tcg/i386: Implement negsetcond_*
[qemu/armbru.git] / block / nvme.c
blobb6e95f0b7e65eca7655e9ecc349a1ca370edcda3
1 /*
2 * NVMe block driver based on vfio
4 * Copyright 2016 - 2018 Red Hat, Inc.
6 * Authors:
7 * Fam Zheng <famz@redhat.com>
8 * Paolo Bonzini <pbonzini@redhat.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/cutils.h"
23 #include "qemu/option.h"
24 #include "qemu/memalign.h"
25 #include "qemu/vfio-helpers.h"
26 #include "block/block-io.h"
27 #include "block/block_int.h"
28 #include "sysemu/block-backend.h"
29 #include "sysemu/replay.h"
30 #include "trace.h"
32 #include "block/nvme.h"
34 #define NVME_SQ_ENTRY_BYTES 64
35 #define NVME_CQ_ENTRY_BYTES 16
36 #define NVME_QUEUE_SIZE 128
37 #define NVME_DOORBELL_SIZE 4096
40 * We have to leave one slot empty as that is the full queue case where
41 * head == tail + 1.
43 #define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1)
45 typedef struct BDRVNVMeState BDRVNVMeState;
47 /* Same index is used for queues and IRQs */
48 #define INDEX_ADMIN 0
49 #define INDEX_IO(n) (1 + n)
51 /* This driver shares a single MSIX IRQ for the admin and I/O queues */
52 enum {
53 MSIX_SHARED_IRQ_IDX = 0,
54 MSIX_IRQ_COUNT = 1
57 typedef struct {
58 int32_t head, tail;
59 uint8_t *queue;
60 uint64_t iova;
61 /* Hardware MMIO register */
62 volatile uint32_t *doorbell;
63 } NVMeQueue;
65 typedef struct {
66 BlockCompletionFunc *cb;
67 void *opaque;
68 int cid;
69 void *prp_list_page;
70 uint64_t prp_list_iova;
71 int free_req_next; /* q->reqs[] index of next free req */
72 } NVMeRequest;
74 typedef struct {
75 QemuMutex lock;
77 /* Read from I/O code path, initialized under BQL */
78 BDRVNVMeState *s;
79 int index;
81 /* Fields protected by BQL */
82 uint8_t *prp_list_pages;
84 /* Fields protected by @lock */
85 CoQueue free_req_queue;
86 NVMeQueue sq, cq;
87 int cq_phase;
88 int free_req_head;
89 NVMeRequest reqs[NVME_NUM_REQS];
90 int need_kick;
91 int inflight;
93 /* Thread-safe, no lock necessary */
94 QEMUBH *completion_bh;
95 } NVMeQueuePair;
97 struct BDRVNVMeState {
98 AioContext *aio_context;
99 QEMUVFIOState *vfio;
100 void *bar0_wo_map;
101 /* Memory mapped registers */
102 volatile struct {
103 uint32_t sq_tail;
104 uint32_t cq_head;
105 } *doorbells;
106 /* The submission/completion queue pairs.
107 * [0]: admin queue.
108 * [1..]: io queues.
110 NVMeQueuePair **queues;
111 unsigned queue_count;
112 size_t page_size;
113 /* How many uint32_t elements does each doorbell entry take. */
114 size_t doorbell_scale;
115 bool write_cache_supported;
116 EventNotifier irq_notifier[MSIX_IRQ_COUNT];
118 uint64_t nsze; /* Namespace size reported by identify command */
119 int nsid; /* The namespace id to read/write data. */
120 int blkshift;
122 uint64_t max_transfer;
124 bool supports_write_zeroes;
125 bool supports_discard;
127 CoMutex dma_map_lock;
128 CoQueue dma_flush_queue;
130 /* Total size of mapped qiov, accessed under dma_map_lock */
131 int dma_map_count;
133 /* PCI address (required for nvme_refresh_filename()) */
134 char *device;
136 struct {
137 uint64_t completion_errors;
138 uint64_t aligned_accesses;
139 uint64_t unaligned_accesses;
140 } stats;
143 #define NVME_BLOCK_OPT_DEVICE "device"
144 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
146 static void nvme_process_completion_bh(void *opaque);
148 static QemuOptsList runtime_opts = {
149 .name = "nvme",
150 .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
151 .desc = {
153 .name = NVME_BLOCK_OPT_DEVICE,
154 .type = QEMU_OPT_STRING,
155 .help = "NVMe PCI device address",
158 .name = NVME_BLOCK_OPT_NAMESPACE,
159 .type = QEMU_OPT_NUMBER,
160 .help = "NVMe namespace",
162 { /* end of list */ }
166 /* Returns true on success, false on failure. */
167 static bool nvme_init_queue(BDRVNVMeState *s, NVMeQueue *q,
168 unsigned nentries, size_t entry_bytes, Error **errp)
170 size_t bytes;
171 int r;
173 bytes = ROUND_UP(nentries * entry_bytes, qemu_real_host_page_size());
174 q->head = q->tail = 0;
175 q->queue = qemu_try_memalign(qemu_real_host_page_size(), bytes);
176 if (!q->queue) {
177 error_setg(errp, "Cannot allocate queue");
178 return false;
180 memset(q->queue, 0, bytes);
181 r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova, errp);
182 if (r) {
183 error_prepend(errp, "Cannot map queue: ");
185 return r == 0;
188 static void nvme_free_queue(NVMeQueue *q)
190 qemu_vfree(q->queue);
193 static void nvme_free_queue_pair(NVMeQueuePair *q)
195 trace_nvme_free_queue_pair(q->index, q, &q->cq, &q->sq);
196 if (q->completion_bh) {
197 qemu_bh_delete(q->completion_bh);
199 nvme_free_queue(&q->sq);
200 nvme_free_queue(&q->cq);
201 qemu_vfree(q->prp_list_pages);
202 qemu_mutex_destroy(&q->lock);
203 g_free(q);
206 static void nvme_free_req_queue_cb(void *opaque)
208 NVMeQueuePair *q = opaque;
210 qemu_mutex_lock(&q->lock);
211 while (q->free_req_head != -1 &&
212 qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
213 /* Retry waiting requests */
215 qemu_mutex_unlock(&q->lock);
218 static NVMeQueuePair *nvme_create_queue_pair(BDRVNVMeState *s,
219 AioContext *aio_context,
220 unsigned idx, size_t size,
221 Error **errp)
223 int i, r;
224 NVMeQueuePair *q;
225 uint64_t prp_list_iova;
226 size_t bytes;
228 q = g_try_new0(NVMeQueuePair, 1);
229 if (!q) {
230 error_setg(errp, "Cannot allocate queue pair");
231 return NULL;
233 trace_nvme_create_queue_pair(idx, q, size, aio_context,
234 event_notifier_get_fd(s->irq_notifier));
235 bytes = QEMU_ALIGN_UP(s->page_size * NVME_NUM_REQS,
236 qemu_real_host_page_size());
237 q->prp_list_pages = qemu_try_memalign(qemu_real_host_page_size(), bytes);
238 if (!q->prp_list_pages) {
239 error_setg(errp, "Cannot allocate PRP page list");
240 goto fail;
242 memset(q->prp_list_pages, 0, bytes);
243 qemu_mutex_init(&q->lock);
244 q->s = s;
245 q->index = idx;
246 qemu_co_queue_init(&q->free_req_queue);
247 q->completion_bh = aio_bh_new(aio_context, nvme_process_completion_bh, q);
248 r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, bytes,
249 false, &prp_list_iova, errp);
250 if (r) {
251 error_prepend(errp, "Cannot map buffer for DMA: ");
252 goto fail;
254 q->free_req_head = -1;
255 for (i = 0; i < NVME_NUM_REQS; i++) {
256 NVMeRequest *req = &q->reqs[i];
257 req->cid = i + 1;
258 req->free_req_next = q->free_req_head;
259 q->free_req_head = i;
260 req->prp_list_page = q->prp_list_pages + i * s->page_size;
261 req->prp_list_iova = prp_list_iova + i * s->page_size;
264 if (!nvme_init_queue(s, &q->sq, size, NVME_SQ_ENTRY_BYTES, errp)) {
265 goto fail;
267 q->sq.doorbell = &s->doorbells[idx * s->doorbell_scale].sq_tail;
269 if (!nvme_init_queue(s, &q->cq, size, NVME_CQ_ENTRY_BYTES, errp)) {
270 goto fail;
272 q->cq.doorbell = &s->doorbells[idx * s->doorbell_scale].cq_head;
274 return q;
275 fail:
276 nvme_free_queue_pair(q);
277 return NULL;
280 /* With q->lock */
281 static void nvme_kick(NVMeQueuePair *q)
283 BDRVNVMeState *s = q->s;
285 if (!q->need_kick) {
286 return;
288 trace_nvme_kick(s, q->index);
289 assert(!(q->sq.tail & 0xFF00));
290 /* Fence the write to submission queue entry before notifying the device. */
291 smp_wmb();
292 *q->sq.doorbell = cpu_to_le32(q->sq.tail);
293 q->inflight += q->need_kick;
294 q->need_kick = 0;
297 static NVMeRequest *nvme_get_free_req_nofail_locked(NVMeQueuePair *q)
299 NVMeRequest *req;
301 req = &q->reqs[q->free_req_head];
302 q->free_req_head = req->free_req_next;
303 req->free_req_next = -1;
304 return req;
307 /* Return a free request element if any, otherwise return NULL. */
308 static NVMeRequest *nvme_get_free_req_nowait(NVMeQueuePair *q)
310 QEMU_LOCK_GUARD(&q->lock);
311 if (q->free_req_head == -1) {
312 return NULL;
314 return nvme_get_free_req_nofail_locked(q);
318 * Wait for a free request to become available if necessary, then
319 * return it.
321 static coroutine_fn NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
323 QEMU_LOCK_GUARD(&q->lock);
325 while (q->free_req_head == -1) {
326 trace_nvme_free_req_queue_wait(q->s, q->index);
327 qemu_co_queue_wait(&q->free_req_queue, &q->lock);
330 return nvme_get_free_req_nofail_locked(q);
333 /* With q->lock */
334 static void nvme_put_free_req_locked(NVMeQueuePair *q, NVMeRequest *req)
336 req->free_req_next = q->free_req_head;
337 q->free_req_head = req - q->reqs;
340 /* With q->lock */
341 static void nvme_wake_free_req_locked(NVMeQueuePair *q)
343 if (!qemu_co_queue_empty(&q->free_req_queue)) {
344 replay_bh_schedule_oneshot_event(q->s->aio_context,
345 nvme_free_req_queue_cb, q);
349 /* Insert a request in the freelist and wake waiters */
350 static void nvme_put_free_req_and_wake(NVMeQueuePair *q, NVMeRequest *req)
352 qemu_mutex_lock(&q->lock);
353 nvme_put_free_req_locked(q, req);
354 nvme_wake_free_req_locked(q);
355 qemu_mutex_unlock(&q->lock);
358 static inline int nvme_translate_error(const NvmeCqe *c)
360 uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
361 if (status) {
362 trace_nvme_error(le32_to_cpu(c->result),
363 le16_to_cpu(c->sq_head),
364 le16_to_cpu(c->sq_id),
365 le16_to_cpu(c->cid),
366 le16_to_cpu(status));
368 switch (status) {
369 case 0:
370 return 0;
371 case 1:
372 return -ENOSYS;
373 case 2:
374 return -EINVAL;
375 default:
376 return -EIO;
380 /* With q->lock */
381 static bool nvme_process_completion(NVMeQueuePair *q)
383 BDRVNVMeState *s = q->s;
384 bool progress = false;
385 NVMeRequest *preq;
386 NVMeRequest req;
387 NvmeCqe *c;
389 trace_nvme_process_completion(s, q->index, q->inflight);
392 * Support re-entrancy when a request cb() function invokes aio_poll().
393 * Pending completions must be visible to aio_poll() so that a cb()
394 * function can wait for the completion of another request.
396 * The aio_poll() loop will execute our BH and we'll resume completion
397 * processing there.
399 qemu_bh_schedule(q->completion_bh);
401 assert(q->inflight >= 0);
402 while (q->inflight) {
403 int ret;
404 int16_t cid;
406 c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
407 if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
408 break;
410 ret = nvme_translate_error(c);
411 if (ret) {
412 s->stats.completion_errors++;
414 q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
415 if (!q->cq.head) {
416 q->cq_phase = !q->cq_phase;
418 cid = le16_to_cpu(c->cid);
419 if (cid == 0 || cid > NVME_QUEUE_SIZE) {
420 warn_report("NVMe: Unexpected CID in completion queue: %"PRIu32", "
421 "queue size: %u", cid, NVME_QUEUE_SIZE);
422 continue;
424 trace_nvme_complete_command(s, q->index, cid);
425 preq = &q->reqs[cid - 1];
426 req = *preq;
427 assert(req.cid == cid);
428 assert(req.cb);
429 nvme_put_free_req_locked(q, preq);
430 preq->cb = preq->opaque = NULL;
431 q->inflight--;
432 qemu_mutex_unlock(&q->lock);
433 req.cb(req.opaque, ret);
434 qemu_mutex_lock(&q->lock);
435 progress = true;
437 if (progress) {
438 /* Notify the device so it can post more completions. */
439 smp_mb_release();
440 *q->cq.doorbell = cpu_to_le32(q->cq.head);
441 nvme_wake_free_req_locked(q);
444 qemu_bh_cancel(q->completion_bh);
446 return progress;
449 static void nvme_process_completion_bh(void *opaque)
451 NVMeQueuePair *q = opaque;
454 * We're being invoked because a nvme_process_completion() cb() function
455 * called aio_poll(). The callback may be waiting for further completions
456 * so notify the device that it has space to fill in more completions now.
458 smp_mb_release();
459 *q->cq.doorbell = cpu_to_le32(q->cq.head);
460 nvme_wake_free_req_locked(q);
462 nvme_process_completion(q);
465 static void nvme_trace_command(const NvmeCmd *cmd)
467 int i;
469 if (!trace_event_get_state_backends(TRACE_NVME_SUBMIT_COMMAND_RAW)) {
470 return;
472 for (i = 0; i < 8; ++i) {
473 uint8_t *cmdp = (uint8_t *)cmd + i * 8;
474 trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
475 cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
479 static void nvme_unplug_fn(void *opaque)
481 NVMeQueuePair *q = opaque;
483 QEMU_LOCK_GUARD(&q->lock);
484 nvme_kick(q);
485 nvme_process_completion(q);
488 static void nvme_submit_command(NVMeQueuePair *q, NVMeRequest *req,
489 NvmeCmd *cmd, BlockCompletionFunc cb,
490 void *opaque)
492 assert(!req->cb);
493 req->cb = cb;
494 req->opaque = opaque;
495 cmd->cid = cpu_to_le16(req->cid);
497 trace_nvme_submit_command(q->s, q->index, req->cid);
498 nvme_trace_command(cmd);
499 qemu_mutex_lock(&q->lock);
500 memcpy((uint8_t *)q->sq.queue +
501 q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
502 q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
503 q->need_kick++;
504 qemu_mutex_unlock(&q->lock);
506 blk_io_plug_call(nvme_unplug_fn, q);
509 static void nvme_admin_cmd_sync_cb(void *opaque, int ret)
511 int *pret = opaque;
512 *pret = ret;
513 aio_wait_kick();
516 static int nvme_admin_cmd_sync(BlockDriverState *bs, NvmeCmd *cmd)
518 BDRVNVMeState *s = bs->opaque;
519 NVMeQueuePair *q = s->queues[INDEX_ADMIN];
520 AioContext *aio_context = bdrv_get_aio_context(bs);
521 NVMeRequest *req;
522 int ret = -EINPROGRESS;
523 req = nvme_get_free_req_nowait(q);
524 if (!req) {
525 return -EBUSY;
527 nvme_submit_command(q, req, cmd, nvme_admin_cmd_sync_cb, &ret);
529 AIO_WAIT_WHILE(aio_context, ret == -EINPROGRESS);
530 return ret;
533 /* Returns true on success, false on failure. */
534 static bool nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
536 BDRVNVMeState *s = bs->opaque;
537 bool ret = false;
538 QEMU_AUTO_VFREE union {
539 NvmeIdCtrl ctrl;
540 NvmeIdNs ns;
541 } *id = NULL;
542 NvmeLBAF *lbaf;
543 uint16_t oncs;
544 int r;
545 uint64_t iova;
546 NvmeCmd cmd = {
547 .opcode = NVME_ADM_CMD_IDENTIFY,
548 .cdw10 = cpu_to_le32(0x1),
550 size_t id_size = QEMU_ALIGN_UP(sizeof(*id), qemu_real_host_page_size());
552 id = qemu_try_memalign(qemu_real_host_page_size(), id_size);
553 if (!id) {
554 error_setg(errp, "Cannot allocate buffer for identify response");
555 goto out;
557 r = qemu_vfio_dma_map(s->vfio, id, id_size, true, &iova, errp);
558 if (r) {
559 error_prepend(errp, "Cannot map buffer for DMA: ");
560 goto out;
563 memset(id, 0, id_size);
564 cmd.dptr.prp1 = cpu_to_le64(iova);
565 if (nvme_admin_cmd_sync(bs, &cmd)) {
566 error_setg(errp, "Failed to identify controller");
567 goto out;
570 if (le32_to_cpu(id->ctrl.nn) < namespace) {
571 error_setg(errp, "Invalid namespace");
572 goto out;
574 s->write_cache_supported = le32_to_cpu(id->ctrl.vwc) & 0x1;
575 s->max_transfer = (id->ctrl.mdts ? 1 << id->ctrl.mdts : 0) * s->page_size;
576 /* For now the page list buffer per command is one page, to hold at most
577 * s->page_size / sizeof(uint64_t) entries. */
578 s->max_transfer = MIN_NON_ZERO(s->max_transfer,
579 s->page_size / sizeof(uint64_t) * s->page_size);
581 oncs = le16_to_cpu(id->ctrl.oncs);
582 s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROES);
583 s->supports_discard = !!(oncs & NVME_ONCS_DSM);
585 memset(id, 0, id_size);
586 cmd.cdw10 = 0;
587 cmd.nsid = cpu_to_le32(namespace);
588 if (nvme_admin_cmd_sync(bs, &cmd)) {
589 error_setg(errp, "Failed to identify namespace");
590 goto out;
593 s->nsze = le64_to_cpu(id->ns.nsze);
594 lbaf = &id->ns.lbaf[NVME_ID_NS_FLBAS_INDEX(id->ns.flbas)];
596 if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(id->ns.dlfeat) &&
597 NVME_ID_NS_DLFEAT_READ_BEHAVIOR(id->ns.dlfeat) ==
598 NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) {
599 bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP;
602 if (lbaf->ms) {
603 error_setg(errp, "Namespaces with metadata are not yet supported");
604 goto out;
607 if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
608 (1 << lbaf->ds) > s->page_size)
610 error_setg(errp, "Namespace has unsupported block size (2^%d)",
611 lbaf->ds);
612 goto out;
615 ret = true;
616 s->blkshift = lbaf->ds;
617 out:
618 qemu_vfio_dma_unmap(s->vfio, id);
620 return ret;
623 static void nvme_poll_queue(NVMeQueuePair *q)
625 const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
626 NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
628 trace_nvme_poll_queue(q->s, q->index);
630 * Do an early check for completions. q->lock isn't needed because
631 * nvme_process_completion() only runs in the event loop thread and
632 * cannot race with itself.
634 if ((le16_to_cpu(cqe->status) & 0x1) == q->cq_phase) {
635 return;
638 qemu_mutex_lock(&q->lock);
639 while (nvme_process_completion(q)) {
640 /* Keep polling */
642 qemu_mutex_unlock(&q->lock);
645 static void nvme_poll_queues(BDRVNVMeState *s)
647 int i;
649 for (i = 0; i < s->queue_count; i++) {
650 nvme_poll_queue(s->queues[i]);
654 static void nvme_handle_event(EventNotifier *n)
656 BDRVNVMeState *s = container_of(n, BDRVNVMeState,
657 irq_notifier[MSIX_SHARED_IRQ_IDX]);
659 trace_nvme_handle_event(s);
660 event_notifier_test_and_clear(n);
661 nvme_poll_queues(s);
664 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
666 BDRVNVMeState *s = bs->opaque;
667 unsigned n = s->queue_count;
668 NVMeQueuePair *q;
669 NvmeCmd cmd;
670 unsigned queue_size = NVME_QUEUE_SIZE;
672 assert(n <= UINT16_MAX);
673 q = nvme_create_queue_pair(s, bdrv_get_aio_context(bs),
674 n, queue_size, errp);
675 if (!q) {
676 return false;
678 cmd = (NvmeCmd) {
679 .opcode = NVME_ADM_CMD_CREATE_CQ,
680 .dptr.prp1 = cpu_to_le64(q->cq.iova),
681 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
682 .cdw11 = cpu_to_le32(NVME_CQ_IEN | NVME_CQ_PC),
684 if (nvme_admin_cmd_sync(bs, &cmd)) {
685 error_setg(errp, "Failed to create CQ io queue [%u]", n);
686 goto out_error;
688 cmd = (NvmeCmd) {
689 .opcode = NVME_ADM_CMD_CREATE_SQ,
690 .dptr.prp1 = cpu_to_le64(q->sq.iova),
691 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
692 .cdw11 = cpu_to_le32(NVME_SQ_PC | (n << 16)),
694 if (nvme_admin_cmd_sync(bs, &cmd)) {
695 error_setg(errp, "Failed to create SQ io queue [%u]", n);
696 goto out_error;
698 s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
699 s->queues[n] = q;
700 s->queue_count++;
701 return true;
702 out_error:
703 nvme_free_queue_pair(q);
704 return false;
707 static bool nvme_poll_cb(void *opaque)
709 EventNotifier *e = opaque;
710 BDRVNVMeState *s = container_of(e, BDRVNVMeState,
711 irq_notifier[MSIX_SHARED_IRQ_IDX]);
712 int i;
714 for (i = 0; i < s->queue_count; i++) {
715 NVMeQueuePair *q = s->queues[i];
716 const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
717 NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
720 * q->lock isn't needed because nvme_process_completion() only runs in
721 * the event loop thread and cannot race with itself.
723 if ((le16_to_cpu(cqe->status) & 0x1) != q->cq_phase) {
724 return true;
727 return false;
730 static void nvme_poll_ready(EventNotifier *e)
732 BDRVNVMeState *s = container_of(e, BDRVNVMeState,
733 irq_notifier[MSIX_SHARED_IRQ_IDX]);
735 nvme_poll_queues(s);
738 static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
739 Error **errp)
741 BDRVNVMeState *s = bs->opaque;
742 NVMeQueuePair *q;
743 AioContext *aio_context = bdrv_get_aio_context(bs);
744 int ret;
745 uint64_t cap;
746 uint32_t ver;
747 uint64_t timeout_ms;
748 uint64_t deadline, now;
749 volatile NvmeBar *regs = NULL;
751 qemu_co_mutex_init(&s->dma_map_lock);
752 qemu_co_queue_init(&s->dma_flush_queue);
753 s->device = g_strdup(device);
754 s->nsid = namespace;
755 s->aio_context = bdrv_get_aio_context(bs);
756 ret = event_notifier_init(&s->irq_notifier[MSIX_SHARED_IRQ_IDX], 0);
757 if (ret) {
758 error_setg(errp, "Failed to init event notifier");
759 return ret;
762 s->vfio = qemu_vfio_open_pci(device, errp);
763 if (!s->vfio) {
764 ret = -EINVAL;
765 goto out;
768 regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, sizeof(NvmeBar),
769 PROT_READ | PROT_WRITE, errp);
770 if (!regs) {
771 ret = -EINVAL;
772 goto out;
774 /* Perform initialize sequence as described in NVMe spec "7.6.1
775 * Initialization". */
777 cap = le64_to_cpu(regs->cap);
778 trace_nvme_controller_capability_raw(cap);
779 trace_nvme_controller_capability("Maximum Queue Entries Supported",
780 1 + NVME_CAP_MQES(cap));
781 trace_nvme_controller_capability("Contiguous Queues Required",
782 NVME_CAP_CQR(cap));
783 trace_nvme_controller_capability("Doorbell Stride",
784 1 << (2 + NVME_CAP_DSTRD(cap)));
785 trace_nvme_controller_capability("Subsystem Reset Supported",
786 NVME_CAP_NSSRS(cap));
787 trace_nvme_controller_capability("Memory Page Size Minimum",
788 1 << (12 + NVME_CAP_MPSMIN(cap)));
789 trace_nvme_controller_capability("Memory Page Size Maximum",
790 1 << (12 + NVME_CAP_MPSMAX(cap)));
791 if (!NVME_CAP_CSS(cap)) {
792 error_setg(errp, "Device doesn't support NVMe command set");
793 ret = -EINVAL;
794 goto out;
797 s->page_size = 1u << (12 + NVME_CAP_MPSMIN(cap));
798 s->doorbell_scale = (4 << NVME_CAP_DSTRD(cap)) / sizeof(uint32_t);
799 bs->bl.opt_mem_alignment = s->page_size;
800 bs->bl.request_alignment = s->page_size;
801 timeout_ms = MIN(500 * NVME_CAP_TO(cap), 30000);
803 ver = le32_to_cpu(regs->vs);
804 trace_nvme_controller_spec_version(extract32(ver, 16, 16),
805 extract32(ver, 8, 8),
806 extract32(ver, 0, 8));
808 /* Reset device to get a clean state. */
809 regs->cc = cpu_to_le32(le32_to_cpu(regs->cc) & 0xFE);
810 /* Wait for CSTS.RDY = 0. */
811 deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * SCALE_MS;
812 while (NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
813 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
814 error_setg(errp, "Timeout while waiting for device to reset (%"
815 PRId64 " ms)",
816 timeout_ms);
817 ret = -ETIMEDOUT;
818 goto out;
822 s->bar0_wo_map = qemu_vfio_pci_map_bar(s->vfio, 0, 0,
823 sizeof(NvmeBar) + NVME_DOORBELL_SIZE,
824 PROT_WRITE, errp);
825 s->doorbells = (void *)((uintptr_t)s->bar0_wo_map + sizeof(NvmeBar));
826 if (!s->doorbells) {
827 ret = -EINVAL;
828 goto out;
831 /* Set up admin queue. */
832 s->queues = g_new(NVMeQueuePair *, 1);
833 q = nvme_create_queue_pair(s, aio_context, 0, NVME_QUEUE_SIZE, errp);
834 if (!q) {
835 ret = -EINVAL;
836 goto out;
838 s->queues[INDEX_ADMIN] = q;
839 s->queue_count = 1;
840 QEMU_BUILD_BUG_ON((NVME_QUEUE_SIZE - 1) & 0xF000);
841 regs->aqa = cpu_to_le32(((NVME_QUEUE_SIZE - 1) << AQA_ACQS_SHIFT) |
842 ((NVME_QUEUE_SIZE - 1) << AQA_ASQS_SHIFT));
843 regs->asq = cpu_to_le64(q->sq.iova);
844 regs->acq = cpu_to_le64(q->cq.iova);
846 /* After setting up all control registers we can enable device now. */
847 regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << CC_IOCQES_SHIFT) |
848 (ctz32(NVME_SQ_ENTRY_BYTES) << CC_IOSQES_SHIFT) |
849 CC_EN_MASK);
850 /* Wait for CSTS.RDY = 1. */
851 now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
852 deadline = now + timeout_ms * SCALE_MS;
853 while (!NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
854 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
855 error_setg(errp, "Timeout while waiting for device to start (%"
856 PRId64 " ms)",
857 timeout_ms);
858 ret = -ETIMEDOUT;
859 goto out;
863 ret = qemu_vfio_pci_init_irq(s->vfio, s->irq_notifier,
864 VFIO_PCI_MSIX_IRQ_INDEX, errp);
865 if (ret) {
866 goto out;
868 aio_set_event_notifier(bdrv_get_aio_context(bs),
869 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
870 nvme_handle_event, nvme_poll_cb,
871 nvme_poll_ready);
873 if (!nvme_identify(bs, namespace, errp)) {
874 ret = -EIO;
875 goto out;
878 /* Set up command queues. */
879 if (!nvme_add_io_queue(bs, errp)) {
880 ret = -EIO;
882 out:
883 if (regs) {
884 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)regs, 0, sizeof(NvmeBar));
887 /* Cleaning up is done in nvme_file_open() upon error. */
888 return ret;
891 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
893 * nvme://0000:44:00.0/1
895 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
896 * is the PCI address, and the last part is the namespace number starting from
897 * 1 according to the NVMe spec. */
898 static void nvme_parse_filename(const char *filename, QDict *options,
899 Error **errp)
901 int pref = strlen("nvme://");
903 if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
904 const char *tmp = filename + pref;
905 char *device;
906 const char *namespace;
907 unsigned long ns;
908 const char *slash = strchr(tmp, '/');
909 if (!slash) {
910 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
911 return;
913 device = g_strndup(tmp, slash - tmp);
914 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
915 g_free(device);
916 namespace = slash + 1;
917 if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
918 error_setg(errp, "Invalid namespace '%s', positive number expected",
919 namespace);
920 return;
922 qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
923 *namespace ? namespace : "1");
927 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
928 Error **errp)
930 int ret;
931 BDRVNVMeState *s = bs->opaque;
932 NvmeCmd cmd = {
933 .opcode = NVME_ADM_CMD_SET_FEATURES,
934 .nsid = cpu_to_le32(s->nsid),
935 .cdw10 = cpu_to_le32(0x06),
936 .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
939 ret = nvme_admin_cmd_sync(bs, &cmd);
940 if (ret) {
941 error_setg(errp, "Failed to configure NVMe write cache");
943 return ret;
946 static void nvme_close(BlockDriverState *bs)
948 BDRVNVMeState *s = bs->opaque;
950 for (unsigned i = 0; i < s->queue_count; ++i) {
951 nvme_free_queue_pair(s->queues[i]);
953 g_free(s->queues);
954 aio_set_event_notifier(bdrv_get_aio_context(bs),
955 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
956 NULL, NULL, NULL);
957 event_notifier_cleanup(&s->irq_notifier[MSIX_SHARED_IRQ_IDX]);
958 qemu_vfio_pci_unmap_bar(s->vfio, 0, s->bar0_wo_map,
959 0, sizeof(NvmeBar) + NVME_DOORBELL_SIZE);
960 qemu_vfio_close(s->vfio);
962 g_free(s->device);
965 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
966 Error **errp)
968 const char *device;
969 QemuOpts *opts;
970 int namespace;
971 int ret;
972 BDRVNVMeState *s = bs->opaque;
974 bs->supported_write_flags = BDRV_REQ_FUA;
976 opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
977 qemu_opts_absorb_qdict(opts, options, &error_abort);
978 device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
979 if (!device) {
980 error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
981 qemu_opts_del(opts);
982 return -EINVAL;
985 namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
986 ret = nvme_init(bs, device, namespace, errp);
987 qemu_opts_del(opts);
988 if (ret) {
989 goto fail;
991 if (flags & BDRV_O_NOCACHE) {
992 if (!s->write_cache_supported) {
993 error_setg(errp,
994 "NVMe controller doesn't support write cache configuration");
995 ret = -EINVAL;
996 } else {
997 ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
998 errp);
1000 if (ret) {
1001 goto fail;
1004 return 0;
1005 fail:
1006 nvme_close(bs);
1007 return ret;
1010 static int64_t coroutine_fn nvme_co_getlength(BlockDriverState *bs)
1012 BDRVNVMeState *s = bs->opaque;
1013 return s->nsze << s->blkshift;
1016 static uint32_t nvme_get_blocksize(BlockDriverState *bs)
1018 BDRVNVMeState *s = bs->opaque;
1019 assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
1020 return UINT32_C(1) << s->blkshift;
1023 static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
1025 uint32_t blocksize = nvme_get_blocksize(bs);
1026 bsz->phys = blocksize;
1027 bsz->log = blocksize;
1028 return 0;
1031 /* Called with s->dma_map_lock */
1032 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
1033 QEMUIOVector *qiov)
1035 int r = 0;
1036 BDRVNVMeState *s = bs->opaque;
1038 s->dma_map_count -= qiov->size;
1039 if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
1040 r = qemu_vfio_dma_reset_temporary(s->vfio);
1041 if (!r) {
1042 qemu_co_queue_restart_all(&s->dma_flush_queue);
1045 return r;
1048 /* Called with s->dma_map_lock */
1049 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
1050 NVMeRequest *req, QEMUIOVector *qiov)
1052 BDRVNVMeState *s = bs->opaque;
1053 uint64_t *pagelist = req->prp_list_page;
1054 int i, j, r;
1055 int entries = 0;
1056 Error *local_err = NULL, **errp = NULL;
1058 assert(qiov->size);
1059 assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
1060 assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
1061 for (i = 0; i < qiov->niov; ++i) {
1062 bool retry = true;
1063 uint64_t iova;
1064 size_t len = QEMU_ALIGN_UP(qiov->iov[i].iov_len,
1065 qemu_real_host_page_size());
1066 try_map:
1067 r = qemu_vfio_dma_map(s->vfio,
1068 qiov->iov[i].iov_base,
1069 len, true, &iova, errp);
1070 if (r == -ENOSPC) {
1072 * In addition to the -ENOMEM error, the VFIO_IOMMU_MAP_DMA
1073 * ioctl returns -ENOSPC to signal the user exhausted the DMA
1074 * mappings available for a container since Linux kernel commit
1075 * 492855939bdb ("vfio/type1: Limit DMA mappings per container",
1076 * April 2019, see CVE-2019-3882).
1078 * This block driver already handles this error path by checking
1079 * for the -ENOMEM error, so we directly replace -ENOSPC by
1080 * -ENOMEM. Beside, -ENOSPC has a specific meaning for blockdev
1081 * coroutines: it triggers BLOCKDEV_ON_ERROR_ENOSPC and
1082 * BLOCK_ERROR_ACTION_STOP which stops the VM, asking the operator
1083 * to add more storage to the blockdev. Not something we can do
1084 * easily with an IOMMU :)
1086 r = -ENOMEM;
1088 if (r == -ENOMEM && retry) {
1090 * We exhausted the DMA mappings available for our container:
1091 * recycle the volatile IOVA mappings.
1093 retry = false;
1094 trace_nvme_dma_flush_queue_wait(s);
1095 if (s->dma_map_count) {
1096 trace_nvme_dma_map_flush(s);
1097 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
1098 } else {
1099 r = qemu_vfio_dma_reset_temporary(s->vfio);
1100 if (r) {
1101 goto fail;
1104 errp = &local_err;
1106 goto try_map;
1108 if (r) {
1109 goto fail;
1112 for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
1113 pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
1115 trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
1116 qiov->iov[i].iov_len / s->page_size);
1119 s->dma_map_count += qiov->size;
1121 assert(entries <= s->page_size / sizeof(uint64_t));
1122 switch (entries) {
1123 case 0:
1124 abort();
1125 case 1:
1126 cmd->dptr.prp1 = pagelist[0];
1127 cmd->dptr.prp2 = 0;
1128 break;
1129 case 2:
1130 cmd->dptr.prp1 = pagelist[0];
1131 cmd->dptr.prp2 = pagelist[1];
1132 break;
1133 default:
1134 cmd->dptr.prp1 = pagelist[0];
1135 cmd->dptr.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
1136 break;
1138 trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
1139 for (i = 0; i < entries; ++i) {
1140 trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
1142 return 0;
1143 fail:
1144 /* No need to unmap [0 - i) iovs even if we've failed, since we don't
1145 * increment s->dma_map_count. This is okay for fixed mapping memory areas
1146 * because they are already mapped before calling this function; for
1147 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
1148 * calling qemu_vfio_dma_reset_temporary when necessary. */
1149 if (local_err) {
1150 error_reportf_err(local_err, "Cannot map buffer for DMA: ");
1152 return r;
1155 typedef struct {
1156 Coroutine *co;
1157 int ret;
1158 AioContext *ctx;
1159 } NVMeCoData;
1161 static void nvme_rw_cb_bh(void *opaque)
1163 NVMeCoData *data = opaque;
1164 qemu_coroutine_enter(data->co);
1167 static void nvme_rw_cb(void *opaque, int ret)
1169 NVMeCoData *data = opaque;
1170 data->ret = ret;
1171 if (!data->co) {
1172 /* The rw coroutine hasn't yielded, don't try to enter. */
1173 return;
1175 replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data);
1178 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
1179 uint64_t offset, uint64_t bytes,
1180 QEMUIOVector *qiov,
1181 bool is_write,
1182 int flags)
1184 int r;
1185 BDRVNVMeState *s = bs->opaque;
1186 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1187 NVMeRequest *req;
1189 uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
1190 (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
1191 NvmeCmd cmd = {
1192 .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
1193 .nsid = cpu_to_le32(s->nsid),
1194 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1195 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1196 .cdw12 = cpu_to_le32(cdw12),
1198 NVMeCoData data = {
1199 .ctx = bdrv_get_aio_context(bs),
1200 .ret = -EINPROGRESS,
1203 trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
1204 assert(s->queue_count > 1);
1205 req = nvme_get_free_req(ioq);
1206 assert(req);
1208 qemu_co_mutex_lock(&s->dma_map_lock);
1209 r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
1210 qemu_co_mutex_unlock(&s->dma_map_lock);
1211 if (r) {
1212 nvme_put_free_req_and_wake(ioq, req);
1213 return r;
1215 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1217 data.co = qemu_coroutine_self();
1218 while (data.ret == -EINPROGRESS) {
1219 qemu_coroutine_yield();
1222 qemu_co_mutex_lock(&s->dma_map_lock);
1223 r = nvme_cmd_unmap_qiov(bs, qiov);
1224 qemu_co_mutex_unlock(&s->dma_map_lock);
1225 if (r) {
1226 return r;
1229 trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
1230 return data.ret;
1233 static inline bool nvme_qiov_aligned(BlockDriverState *bs,
1234 const QEMUIOVector *qiov)
1236 int i;
1237 BDRVNVMeState *s = bs->opaque;
1239 for (i = 0; i < qiov->niov; ++i) {
1240 if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base,
1241 qemu_real_host_page_size()) ||
1242 !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, qemu_real_host_page_size())) {
1243 trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
1244 qiov->iov[i].iov_len, s->page_size);
1245 return false;
1248 return true;
1251 static coroutine_fn int nvme_co_prw(BlockDriverState *bs,
1252 uint64_t offset, uint64_t bytes,
1253 QEMUIOVector *qiov, bool is_write,
1254 int flags)
1256 BDRVNVMeState *s = bs->opaque;
1257 int r;
1258 QEMU_AUTO_VFREE uint8_t *buf = NULL;
1259 QEMUIOVector local_qiov;
1260 size_t len = QEMU_ALIGN_UP(bytes, qemu_real_host_page_size());
1261 assert(QEMU_IS_ALIGNED(offset, s->page_size));
1262 assert(QEMU_IS_ALIGNED(bytes, s->page_size));
1263 assert(bytes <= s->max_transfer);
1264 if (nvme_qiov_aligned(bs, qiov)) {
1265 s->stats.aligned_accesses++;
1266 return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1268 s->stats.unaligned_accesses++;
1269 trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1270 buf = qemu_try_memalign(qemu_real_host_page_size(), len);
1272 if (!buf) {
1273 return -ENOMEM;
1275 qemu_iovec_init(&local_qiov, 1);
1276 if (is_write) {
1277 qemu_iovec_to_buf(qiov, 0, buf, bytes);
1279 qemu_iovec_add(&local_qiov, buf, bytes);
1280 r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1281 qemu_iovec_destroy(&local_qiov);
1282 if (!r && !is_write) {
1283 qemu_iovec_from_buf(qiov, 0, buf, bytes);
1285 return r;
1288 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1289 int64_t offset, int64_t bytes,
1290 QEMUIOVector *qiov,
1291 BdrvRequestFlags flags)
1293 return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1296 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1297 int64_t offset, int64_t bytes,
1298 QEMUIOVector *qiov,
1299 BdrvRequestFlags flags)
1301 return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1304 static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1306 BDRVNVMeState *s = bs->opaque;
1307 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1308 NVMeRequest *req;
1309 NvmeCmd cmd = {
1310 .opcode = NVME_CMD_FLUSH,
1311 .nsid = cpu_to_le32(s->nsid),
1313 NVMeCoData data = {
1314 .ctx = bdrv_get_aio_context(bs),
1315 .ret = -EINPROGRESS,
1318 assert(s->queue_count > 1);
1319 req = nvme_get_free_req(ioq);
1320 assert(req);
1321 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1323 data.co = qemu_coroutine_self();
1324 if (data.ret == -EINPROGRESS) {
1325 qemu_coroutine_yield();
1328 return data.ret;
1332 static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs,
1333 int64_t offset,
1334 int64_t bytes,
1335 BdrvRequestFlags flags)
1337 BDRVNVMeState *s = bs->opaque;
1338 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1339 NVMeRequest *req;
1340 uint32_t cdw12;
1342 if (!s->supports_write_zeroes) {
1343 return -ENOTSUP;
1346 if (bytes == 0) {
1347 return 0;
1350 cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF;
1352 * We should not lose information. pwrite_zeroes_alignment and
1353 * max_pwrite_zeroes guarantees it.
1355 assert(((cdw12 + 1) << s->blkshift) == bytes);
1357 NvmeCmd cmd = {
1358 .opcode = NVME_CMD_WRITE_ZEROES,
1359 .nsid = cpu_to_le32(s->nsid),
1360 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1361 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1364 NVMeCoData data = {
1365 .ctx = bdrv_get_aio_context(bs),
1366 .ret = -EINPROGRESS,
1369 if (flags & BDRV_REQ_MAY_UNMAP) {
1370 cdw12 |= (1 << 25);
1373 if (flags & BDRV_REQ_FUA) {
1374 cdw12 |= (1 << 30);
1377 cmd.cdw12 = cpu_to_le32(cdw12);
1379 trace_nvme_write_zeroes(s, offset, bytes, flags);
1380 assert(s->queue_count > 1);
1381 req = nvme_get_free_req(ioq);
1382 assert(req);
1384 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1386 data.co = qemu_coroutine_self();
1387 while (data.ret == -EINPROGRESS) {
1388 qemu_coroutine_yield();
1391 trace_nvme_rw_done(s, true, offset, bytes, data.ret);
1392 return data.ret;
1396 static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs,
1397 int64_t offset,
1398 int64_t bytes)
1400 BDRVNVMeState *s = bs->opaque;
1401 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1402 NVMeRequest *req;
1403 QEMU_AUTO_VFREE NvmeDsmRange *buf = NULL;
1404 QEMUIOVector local_qiov;
1405 int ret;
1407 NvmeCmd cmd = {
1408 .opcode = NVME_CMD_DSM,
1409 .nsid = cpu_to_le32(s->nsid),
1410 .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/
1411 .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/
1414 NVMeCoData data = {
1415 .ctx = bdrv_get_aio_context(bs),
1416 .ret = -EINPROGRESS,
1419 if (!s->supports_discard) {
1420 return -ENOTSUP;
1423 assert(s->queue_count > 1);
1426 * Filling the @buf requires @offset and @bytes to satisfy restrictions
1427 * defined in nvme_refresh_limits().
1429 assert(QEMU_IS_ALIGNED(bytes, 1UL << s->blkshift));
1430 assert(QEMU_IS_ALIGNED(offset, 1UL << s->blkshift));
1431 assert((bytes >> s->blkshift) <= UINT32_MAX);
1433 buf = qemu_try_memalign(s->page_size, s->page_size);
1434 if (!buf) {
1435 return -ENOMEM;
1437 memset(buf, 0, s->page_size);
1438 buf->nlb = cpu_to_le32(bytes >> s->blkshift);
1439 buf->slba = cpu_to_le64(offset >> s->blkshift);
1440 buf->cattr = 0;
1442 qemu_iovec_init(&local_qiov, 1);
1443 qemu_iovec_add(&local_qiov, buf, 4096);
1445 req = nvme_get_free_req(ioq);
1446 assert(req);
1448 qemu_co_mutex_lock(&s->dma_map_lock);
1449 ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov);
1450 qemu_co_mutex_unlock(&s->dma_map_lock);
1452 if (ret) {
1453 nvme_put_free_req_and_wake(ioq, req);
1454 goto out;
1457 trace_nvme_dsm(s, offset, bytes);
1459 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1461 data.co = qemu_coroutine_self();
1462 while (data.ret == -EINPROGRESS) {
1463 qemu_coroutine_yield();
1466 qemu_co_mutex_lock(&s->dma_map_lock);
1467 ret = nvme_cmd_unmap_qiov(bs, &local_qiov);
1468 qemu_co_mutex_unlock(&s->dma_map_lock);
1470 if (ret) {
1471 goto out;
1474 ret = data.ret;
1475 trace_nvme_dsm_done(s, offset, bytes, ret);
1476 out:
1477 qemu_iovec_destroy(&local_qiov);
1478 return ret;
1482 static int coroutine_fn nvme_co_truncate(BlockDriverState *bs, int64_t offset,
1483 bool exact, PreallocMode prealloc,
1484 BdrvRequestFlags flags, Error **errp)
1486 int64_t cur_length;
1488 if (prealloc != PREALLOC_MODE_OFF) {
1489 error_setg(errp, "Unsupported preallocation mode '%s'",
1490 PreallocMode_str(prealloc));
1491 return -ENOTSUP;
1494 cur_length = nvme_co_getlength(bs);
1495 if (offset != cur_length && exact) {
1496 error_setg(errp, "Cannot resize NVMe devices");
1497 return -ENOTSUP;
1498 } else if (offset > cur_length) {
1499 error_setg(errp, "Cannot grow NVMe devices");
1500 return -EINVAL;
1503 return 0;
1506 static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1507 BlockReopenQueue *queue, Error **errp)
1509 return 0;
1512 static void nvme_refresh_filename(BlockDriverState *bs)
1514 BDRVNVMeState *s = bs->opaque;
1516 snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1517 s->device, s->nsid);
1520 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1522 BDRVNVMeState *s = bs->opaque;
1524 bs->bl.opt_mem_alignment = s->page_size;
1525 bs->bl.request_alignment = s->page_size;
1526 bs->bl.max_transfer = s->max_transfer;
1529 * Look at nvme_co_pwrite_zeroes: after shift and decrement we should get
1530 * at most 0xFFFF
1532 bs->bl.max_pwrite_zeroes = 1ULL << (s->blkshift + 16);
1533 bs->bl.pwrite_zeroes_alignment = MAX(bs->bl.request_alignment,
1534 1UL << s->blkshift);
1536 bs->bl.max_pdiscard = (uint64_t)UINT32_MAX << s->blkshift;
1537 bs->bl.pdiscard_alignment = MAX(bs->bl.request_alignment,
1538 1UL << s->blkshift);
1541 static void nvme_detach_aio_context(BlockDriverState *bs)
1543 BDRVNVMeState *s = bs->opaque;
1545 for (unsigned i = 0; i < s->queue_count; i++) {
1546 NVMeQueuePair *q = s->queues[i];
1548 qemu_bh_delete(q->completion_bh);
1549 q->completion_bh = NULL;
1552 aio_set_event_notifier(bdrv_get_aio_context(bs),
1553 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1554 NULL, NULL, NULL);
1557 static void nvme_attach_aio_context(BlockDriverState *bs,
1558 AioContext *new_context)
1560 BDRVNVMeState *s = bs->opaque;
1562 s->aio_context = new_context;
1563 aio_set_event_notifier(new_context, &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1564 nvme_handle_event, nvme_poll_cb,
1565 nvme_poll_ready);
1567 for (unsigned i = 0; i < s->queue_count; i++) {
1568 NVMeQueuePair *q = s->queues[i];
1570 q->completion_bh =
1571 aio_bh_new(new_context, nvme_process_completion_bh, q);
1575 static bool nvme_register_buf(BlockDriverState *bs, void *host, size_t size,
1576 Error **errp)
1578 int ret;
1579 BDRVNVMeState *s = bs->opaque;
1582 * FIXME: we may run out of IOVA addresses after repeated
1583 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1584 * doesn't reclaim addresses for fixed mappings.
1586 ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL, errp);
1587 return ret == 0;
1590 static void nvme_unregister_buf(BlockDriverState *bs, void *host, size_t size)
1592 BDRVNVMeState *s = bs->opaque;
1594 qemu_vfio_dma_unmap(s->vfio, host);
1597 static BlockStatsSpecific *nvme_get_specific_stats(BlockDriverState *bs)
1599 BlockStatsSpecific *stats = g_new(BlockStatsSpecific, 1);
1600 BDRVNVMeState *s = bs->opaque;
1602 stats->driver = BLOCKDEV_DRIVER_NVME;
1603 stats->u.nvme = (BlockStatsSpecificNvme) {
1604 .completion_errors = s->stats.completion_errors,
1605 .aligned_accesses = s->stats.aligned_accesses,
1606 .unaligned_accesses = s->stats.unaligned_accesses,
1609 return stats;
1612 static const char *const nvme_strong_runtime_opts[] = {
1613 NVME_BLOCK_OPT_DEVICE,
1614 NVME_BLOCK_OPT_NAMESPACE,
1616 NULL
1619 static BlockDriver bdrv_nvme = {
1620 .format_name = "nvme",
1621 .protocol_name = "nvme",
1622 .instance_size = sizeof(BDRVNVMeState),
1624 .bdrv_co_create_opts = bdrv_co_create_opts_simple,
1625 .create_opts = &bdrv_create_opts_simple,
1627 .bdrv_parse_filename = nvme_parse_filename,
1628 .bdrv_file_open = nvme_file_open,
1629 .bdrv_close = nvme_close,
1630 .bdrv_co_getlength = nvme_co_getlength,
1631 .bdrv_probe_blocksizes = nvme_probe_blocksizes,
1632 .bdrv_co_truncate = nvme_co_truncate,
1634 .bdrv_co_preadv = nvme_co_preadv,
1635 .bdrv_co_pwritev = nvme_co_pwritev,
1637 .bdrv_co_pwrite_zeroes = nvme_co_pwrite_zeroes,
1638 .bdrv_co_pdiscard = nvme_co_pdiscard,
1640 .bdrv_co_flush_to_disk = nvme_co_flush,
1641 .bdrv_reopen_prepare = nvme_reopen_prepare,
1643 .bdrv_refresh_filename = nvme_refresh_filename,
1644 .bdrv_refresh_limits = nvme_refresh_limits,
1645 .strong_runtime_opts = nvme_strong_runtime_opts,
1646 .bdrv_get_specific_stats = nvme_get_specific_stats,
1648 .bdrv_detach_aio_context = nvme_detach_aio_context,
1649 .bdrv_attach_aio_context = nvme_attach_aio_context,
1651 .bdrv_register_buf = nvme_register_buf,
1652 .bdrv_unregister_buf = nvme_unregister_buf,
1655 static void bdrv_nvme_init(void)
1657 bdrv_register(&bdrv_nvme);
1660 block_init(bdrv_nvme_init);