bitmap_mutex);
2299 } else {
2300 tmppages = 0;
2303 if (tmppages < 0) {
2304 pss_host_page_finish(pss);
2305 return tmppages;
2308 pss_find_next_dirty(pss);
2309 } while (pss_within_range(pss));
2311 pss_host_page_finish(pss);
2313 res = ram_save_release_protection(rs, pss, start_page);
2314 return (res < 0 ? res : pages);
2318 * ram_find_and_save_block: finds a dirty page and sends it to f
2320 * Called within an RCU critical section.
2322 * Returns the number of pages written where zero means no dirty pages,
2323 * or negative on error
2325 * @rs: current RAM state
2327 * On systems where host-page-size > target-page-size it will send all the
2328 * pages in a host page that are dirty.
2330 static int ram_find_and_save_block(RAMState *rs)
2332 PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY];
2333 int pages = 0;
2335 /* No dirty page as there is zero RAM */
2336 if (!rs->ram_bytes_total) {
2337 return pages;
2341 * Always keep last_seen_block/last_page valid during this procedure,
2342 * because find_dirty_block() relies on these values (e.g., we compare
2343 * last_seen_block with pss.block to see whether we searched all the
2344 * ramblocks) to detect the completion of migration. Having NULL value
2345 * of last_seen_block can conditionally cause below loop to run forever.
2347 if (!rs->last_seen_block) {
2348 rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks);
2349 rs->last_page = 0;
2352 pss_init(pss, rs->last_seen_block, rs->last_page);
2354 while (true){
2355 if (!get_queued_page(rs, pss)) {
2356 /* priority queue empty, so just search for something dirty */
2357 int res = find_dirty_block(rs, pss);
2358 if (res != PAGE_DIRTY_FOUND) {
2359 if (res == PAGE_ALL_CLEAN) {
2360 break;
2361 } else if (res == PAGE_TRY_AGAIN) {
2362 continue;
2363 } else if (res < 0) {
2364 pages = res;
2365 break;
2369 pages = ram_save_host_page(rs, pss);
2370 if (pages) {
2371 break;
2375 rs->last_seen_block = pss->block;
2376 rs->last_page = pss->page;
2378 return pages;
2381 static uint64_t ram_bytes_total_with_ignored(void)
2383 RAMBlock *block;
2384 uint64_t total = 0;
2386 RCU_READ_LOCK_GUARD();
2388 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2389 total += block->used_length;
2391 return total;
2394 uint64_t ram_bytes_total(void)
2396 RAMBlock *block;
2397 uint64_t total = 0;
2399 RCU_READ_LOCK_GUARD();
2401 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2402 total += block->used_length;
2404 return total;
2407 static void xbzrle_load_setup(void)
2409 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2412 static void xbzrle_load_cleanup(void)
2414 g_free(XBZRLE.decoded_buf);
2415 XBZRLE.decoded_buf = NULL;
2418 static void ram_state_cleanup(RAMState **rsp)
2420 if (*rsp) {
2421 migration_page_queue_free(*rsp);
2422 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2423 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2424 g_free(*rsp);
2425 *rsp = NULL;
2429 static void xbzrle_cleanup(void)
2431 XBZRLE_cache_lock();
2432 if (XBZRLE.cache) {
2433 cache_fini(XBZRLE.cache);
2434 g_free(XBZRLE.encoded_buf);
2435 g_free(XBZRLE.current_buf);
2436 g_free(XBZRLE.zero_target_page);
2437 XBZRLE.cache = NULL;
2438 XBZRLE.encoded_buf = NULL;
2439 XBZRLE.current_buf = NULL;
2440 XBZRLE.zero_target_page = NULL;
2442 XBZRLE_cache_unlock();
2445 static void ram_bitmaps_destroy(void)
2447 RAMBlock *block;
2449 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2450 g_free(block->clear_bmap);
2451 block->clear_bmap = NULL;
2452 g_free(block->bmap);
2453 block->bmap = NULL;
2454 g_free(block->file_bmap);
2455 block->file_bmap = NULL;
2459 static void ram_save_cleanup(void *opaque)
2461 RAMState **rsp = opaque;
2463 /* We don't use dirty log with background snapshots */
2464 if (!migrate_background_snapshot()) {
2465 /* caller have hold BQL or is in a bh, so there is
2466 * no writing race against the migration bitmap
2468 if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) {
2470 * do not stop dirty log without starting it, since
2471 * memory_global_dirty_log_stop will assert that
2472 * memory_global_dirty_log_start/stop used in pairs
2474 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
2478 ram_bitmaps_destroy();
2480 xbzrle_cleanup();
2481 compress_threads_save_cleanup();
2482 ram_state_cleanup(rsp);
2483 g_free(migration_ops);
2484 migration_ops = NULL;
2487 static void ram_state_reset(RAMState *rs)
2489 int i;
2491 for (i = 0; i < RAM_CHANNEL_MAX; i++) {
2492 rs->pss[i].last_sent_block = NULL;
2495 rs->last_seen_block = NULL;
2496 rs->last_page = 0;
2497 rs->last_version = ram_list.version;
2498 rs->xbzrle_started = false;
2501 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2503 /* **** functions for postcopy ***** */
2505 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2507 struct RAMBlock *block;
2509 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2510 unsigned long *bitmap = block->bmap;
2511 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2512 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2514 while (run_start < range) {
2515 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2516 ram_discard_range(block->idstr,
2517 ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
2518 ((ram_addr_t)(run_end - run_start))
2519 << TARGET_PAGE_BITS);
2520 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2526 * postcopy_send_discard_bm_ram: discard a RAMBlock
2528 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2530 * @ms: current migration state
2531 * @block: RAMBlock to discard
2533 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2535 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2536 unsigned long current;
2537 unsigned long *bitmap = block->bmap;
2539 for (current = 0; current < end; ) {
2540 unsigned long one = find_next_bit(bitmap, end, current);
2541 unsigned long zero, discard_length;
2543 if (one >= end) {
2544 break;
2547 zero = find_next_zero_bit(bitmap, end, one + 1);
2549 if (zero >= end) {
2550 discard_length = end - one;
2551 } else {
2552 discard_length = zero - one;
2554 postcopy_discard_send_range(ms, one, discard_length);
2555 current = one + discard_length;
2559 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block);
2562 * postcopy_each_ram_send_discard: discard all RAMBlocks
2564 * Utility for the outgoing postcopy code.
2565 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2566 * passing it bitmap indexes and name.
2567 * (qemu_ram_foreach_block ends up passing unscaled lengths
2568 * which would mean postcopy code would have to deal with target page)
2570 * @ms: current migration state
2572 static void postcopy_each_ram_send_discard(MigrationState *ms)
2574 struct RAMBlock *block;
2576 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2577 postcopy_discard_send_init(ms, block->idstr);
2580 * Deal with TPS != HPS and huge pages. It discard any partially sent
2581 * host-page size chunks, mark any partially dirty host-page size
2582 * chunks as all dirty. In this case the host-page is the host-page
2583 * for the particular RAMBlock, i.e. it might be a huge page.
2585 postcopy_chunk_hostpages_pass(ms, block);
2588 * Postcopy sends chunks of bitmap over the wire, but it
2589 * just needs indexes at this point, avoids it having
2590 * target page specific code.
2592 postcopy_send_discard_bm_ram(ms, block);
2593 postcopy_discard_send_finish(ms);
2598 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2600 * Helper for postcopy_chunk_hostpages; it's called twice to
2601 * canonicalize the two bitmaps, that are similar, but one is
2602 * inverted.
2604 * Postcopy requires that all target pages in a hostpage are dirty or
2605 * clean, not a mix. This function canonicalizes the bitmaps.
2607 * @ms: current migration state
2608 * @block: block that contains the page we want to canonicalize
2610 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2612 RAMState *rs = ram_state;
2613 unsigned long *bitmap = block->bmap;
2614 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2615 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2616 unsigned long run_start;
2618 if (block->page_size == TARGET_PAGE_SIZE) {
2619 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2620 return;
2623 /* Find a dirty page */
2624 run_start = find_next_bit(bitmap, pages, 0);
2626 while (run_start < pages) {
2629 * If the start of this run of pages is in the middle of a host
2630 * page, then we need to fixup this host page.
2632 if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2633 /* Find the end of this run */
2634 run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2636 * If the end isn't at the start of a host page, then the
2637 * run doesn't finish at the end of a host page
2638 * and we need to discard.
2642 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2643 unsigned long page;
2644 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2645 host_ratio);
2646 run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2648 /* Clean up the bitmap */
2649 for (page = fixup_start_addr;
2650 page < fixup_start_addr + host_ratio; page++) {
2652 * Remark them as dirty, updating the count for any pages
2653 * that weren't previously dirty.
2655 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2659 /* Find the next dirty page for the next iteration */
2660 run_start = find_next_bit(bitmap, pages, run_start);
2665 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2667 * Transmit the set of pages to be discarded after precopy to the target
2668 * these are pages that:
2669 * a) Have been previously transmitted but are now dirty again
2670 * b) Pages that have never been transmitted, this ensures that
2671 * any pages on the destination that have been mapped by background
2672 * tasks get discarded (transparent huge pages is the specific concern)
2673 * Hopefully this is pretty sparse
2675 * @ms: current migration state
2677 void ram_postcopy_send_discard_bitmap(MigrationState *ms)
2679 RAMState *rs = ram_state;
2681 RCU_READ_LOCK_GUARD();
2683 /* This should be our last sync, the src is now paused */
2684 migration_bitmap_sync(rs, false);
2686 /* Easiest way to make sure we don't resume in the middle of a host-page */
2687 rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL;
2688 rs->last_seen_block = NULL;
2689 rs->last_page = 0;
2691 postcopy_each_ram_send_discard(ms);
2693 trace_ram_postcopy_send_discard_bitmap();
2697 * ram_discard_range: discard dirtied pages at the beginning of postcopy
2699 * Returns zero on success
2701 * @rbname: name of the RAMBlock of the request. NULL means the
2702 * same that last one.
2703 * @start: RAMBlock starting page
2704 * @length: RAMBlock size
2706 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2708 trace_ram_discard_range(rbname, start, length);
2710 RCU_READ_LOCK_GUARD();
2711 RAMBlock *rb = qemu_ram_block_by_name(rbname);
2713 if (!rb) {
2714 error_report("ram_discard_range: Failed to find block '%s'", rbname);
2715 return -1;
2719 * On source VM, we don't need to update the received bitmap since
2720 * we don't even have one.
2722 if (rb->receivedmap) {
2723 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2724 length >> qemu_target_page_bits());
2727 return ram_block_discard_range(rb, start, length);
2731 * For every allocation, we will try not to crash the VM if the
2732 * allocation failed.
2734 static bool xbzrle_init(Error **errp)
2736 if (!migrate_xbzrle()) {
2737 return true;
2740 XBZRLE_cache_lock();
2742 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2743 if (!XBZRLE.zero_target_page) {
2744 error_setg(errp, "%s: Error allocating zero page", __func__);
2745 goto err_out;
2748 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2749 TARGET_PAGE_SIZE, errp);
2750 if (!XBZRLE.cache) {
2751 goto free_zero_page;
2754 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2755 if (!XBZRLE.encoded_buf) {
2756 error_setg(errp, "%s: Error allocating encoded_buf", __func__);
2757 goto free_cache;
2760 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2761 if (!XBZRLE.current_buf) {
2762 error_setg(errp, "%s: Error allocating current_buf", __func__);
2763 goto free_encoded_buf;
2766 /* We are all good */
2767 XBZRLE_cache_unlock();
2768 return true;
2770 free_encoded_buf:
2771 g_free(XBZRLE.encoded_buf);
2772 XBZRLE.encoded_buf = NULL;
2773 free_cache:
2774 cache_fini(XBZRLE.cache);
2775 XBZRLE.cache = NULL;
2776 free_zero_page:
2777 g_free(XBZRLE.zero_target_page);
2778 XBZRLE.zero_target_page = NULL;
2779 err_out:
2780 XBZRLE_cache_unlock();
2781 return false;
2784 static bool ram_state_init(RAMState **rsp, Error **errp)
2786 *rsp = g_try_new0(RAMState, 1);
2788 if (!*rsp) {
2789 error_setg(errp, "%s: Init ramstate fail", __func__);
2790 return false;
2793 qemu_mutex_init(&(*rsp)->bitmap_mutex);
2794 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2795 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2796 (*rsp)->ram_bytes_total = ram_bytes_total();
2799 * Count the total number of pages used by ram blocks not including any
2800 * gaps due to alignment or unplugs.
2801 * This must match with the initial values of dirty bitmap.
2803 (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS;
2804 ram_state_reset(*rsp);
2806 return true;
2809 static void ram_list_init_bitmaps(void)
2811 MigrationState *ms = migrate_get_current();
2812 RAMBlock *block;
2813 unsigned long pages;
2814 uint8_t shift;
2816 /* Skip setting bitmap if there is no RAM */
2817 if (ram_bytes_total()) {
2818 shift = ms->clear_bitmap_shift;
2819 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
2820 error_report("clear_bitmap_shift (%u) too big, using "
2821 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
2822 shift = CLEAR_BITMAP_SHIFT_MAX;
2823 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
2824 error_report("clear_bitmap_shift (%u) too small, using "
2825 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
2826 shift = CLEAR_BITMAP_SHIFT_MIN;
2829 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2830 pages = block->max_length >> TARGET_PAGE_BITS;
2832 * The initial dirty bitmap for migration must be set with all
2833 * ones to make sure we'll migrate every guest RAM page to
2834 * destination.
2835 * Here we set RAMBlock.bmap all to 1 because when rebegin a
2836 * new migration after a failed migration, ram_list.
2837 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
2838 * guest memory.
2840 block->bmap = bitmap_new(pages);
2841 bitmap_set(block->bmap, 0, pages);
2842 if (migrate_mapped_ram()) {
2843 block->file_bmap = bitmap_new(pages);
2845 block->clear_bmap_shift = shift;
2846 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
2851 static void migration_bitmap_clear_discarded_pages(RAMState *rs)
2853 unsigned long pages;
2854 RAMBlock *rb;
2856 RCU_READ_LOCK_GUARD();
2858 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
2859 pages = ramblock_dirty_bitmap_clear_discarded_pages(rb);
2860 rs->migration_dirty_pages -= pages;
2864 static bool ram_init_bitmaps(RAMState *rs, Error **errp)
2866 bool ret = true;
2868 qemu_mutex_lock_ramlist();
2870 WITH_RCU_READ_LOCK_GUARD() {
2871 ram_list_init_bitmaps();
2872 /* We don't use dirty log with background snapshots */
2873 if (!migrate_background_snapshot()) {
2874 ret = memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION, errp);
2875 if (!ret) {
2876 goto out_unlock;
2878 migration_bitmap_sync_precopy(rs, false);
2881 out_unlock:
2882 qemu_mutex_unlock_ramlist();
2884 if (!ret) {
2885 ram_bitmaps_destroy();
2886 return false;
2890 * After an eventual first bitmap sync, fixup the initial bitmap
2891 * containing all 1s to exclude any discarded pages from migration.
2893 migration_bitmap_clear_discarded_pages(rs);
2894 return true;
2897 static int ram_init_all(RAMState **rsp, Error **errp)
2899 if (!ram_state_init(rsp, errp)) {
2900 return -1;
2903 if (!xbzrle_init(errp)) {
2904 ram_state_cleanup(rsp);
2905 return -1;
2908 if (!ram_init_bitmaps(*rsp, errp)) {
2909 return -1;
2912 return 0;
2915 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2917 RAMBlock *block;
2918 uint64_t pages = 0;
2921 * Postcopy is not using xbzrle/compression, so no need for that.
2922 * Also, since source are already halted, we don't need to care
2923 * about dirty page logging as well.
2926 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2927 pages += bitmap_count_one(block->bmap,
2928 block->used_length >> TARGET_PAGE_BITS);
2931 /* This may not be aligned with current bitmaps. Recalculate. */
2932 rs->migration_dirty_pages = pages;
2934 ram_state_reset(rs);
2936 /* Update RAMState cache of output QEMUFile */
2937 rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out;
2939 trace_ram_state_resume_prepare(pages);
2943 * This function clears bits of the free pages reported by the caller from the
2944 * migration dirty bitmap. @addr is the host address corresponding to the
2945 * start of the continuous guest free pages, and @len is the total bytes of
2946 * those pages.
2948 void qemu_guest_free_page_hint(void *addr, size_t len)
2950 RAMBlock *block;
2951 ram_addr_t offset;
2952 size_t used_len, start, npages;
2954 /* This function is currently expected to be used during live migration */
2955 if (!migration_is_setup_or_active()) {
2956 return;
2959 for (; len > 0; len -= used_len, addr += used_len) {
2960 block = qemu_ram_block_from_host(addr, false, &offset);
2961 if (unlikely(!block || offset >= block->used_length)) {
2963 * The implementation might not support RAMBlock resize during
2964 * live migration, but it could happen in theory with future
2965 * updates. So we add a check here to capture that case.
2967 error_report_once("%s unexpected error", __func__);
2968 return;
2971 if (len <= block->used_length - offset) {
2972 used_len = len;
2973 } else {
2974 used_len = block->used_length - offset;
2977 start = offset >> TARGET_PAGE_BITS;
2978 npages = used_len >> TARGET_PAGE_BITS;
2980 qemu_mutex_lock(&ram_state->bitmap_mutex);
2982 * The skipped free pages are equavalent to be sent from clear_bmap's
2983 * perspective, so clear the bits from the memory region bitmap which
2984 * are initially set. Otherwise those skipped pages will be sent in
2985 * the next round after syncing from the memory region bitmap.
2987 migration_clear_memory_region_dirty_bitmap_range(block, start, npages);
2988 ram_state->migration_dirty_pages -=
2989 bitmap_count_one_with_offset(block->bmap, start, npages);
2990 bitmap_clear(block->bmap, start, npages);
2991 qemu_mutex_unlock(&ram_state->bitmap_mutex);
2995 #define MAPPED_RAM_HDR_VERSION 1
2996 struct MappedRamHeader {
2997 uint32_t version;
2999 * The target's page size, so we know how many pages are in the
3000 * bitmap.
3002 uint64_t page_size;
3004 * The offset in the migration file where the pages bitmap is
3005 * stored.
3007 uint64_t bitmap_offset;
3009 * The offset in the migration file where the actual pages (data)
3010 * are stored.
3012 uint64_t pages_offset;
3013 } QEMU_PACKED;
3014 typedef struct MappedRamHeader MappedRamHeader;
3016 static void mapped_ram_setup_ramblock(QEMUFile *file, RAMBlock *block)
3018 g_autofree MappedRamHeader *header = NULL;
3019 size_t header_size, bitmap_size;
3020 long num_pages;
3022 header = g_new0(MappedRamHeader, 1);
3023 header_size = sizeof(MappedRamHeader);
3025 num_pages = block->used_length >> TARGET_PAGE_BITS;
3026 bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
3029 * Save the file offsets of where the bitmap and the pages should
3030 * go as they are written at the end of migration and during the
3031 * iterative phase, respectively.
3033 block->bitmap_offset = qemu_get_offset(file) + header_size;
3034 block->pages_offset = ROUND_UP(block->bitmap_offset +
3035 bitmap_size,
3036 MAPPED_RAM_FILE_OFFSET_ALIGNMENT);
3038 header->version = cpu_to_be32(MAPPED_RAM_HDR_VERSION);
3039 header->page_size = cpu_to_be64(TARGET_PAGE_SIZE);
3040 header->bitmap_offset = cpu_to_be64(block->bitmap_offset);
3041 header->pages_offset = cpu_to_be64(block->pages_offset);
3043 qemu_put_buffer(file, (uint8_t *) header, header_size);
3045 /* prepare offset for next ramblock */
3046 qemu_set_offset(file, block->pages_offset + block->used_length, SEEK_SET);
3049 static bool mapped_ram_read_header(QEMUFile *file, MappedRamHeader *header,
3050 Error **errp)
3052 size_t ret, header_size = sizeof(MappedRamHeader);
3054 ret = qemu_get_buffer(file, (uint8_t *)header, header_size);
3055 if (ret != header_size) {
3056 error_setg(errp, "Could not read whole mapped-ram migration header "
3057 "(expected %zd, got %zd bytes)", header_size, ret);
3058 return false;
3061 /* migration stream is big-endian */
3062 header->version = be32_to_cpu(header->version);
3064 if (header->version > MAPPED_RAM_HDR_VERSION) {
3065 error_setg(errp, "Migration mapped-ram capability version not "
3066 "supported (expected <= %d, got %d)", MAPPED_RAM_HDR_VERSION,
3067 header->version);
3068 return false;
3071 header->page_size = be64_to_cpu(header->page_size);
3072 header->bitmap_offset = be64_to_cpu(header->bitmap_offset);
3073 header->pages_offset = be64_to_cpu(header->pages_offset);
3075 return true;
3079 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3080 * long-running RCU critical section. When rcu-reclaims in the code
3081 * start to become numerous it will be necessary to reduce the
3082 * granularity of these critical sections.
3086 * ram_save_setup: Setup RAM for migration
3088 * Returns zero to indicate success and negative for error
3090 * @f: QEMUFile where to send the data
3091 * @opaque: RAMState pointer
3092 * @errp: pointer to Error*, to store an error if it happens.
3094 static int ram_save_setup(QEMUFile *f, void *opaque, Error **errp)
3096 RAMState **rsp = opaque;
3097 RAMBlock *block;
3098 int ret, max_hg_page_size;
3100 if (compress_threads_save_setup()) {
3101 error_setg(errp, "%s: failed to start compress threads", __func__);
3102 return -1;
3105 /* migration has already setup the bitmap, reuse it. */
3106 if (!migration_in_colo_state()) {
3107 if (ram_init_all(rsp, errp) != 0) {
3108 compress_threads_save_cleanup();
3109 return -1;
3112 (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f;
3115 * ??? Mirrors the previous value of qemu_host_page_size,
3116 * but is this really what was intended for the migration?
3118 max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE);
3120 WITH_RCU_READ_LOCK_GUARD() {
3121 qemu_put_be64(f, ram_bytes_total_with_ignored()
3122 | RAM_SAVE_FLAG_MEM_SIZE);
3124 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3125 qemu_put_byte(f, strlen(block->idstr));
3126 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3127 qemu_put_be64(f, block->used_length);
3128 if (migrate_postcopy_ram() &&
3129 block->page_size != max_hg_page_size) {
3130 qemu_put_be64(f, block->page_size);
3132 if (migrate_ignore_shared()) {
3133 qemu_put_be64(f, block->mr->addr);
3136 if (migrate_mapped_ram()) {
3137 mapped_ram_setup_ramblock(f, block);
3142 ret = rdma_registration_start(f, RAM_CONTROL_SETUP);
3143 if (ret < 0) {
3144 error_setg(errp, "%s: failed to start RDMA registration", __func__);
3145 qemu_file_set_error(f, ret);
3146 return ret;
3149 ret = rdma_registration_stop(f, RAM_CONTROL_SETUP);
3150 if (ret < 0) {
3151 error_setg(errp, "%s: failed to stop RDMA registration", __func__);
3152 qemu_file_set_error(f, ret);
3153 return ret;
3156 migration_ops = g_malloc0(sizeof(MigrationOps));
3158 if (migrate_multifd()) {
3159 migration_ops->ram_save_target_page = ram_save_target_page_multifd;
3160 } else {
3161 migration_ops->ram_save_target_page = ram_save_target_page_legacy;
3164 bql_unlock();
3165 ret = multifd_send_sync_main();
3166 bql_lock();
3167 if (ret < 0) {
3168 error_setg(errp, "%s: multifd synchronization failed", __func__);
3169 return ret;
3172 if (migrate_multifd() && !migrate_multifd_flush_after_each_section()
3173 && !migrate_mapped_ram()) {
3174 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
3177 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3178 ret = qemu_fflush(f);
3179 if (ret < 0) {
3180 error_setg_errno(errp, -ret, "%s failed", __func__);
3182 return ret;
3185 static void ram_save_file_bmap(QEMUFile *f)
3187 RAMBlock *block;
3189 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3190 long num_pages = block->used_length >> TARGET_PAGE_BITS;
3191 long bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
3193 qemu_put_buffer_at(f, (uint8_t *)block->file_bmap, bitmap_size,
3194 block->bitmap_offset);
3195 ram_transferred_add(bitmap_size);
3198 * Free the bitmap here to catch any synchronization issues
3199 * with multifd channels. No channels should be sending pages
3200 * after we've written the bitmap to file.
3202 g_free(block->file_bmap);
3203 block->file_bmap = NULL;
3207 void ramblock_set_file_bmap_atomic(RAMBlock *block, ram_addr_t offset, bool set)
3209 if (set) {
3210 set_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap);
3211 } else {
3212 clear_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap);
3217 * ram_save_iterate: iterative stage for migration
3219 * Returns zero to indicate success and negative for error
3221 * @f: QEMUFile where to send the data
3222 * @opaque: RAMState pointer
3224 static int ram_save_iterate(QEMUFile *f, void *opaque)
3226 RAMState **temp = opaque;
3227 RAMState *rs = *temp;
3228 int ret = 0;
3229 int i;
3230 int64_t t0;
3231 int done = 0;
3233 if (blk_mig_bulk_active()) {
3234 /* Avoid transferring ram during bulk phase of block migration as
3235 * the bulk phase will usually take a long time and transferring
3236 * ram updates during that time is pointless. */
3237 goto out;
3241 * We'll take this lock a little bit long, but it's okay for two reasons.
3242 * Firstly, the only possible other thread to take it is who calls
3243 * qemu_guest_free_page_hint(), which should be rare; secondly, see
3244 * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
3245 * guarantees that we'll at least released it in a regular basis.
3247 WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) {
3248 WITH_RCU_READ_LOCK_GUARD() {
3249 if (ram_list.version != rs->last_version) {
3250 ram_state_reset(rs);
3253 /* Read version before ram_list.blocks */
3254 smp_rmb();
3256 ret = rdma_registration_start(f, RAM_CONTROL_ROUND);
3257 if (ret < 0) {
3258 qemu_file_set_error(f, ret);
3259 goto out;
3262 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3263 i = 0;
3264 while ((ret = migration_rate_exceeded(f)) == 0 ||
3265 postcopy_has_request(rs)) {
3266 int pages;
3268 if (qemu_file_get_error(f)) {
3269 break;
3272 pages = ram_find_and_save_block(rs);
3273 /* no more pages to sent */
3274 if (pages == 0) {
3275 done = 1;
3276 break;
3279 if (pages < 0) {
3280 qemu_file_set_error(f, pages);
3281 break;
3284 rs->target_page_count += pages;
3287 * During postcopy, it is necessary to make sure one whole host
3288 * page is sent in one chunk.
3290 if (migrate_postcopy_ram()) {
3291 compress_flush_data();
3295 * we want to check in the 1st loop, just in case it was the 1st
3296 * time and we had to sync the dirty bitmap.
3297 * qemu_clock_get_ns() is a bit expensive, so we only check each
3298 * some iterations
3300 if ((i & 63) == 0) {
3301 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3302 1000000;
3303 if (t1 > MAX_WAIT) {
3304 trace_ram_save_iterate_big_wait(t1, i);
3305 break;
3308 i++;
3314 * Must occur before EOS (or any QEMUFile operation)
3315 * because of RDMA protocol.
3317 ret = rdma_registration_stop(f, RAM_CONTROL_ROUND);
3318 if (ret < 0) {
3319 qemu_file_set_error(f, ret);
3322 out:
3323 if (ret >= 0
3324 && migration_is_setup_or_active()) {
3325 if (migrate_multifd() && migrate_multifd_flush_after_each_section() &&
3326 !migrate_mapped_ram()) {
3327 ret = multifd_send_sync_main();
3328 if (ret < 0) {
3329 return ret;
3333 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3334 ram_transferred_add(8);
3335 ret = qemu_fflush(f);
3337 if (ret < 0) {
3338 return ret;
3341 return done;
3345 * ram_save_complete: function called to send the remaining amount of ram
3347 * Returns zero to indicate success or negative on error
3349 * Called with the BQL
3351 * @f: QEMUFile where to send the data
3352 * @opaque: RAMState pointer
3354 static int ram_save_complete(QEMUFile *f, void *opaque)
3356 RAMState **temp = opaque;
3357 RAMState *rs = *temp;
3358 int ret = 0;
3360 rs->last_stage = !migration_in_colo_state();
3362 WITH_RCU_READ_LOCK_GUARD() {
3363 if (!migration_in_postcopy()) {
3364 migration_bitmap_sync_precopy(rs, true);
3367 ret = rdma_registration_start(f, RAM_CONTROL_FINISH);
3368 if (ret < 0) {
3369 qemu_file_set_error(f, ret);
3370 return ret;
3373 /* try transferring iterative blocks of memory */
3375 /* flush all remaining blocks regardless of rate limiting */
3376 qemu_mutex_lock(&rs->bitmap_mutex);
3377 while (true) {
3378 int pages;
3380 pages = ram_find_and_save_block(rs);
3381 /* no more blocks to sent */
3382 if (pages == 0) {
3383 break;
3385 if (pages < 0) {
3386 qemu_mutex_unlock(&rs->bitmap_mutex);
3387 return pages;
3390 qemu_mutex_unlock(&rs->bitmap_mutex);
3392 compress_flush_data();
3394 ret = rdma_registration_stop(f, RAM_CONTROL_FINISH);
3395 if (ret < 0) {
3396 qemu_file_set_error(f, ret);
3397 return ret;
3401 ret = multifd_send_sync_main();
3402 if (ret < 0) {
3403 return ret;
3406 if (migrate_mapped_ram()) {
3407 ram_save_file_bmap(f);
3409 if (qemu_file_get_error(f)) {
3410 Error *local_err = NULL;
3411 int err = qemu_file_get_error_obj(f, &local_err);
3413 error_reportf_err(local_err, "Failed to write bitmap to file: ");
3414 return -err;
3418 if (migrate_multifd() && !migrate_multifd_flush_after_each_section() &&
3419 !migrate_mapped_ram()) {
3420 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
3422 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3423 return qemu_fflush(f);
3426 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy,
3427 uint64_t *can_postcopy)
3429 RAMState **temp = opaque;
3430 RAMState *rs = *temp;
3432 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3434 if (migrate_postcopy_ram()) {
3435 /* We can do postcopy, and all the data is postcopiable */
3436 *can_postcopy += remaining_size;
3437 } else {
3438 *must_precopy += remaining_size;
3442 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy,
3443 uint64_t *can_postcopy)
3445 RAMState **temp = opaque;
3446 RAMState *rs = *temp;
3447 uint64_t remaining_size;
3449 if (!migration_in_postcopy()) {
3450 bql_lock();
3451 WITH_RCU_READ_LOCK_GUARD() {
3452 migration_bitmap_sync_precopy(rs, false);
3454 bql_unlock();
3457 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3459 if (migrate_postcopy_ram()) {
3460 /* We can do postcopy, and all the data is postcopiable */
3461 *can_postcopy += remaining_size;
3462 } else {
3463 *must_precopy += remaining_size;
3467 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3469 unsigned int xh_len;
3470 int xh_flags;
3471 uint8_t *loaded_data;
3473 /* extract RLE header */
3474 xh_flags = qemu_get_byte(f);
3475 xh_len = qemu_get_be16(f);
3477 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3478 error_report("Failed to load XBZRLE page - wrong compression!");
3479 return -1;
3482 if (xh_len > TARGET_PAGE_SIZE) {
3483 error_report("Failed to load XBZRLE page - len overflow!");
3484 return -1;
3486 loaded_data = XBZRLE.decoded_buf;
3487 /* load data and decode */
3488 /* it can change loaded_data to point to an internal buffer */
3489 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3491 /* decode RLE */
3492 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3493 TARGET_PAGE_SIZE) == -1) {
3494 error_report("Failed to load XBZRLE page - decode error!");
3495 return -1;
3498 return 0;
3502 * ram_block_from_stream: read a RAMBlock id from the migration stream
3504 * Must be called from within a rcu critical section.
3506 * Returns a pointer from within the RCU-protected ram_list.
3508 * @mis: the migration incoming state pointer
3509 * @f: QEMUFile where to read the data from
3510 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3511 * @channel: the channel we're using
3513 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis,
3514 QEMUFile *f, int flags,
3515 int channel)
3517 RAMBlock *block = mis->last_recv_block[channel];
3518 char id[256];
3519 uint8_t len;
3521 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3522 if (!block) {
3523 error_report("Ack, bad migration stream!");
3524 return NULL;
3526 return block;
3529 len = qemu_get_byte(f);
3530 qemu_get_buffer(f, (uint8_t *)id, len);
3531 id[len] = 0;
3533 block = qemu_ram_block_by_name(id);
3534 if (!block) {
3535 error_report("Can't find block %s", id);
3536 return NULL;
3539 if (migrate_ram_is_ignored(block)) {
3540 error_report("block %s should not be migrated !", id);
3541 return NULL;
3544 mis->last_recv_block[channel] = block;
3546 return block;
3549 static inline void *host_from_ram_block_offset(RAMBlock *block,
3550 ram_addr_t offset)
3552 if (!offset_in_ramblock(block, offset)) {
3553 return NULL;
3556 return block->host + offset;
3559 static void *host_page_from_ram_block_offset(RAMBlock *block,
3560 ram_addr_t offset)
3562 /* Note: Explicitly no check against offset_in_ramblock(). */
3563 return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
3564 block->page_size);
3567 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
3568 ram_addr_t offset)
3570 return ((uintptr_t)block->host + offset) & (block->page_size - 1);
3573 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages)
3575 qemu_mutex_lock(&ram_state->bitmap_mutex);
3576 for (int i = 0; i < pages; i++) {
3577 ram_addr_t offset = normal[i];
3578 ram_state->migration_dirty_pages += !test_and_set_bit(
3579 offset >> TARGET_PAGE_BITS,
3580 block->bmap);
3582 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3585 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3586 ram_addr_t offset, bool record_bitmap)
3588 if (!offset_in_ramblock(block, offset)) {
3589 return NULL;
3591 if (!block->colo_cache) {
3592 error_report("%s: colo_cache is NULL in block :%s",
3593 __func__, block->idstr);
3594 return NULL;
3598 * During colo checkpoint, we need bitmap of these migrated pages.
3599 * It help us to decide which pages in ram cache should be flushed
3600 * into VM's RAM later.
3602 if (record_bitmap) {
3603 colo_record_bitmap(block, &offset, 1);
3605 return block->colo_cache + offset;
3609 * ram_handle_zero: handle the zero page case
3611 * If a page (or a whole RDMA chunk) has been
3612 * determined to be zero, then zap it.
3614 * @host: host address for the zero page
3615 * @ch: what the page is filled from. We only support zero
3616 * @size: size of the zero page
3618 void ram_handle_zero(void *host, uint64_t size)
3620 if (!buffer_is_zero(host, size)) {
3621 memset(host, 0, size);
3625 static void colo_init_ram_state(void)
3627 Error *local_err = NULL;
3629 if (!ram_state_init(&ram_state, &local_err)) {
3630 error_report_err(local_err);
3635 * colo cache: this is for secondary VM, we cache the whole
3636 * memory of the secondary VM, it is need to hold the global lock
3637 * to call this helper.
3639 int colo_init_ram_cache(void)
3641 RAMBlock *block;
3643 WITH_RCU_READ_LOCK_GUARD() {
3644 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3645 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3646 NULL, false, false);
3647 if (!block->colo_cache) {
3648 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3649 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3650 block->used_length);
3651 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3652 if (block->colo_cache) {
3653 qemu_anon_ram_free(block->colo_cache, block->used_length);
3654 block->colo_cache = NULL;
3657 return -errno;
3659 if (!machine_dump_guest_core(current_machine)) {
3660 qemu_madvise(block->colo_cache, block->used_length,
3661 QEMU_MADV_DONTDUMP);
3667 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3668 * with to decide which page in cache should be flushed into SVM's RAM. Here
3669 * we use the same name 'ram_bitmap' as for migration.
3671 if (ram_bytes_total()) {
3672 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3673 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3674 block->bmap = bitmap_new(pages);
3678 colo_init_ram_state();
3679 return 0;
3682 /* TODO: duplicated with ram_init_bitmaps */
3683 void colo_incoming_start_dirty_log(void)
3685 RAMBlock *block = NULL;
3686 Error *local_err = NULL;
3688 /* For memory_global_dirty_log_start below. */
3689 bql_lock();
3690 qemu_mutex_lock_ramlist();
3692 memory_global_dirty_log_sync(false);
3693 WITH_RCU_READ_LOCK_GUARD() {
3694 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3695 ramblock_sync_dirty_bitmap(ram_state, block);
3696 /* Discard this dirty bitmap record */
3697 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
3699 if (!memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION,
3700 &local_err)) {
3701 error_report_err(local_err);
3704 ram_state->migration_dirty_pages = 0;
3705 qemu_mutex_unlock_ramlist();
3706 bql_unlock();
3709 /* It is need to hold the global lock to call this helper */
3710 void colo_release_ram_cache(void)
3712 RAMBlock *block;
3714 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
3715 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3716 g_free(block->bmap);
3717 block->bmap = NULL;
3720 WITH_RCU_READ_LOCK_GUARD() {
3721 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3722 if (block->colo_cache) {
3723 qemu_anon_ram_free(block->colo_cache, block->used_length);
3724 block->colo_cache = NULL;
3728 ram_state_cleanup(&ram_state);
3732 * ram_load_setup: Setup RAM for migration incoming side
3734 * Returns zero to indicate success and negative for error
3736 * @f: QEMUFile where to receive the data
3737 * @opaque: RAMState pointer
3738 * @errp: pointer to Error*, to store an error if it happens.
3740 static int ram_load_setup(QEMUFile *f, void *opaque, Error **errp)
3742 xbzrle_load_setup();
3743 ramblock_recv_map_init();
3745 return 0;
3748 static int ram_load_cleanup(void *opaque)
3750 RAMBlock *rb;
3752 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3753 qemu_ram_block_writeback(rb);
3756 xbzrle_load_cleanup();
3758 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3759 g_free(rb->receivedmap);
3760 rb->receivedmap = NULL;
3763 return 0;
3767 * ram_postcopy_incoming_init: allocate postcopy data structures
3769 * Returns 0 for success and negative if there was one error
3771 * @mis: current migration incoming state
3773 * Allocate data structures etc needed by incoming migration with
3774 * postcopy-ram. postcopy-ram's similarly names
3775 * postcopy_ram_incoming_init does the work.
3777 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3779 return postcopy_ram_incoming_init(mis);
3783 * ram_load_postcopy: load a page in postcopy case
3785 * Returns 0 for success or -errno in case of error
3787 * Called in postcopy mode by ram_load().
3788 * rcu_read_lock is taken prior to this being called.
3790 * @f: QEMUFile where to send the data
3791 * @channel: the channel to use for loading
3793 int ram_load_postcopy(QEMUFile *f, int channel)
3795 int flags = 0, ret = 0;
3796 bool place_needed = false;
3797 bool matches_target_page_size = false;
3798 MigrationIncomingState *mis = migration_incoming_get_current();
3799 PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel];
3801 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3802 ram_addr_t addr;
3803 void *page_buffer = NULL;
3804 void *place_source = NULL;
3805 RAMBlock *block = NULL;
3806 uint8_t ch;
3807 int len;
3809 addr = qemu_get_be64(f);
3812 * If qemu file error, we should stop here, and then "addr"
3813 * may be invalid
3815 ret = qemu_file_get_error(f);
3816 if (ret) {
3817 break;
3820 flags = addr & ~TARGET_PAGE_MASK;
3821 addr &= TARGET_PAGE_MASK;
3823 trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags);
3824 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3825 RAM_SAVE_FLAG_COMPRESS_PAGE)) {
3826 block = ram_block_from_stream(mis, f, flags, channel);
3827 if (!block) {
3828 ret = -EINVAL;
3829 break;
3833 * Relying on used_length is racy and can result in false positives.
3834 * We might place pages beyond used_length in case RAM was shrunk
3835 * while in postcopy, which is fine - trying to place via
3836 * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
3838 if (!block->host || addr >= block->postcopy_length) {
3839 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3840 ret = -EINVAL;
3841 break;
3843 tmp_page->target_pages++;
3844 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
3846 * Postcopy requires that we place whole host pages atomically;
3847 * these may be huge pages for RAMBlocks that are backed by
3848 * hugetlbfs.
3849 * To make it atomic, the data is read into a temporary page
3850 * that's moved into place later.
3851 * The migration protocol uses, possibly smaller, target-pages
3852 * however the source ensures it always sends all the components
3853 * of a host page in one chunk.
3855 page_buffer = tmp_page->tmp_huge_page +
3856 host_page_offset_from_ram_block_offset(block, addr);
3857 /* If all TP are zero then we can optimise the place */
3858 if (tmp_page->target_pages == 1) {
3859 tmp_page->host_addr =
3860 host_page_from_ram_block_offset(block, addr);
3861 } else if (tmp_page->host_addr !=
3862 host_page_from_ram_block_offset(block, addr)) {
3863 /* not the 1st TP within the HP */
3864 error_report("Non-same host page detected on channel %d: "
3865 "Target host page %p, received host page %p "
3866 "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)",
3867 channel, tmp_page->host_addr,
3868 host_page_from_ram_block_offset(block, addr),
3869 block->idstr, addr, tmp_page->target_pages);
3870 ret = -EINVAL;
3871 break;
3875 * If it's the last part of a host page then we place the host
3876 * page
3878 if (tmp_page->target_pages ==
3879 (block->page_size / TARGET_PAGE_SIZE)) {
3880 place_needed = true;
3882 place_source = tmp_page->tmp_huge_page;
3885 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3886 case RAM_SAVE_FLAG_ZERO:
3887 ch = qemu_get_byte(f);
3888 if (ch != 0) {
3889 error_report("Found a zero page with value %d", ch);
3890 ret = -EINVAL;
3891 break;
3894 * Can skip to set page_buffer when
3895 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
3897 if (!matches_target_page_size) {
3898 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3900 break;
3902 case RAM_SAVE_FLAG_PAGE:
3903 tmp_page->all_zero = false;
3904 if (!matches_target_page_size) {
3905 /* For huge pages, we always use temporary buffer */
3906 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3907 } else {
3909 * For small pages that matches target page size, we
3910 * avoid the qemu_file copy. Instead we directly use
3911 * the buffer of QEMUFile to place the page. Note: we
3912 * cannot do any QEMUFile operation before using that
3913 * buffer to make sure the buffer is valid when
3914 * placing the page.
3916 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3917 TARGET_PAGE_SIZE);
3919 break;
3920 case RAM_SAVE_FLAG_COMPRESS_PAGE:
3921 tmp_page->all_zero = false;
3922 len = qemu_get_be32(f);
3923 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3924 error_report("Invalid compressed data length: %d", len);
3925 ret = -EINVAL;
3926 break;
3928 decompress_data_with_multi_threads(f, page_buffer, len);
3929 break;
3930 case RAM_SAVE_FLAG_MULTIFD_FLUSH:
3931 multifd_recv_sync_main();
3932 break;
3933 case RAM_SAVE_FLAG_EOS:
3934 /* normal exit */
3935 if (migrate_multifd() &&
3936 migrate_multifd_flush_after_each_section()) {
3937 multifd_recv_sync_main();
3939 break;
3940 default:
3941 error_report("Unknown combination of migration flags: 0x%x"
3942 " (postcopy mode)", flags);
3943 ret = -EINVAL;
3944 break;
3947 /* Got the whole host page, wait for decompress before placing. */
3948 if (place_needed) {
3949 ret |= wait_for_decompress_done();
3952 /* Detect for any possible file errors */
3953 if (!ret && qemu_file_get_error(f)) {
3954 ret = qemu_file_get_error(f);
3957 if (!ret && place_needed) {
3958 if (tmp_page->all_zero) {
3959 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block);
3960 } else {
3961 ret = postcopy_place_page(mis, tmp_page->host_addr,
3962 place_source, block);
3964 place_needed = false;
3965 postcopy_temp_page_reset(tmp_page);
3969 return ret;
3972 static bool postcopy_is_running(void)
3974 PostcopyState ps = postcopy_state_get();
3975 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3979 * Flush content of RAM cache into SVM's memory.
3980 * Only flush the pages that be dirtied by PVM or SVM or both.
3982 void colo_flush_ram_cache(void)
3984 RAMBlock *block = NULL;
3985 void *dst_host;
3986 void *src_host;
3987 unsigned long offset = 0;
3989 memory_global_dirty_log_sync(false);
3990 qemu_mutex_lock(&ram_state->bitmap_mutex);
3991 WITH_RCU_READ_LOCK_GUARD() {
3992 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3993 ramblock_sync_dirty_bitmap(ram_state, block);
3997 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
3998 WITH_RCU_READ_LOCK_GUARD() {
3999 block = QLIST_FIRST_RCU(&ram_list.blocks);
4001 while (block) {
4002 unsigned long num = 0;
4004 offset = colo_bitmap_find_dirty(ram_state, block, offset, &num);
4005 if (!offset_in_ramblock(block,
4006 ((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
4007 offset = 0;
4008 num = 0;
4009 block = QLIST_NEXT_RCU(block, next);
4010 } else {
4011 unsigned long i = 0;
4013 for (i = 0; i < num; i++) {
4014 migration_bitmap_clear_dirty(ram_state, block, offset + i);
4016 dst_host = block->host
4017 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
4018 src_host = block->colo_cache
4019 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
4020 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num);
4021 offset += num;
4025 qemu_mutex_unlock(&ram_state->bitmap_mutex);
4026 trace_colo_flush_ram_cache_end();
4029 static size_t ram_load_multifd_pages(void *host_addr, size_t size,
4030 uint64_t offset)
4032 MultiFDRecvData *data = multifd_get_recv_data();
4034 data->opaque = host_addr;
4035 data->file_offset = offset;
4036 data->size = size;
4038 if (!multifd_recv()) {
4039 return 0;
4042 return size;
4045 static bool read_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block,
4046 long num_pages, unsigned long *bitmap,
4047 Error **errp)
4049 ERRP_GUARD();
4050 unsigned long set_bit_idx, clear_bit_idx;
4051 ram_addr_t offset;
4052 void *host;
4053 size_t read, unread, size;
4055 for (set_bit_idx = find_first_bit(bitmap, num_pages);
4056 set_bit_idx < num_pages;
4057 set_bit_idx = find_next_bit(bitmap, num_pages, clear_bit_idx + 1)) {
4059 clear_bit_idx = find_next_zero_bit(bitmap, num_pages, set_bit_idx + 1);
4061 unread = TARGET_PAGE_SIZE * (clear_bit_idx - set_bit_idx);
4062 offset = set_bit_idx << TARGET_PAGE_BITS;
4064 while (unread > 0) {
4065 host = host_from_ram_block_offset(block, offset);
4066 if (!host) {
4067 error_setg(errp, "page outside of ramblock %s range",
4068 block->idstr);
4069 return false;
4072 size = MIN(unread, MAPPED_RAM_LOAD_BUF_SIZE);
4074 if (migrate_multifd()) {
4075 read = ram_load_multifd_pages(host, size,
4076 block->pages_offset + offset);
4077 } else {
4078 read = qemu_get_buffer_at(f, host, size,
4079 block->pages_offset + offset);
4082 if (!read) {
4083 goto err;
4085 offset += read;
4086 unread -= read;
4090 return true;
4092 err:
4093 qemu_file_get_error_obj(f, errp);
4094 error_prepend(errp, "(%s) failed to read page " RAM_ADDR_FMT
4095 "from file offset %" PRIx64 ": ", block->idstr, offset,
4096 block->pages_offset + offset);
4097 return false;
4100 static void parse_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block,
4101 ram_addr_t length, Error **errp)
4103 g_autofree unsigned long *bitmap = NULL;
4104 MappedRamHeader header;
4105 size_t bitmap_size;
4106 long num_pages;
4108 if (!mapped_ram_read_header(f, &header, errp)) {
4109 return;
4112 block->pages_offset = header.pages_offset;
4115 * Check the alignment of the file region that contains pages. We
4116 * don't enforce MAPPED_RAM_FILE_OFFSET_ALIGNMENT to allow that
4117 * value to change in the future. Do only a sanity check with page
4118 * size alignment.
4120 if (!QEMU_IS_ALIGNED(block->pages_offset, TARGET_PAGE_SIZE)) {
4121 error_setg(errp,
4122 "Error reading ramblock %s pages, region has bad alignment",
4123 block->idstr);
4124 return;
4127 num_pages = length / header.page_size;
4128 bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
4130 bitmap = g_malloc0(bitmap_size);
4131 if (qemu_get_buffer_at(f, (uint8_t *)bitmap, bitmap_size,
4132 header.bitmap_offset) != bitmap_size) {
4133 error_setg(errp, "Error reading dirty bitmap");
4134 return;
4137 if (!read_ramblock_mapped_ram(f, block, num_pages, bitmap, errp)) {
4138 return;
4141 /* Skip pages array */
4142 qemu_set_offset(f, block->pages_offset + length, SEEK_SET);
4144 return;
4147 static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length)
4149 int ret = 0;
4150 /* ADVISE is earlier, it shows the source has the postcopy capability on */
4151 bool postcopy_advised = migration_incoming_postcopy_advised();
4152 int max_hg_page_size;
4153 Error *local_err = NULL;
4155 assert(block);
4157 if (migrate_mapped_ram()) {
4158 parse_ramblock_mapped_ram(f, block, length, &local_err);
4159 if (local_err) {
4160 error_report_err(local_err);
4161 return -EINVAL;
4163 return 0;
4166 if (!qemu_ram_is_migratable(block)) {
4167 error_report("block %s should not be migrated !", block->idstr);
4168 return -EINVAL;
4171 if (length != block->used_length) {
4172 ret = qemu_ram_resize(block, length, &local_err);
4173 if (local_err) {
4174 error_report_err(local_err);
4175 return ret;
4180 * ??? Mirrors the previous value of qemu_host_page_size,
4181 * but is this really what was intended for the migration?
4183 max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE);
4185 /* For postcopy we need to check hugepage sizes match */
4186 if (postcopy_advised && migrate_postcopy_ram() &&
4187 block->page_size != max_hg_page_size) {
4188 uint64_t remote_page_size = qemu_get_be64(f);
4189 if (remote_page_size != block->page_size) {
4190 error_report("Mismatched RAM page size %s "
4191 "(local) %zd != %" PRId64, block->idstr,
4192 block->page_size, remote_page_size);
4193 return -EINVAL;
4196 if (migrate_ignore_shared()) {
4197 hwaddr addr = qemu_get_be64(f);
4198 if (migrate_ram_is_ignored(block) &&
4199 block->mr->addr != addr) {
4200 error_report("Mismatched GPAs for block %s "
4201 "%" PRId64 "!= %" PRId64, block->idstr,
4202 (uint64_t)addr, (uint64_t)block->mr->addr);
4203 return -EINVAL;
4206 ret = rdma_block_notification_handle(f, block->idstr);
4207 if (ret < 0) {
4208 qemu_file_set_error(f, ret);
4211 return ret;
4214 static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes)
4216 int ret = 0;
4218 /* Synchronize RAM block list */
4219 while (!ret && total_ram_bytes) {
4220 RAMBlock *block;
4221 char id[256];
4222 ram_addr_t length;
4223 int len = qemu_get_byte(f);
4225 qemu_get_buffer(f, (uint8_t *)id, len);
4226 id[len] = 0;
4227 length = qemu_get_be64(f);
4229 block = qemu_ram_block_by_name(id);
4230 if (block) {
4231 ret = parse_ramblock(f, block, length);
4232 } else {
4233 error_report("Unknown ramblock \"%s\", cannot accept "
4234 "migration", id);
4235 ret = -EINVAL;
4237 total_ram_bytes -= length;
4240 return ret;
4244 * ram_load_precopy: load pages in precopy case
4246 * Returns 0 for success or -errno in case of error
4248 * Called in precopy mode by ram_load().
4249 * rcu_read_lock is taken prior to this being called.
4251 * @f: QEMUFile where to send the data
4253 static int ram_load_precopy(QEMUFile *f)
4255 MigrationIncomingState *mis = migration_incoming_get_current();
4256 int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0;
4258 if (!migrate_compress()) {
4259 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4262 if (migrate_mapped_ram()) {
4263 invalid_flags |= (RAM_SAVE_FLAG_HOOK | RAM_SAVE_FLAG_MULTIFD_FLUSH |
4264 RAM_SAVE_FLAG_PAGE | RAM_SAVE_FLAG_XBZRLE |
4265 RAM_SAVE_FLAG_ZERO);
4268 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4269 ram_addr_t addr;
4270 void *host = NULL, *host_bak = NULL;
4271 uint8_t ch;
4274 * Yield periodically to let main loop run, but an iteration of
4275 * the main loop is expensive, so do it each some iterations
4277 if ((i & 32767) == 0 && qemu_in_coroutine()) {
4278 aio_co_schedule(qemu_get_current_aio_context(),
4279 qemu_coroutine_self());
4280 qemu_coroutine_yield();
4282 i++;
4284 addr = qemu_get_be64(f);
4285 ret = qemu_file_get_error(f);
4286 if (ret) {
4287 error_report("Getting RAM address failed");
4288 break;
4291 flags = addr & ~TARGET_PAGE_MASK;
4292 addr &= TARGET_PAGE_MASK;
4294 if (flags & invalid_flags) {
4295 error_report("Unexpected RAM flags: %d", flags & invalid_flags);
4297 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4298 error_report("Received an unexpected compressed page");
4301 ret = -EINVAL;
4302 break;
4305 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4306 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4307 RAMBlock *block = ram_block_from_stream(mis, f, flags,
4308 RAM_CHANNEL_PRECOPY);
4310 host = host_from_ram_block_offset(block, addr);
4312 * After going into COLO stage, we should not load the page
4313 * into SVM's memory directly, we put them into colo_cache firstly.
4314 * NOTE: We need to keep a copy of SVM's ram in colo_cache.
4315 * Previously, we copied all these memory in preparing stage of COLO
4316 * while we need to stop VM, which is a time-consuming process.
4317 * Here we optimize it by a trick, back-up every page while in
4318 * migration process while COLO is enabled, though it affects the
4319 * speed of the migration, but it obviously reduce the downtime of
4320 * back-up all SVM'S memory in COLO preparing stage.
4322 if (migration_incoming_colo_enabled()) {
4323 if (migration_incoming_in_colo_state()) {
4324 /* In COLO stage, put all pages into cache temporarily */
4325 host = colo_cache_from_block_offset(block, addr, true);
4326 } else {
4328 * In migration stage but before COLO stage,
4329 * Put all pages into both cache and SVM's memory.
4331 host_bak = colo_cache_from_block_offset(block, addr, false);
4334 if (!host) {
4335 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4336 ret = -EINVAL;
4337 break;
4339 if (!migration_incoming_in_colo_state()) {
4340 ramblock_recv_bitmap_set(block, host);
4343 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4346 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4347 case RAM_SAVE_FLAG_MEM_SIZE:
4348 ret = parse_ramblocks(f, addr);
4350 * For mapped-ram migration (to a file) using multifd, we sync
4351 * once and for all here to make sure all tasks we queued to
4352 * multifd threads are completed, so that all the ramblocks
4353 * (including all the guest memory pages within) are fully
4354 * loaded after this sync returns.
4356 if (migrate_mapped_ram()) {
4357 multifd_recv_sync_main();
4359 break;
4361 case RAM_SAVE_FLAG_ZERO:
4362 ch = qemu_get_byte(f);
4363 if (ch != 0) {
4364 error_report("Found a zero page with value %d", ch);
4365 ret = -EINVAL;
4366 break;
4368 ram_handle_zero(host, TARGET_PAGE_SIZE);
4369 break;
4371 case RAM_SAVE_FLAG_PAGE:
4372 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4373 break;
4375 case RAM_SAVE_FLAG_COMPRESS_PAGE:
4376 len = qemu_get_be32(f);
4377 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4378 error_report("Invalid compressed data length: %d", len);
4379 ret = -EINVAL;
4380 break;
4382 decompress_data_with_multi_threads(f, host, len);
4383 break;
4385 case RAM_SAVE_FLAG_XBZRLE:
4386 if (load_xbzrle(f, addr, host) < 0) {
4387 error_report("Failed to decompress XBZRLE page at "
4388 RAM_ADDR_FMT, addr);
4389 ret = -EINVAL;
4390 break;
4392 break;
4393 case RAM_SAVE_FLAG_MULTIFD_FLUSH:
4394 multifd_recv_sync_main();
4395 break;
4396 case RAM_SAVE_FLAG_EOS:
4397 /* normal exit */
4398 if (migrate_multifd() &&
4399 migrate_multifd_flush_after_each_section() &&
4401 * Mapped-ram migration flushes once and for all after
4402 * parsing ramblocks. Always ignore EOS for it.
4404 !migrate_mapped_ram()) {
4405 multifd_recv_sync_main();
4407 break;
4408 case RAM_SAVE_FLAG_HOOK:
4409 ret = rdma_registration_handle(f);
4410 if (ret < 0) {
4411 qemu_file_set_error(f, ret);
4413 break;
4414 default:
4415 error_report("Unknown combination of migration flags: 0x%x", flags);
4416 ret = -EINVAL;
4418 if (!ret) {
4419 ret = qemu_file_get_error(f);
4421 if (!ret && host_bak) {
4422 memcpy(host_bak, host, TARGET_PAGE_SIZE);
4426 ret |= wait_for_decompress_done();
4427 return ret;
4430 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4432 int ret = 0;
4433 static uint64_t seq_iter;
4435 * If system is running in postcopy mode, page inserts to host memory must
4436 * be atomic
4438 bool postcopy_running = postcopy_is_running();
4440 seq_iter++;
4442 if (version_id != 4) {
4443 return -EINVAL;
4447 * This RCU critical section can be very long running.
4448 * When RCU reclaims in the code start to become numerous,
4449 * it will be necessary to reduce the granularity of this
4450 * critical section.
4452 WITH_RCU_READ_LOCK_GUARD() {
4453 if (postcopy_running) {
4455 * Note! Here RAM_CHANNEL_PRECOPY is the precopy channel of
4456 * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to
4457 * service fast page faults.
4459 ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY);
4460 } else {
4461 ret = ram_load_precopy(f);
4464 trace_ram_load_complete(ret, seq_iter);
4466 return ret;
4469 static bool ram_has_postcopy(void *opaque)
4471 RAMBlock *rb;
4472 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4473 if (ramblock_is_pmem(rb)) {
4474 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4475 "is not supported now!", rb->idstr, rb->host);
4476 return false;
4480 return migrate_postcopy_ram();
4483 /* Sync all the dirty bitmap with destination VM. */
4484 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4486 RAMBlock *block;
4487 QEMUFile *file = s->to_dst_file;
4489 trace_ram_dirty_bitmap_sync_start();
4491 qatomic_set(&rs->postcopy_bmap_sync_requested, 0);
4492 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4493 qemu_savevm_send_recv_bitmap(file, block->idstr);
4494 trace_ram_dirty_bitmap_request(block->idstr);
4495 qatomic_inc(&rs->postcopy_bmap_sync_requested);
4498 trace_ram_dirty_bitmap_sync_wait();
4500 /* Wait until all the ramblocks' dirty bitmap synced */
4501 while (qatomic_read(&rs->postcopy_bmap_sync_requested)) {
4502 if (migration_rp_wait(s)) {
4503 return -1;
4507 trace_ram_dirty_bitmap_sync_complete();
4509 return 0;
4513 * Read the received bitmap, revert it as the initial dirty bitmap.
4514 * This is only used when the postcopy migration is paused but wants
4515 * to resume from a middle point.
4517 * Returns true if succeeded, false for errors.
4519 bool ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block, Error **errp)
4521 /* from_dst_file is always valid because we're within rp_thread */
4522 QEMUFile *file = s->rp_state.from_dst_file;
4523 g_autofree unsigned long *le_bitmap = NULL;
4524 unsigned long nbits = block->used_length >> TARGET_PAGE_BITS;
4525 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4526 uint64_t size, end_mark;
4527 RAMState *rs = ram_state;
4529 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4531 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4532 error_setg(errp, "Reload bitmap in incorrect state %s",
4533 MigrationStatus_str(s->state));
4534 return false;
4538 * Note: see comments in ramblock_recv_bitmap_send() on why we
4539 * need the endianness conversion, and the paddings.
4541 local_size = ROUND_UP(local_size, 8);
4543 /* Add paddings */
4544 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4546 size = qemu_get_be64(file);
4548 /* The size of the bitmap should match with our ramblock */
4549 if (size != local_size) {
4550 error_setg(errp, "ramblock '%s' bitmap size mismatch (0x%"PRIx64
4551 " != 0x%"PRIx64")", block->idstr, size, local_size);
4552 return false;
4555 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4556 end_mark = qemu_get_be64(file);
4558 if (qemu_file_get_error(file) || size != local_size) {
4559 error_setg(errp, "read bitmap failed for ramblock '%s': "
4560 "(size 0x%"PRIx64", got: 0x%"PRIx64")",
4561 block->idstr, local_size, size);
4562 return false;
4565 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4566 error_setg(errp, "ramblock '%s' end mark incorrect: 0x%"PRIx64,
4567 block->idstr, end_mark);
4568 return false;
4572 * Endianness conversion. We are during postcopy (though paused).
4573 * The dirty bitmap won't change. We can directly modify it.
4575 bitmap_from_le(block->bmap, le_bitmap, nbits);
4578 * What we received is "received bitmap". Revert it as the initial
4579 * dirty bitmap for this ramblock.
4581 bitmap_complement(block->bmap, block->bmap, nbits);
4583 /* Clear dirty bits of discarded ranges that we don't want to migrate. */
4584 ramblock_dirty_bitmap_clear_discarded_pages(block);
4586 /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
4587 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4589 qatomic_dec(&rs->postcopy_bmap_sync_requested);
4592 * We succeeded to sync bitmap for current ramblock. Always kick the
4593 * migration thread to check whether all requested bitmaps are
4594 * reloaded. NOTE: it's racy to only kick when requested==0, because
4595 * we don't know whether the migration thread may still be increasing
4596 * it.
4598 migration_rp_kick(s);
4600 return true;
4603 static int ram_resume_prepare(MigrationState *s, void *opaque)
4605 RAMState *rs = *(RAMState **)opaque;
4606 int ret;
4608 ret = ram_dirty_bitmap_sync_all(s, rs);
4609 if (ret) {
4610 return ret;
4613 ram_state_resume_prepare(rs, s->to_dst_file);
4615 return 0;
4618 void postcopy_preempt_shutdown_file(MigrationState *s)
4620 qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS);
4621 qemu_fflush(s->postcopy_qemufile_src);
4624 static SaveVMHandlers savevm_ram_handlers = {
4625 .save_setup = ram_save_setup,
4626 .save_live_iterate = ram_save_iterate,
4627 .save_live_complete_postcopy = ram_save_complete,
4628 .save_live_complete_precopy = ram_save_complete,
4629 .has_postcopy = ram_has_postcopy,
4630 .state_pending_exact = ram_state_pending_exact,
4631 .state_pending_estimate = ram_state_pending_estimate,
4632 .load_state = ram_load,
4633 .save_cleanup = ram_save_cleanup,
4634 .load_setup = ram_load_setup,
4635 .load_cleanup = ram_load_cleanup,
4636 .resume_prepare = ram_resume_prepare,
4639 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
4640 size_t old_size, size_t new_size)
4642 PostcopyState ps = postcopy_state_get();
4643 ram_addr_t offset;
4644 RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
4645 Error *err = NULL;
4647 if (!rb) {
4648 error_report("RAM block not found");
4649 return;
4652 if (migrate_ram_is_ignored(rb)) {
4653 return;
4656 if (!migration_is_idle()) {
4658 * Precopy code on the source cannot deal with the size of RAM blocks
4659 * changing at random points in time - especially after sending the
4660 * RAM block sizes in the migration stream, they must no longer change.
4661 * Abort and indicate a proper reason.
4663 error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
4664 migration_cancel(err);
4665 error_free(err);
4668 switch (ps) {
4669 case POSTCOPY_INCOMING_ADVISE:
4671 * Update what ram_postcopy_incoming_init()->init_range() does at the
4672 * time postcopy was advised. Syncing RAM blocks with the source will
4673 * result in RAM resizes.
4675 if (old_size < new_size) {
4676 if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
4677 error_report("RAM block '%s' discard of resized RAM failed",
4678 rb->idstr);
4681 rb->postcopy_length = new_size;
4682 break;
4683 case POSTCOPY_INCOMING_NONE:
4684 case POSTCOPY_INCOMING_RUNNING:
4685 case POSTCOPY_INCOMING_END:
4687 * Once our guest is running, postcopy does no longer care about
4688 * resizes. When growing, the new memory was not available on the
4689 * source, no handler needed.
4691 break;
4692 default:
4693 error_report("RAM block '%s' resized during postcopy state: %d",
4694 rb->idstr, ps);
4695 exit(-1);
4699 static RAMBlockNotifier ram_mig_ram_notifier = {
4700 .ram_block_resized = ram_mig_ram_block_resized,
4703 void ram_mig_init(void)
4705 qemu_mutex_init(&XBZRLE.lock);
4706 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
4707 ram_block_notifier_add(&ram_mig_ram_notifier);