plugins: Update the documentation block for plugin-gen.c
[qemu/armbru.git] / hw / ppc / spapr_pci.c
blob72cfba419aae119c3629751e4e15751605e5431b
1 /*
2 * QEMU sPAPR PCI host originated from Uninorth PCI host
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
26 #include "qemu/osdep.h"
27 #include "qapi/error.h"
28 #include "hw/irq.h"
29 #include "hw/sysbus.h"
30 #include "migration/vmstate.h"
31 #include "hw/pci/pci.h"
32 #include "hw/pci/msi.h"
33 #include "hw/pci/msix.h"
34 #include "hw/pci/pci_host.h"
35 #include "hw/ppc/spapr.h"
36 #include "hw/pci-host/spapr.h"
37 #include "exec/ram_addr.h"
38 #include <libfdt.h>
39 #include "trace.h"
40 #include "qemu/error-report.h"
41 #include "qemu/module.h"
42 #include "hw/ppc/fdt.h"
43 #include "hw/pci/pci_bridge.h"
44 #include "hw/pci/pci_bus.h"
45 #include "hw/pci/pci_ids.h"
46 #include "hw/ppc/spapr_drc.h"
47 #include "hw/qdev-properties.h"
48 #include "sysemu/device_tree.h"
49 #include "sysemu/kvm.h"
50 #include "sysemu/hostmem.h"
51 #include "sysemu/numa.h"
52 #include "hw/ppc/spapr_numa.h"
53 #include "qemu/log.h"
55 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
56 #define RTAS_QUERY_FN 0
57 #define RTAS_CHANGE_FN 1
58 #define RTAS_RESET_FN 2
59 #define RTAS_CHANGE_MSI_FN 3
60 #define RTAS_CHANGE_MSIX_FN 4
62 /* Interrupt types to return on RTAS_CHANGE_* */
63 #define RTAS_TYPE_MSI 1
64 #define RTAS_TYPE_MSIX 2
66 SpaprPhbState *spapr_pci_find_phb(SpaprMachineState *spapr, uint64_t buid)
68 SpaprPhbState *sphb;
70 QLIST_FOREACH(sphb, &spapr->phbs, list) {
71 if (sphb->buid != buid) {
72 continue;
74 return sphb;
77 return NULL;
80 PCIDevice *spapr_pci_find_dev(SpaprMachineState *spapr, uint64_t buid,
81 uint32_t config_addr)
83 SpaprPhbState *sphb = spapr_pci_find_phb(spapr, buid);
84 PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
85 int bus_num = (config_addr >> 16) & 0xFF;
86 int devfn = (config_addr >> 8) & 0xFF;
88 if (!phb) {
89 return NULL;
92 return pci_find_device(phb->bus, bus_num, devfn);
95 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
97 /* This handles the encoding of extended config space addresses */
98 return ((arg >> 20) & 0xf00) | (arg & 0xff);
101 static void finish_read_pci_config(SpaprMachineState *spapr, uint64_t buid,
102 uint32_t addr, uint32_t size,
103 target_ulong rets)
105 PCIDevice *pci_dev;
106 uint32_t val;
108 if ((size != 1) && (size != 2) && (size != 4)) {
109 /* access must be 1, 2 or 4 bytes */
110 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
111 return;
114 pci_dev = spapr_pci_find_dev(spapr, buid, addr);
115 addr = rtas_pci_cfgaddr(addr);
117 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
118 /* Access must be to a valid device, within bounds and
119 * naturally aligned */
120 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
121 return;
124 val = pci_host_config_read_common(pci_dev, addr,
125 pci_config_size(pci_dev), size);
127 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
128 rtas_st(rets, 1, val);
131 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
132 uint32_t token, uint32_t nargs,
133 target_ulong args,
134 uint32_t nret, target_ulong rets)
136 uint64_t buid;
137 uint32_t size, addr;
139 if ((nargs != 4) || (nret != 2)) {
140 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
141 return;
144 buid = rtas_ldq(args, 1);
145 size = rtas_ld(args, 3);
146 addr = rtas_ld(args, 0);
148 finish_read_pci_config(spapr, buid, addr, size, rets);
151 static void rtas_read_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
152 uint32_t token, uint32_t nargs,
153 target_ulong args,
154 uint32_t nret, target_ulong rets)
156 uint32_t size, addr;
158 if ((nargs != 2) || (nret != 2)) {
159 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
160 return;
163 size = rtas_ld(args, 1);
164 addr = rtas_ld(args, 0);
166 finish_read_pci_config(spapr, 0, addr, size, rets);
169 static void finish_write_pci_config(SpaprMachineState *spapr, uint64_t buid,
170 uint32_t addr, uint32_t size,
171 uint32_t val, target_ulong rets)
173 PCIDevice *pci_dev;
175 if ((size != 1) && (size != 2) && (size != 4)) {
176 /* access must be 1, 2 or 4 bytes */
177 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
178 return;
181 pci_dev = spapr_pci_find_dev(spapr, buid, addr);
182 addr = rtas_pci_cfgaddr(addr);
184 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
185 /* Access must be to a valid device, within bounds and
186 * naturally aligned */
187 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
188 return;
191 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
192 val, size);
194 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
197 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
198 uint32_t token, uint32_t nargs,
199 target_ulong args,
200 uint32_t nret, target_ulong rets)
202 uint64_t buid;
203 uint32_t val, size, addr;
205 if ((nargs != 5) || (nret != 1)) {
206 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
207 return;
210 buid = rtas_ldq(args, 1);
211 val = rtas_ld(args, 4);
212 size = rtas_ld(args, 3);
213 addr = rtas_ld(args, 0);
215 finish_write_pci_config(spapr, buid, addr, size, val, rets);
218 static void rtas_write_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
219 uint32_t token, uint32_t nargs,
220 target_ulong args,
221 uint32_t nret, target_ulong rets)
223 uint32_t val, size, addr;
225 if ((nargs != 3) || (nret != 1)) {
226 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
227 return;
231 val = rtas_ld(args, 2);
232 size = rtas_ld(args, 1);
233 addr = rtas_ld(args, 0);
235 finish_write_pci_config(spapr, 0, addr, size, val, rets);
239 * Set MSI/MSIX message data.
240 * This is required for msi_notify()/msix_notify() which
241 * will write at the addresses via spapr_msi_write().
243 * If hwaddr == 0, all entries will have .data == first_irq i.e.
244 * table will be reset.
246 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
247 unsigned first_irq, unsigned req_num)
249 unsigned i;
250 MSIMessage msg = { .address = addr, .data = first_irq };
252 if (!msix) {
253 msi_set_message(pdev, msg);
254 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
255 return;
258 for (i = 0; i < req_num; ++i) {
259 msix_set_message(pdev, i, msg);
260 trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
261 if (addr) {
262 ++msg.data;
267 static void rtas_ibm_change_msi(PowerPCCPU *cpu, SpaprMachineState *spapr,
268 uint32_t token, uint32_t nargs,
269 target_ulong args, uint32_t nret,
270 target_ulong rets)
272 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
273 uint32_t config_addr = rtas_ld(args, 0);
274 uint64_t buid = rtas_ldq(args, 1);
275 unsigned int func = rtas_ld(args, 3);
276 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
277 unsigned int seq_num = rtas_ld(args, 5);
278 unsigned int ret_intr_type;
279 unsigned int irq, max_irqs = 0;
280 SpaprPhbState *phb = NULL;
281 PCIDevice *pdev = NULL;
282 SpaprPciMsi *msi;
283 int *config_addr_key;
284 Error *err = NULL;
285 int i;
287 /* Fins SpaprPhbState */
288 phb = spapr_pci_find_phb(spapr, buid);
289 if (phb) {
290 pdev = spapr_pci_find_dev(spapr, buid, config_addr);
292 if (!phb || !pdev) {
293 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
294 return;
297 switch (func) {
298 case RTAS_CHANGE_FN:
299 if (msi_present(pdev)) {
300 ret_intr_type = RTAS_TYPE_MSI;
301 } else if (msix_present(pdev)) {
302 ret_intr_type = RTAS_TYPE_MSIX;
303 } else {
304 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
305 return;
307 break;
308 case RTAS_CHANGE_MSI_FN:
309 if (msi_present(pdev)) {
310 ret_intr_type = RTAS_TYPE_MSI;
311 } else {
312 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
313 return;
315 break;
316 case RTAS_CHANGE_MSIX_FN:
317 if (msix_present(pdev)) {
318 ret_intr_type = RTAS_TYPE_MSIX;
319 } else {
320 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
321 return;
323 break;
324 default:
325 error_report("rtas_ibm_change_msi(%u) is not implemented", func);
326 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
327 return;
330 msi = (SpaprPciMsi *) g_hash_table_lookup(phb->msi, &config_addr);
332 /* Releasing MSIs */
333 if (!req_num) {
334 if (!msi) {
335 trace_spapr_pci_msi("Releasing wrong config", config_addr);
336 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
337 return;
340 if (msi_present(pdev)) {
341 spapr_msi_setmsg(pdev, 0, false, 0, 0);
343 if (msix_present(pdev)) {
344 spapr_msi_setmsg(pdev, 0, true, 0, 0);
346 g_hash_table_remove(phb->msi, &config_addr);
348 trace_spapr_pci_msi("Released MSIs", config_addr);
349 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
350 rtas_st(rets, 1, 0);
351 return;
354 /* Enabling MSI */
356 /* Check if the device supports as many IRQs as requested */
357 if (ret_intr_type == RTAS_TYPE_MSI) {
358 max_irqs = msi_nr_vectors_allocated(pdev);
359 } else if (ret_intr_type == RTAS_TYPE_MSIX) {
360 max_irqs = pdev->msix_entries_nr;
362 if (!max_irqs) {
363 error_report("Requested interrupt type %d is not enabled for device %x",
364 ret_intr_type, config_addr);
365 rtas_st(rets, 0, -1); /* Hardware error */
366 return;
368 /* Correct the number if the guest asked for too many */
369 if (req_num > max_irqs) {
370 trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
371 req_num = max_irqs;
372 irq = 0; /* to avoid misleading trace */
373 goto out;
376 /* Allocate MSIs */
377 if (smc->legacy_irq_allocation) {
378 irq = spapr_irq_find(spapr, req_num, ret_intr_type == RTAS_TYPE_MSI,
379 &err);
380 } else {
381 irq = spapr_irq_msi_alloc(spapr, req_num,
382 ret_intr_type == RTAS_TYPE_MSI, &err);
384 if (err) {
385 error_reportf_err(err, "Can't allocate MSIs for device %x: ",
386 config_addr);
387 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
388 return;
391 for (i = 0; i < req_num; i++) {
392 spapr_irq_claim(spapr, irq + i, false, &err);
393 if (err) {
394 if (i) {
395 spapr_irq_free(spapr, irq, i);
397 if (!smc->legacy_irq_allocation) {
398 spapr_irq_msi_free(spapr, irq, req_num);
400 error_reportf_err(err, "Can't allocate MSIs for device %x: ",
401 config_addr);
402 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
403 return;
407 /* Release previous MSIs */
408 if (msi) {
409 g_hash_table_remove(phb->msi, &config_addr);
412 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
413 spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
414 irq, req_num);
416 /* Add MSI device to cache */
417 msi = g_new(SpaprPciMsi, 1);
418 msi->first_irq = irq;
419 msi->num = req_num;
420 config_addr_key = g_new(int, 1);
421 *config_addr_key = config_addr;
422 g_hash_table_insert(phb->msi, config_addr_key, msi);
424 out:
425 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
426 rtas_st(rets, 1, req_num);
427 rtas_st(rets, 2, ++seq_num);
428 if (nret > 3) {
429 rtas_st(rets, 3, ret_intr_type);
432 trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
435 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
436 SpaprMachineState *spapr,
437 uint32_t token,
438 uint32_t nargs,
439 target_ulong args,
440 uint32_t nret,
441 target_ulong rets)
443 uint32_t config_addr = rtas_ld(args, 0);
444 uint64_t buid = rtas_ldq(args, 1);
445 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
446 SpaprPhbState *phb = NULL;
447 PCIDevice *pdev = NULL;
448 SpaprPciMsi *msi;
450 /* Find SpaprPhbState */
451 phb = spapr_pci_find_phb(spapr, buid);
452 if (phb) {
453 pdev = spapr_pci_find_dev(spapr, buid, config_addr);
455 if (!phb || !pdev) {
456 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
457 return;
460 /* Find device descriptor and start IRQ */
461 msi = (SpaprPciMsi *) g_hash_table_lookup(phb->msi, &config_addr);
462 if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
463 trace_spapr_pci_msi("Failed to return vector", config_addr);
464 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
465 return;
467 intr_src_num = msi->first_irq + ioa_intr_num;
468 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
469 intr_src_num);
471 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
472 rtas_st(rets, 1, intr_src_num);
473 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
476 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
477 SpaprMachineState *spapr,
478 uint32_t token, uint32_t nargs,
479 target_ulong args, uint32_t nret,
480 target_ulong rets)
482 SpaprPhbState *sphb;
483 uint32_t addr, option;
484 uint64_t buid;
485 int ret;
487 if ((nargs != 4) || (nret != 1)) {
488 goto param_error_exit;
491 buid = rtas_ldq(args, 1);
492 addr = rtas_ld(args, 0);
493 option = rtas_ld(args, 3);
495 sphb = spapr_pci_find_phb(spapr, buid);
496 if (!sphb) {
497 goto param_error_exit;
500 if (!spapr_phb_eeh_available(sphb)) {
501 goto param_error_exit;
504 ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option);
505 rtas_st(rets, 0, ret);
506 return;
508 param_error_exit:
509 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
512 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
513 SpaprMachineState *spapr,
514 uint32_t token, uint32_t nargs,
515 target_ulong args, uint32_t nret,
516 target_ulong rets)
518 SpaprPhbState *sphb;
519 PCIDevice *pdev;
520 uint32_t addr, option;
521 uint64_t buid;
523 if ((nargs != 4) || (nret != 2)) {
524 goto param_error_exit;
527 buid = rtas_ldq(args, 1);
528 sphb = spapr_pci_find_phb(spapr, buid);
529 if (!sphb) {
530 goto param_error_exit;
533 if (!spapr_phb_eeh_available(sphb)) {
534 goto param_error_exit;
538 * We always have PE address of form "00BB0001". "BB"
539 * represents the bus number of PE's primary bus.
541 option = rtas_ld(args, 3);
542 switch (option) {
543 case RTAS_GET_PE_ADDR:
544 addr = rtas_ld(args, 0);
545 pdev = spapr_pci_find_dev(spapr, buid, addr);
546 if (!pdev) {
547 goto param_error_exit;
550 rtas_st(rets, 1, (pci_bus_num(pci_get_bus(pdev)) << 16) + 1);
551 break;
552 case RTAS_GET_PE_MODE:
553 rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
554 break;
555 default:
556 goto param_error_exit;
559 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
560 return;
562 param_error_exit:
563 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
566 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
567 SpaprMachineState *spapr,
568 uint32_t token, uint32_t nargs,
569 target_ulong args, uint32_t nret,
570 target_ulong rets)
572 SpaprPhbState *sphb;
573 uint64_t buid;
574 int state, ret;
576 if ((nargs != 3) || (nret != 4 && nret != 5)) {
577 goto param_error_exit;
580 buid = rtas_ldq(args, 1);
581 sphb = spapr_pci_find_phb(spapr, buid);
582 if (!sphb) {
583 goto param_error_exit;
586 if (!spapr_phb_eeh_available(sphb)) {
587 goto param_error_exit;
590 ret = spapr_phb_vfio_eeh_get_state(sphb, &state);
591 rtas_st(rets, 0, ret);
592 if (ret != RTAS_OUT_SUCCESS) {
593 return;
596 rtas_st(rets, 1, state);
597 rtas_st(rets, 2, RTAS_EEH_SUPPORT);
598 rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
599 if (nret >= 5) {
600 rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
602 return;
604 param_error_exit:
605 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
608 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
609 SpaprMachineState *spapr,
610 uint32_t token, uint32_t nargs,
611 target_ulong args, uint32_t nret,
612 target_ulong rets)
614 SpaprPhbState *sphb;
615 uint32_t option;
616 uint64_t buid;
617 int ret;
619 if ((nargs != 4) || (nret != 1)) {
620 goto param_error_exit;
623 buid = rtas_ldq(args, 1);
624 option = rtas_ld(args, 3);
625 sphb = spapr_pci_find_phb(spapr, buid);
626 if (!sphb) {
627 goto param_error_exit;
630 if (!spapr_phb_eeh_available(sphb)) {
631 goto param_error_exit;
634 ret = spapr_phb_vfio_eeh_reset(sphb, option);
635 rtas_st(rets, 0, ret);
636 return;
638 param_error_exit:
639 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
642 static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
643 SpaprMachineState *spapr,
644 uint32_t token, uint32_t nargs,
645 target_ulong args, uint32_t nret,
646 target_ulong rets)
648 SpaprPhbState *sphb;
649 uint64_t buid;
650 int ret;
652 if ((nargs != 3) || (nret != 1)) {
653 goto param_error_exit;
656 buid = rtas_ldq(args, 1);
657 sphb = spapr_pci_find_phb(spapr, buid);
658 if (!sphb) {
659 goto param_error_exit;
662 if (!spapr_phb_eeh_available(sphb)) {
663 goto param_error_exit;
666 ret = spapr_phb_vfio_eeh_configure(sphb);
667 rtas_st(rets, 0, ret);
668 return;
670 param_error_exit:
671 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
674 /* To support it later */
675 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
676 SpaprMachineState *spapr,
677 uint32_t token, uint32_t nargs,
678 target_ulong args, uint32_t nret,
679 target_ulong rets)
681 SpaprPhbState *sphb;
682 int option;
683 uint64_t buid;
685 if ((nargs != 8) || (nret != 1)) {
686 goto param_error_exit;
689 buid = rtas_ldq(args, 1);
690 sphb = spapr_pci_find_phb(spapr, buid);
691 if (!sphb) {
692 goto param_error_exit;
695 if (!spapr_phb_eeh_available(sphb)) {
696 goto param_error_exit;
699 option = rtas_ld(args, 7);
700 switch (option) {
701 case RTAS_SLOT_TEMP_ERR_LOG:
702 case RTAS_SLOT_PERM_ERR_LOG:
703 break;
704 default:
705 goto param_error_exit;
708 /* We don't have error log yet */
709 rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
710 return;
712 param_error_exit:
713 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
716 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
719 * Here we use the number returned by pci_swizzle_map_irq_fn to find a
720 * corresponding qemu_irq.
722 SpaprPhbState *phb = opaque;
723 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
725 trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
726 qemu_set_irq(spapr_qirq(spapr, phb->lsi_table[irq_num].irq), level);
729 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
731 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
732 PCIINTxRoute route;
734 route.mode = PCI_INTX_ENABLED;
735 route.irq = sphb->lsi_table[pin].irq;
737 return route;
740 static uint64_t spapr_msi_read(void *opaque, hwaddr addr, unsigned size)
742 qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid access\n", __func__);
743 return 0;
747 * MSI/MSIX memory region implementation.
748 * The handler handles both MSI and MSIX.
749 * The vector number is encoded in least bits in data.
751 static void spapr_msi_write(void *opaque, hwaddr addr,
752 uint64_t data, unsigned size)
754 SpaprMachineState *spapr = opaque;
755 uint32_t irq = data;
757 trace_spapr_pci_msi_write(addr, data, irq);
759 qemu_irq_pulse(spapr_qirq(spapr, irq));
762 static const MemoryRegionOps spapr_msi_ops = {
764 * .read result is undefined by PCI spec.
765 * define .read method to avoid assert failure in memory_region_init_io
767 .read = spapr_msi_read,
768 .write = spapr_msi_write,
769 .endianness = DEVICE_LITTLE_ENDIAN
773 * PHB PCI device
775 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
777 SpaprPhbState *phb = opaque;
779 return &phb->iommu_as;
782 static const PCIIOMMUOps spapr_iommu_ops = {
783 .get_address_space = spapr_pci_dma_iommu,
786 static char *spapr_phb_vfio_get_loc_code(SpaprPhbState *sphb, PCIDevice *pdev)
788 g_autofree char *path = NULL;
789 g_autofree char *host = NULL;
790 g_autofree char *devspec = NULL;
791 char *buf = NULL;
793 /* Get the PCI VFIO host id */
794 host = object_property_get_str(OBJECT(pdev), "host", NULL);
795 if (!host) {
796 return NULL;
799 /* Construct the path of the file that will give us the DT location */
800 path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host);
801 if (!g_file_get_contents(path, &devspec, NULL, NULL)) {
802 return NULL;
805 /* Construct and read from host device tree the loc-code */
806 g_free(path);
807 path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", devspec);
808 if (!g_file_get_contents(path, &buf, NULL, NULL)) {
809 return NULL;
811 return buf;
814 static char *spapr_phb_get_loc_code(SpaprPhbState *sphb, PCIDevice *pdev)
816 char *buf;
817 const char *devtype = "qemu";
818 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
820 if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
821 buf = spapr_phb_vfio_get_loc_code(sphb, pdev);
822 if (buf) {
823 return buf;
825 devtype = "vfio";
828 * For emulated devices and VFIO-failure case, make up
829 * the loc-code.
831 buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
832 devtype, pdev->name, sphb->index, busnr,
833 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
834 return buf;
837 /* Macros to operate with address in OF binding to PCI */
838 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
839 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
840 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
841 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
842 #define b_ss(x) b_x((x), 24, 2) /* the space code */
843 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
844 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
845 #define b_fff(x) b_x((x), 8, 3) /* function number */
846 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
848 /* for 'reg' OF properties */
849 #define RESOURCE_CELLS_SIZE 2
850 #define RESOURCE_CELLS_ADDRESS 3
852 typedef struct ResourceFields {
853 uint32_t phys_hi;
854 uint32_t phys_mid;
855 uint32_t phys_lo;
856 uint32_t size_hi;
857 uint32_t size_lo;
858 } QEMU_PACKED ResourceFields;
860 typedef struct ResourceProps {
861 ResourceFields reg[8];
862 uint32_t reg_len;
863 } ResourceProps;
865 /* fill in the 'reg' OF properties for
866 * a PCI device. 'reg' describes resource requirements for a
867 * device's IO/MEM regions.
869 * the property is an array of ('phys-addr', 'size') pairs describing
870 * the addressable regions of the PCI device, where 'phys-addr' is a
871 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
872 * (phys.hi, phys.mid, phys.lo), and 'size' is a
873 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
875 * phys.hi = 0xYYXXXXZZ, where:
876 * 0xYY = npt000ss
877 * ||| |
878 * ||| +-- space code
879 * ||| |
880 * ||| + 00 if configuration space
881 * ||| + 01 if IO region,
882 * ||| + 10 if 32-bit MEM region
883 * ||| + 11 if 64-bit MEM region
884 * |||
885 * ||+------ for non-relocatable IO: 1 if aliased
886 * || for relocatable IO: 1 if below 64KB
887 * || for MEM: 1 if below 1MB
888 * |+------- 1 if region is prefetchable
889 * +-------- 1 if region is non-relocatable
890 * 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
891 * bits respectively
892 * 0xZZ = rrrrrrrr, the register number of the BAR corresponding
893 * to the region
895 * phys.mid and phys.lo correspond respectively to the hi/lo portions
896 * of the actual address of the region.
898 * note also that addresses defined in this property are, at least
899 * for PAPR guests, relative to the PHBs IO/MEM windows, and
900 * correspond directly to the addresses in the BARs.
902 * in accordance with PCI Bus Binding to Open Firmware,
903 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
904 * Appendix C.
906 static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
908 int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
909 uint32_t dev_id = (b_bbbbbbbb(bus_num) |
910 b_ddddd(PCI_SLOT(d->devfn)) |
911 b_fff(PCI_FUNC(d->devfn)));
912 ResourceFields *reg;
913 int i, reg_idx = 0;
915 /* config space region */
916 reg = &rp->reg[reg_idx++];
917 reg->phys_hi = cpu_to_be32(dev_id);
918 reg->phys_mid = 0;
919 reg->phys_lo = 0;
920 reg->size_hi = 0;
921 reg->size_lo = 0;
923 for (i = 0; i < PCI_NUM_REGIONS; i++) {
924 if (!d->io_regions[i].size) {
925 continue;
928 reg = &rp->reg[reg_idx++];
930 reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
931 if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
932 reg->phys_hi |= cpu_to_be32(b_ss(1));
933 } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
934 reg->phys_hi |= cpu_to_be32(b_ss(3));
935 } else {
936 reg->phys_hi |= cpu_to_be32(b_ss(2));
938 reg->phys_mid = 0;
939 reg->phys_lo = 0;
940 reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
941 reg->size_lo = cpu_to_be32(d->io_regions[i].size);
944 rp->reg_len = reg_idx * sizeof(ResourceFields);
947 typedef struct PCIClass PCIClass;
948 typedef struct PCISubClass PCISubClass;
949 typedef struct PCIIFace PCIIFace;
951 struct PCIIFace {
952 int iface;
953 const char *name;
956 struct PCISubClass {
957 int subclass;
958 const char *name;
959 const PCIIFace *iface;
962 struct PCIClass {
963 const char *name;
964 const PCISubClass *subc;
967 static const PCISubClass undef_subclass[] = {
968 { PCI_CLASS_NOT_DEFINED_VGA, "display", NULL },
969 { 0xFF, NULL, NULL },
972 static const PCISubClass mass_subclass[] = {
973 { PCI_CLASS_STORAGE_SCSI, "scsi", NULL },
974 { PCI_CLASS_STORAGE_IDE, "ide", NULL },
975 { PCI_CLASS_STORAGE_FLOPPY, "fdc", NULL },
976 { PCI_CLASS_STORAGE_IPI, "ipi", NULL },
977 { PCI_CLASS_STORAGE_RAID, "raid", NULL },
978 { PCI_CLASS_STORAGE_ATA, "ata", NULL },
979 { PCI_CLASS_STORAGE_SATA, "sata", NULL },
980 { PCI_CLASS_STORAGE_SAS, "sas", NULL },
981 { 0xFF, NULL, NULL },
984 static const PCISubClass net_subclass[] = {
985 { PCI_CLASS_NETWORK_ETHERNET, "ethernet", NULL },
986 { PCI_CLASS_NETWORK_TOKEN_RING, "token-ring", NULL },
987 { PCI_CLASS_NETWORK_FDDI, "fddi", NULL },
988 { PCI_CLASS_NETWORK_ATM, "atm", NULL },
989 { PCI_CLASS_NETWORK_ISDN, "isdn", NULL },
990 { PCI_CLASS_NETWORK_WORLDFIP, "worldfip", NULL },
991 { PCI_CLASS_NETWORK_PICMG214, "picmg", NULL },
992 { 0xFF, NULL, NULL },
995 static const PCISubClass displ_subclass[] = {
996 { PCI_CLASS_DISPLAY_VGA, "vga", NULL },
997 { PCI_CLASS_DISPLAY_XGA, "xga", NULL },
998 { PCI_CLASS_DISPLAY_3D, "3d-controller", NULL },
999 { 0xFF, NULL, NULL },
1002 static const PCISubClass media_subclass[] = {
1003 { PCI_CLASS_MULTIMEDIA_VIDEO, "video", NULL },
1004 { PCI_CLASS_MULTIMEDIA_AUDIO, "sound", NULL },
1005 { PCI_CLASS_MULTIMEDIA_PHONE, "telephony", NULL },
1006 { 0xFF, NULL, NULL },
1009 static const PCISubClass mem_subclass[] = {
1010 { PCI_CLASS_MEMORY_RAM, "memory", NULL },
1011 { PCI_CLASS_MEMORY_FLASH, "flash", NULL },
1012 { 0xFF, NULL, NULL },
1015 static const PCISubClass bridg_subclass[] = {
1016 { PCI_CLASS_BRIDGE_HOST, "host", NULL },
1017 { PCI_CLASS_BRIDGE_ISA, "isa", NULL },
1018 { PCI_CLASS_BRIDGE_EISA, "eisa", NULL },
1019 { PCI_CLASS_BRIDGE_MC, "mca", NULL },
1020 { PCI_CLASS_BRIDGE_PCI, "pci", NULL },
1021 { PCI_CLASS_BRIDGE_PCMCIA, "pcmcia", NULL },
1022 { PCI_CLASS_BRIDGE_NUBUS, "nubus", NULL },
1023 { PCI_CLASS_BRIDGE_CARDBUS, "cardbus", NULL },
1024 { PCI_CLASS_BRIDGE_RACEWAY, "raceway", NULL },
1025 { PCI_CLASS_BRIDGE_PCI_SEMITP, "semi-transparent-pci", NULL },
1026 { PCI_CLASS_BRIDGE_IB_PCI, "infiniband", NULL },
1027 { 0xFF, NULL, NULL },
1030 static const PCISubClass comm_subclass[] = {
1031 { PCI_CLASS_COMMUNICATION_SERIAL, "serial", NULL },
1032 { PCI_CLASS_COMMUNICATION_PARALLEL, "parallel", NULL },
1033 { PCI_CLASS_COMMUNICATION_MULTISERIAL, "multiport-serial", NULL },
1034 { PCI_CLASS_COMMUNICATION_MODEM, "modem", NULL },
1035 { PCI_CLASS_COMMUNICATION_GPIB, "gpib", NULL },
1036 { PCI_CLASS_COMMUNICATION_SC, "smart-card", NULL },
1037 { 0xFF, NULL, NULL, },
1040 static const PCIIFace pic_iface[] = {
1041 { PCI_CLASS_SYSTEM_PIC_IOAPIC, "io-apic" },
1042 { PCI_CLASS_SYSTEM_PIC_IOXAPIC, "io-xapic" },
1043 { 0xFF, NULL },
1046 static const PCISubClass sys_subclass[] = {
1047 { PCI_CLASS_SYSTEM_PIC, "interrupt-controller", pic_iface },
1048 { PCI_CLASS_SYSTEM_DMA, "dma-controller", NULL },
1049 { PCI_CLASS_SYSTEM_TIMER, "timer", NULL },
1050 { PCI_CLASS_SYSTEM_RTC, "rtc", NULL },
1051 { PCI_CLASS_SYSTEM_PCI_HOTPLUG, "hot-plug-controller", NULL },
1052 { PCI_CLASS_SYSTEM_SDHCI, "sd-host-controller", NULL },
1053 { 0xFF, NULL, NULL },
1056 static const PCISubClass inp_subclass[] = {
1057 { PCI_CLASS_INPUT_KEYBOARD, "keyboard", NULL },
1058 { PCI_CLASS_INPUT_PEN, "pen", NULL },
1059 { PCI_CLASS_INPUT_MOUSE, "mouse", NULL },
1060 { PCI_CLASS_INPUT_SCANNER, "scanner", NULL },
1061 { PCI_CLASS_INPUT_GAMEPORT, "gameport", NULL },
1062 { 0xFF, NULL, NULL },
1065 static const PCISubClass dock_subclass[] = {
1066 { PCI_CLASS_DOCKING_GENERIC, "dock", NULL },
1067 { 0xFF, NULL, NULL },
1070 static const PCISubClass cpu_subclass[] = {
1071 { PCI_CLASS_PROCESSOR_PENTIUM, "pentium", NULL },
1072 { PCI_CLASS_PROCESSOR_POWERPC, "powerpc", NULL },
1073 { PCI_CLASS_PROCESSOR_MIPS, "mips", NULL },
1074 { PCI_CLASS_PROCESSOR_CO, "co-processor", NULL },
1075 { 0xFF, NULL, NULL },
1078 static const PCIIFace usb_iface[] = {
1079 { PCI_CLASS_SERIAL_USB_UHCI, "usb-uhci" },
1080 { PCI_CLASS_SERIAL_USB_OHCI, "usb-ohci", },
1081 { PCI_CLASS_SERIAL_USB_EHCI, "usb-ehci" },
1082 { PCI_CLASS_SERIAL_USB_XHCI, "usb-xhci" },
1083 { PCI_CLASS_SERIAL_USB_UNKNOWN, "usb-unknown" },
1084 { PCI_CLASS_SERIAL_USB_DEVICE, "usb-device" },
1085 { 0xFF, NULL },
1088 static const PCISubClass ser_subclass[] = {
1089 { PCI_CLASS_SERIAL_FIREWIRE, "firewire", NULL },
1090 { PCI_CLASS_SERIAL_ACCESS, "access-bus", NULL },
1091 { PCI_CLASS_SERIAL_SSA, "ssa", NULL },
1092 { PCI_CLASS_SERIAL_USB, "usb", usb_iface },
1093 { PCI_CLASS_SERIAL_FIBER, "fibre-channel", NULL },
1094 { PCI_CLASS_SERIAL_SMBUS, "smb", NULL },
1095 { PCI_CLASS_SERIAL_IB, "infiniband", NULL },
1096 { PCI_CLASS_SERIAL_IPMI, "ipmi", NULL },
1097 { PCI_CLASS_SERIAL_SERCOS, "sercos", NULL },
1098 { PCI_CLASS_SERIAL_CANBUS, "canbus", NULL },
1099 { 0xFF, NULL, NULL },
1102 static const PCISubClass wrl_subclass[] = {
1103 { PCI_CLASS_WIRELESS_IRDA, "irda", NULL },
1104 { PCI_CLASS_WIRELESS_CIR, "consumer-ir", NULL },
1105 { PCI_CLASS_WIRELESS_RF_CONTROLLER, "rf-controller", NULL },
1106 { PCI_CLASS_WIRELESS_BLUETOOTH, "bluetooth", NULL },
1107 { PCI_CLASS_WIRELESS_BROADBAND, "broadband", NULL },
1108 { 0xFF, NULL, NULL },
1111 static const PCISubClass sat_subclass[] = {
1112 { PCI_CLASS_SATELLITE_TV, "satellite-tv", NULL },
1113 { PCI_CLASS_SATELLITE_AUDIO, "satellite-audio", NULL },
1114 { PCI_CLASS_SATELLITE_VOICE, "satellite-voice", NULL },
1115 { PCI_CLASS_SATELLITE_DATA, "satellite-data", NULL },
1116 { 0xFF, NULL, NULL },
1119 static const PCISubClass crypt_subclass[] = {
1120 { PCI_CLASS_CRYPT_NETWORK, "network-encryption", NULL },
1121 { PCI_CLASS_CRYPT_ENTERTAINMENT,
1122 "entertainment-encryption", NULL },
1123 { 0xFF, NULL, NULL },
1126 static const PCISubClass spc_subclass[] = {
1127 { PCI_CLASS_SP_DPIO, "dpio", NULL },
1128 { PCI_CLASS_SP_PERF, "counter", NULL },
1129 { PCI_CLASS_SP_SYNCH, "measurement", NULL },
1130 { PCI_CLASS_SP_MANAGEMENT, "management-card", NULL },
1131 { 0xFF, NULL, NULL },
1134 static const PCIClass pci_classes[] = {
1135 { "legacy-device", undef_subclass },
1136 { "mass-storage", mass_subclass },
1137 { "network", net_subclass },
1138 { "display", displ_subclass, },
1139 { "multimedia-device", media_subclass },
1140 { "memory-controller", mem_subclass },
1141 { "unknown-bridge", bridg_subclass },
1142 { "communication-controller", comm_subclass},
1143 { "system-peripheral", sys_subclass },
1144 { "input-controller", inp_subclass },
1145 { "docking-station", dock_subclass },
1146 { "cpu", cpu_subclass },
1147 { "serial-bus", ser_subclass },
1148 { "wireless-controller", wrl_subclass },
1149 { "intelligent-io", NULL },
1150 { "satellite-device", sat_subclass },
1151 { "encryption", crypt_subclass },
1152 { "data-processing-controller", spc_subclass },
1155 static const char *dt_name_from_class(uint8_t class, uint8_t subclass,
1156 uint8_t iface)
1158 const PCIClass *pclass;
1159 const PCISubClass *psubclass;
1160 const PCIIFace *piface;
1161 const char *name;
1163 if (class >= ARRAY_SIZE(pci_classes)) {
1164 return "pci";
1167 pclass = pci_classes + class;
1168 name = pclass->name;
1170 if (pclass->subc == NULL) {
1171 return name;
1174 psubclass = pclass->subc;
1175 while ((psubclass->subclass & 0xff) != 0xff) {
1176 if ((psubclass->subclass & 0xff) == subclass) {
1177 name = psubclass->name;
1178 break;
1180 psubclass++;
1183 piface = psubclass->iface;
1184 if (piface == NULL) {
1185 return name;
1187 while ((piface->iface & 0xff) != 0xff) {
1188 if ((piface->iface & 0xff) == iface) {
1189 name = piface->name;
1190 break;
1192 piface++;
1195 return name;
1199 * DRC helper functions
1202 static uint32_t drc_id_from_devfn(SpaprPhbState *phb,
1203 uint8_t chassis, int32_t devfn)
1205 return (phb->index << 16) | (chassis << 8) | devfn;
1208 static SpaprDrc *drc_from_devfn(SpaprPhbState *phb,
1209 uint8_t chassis, int32_t devfn)
1211 return spapr_drc_by_id(TYPE_SPAPR_DRC_PCI,
1212 drc_id_from_devfn(phb, chassis, devfn));
1215 static uint8_t chassis_from_bus(PCIBus *bus)
1217 if (pci_bus_is_root(bus)) {
1218 return 0;
1219 } else {
1220 PCIDevice *bridge = pci_bridge_get_device(bus);
1222 return object_property_get_uint(OBJECT(bridge), "chassis_nr",
1223 &error_abort);
1227 static SpaprDrc *drc_from_dev(SpaprPhbState *phb, PCIDevice *dev)
1229 uint8_t chassis = chassis_from_bus(pci_get_bus(dev));
1231 return drc_from_devfn(phb, chassis, dev->devfn);
1234 static void add_drcs(SpaprPhbState *phb, PCIBus *bus)
1236 Object *owner;
1237 int i;
1238 uint8_t chassis;
1240 if (!phb->dr_enabled) {
1241 return;
1244 chassis = chassis_from_bus(bus);
1246 if (pci_bus_is_root(bus)) {
1247 owner = OBJECT(phb);
1248 } else {
1249 owner = OBJECT(pci_bridge_get_device(bus));
1252 for (i = 0; i < PCI_SLOT_MAX * PCI_FUNC_MAX; i++) {
1253 spapr_dr_connector_new(owner, TYPE_SPAPR_DRC_PCI,
1254 drc_id_from_devfn(phb, chassis, i));
1258 static void remove_drcs(SpaprPhbState *phb, PCIBus *bus)
1260 int i;
1261 uint8_t chassis;
1263 if (!phb->dr_enabled) {
1264 return;
1267 chassis = chassis_from_bus(bus);
1269 for (i = PCI_SLOT_MAX * PCI_FUNC_MAX - 1; i >= 0; i--) {
1270 SpaprDrc *drc = drc_from_devfn(phb, chassis, i);
1272 if (drc) {
1273 object_unparent(OBJECT(drc));
1278 typedef struct PciWalkFdt {
1279 void *fdt;
1280 int offset;
1281 SpaprPhbState *sphb;
1282 int err;
1283 } PciWalkFdt;
1285 static int spapr_dt_pci_device(SpaprPhbState *sphb, PCIDevice *dev,
1286 void *fdt, int parent_offset);
1288 static void spapr_dt_pci_device_cb(PCIBus *bus, PCIDevice *pdev,
1289 void *opaque)
1291 PciWalkFdt *p = opaque;
1292 int err;
1294 if (p->err) {
1295 /* Something's already broken, don't keep going */
1296 return;
1299 err = spapr_dt_pci_device(p->sphb, pdev, p->fdt, p->offset);
1300 if (err < 0) {
1301 p->err = err;
1305 /* Augment PCI device node with bridge specific information */
1306 static int spapr_dt_pci_bus(SpaprPhbState *sphb, PCIBus *bus,
1307 void *fdt, int offset)
1309 Object *owner;
1310 PciWalkFdt cbinfo = {
1311 .fdt = fdt,
1312 .offset = offset,
1313 .sphb = sphb,
1314 .err = 0,
1316 int ret;
1318 _FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
1319 RESOURCE_CELLS_ADDRESS));
1320 _FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
1321 RESOURCE_CELLS_SIZE));
1323 assert(bus);
1324 pci_for_each_device_under_bus_reverse(bus, spapr_dt_pci_device_cb, &cbinfo);
1325 if (cbinfo.err) {
1326 return cbinfo.err;
1329 if (pci_bus_is_root(bus)) {
1330 owner = OBJECT(sphb);
1331 } else {
1332 owner = OBJECT(pci_bridge_get_device(bus));
1335 ret = spapr_dt_drc(fdt, offset, owner,
1336 SPAPR_DR_CONNECTOR_TYPE_PCI);
1337 if (ret) {
1338 return ret;
1341 return offset;
1344 char *spapr_pci_fw_dev_name(PCIDevice *dev)
1346 const gchar *basename;
1347 int slot = PCI_SLOT(dev->devfn);
1348 int func = PCI_FUNC(dev->devfn);
1349 uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
1351 basename = dt_name_from_class((ccode >> 16) & 0xff, (ccode >> 8) & 0xff,
1352 ccode & 0xff);
1354 if (func != 0) {
1355 return g_strdup_printf("%s@%x,%x", basename, slot, func);
1356 } else {
1357 return g_strdup_printf("%s@%x", basename, slot);
1361 /* create OF node for pci device and required OF DT properties */
1362 static int spapr_dt_pci_device(SpaprPhbState *sphb, PCIDevice *dev,
1363 void *fdt, int parent_offset)
1365 int offset;
1366 g_autofree gchar *nodename = spapr_pci_fw_dev_name(dev);
1367 ResourceProps rp;
1368 SpaprDrc *drc = drc_from_dev(sphb, dev);
1369 uint32_t vendor_id = pci_default_read_config(dev, PCI_VENDOR_ID, 2);
1370 uint32_t device_id = pci_default_read_config(dev, PCI_DEVICE_ID, 2);
1371 uint32_t revision_id = pci_default_read_config(dev, PCI_REVISION_ID, 1);
1372 uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
1373 uint32_t irq_pin = pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1);
1374 uint32_t subsystem_id = pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2);
1375 uint32_t subsystem_vendor_id =
1376 pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2);
1377 uint32_t cache_line_size =
1378 pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1);
1379 uint32_t pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
1380 gchar *loc_code;
1382 _FDT(offset = fdt_add_subnode(fdt, parent_offset, nodename));
1384 /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
1385 _FDT(fdt_setprop_cell(fdt, offset, "vendor-id", vendor_id));
1386 _FDT(fdt_setprop_cell(fdt, offset, "device-id", device_id));
1387 _FDT(fdt_setprop_cell(fdt, offset, "revision-id", revision_id));
1389 _FDT(fdt_setprop_cell(fdt, offset, "class-code", ccode));
1390 if (irq_pin) {
1391 _FDT(fdt_setprop_cell(fdt, offset, "interrupts", irq_pin));
1394 if (subsystem_id) {
1395 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id", subsystem_id));
1398 if (subsystem_vendor_id) {
1399 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
1400 subsystem_vendor_id));
1403 _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size", cache_line_size));
1406 /* the following fdt cells are masked off the pci status register */
1407 _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
1408 PCI_STATUS_DEVSEL_MASK & pci_status));
1410 if (pci_status & PCI_STATUS_FAST_BACK) {
1411 _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
1413 if (pci_status & PCI_STATUS_66MHZ) {
1414 _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
1416 if (pci_status & PCI_STATUS_UDF) {
1417 _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
1420 loc_code = spapr_phb_get_loc_code(sphb, dev);
1421 _FDT(fdt_setprop_string(fdt, offset, "ibm,loc-code", loc_code));
1422 g_free(loc_code);
1424 if (drc) {
1425 _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index",
1426 spapr_drc_index(drc)));
1429 if (msi_present(dev)) {
1430 uint32_t max_msi = msi_nr_vectors_allocated(dev);
1431 if (max_msi) {
1432 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi));
1435 if (msix_present(dev)) {
1436 uint32_t max_msix = dev->msix_entries_nr;
1437 if (max_msix) {
1438 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix));
1442 populate_resource_props(dev, &rp);
1443 _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
1445 if (sphb->pcie_ecs && pci_is_express(dev)) {
1446 _FDT(fdt_setprop_cell(fdt, offset, "ibm,pci-config-space-type", 0x1));
1449 if (!IS_PCI_BRIDGE(dev)) {
1450 /* Properties only for non-bridges */
1451 uint32_t min_grant = pci_default_read_config(dev, PCI_MIN_GNT, 1);
1452 uint32_t max_latency = pci_default_read_config(dev, PCI_MAX_LAT, 1);
1453 _FDT(fdt_setprop_cell(fdt, offset, "min-grant", min_grant));
1454 _FDT(fdt_setprop_cell(fdt, offset, "max-latency", max_latency));
1455 return offset;
1456 } else {
1457 PCIBus *sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(dev));
1459 return spapr_dt_pci_bus(sphb, sec_bus, fdt, offset);
1463 /* Callback to be called during DRC release. */
1464 void spapr_phb_remove_pci_device_cb(DeviceState *dev)
1466 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
1468 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
1469 object_unparent(OBJECT(dev));
1472 int spapr_pci_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
1473 void *fdt, int *fdt_start_offset, Error **errp)
1475 HotplugHandler *plug_handler = qdev_get_hotplug_handler(drc->dev);
1476 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(plug_handler);
1477 PCIDevice *pdev = PCI_DEVICE(drc->dev);
1479 *fdt_start_offset = spapr_dt_pci_device(sphb, pdev, fdt, 0);
1480 return 0;
1483 static void spapr_pci_bridge_plug(SpaprPhbState *phb,
1484 PCIBridge *bridge)
1486 PCIBus *bus = pci_bridge_get_sec_bus(bridge);
1488 add_drcs(phb, bus);
1491 /* Returns non-zero if the value of "chassis_nr" is already in use */
1492 static int check_chassis_nr(Object *obj, void *opaque)
1494 int new_chassis_nr =
1495 object_property_get_uint(opaque, "chassis_nr", &error_abort);
1496 int chassis_nr =
1497 object_property_get_uint(obj, "chassis_nr", NULL);
1499 if (!object_dynamic_cast(obj, TYPE_PCI_BRIDGE)) {
1500 return 0;
1503 /* Skip unsupported bridge types */
1504 if (!chassis_nr) {
1505 return 0;
1508 /* Skip self */
1509 if (obj == opaque) {
1510 return 0;
1513 return chassis_nr == new_chassis_nr;
1516 static bool bridge_has_valid_chassis_nr(Object *bridge, Error **errp)
1518 int chassis_nr =
1519 object_property_get_uint(bridge, "chassis_nr", NULL);
1522 * slotid_cap_init() already ensures that "chassis_nr" isn't null for
1523 * standard PCI bridges, so this really tells if "chassis_nr" is present
1524 * or not.
1526 if (!chassis_nr) {
1527 error_setg(errp, "PCI Bridge lacks a \"chassis_nr\" property");
1528 error_append_hint(errp, "Try -device pci-bridge instead.\n");
1529 return false;
1532 /* We want unique values for "chassis_nr" */
1533 if (object_child_foreach_recursive(object_get_root(), check_chassis_nr,
1534 bridge)) {
1535 error_setg(errp, "Bridge chassis %d already in use", chassis_nr);
1536 return false;
1539 return true;
1542 static void spapr_pci_pre_plug(HotplugHandler *plug_handler,
1543 DeviceState *plugged_dev, Error **errp)
1545 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1546 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1547 SpaprDrc *drc = drc_from_dev(phb, pdev);
1548 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1549 uint32_t slotnr = PCI_SLOT(pdev->devfn);
1551 if (!phb->dr_enabled) {
1552 /* if this is a hotplug operation initiated by the user
1553 * we need to let them know it's not enabled
1555 if (plugged_dev->hotplugged) {
1556 error_setg(errp, "Bus '%s' does not support hotplugging",
1557 phb->parent_obj.bus->qbus.name);
1558 return;
1562 if (IS_PCI_BRIDGE(plugged_dev)) {
1563 if (!bridge_has_valid_chassis_nr(OBJECT(plugged_dev), errp)) {
1564 return;
1568 /* Following the QEMU convention used for PCIe multifunction
1569 * hotplug, we do not allow functions to be hotplugged to a
1570 * slot that already has function 0 present
1572 if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] &&
1573 PCI_FUNC(pdev->devfn) != 0) {
1574 error_setg(errp, "PCI: slot %d function 0 already occupied by %s,"
1575 " additional functions can no longer be exposed to guest.",
1576 slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name);
1579 if (drc && drc->dev) {
1580 error_setg(errp, "PCI: slot %d already occupied by %s", slotnr,
1581 pci_get_function_0(PCI_DEVICE(drc->dev))->name);
1582 return;
1586 static void spapr_pci_plug(HotplugHandler *plug_handler,
1587 DeviceState *plugged_dev, Error **errp)
1589 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1590 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1591 SpaprDrc *drc = drc_from_dev(phb, pdev);
1592 uint32_t slotnr = PCI_SLOT(pdev->devfn);
1595 * If DR is disabled we don't need to do anything in the case of
1596 * hotplug or coldplug callbacks.
1598 if (!phb->dr_enabled) {
1599 return;
1602 g_assert(drc);
1604 if (IS_PCI_BRIDGE(plugged_dev)) {
1605 spapr_pci_bridge_plug(phb, PCI_BRIDGE(plugged_dev));
1608 /* spapr_pci_pre_plug() already checked the DRC is attachable */
1609 spapr_drc_attach(drc, DEVICE(pdev));
1611 /* If this is function 0, signal hotplug for all the device functions.
1612 * Otherwise defer sending the hotplug event.
1614 if (!spapr_drc_hotplugged(plugged_dev)) {
1615 spapr_drc_reset(drc);
1616 } else if (PCI_FUNC(pdev->devfn) == 0) {
1617 int i;
1618 uint8_t chassis = chassis_from_bus(pci_get_bus(pdev));
1620 for (i = 0; i < 8; i++) {
1621 SpaprDrc *func_drc;
1622 SpaprDrcClass *func_drck;
1623 SpaprDREntitySense state;
1625 func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i));
1626 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1627 state = func_drck->dr_entity_sense(func_drc);
1629 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1630 spapr_hotplug_req_add_by_index(func_drc);
1636 static void spapr_pci_bridge_unplug(SpaprPhbState *phb,
1637 PCIBridge *bridge)
1639 PCIBus *bus = pci_bridge_get_sec_bus(bridge);
1641 remove_drcs(phb, bus);
1644 static void spapr_pci_unplug(HotplugHandler *plug_handler,
1645 DeviceState *plugged_dev, Error **errp)
1647 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1649 /* some version guests do not wait for completion of a device
1650 * cleanup (generally done asynchronously by the kernel) before
1651 * signaling to QEMU that the device is safe, but instead sleep
1652 * for some 'safe' period of time. unfortunately on a busy host
1653 * this sleep isn't guaranteed to be long enough, resulting in
1654 * bad things like IRQ lines being left asserted during final
1655 * device removal. to deal with this we call reset just prior
1656 * to finalizing the device, which will put the device back into
1657 * an 'idle' state, as the device cleanup code expects.
1659 pci_device_reset(PCI_DEVICE(plugged_dev));
1661 if (IS_PCI_BRIDGE(plugged_dev)) {
1662 spapr_pci_bridge_unplug(phb, PCI_BRIDGE(plugged_dev));
1663 return;
1666 qdev_unrealize(plugged_dev);
1669 static void spapr_pci_unplug_request(HotplugHandler *plug_handler,
1670 DeviceState *plugged_dev, Error **errp)
1672 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1673 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1674 SpaprDrc *drc = drc_from_dev(phb, pdev);
1676 if (!phb->dr_enabled) {
1677 error_setg(errp, "Bus '%s' does not support hotplugging",
1678 phb->parent_obj.bus->qbus.name);
1679 return;
1682 g_assert(drc);
1683 g_assert(drc->dev == plugged_dev);
1685 if (!spapr_drc_unplug_requested(drc)) {
1686 uint32_t slotnr = PCI_SLOT(pdev->devfn);
1687 SpaprDrc *func_drc;
1688 SpaprDrcClass *func_drck;
1689 SpaprDREntitySense state;
1690 int i;
1691 uint8_t chassis = chassis_from_bus(pci_get_bus(pdev));
1693 if (IS_PCI_BRIDGE(plugged_dev)) {
1694 error_setg(errp, "PCI: Hot unplug of PCI bridges not supported");
1695 return;
1697 if (object_property_get_uint(OBJECT(pdev), "nvlink2-tgt", NULL)) {
1698 error_setg(errp, "PCI: Cannot unplug NVLink2 devices");
1699 return;
1702 /* ensure any other present functions are pending unplug */
1703 if (PCI_FUNC(pdev->devfn) == 0) {
1704 for (i = 1; i < 8; i++) {
1705 func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i));
1706 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1707 state = func_drck->dr_entity_sense(func_drc);
1708 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT
1709 && !spapr_drc_unplug_requested(func_drc)) {
1711 * Attempting to remove function 0 of a multifunction
1712 * device will will cascade into removing all child
1713 * functions, even if their unplug weren't requested
1714 * beforehand.
1716 spapr_drc_unplug_request(func_drc);
1721 spapr_drc_unplug_request(drc);
1723 /* if this isn't func 0, defer unplug event. otherwise signal removal
1724 * for all present functions
1726 if (PCI_FUNC(pdev->devfn) == 0) {
1727 for (i = 7; i >= 0; i--) {
1728 func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i));
1729 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1730 state = func_drck->dr_entity_sense(func_drc);
1731 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1732 spapr_hotplug_req_remove_by_index(func_drc);
1736 } else {
1737 error_setg(errp,
1738 "PCI device unplug already in progress for device %s",
1739 drc->dev->id);
1743 static void spapr_phb_finalizefn(Object *obj)
1745 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(obj);
1747 g_free(sphb->dtbusname);
1748 sphb->dtbusname = NULL;
1751 static void spapr_phb_unrealize(DeviceState *dev)
1753 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1754 SysBusDevice *s = SYS_BUS_DEVICE(dev);
1755 PCIHostState *phb = PCI_HOST_BRIDGE(s);
1756 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(phb);
1757 SpaprTceTable *tcet;
1758 int i;
1759 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
1761 if (sphb->msi) {
1762 g_hash_table_unref(sphb->msi);
1763 sphb->msi = NULL;
1767 * Remove IO/MMIO subregions and aliases, rest should get cleaned
1768 * via PHB's unrealize->object_finalize
1770 for (i = windows_supported - 1; i >= 0; i--) {
1771 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]);
1772 if (tcet) {
1773 memory_region_del_subregion(&sphb->iommu_root,
1774 spapr_tce_get_iommu(tcet));
1778 remove_drcs(sphb, phb->bus);
1780 for (i = PCI_NUM_PINS - 1; i >= 0; i--) {
1781 if (sphb->lsi_table[i].irq) {
1782 spapr_irq_free(spapr, sphb->lsi_table[i].irq, 1);
1783 sphb->lsi_table[i].irq = 0;
1787 QLIST_REMOVE(sphb, list);
1789 memory_region_del_subregion(&sphb->iommu_root, &sphb->msiwindow);
1792 * An attached PCI device may have memory listeners, eg. VFIO PCI. We have
1793 * unmapped all sections. Remove the listeners now, before destroying the
1794 * address space.
1796 address_space_remove_listeners(&sphb->iommu_as);
1797 address_space_destroy(&sphb->iommu_as);
1799 qbus_set_hotplug_handler(BUS(phb->bus), NULL);
1800 pci_unregister_root_bus(phb->bus);
1802 memory_region_del_subregion(get_system_memory(), &sphb->iowindow);
1803 if (sphb->mem64_win_pciaddr != (hwaddr)-1) {
1804 memory_region_del_subregion(get_system_memory(), &sphb->mem64window);
1806 memory_region_del_subregion(get_system_memory(), &sphb->mem32window);
1809 static void spapr_phb_destroy_msi(gpointer opaque)
1811 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1812 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1813 SpaprPciMsi *msi = opaque;
1815 if (!smc->legacy_irq_allocation) {
1816 spapr_irq_msi_free(spapr, msi->first_irq, msi->num);
1818 spapr_irq_free(spapr, msi->first_irq, msi->num);
1819 g_free(msi);
1822 static void spapr_phb_realize(DeviceState *dev, Error **errp)
1824 ERRP_GUARD();
1825 /* We don't use SPAPR_MACHINE() in order to exit gracefully if the user
1826 * tries to add a sPAPR PHB to a non-pseries machine.
1828 SpaprMachineState *spapr =
1829 (SpaprMachineState *) object_dynamic_cast(qdev_get_machine(),
1830 TYPE_SPAPR_MACHINE);
1831 SpaprMachineClass *smc = spapr ? SPAPR_MACHINE_GET_CLASS(spapr) : NULL;
1832 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1833 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(sbd);
1834 PCIHostState *phb = PCI_HOST_BRIDGE(sbd);
1835 MachineState *ms = MACHINE(spapr);
1836 char *namebuf;
1837 int i;
1838 PCIBus *bus;
1839 uint64_t msi_window_size = 4096;
1840 SpaprTceTable *tcet;
1841 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
1843 if (!spapr) {
1844 error_setg(errp, TYPE_SPAPR_PCI_HOST_BRIDGE " needs a pseries machine");
1845 return;
1848 assert(sphb->index != (uint32_t)-1); /* checked in spapr_phb_pre_plug() */
1850 if (sphb->mem64_win_size != 0) {
1851 if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1852 error_setg(errp, "32-bit memory window of size 0x%"HWADDR_PRIx
1853 " (max 2 GiB)", sphb->mem_win_size);
1854 return;
1857 /* 64-bit window defaults to identity mapping */
1858 sphb->mem64_win_pciaddr = sphb->mem64_win_addr;
1859 } else if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1861 * For compatibility with old configuration, if no 64-bit MMIO
1862 * window is specified, but the ordinary (32-bit) memory
1863 * window is specified as > 2GiB, we treat it as a 2GiB 32-bit
1864 * window, with a 64-bit MMIO window following on immediately
1865 * afterwards
1867 sphb->mem64_win_size = sphb->mem_win_size - SPAPR_PCI_MEM32_WIN_SIZE;
1868 sphb->mem64_win_addr = sphb->mem_win_addr + SPAPR_PCI_MEM32_WIN_SIZE;
1869 sphb->mem64_win_pciaddr =
1870 SPAPR_PCI_MEM_WIN_BUS_OFFSET + SPAPR_PCI_MEM32_WIN_SIZE;
1871 sphb->mem_win_size = SPAPR_PCI_MEM32_WIN_SIZE;
1874 if (spapr_pci_find_phb(spapr, sphb->buid)) {
1875 SpaprPhbState *s;
1877 error_setg(errp, "PCI host bridges must have unique indexes");
1878 error_append_hint(errp, "The following indexes are already in use:");
1879 QLIST_FOREACH(s, &spapr->phbs, list) {
1880 error_append_hint(errp, " %d", s->index);
1882 error_append_hint(errp, "\nTry another value for the index property\n");
1883 return;
1886 if (sphb->numa_node != -1 &&
1887 (sphb->numa_node >= MAX_NODES ||
1888 !ms->numa_state->nodes[sphb->numa_node].present)) {
1889 error_setg(errp, "Invalid NUMA node ID for PCI host bridge");
1890 return;
1893 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
1895 /* Initialize memory regions */
1896 namebuf = g_strdup_printf("%s.mmio", sphb->dtbusname);
1897 memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
1898 g_free(namebuf);
1900 namebuf = g_strdup_printf("%s.mmio32-alias", sphb->dtbusname);
1901 memory_region_init_alias(&sphb->mem32window, OBJECT(sphb),
1902 namebuf, &sphb->memspace,
1903 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
1904 g_free(namebuf);
1905 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
1906 &sphb->mem32window);
1908 if (sphb->mem64_win_size != 0) {
1909 namebuf = g_strdup_printf("%s.mmio64-alias", sphb->dtbusname);
1910 memory_region_init_alias(&sphb->mem64window, OBJECT(sphb),
1911 namebuf, &sphb->memspace,
1912 sphb->mem64_win_pciaddr, sphb->mem64_win_size);
1913 g_free(namebuf);
1915 memory_region_add_subregion(get_system_memory(),
1916 sphb->mem64_win_addr,
1917 &sphb->mem64window);
1920 /* Initialize IO regions */
1921 namebuf = g_strdup_printf("%s.io", sphb->dtbusname);
1922 memory_region_init(&sphb->iospace, OBJECT(sphb),
1923 namebuf, SPAPR_PCI_IO_WIN_SIZE);
1924 g_free(namebuf);
1926 namebuf = g_strdup_printf("%s.io-alias", sphb->dtbusname);
1927 memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
1928 &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
1929 g_free(namebuf);
1930 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
1931 &sphb->iowindow);
1933 bus = pci_register_root_bus(dev, NULL,
1934 pci_spapr_set_irq, pci_swizzle_map_irq_fn, sphb,
1935 &sphb->memspace, &sphb->iospace,
1936 PCI_DEVFN(0, 0), PCI_NUM_PINS,
1937 TYPE_PCI_BUS);
1940 * Despite resembling a vanilla PCI bus in most ways, the PAPR
1941 * para-virtualized PCI bus *does* permit PCI-E extended config
1942 * space access
1944 if (sphb->pcie_ecs) {
1945 bus->flags |= PCI_BUS_EXTENDED_CONFIG_SPACE;
1947 phb->bus = bus;
1948 qbus_set_hotplug_handler(BUS(phb->bus), OBJECT(sphb));
1951 * Initialize PHB address space.
1952 * By default there will be at least one subregion for default
1953 * 32bit DMA window.
1954 * Later the guest might want to create another DMA window
1955 * which will become another memory subregion.
1957 namebuf = g_strdup_printf("%s.iommu-root", sphb->dtbusname);
1958 memory_region_init(&sphb->iommu_root, OBJECT(sphb),
1959 namebuf, UINT64_MAX);
1960 g_free(namebuf);
1961 address_space_init(&sphb->iommu_as, &sphb->iommu_root,
1962 sphb->dtbusname);
1965 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1966 * we need to allocate some memory to catch those writes coming
1967 * from msi_notify()/msix_notify().
1968 * As MSIMessage:addr is going to be the same and MSIMessage:data
1969 * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1970 * be used.
1972 * For KVM we want to ensure that this memory is a full page so that
1973 * our memory slot is of page size granularity.
1975 if (kvm_enabled()) {
1976 msi_window_size = qemu_real_host_page_size();
1979 memory_region_init_io(&sphb->msiwindow, OBJECT(sphb), &spapr_msi_ops, spapr,
1980 "msi", msi_window_size);
1981 memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
1982 &sphb->msiwindow);
1984 pci_setup_iommu(bus, &spapr_iommu_ops, sphb);
1986 pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
1988 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
1990 /* Initialize the LSI table */
1991 for (i = 0; i < PCI_NUM_PINS; i++) {
1992 int irq = SPAPR_IRQ_PCI_LSI + sphb->index * PCI_NUM_PINS + i;
1994 if (smc->legacy_irq_allocation) {
1995 irq = spapr_irq_findone(spapr, errp);
1996 if (irq < 0) {
1997 error_prepend(errp, "can't allocate LSIs: ");
1999 * Older machines will never support PHB hotplug, ie, this is an
2000 * init only path and QEMU will terminate. No need to rollback.
2002 return;
2006 if (spapr_irq_claim(spapr, irq, true, errp) < 0) {
2007 error_prepend(errp, "can't allocate LSIs: ");
2008 goto unrealize;
2011 sphb->lsi_table[i].irq = irq;
2014 /* allocate connectors for child PCI devices */
2015 add_drcs(sphb, phb->bus);
2017 /* DMA setup */
2018 for (i = 0; i < windows_supported; ++i) {
2019 tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]);
2020 if (!tcet) {
2021 error_setg(errp, "Creating window#%d failed for %s",
2022 i, sphb->dtbusname);
2023 goto unrealize;
2025 memory_region_add_subregion(&sphb->iommu_root, 0,
2026 spapr_tce_get_iommu(tcet));
2029 sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free,
2030 spapr_phb_destroy_msi);
2031 return;
2033 unrealize:
2034 spapr_phb_unrealize(dev);
2037 static int spapr_phb_children_reset(Object *child, void *opaque)
2039 DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
2041 if (dev) {
2042 device_cold_reset(dev);
2045 return 0;
2048 void spapr_phb_dma_reset(SpaprPhbState *sphb)
2050 int i;
2051 SpaprTceTable *tcet;
2053 for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) {
2054 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]);
2056 if (tcet && tcet->nb_table) {
2057 spapr_tce_table_disable(tcet);
2061 /* Register default 32bit DMA window */
2062 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]);
2063 spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr,
2064 sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT);
2065 tcet->def_win = true;
2068 static void spapr_phb_reset(DeviceState *qdev)
2070 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev);
2072 spapr_phb_dma_reset(sphb);
2074 /* Reset the IOMMU state */
2075 object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
2077 if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) {
2078 spapr_phb_vfio_reset(qdev);
2081 g_hash_table_remove_all(sphb->msi);
2084 static Property spapr_phb_properties[] = {
2085 DEFINE_PROP_UINT32("index", SpaprPhbState, index, -1),
2086 DEFINE_PROP_UINT64("mem_win_size", SpaprPhbState, mem_win_size,
2087 SPAPR_PCI_MEM32_WIN_SIZE),
2088 DEFINE_PROP_UINT64("mem64_win_size", SpaprPhbState, mem64_win_size,
2089 SPAPR_PCI_MEM64_WIN_SIZE),
2090 DEFINE_PROP_UINT64("io_win_size", SpaprPhbState, io_win_size,
2091 SPAPR_PCI_IO_WIN_SIZE),
2092 DEFINE_PROP_BOOL("dynamic-reconfiguration", SpaprPhbState, dr_enabled,
2093 true),
2094 /* Default DMA window is 0..1GB */
2095 DEFINE_PROP_UINT64("dma_win_addr", SpaprPhbState, dma_win_addr, 0),
2096 DEFINE_PROP_UINT64("dma_win_size", SpaprPhbState, dma_win_size, 0x40000000),
2097 DEFINE_PROP_UINT64("dma64_win_addr", SpaprPhbState, dma64_win_addr,
2098 0x800000000000000ULL),
2099 DEFINE_PROP_BOOL("ddw", SpaprPhbState, ddw_enabled, true),
2100 DEFINE_PROP_UINT64("pgsz", SpaprPhbState, page_size_mask,
2101 (1ULL << 12) | (1ULL << 16)
2102 | (1ULL << 21) | (1ULL << 24)),
2103 DEFINE_PROP_UINT32("numa_node", SpaprPhbState, numa_node, -1),
2104 DEFINE_PROP_BOOL("pre-2.8-migration", SpaprPhbState,
2105 pre_2_8_migration, false),
2106 DEFINE_PROP_BOOL("pcie-extended-configuration-space", SpaprPhbState,
2107 pcie_ecs, true),
2108 DEFINE_PROP_BOOL("pre-5.1-associativity", SpaprPhbState,
2109 pre_5_1_assoc, false),
2110 DEFINE_PROP_END_OF_LIST(),
2113 static const VMStateDescription vmstate_spapr_pci_lsi = {
2114 .name = "spapr_pci/lsi",
2115 .version_id = 1,
2116 .minimum_version_id = 1,
2117 .fields = (const VMStateField[]) {
2118 VMSTATE_UINT32_EQUAL(irq, SpaprPciLsi, NULL),
2120 VMSTATE_END_OF_LIST()
2124 static const VMStateDescription vmstate_spapr_pci_msi = {
2125 .name = "spapr_pci/msi",
2126 .version_id = 1,
2127 .minimum_version_id = 1,
2128 .fields = (const VMStateField []) {
2129 VMSTATE_UINT32(key, SpaprPciMsiMig),
2130 VMSTATE_UINT32(value.first_irq, SpaprPciMsiMig),
2131 VMSTATE_UINT32(value.num, SpaprPciMsiMig),
2132 VMSTATE_END_OF_LIST()
2136 static int spapr_pci_pre_save(void *opaque)
2138 SpaprPhbState *sphb = opaque;
2139 GHashTableIter iter;
2140 gpointer key, value;
2141 int i;
2143 if (sphb->pre_2_8_migration) {
2144 sphb->mig_liobn = sphb->dma_liobn[0];
2145 sphb->mig_mem_win_addr = sphb->mem_win_addr;
2146 sphb->mig_mem_win_size = sphb->mem_win_size;
2147 sphb->mig_io_win_addr = sphb->io_win_addr;
2148 sphb->mig_io_win_size = sphb->io_win_size;
2150 if ((sphb->mem64_win_size != 0)
2151 && (sphb->mem64_win_addr
2152 == (sphb->mem_win_addr + sphb->mem_win_size))) {
2153 sphb->mig_mem_win_size += sphb->mem64_win_size;
2157 g_free(sphb->msi_devs);
2158 sphb->msi_devs = NULL;
2159 sphb->msi_devs_num = g_hash_table_size(sphb->msi);
2160 if (!sphb->msi_devs_num) {
2161 return 0;
2163 sphb->msi_devs = g_new(SpaprPciMsiMig, sphb->msi_devs_num);
2165 g_hash_table_iter_init(&iter, sphb->msi);
2166 for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) {
2167 sphb->msi_devs[i].key = *(uint32_t *) key;
2168 sphb->msi_devs[i].value = *(SpaprPciMsi *) value;
2171 return 0;
2174 static int spapr_pci_post_save(void *opaque)
2176 SpaprPhbState *sphb = opaque;
2178 g_free(sphb->msi_devs);
2179 sphb->msi_devs = NULL;
2180 sphb->msi_devs_num = 0;
2181 return 0;
2184 static int spapr_pci_post_load(void *opaque, int version_id)
2186 SpaprPhbState *sphb = opaque;
2187 gpointer key, value;
2188 int i;
2190 for (i = 0; i < sphb->msi_devs_num; ++i) {
2191 key = g_memdup(&sphb->msi_devs[i].key,
2192 sizeof(sphb->msi_devs[i].key));
2193 value = g_memdup(&sphb->msi_devs[i].value,
2194 sizeof(sphb->msi_devs[i].value));
2195 g_hash_table_insert(sphb->msi, key, value);
2197 g_free(sphb->msi_devs);
2198 sphb->msi_devs = NULL;
2199 sphb->msi_devs_num = 0;
2201 return 0;
2204 static bool pre_2_8_migration(void *opaque, int version_id)
2206 SpaprPhbState *sphb = opaque;
2208 return sphb->pre_2_8_migration;
2211 static const VMStateDescription vmstate_spapr_pci = {
2212 .name = "spapr_pci",
2213 .version_id = 2,
2214 .minimum_version_id = 2,
2215 .pre_save = spapr_pci_pre_save,
2216 .post_save = spapr_pci_post_save,
2217 .post_load = spapr_pci_post_load,
2218 .fields = (const VMStateField[]) {
2219 VMSTATE_UINT64_EQUAL(buid, SpaprPhbState, NULL),
2220 VMSTATE_UINT32_TEST(mig_liobn, SpaprPhbState, pre_2_8_migration),
2221 VMSTATE_UINT64_TEST(mig_mem_win_addr, SpaprPhbState, pre_2_8_migration),
2222 VMSTATE_UINT64_TEST(mig_mem_win_size, SpaprPhbState, pre_2_8_migration),
2223 VMSTATE_UINT64_TEST(mig_io_win_addr, SpaprPhbState, pre_2_8_migration),
2224 VMSTATE_UINT64_TEST(mig_io_win_size, SpaprPhbState, pre_2_8_migration),
2225 VMSTATE_STRUCT_ARRAY(lsi_table, SpaprPhbState, PCI_NUM_PINS, 0,
2226 vmstate_spapr_pci_lsi, SpaprPciLsi),
2227 VMSTATE_INT32(msi_devs_num, SpaprPhbState),
2228 VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, SpaprPhbState, msi_devs_num, 0,
2229 vmstate_spapr_pci_msi, SpaprPciMsiMig),
2230 VMSTATE_END_OF_LIST()
2234 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
2235 PCIBus *rootbus)
2237 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
2239 return sphb->dtbusname;
2242 static void spapr_phb_class_init(ObjectClass *klass, void *data)
2244 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
2245 DeviceClass *dc = DEVICE_CLASS(klass);
2246 HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
2248 hc->root_bus_path = spapr_phb_root_bus_path;
2249 dc->realize = spapr_phb_realize;
2250 dc->unrealize = spapr_phb_unrealize;
2251 device_class_set_props(dc, spapr_phb_properties);
2252 dc->reset = spapr_phb_reset;
2253 dc->vmsd = &vmstate_spapr_pci;
2254 /* Supported by TYPE_SPAPR_MACHINE */
2255 dc->user_creatable = true;
2256 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
2257 hp->pre_plug = spapr_pci_pre_plug;
2258 hp->plug = spapr_pci_plug;
2259 hp->unplug = spapr_pci_unplug;
2260 hp->unplug_request = spapr_pci_unplug_request;
2263 static const TypeInfo spapr_phb_info = {
2264 .name = TYPE_SPAPR_PCI_HOST_BRIDGE,
2265 .parent = TYPE_PCI_HOST_BRIDGE,
2266 .instance_size = sizeof(SpaprPhbState),
2267 .instance_finalize = spapr_phb_finalizefn,
2268 .class_init = spapr_phb_class_init,
2269 .interfaces = (InterfaceInfo[]) {
2270 { TYPE_HOTPLUG_HANDLER },
2275 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev,
2276 void *opaque)
2278 unsigned int *bus_no = opaque;
2279 PCIBus *sec_bus = NULL;
2281 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
2282 PCI_HEADER_TYPE_BRIDGE)) {
2283 return;
2286 (*bus_no)++;
2287 pci_default_write_config(pdev, PCI_PRIMARY_BUS, pci_dev_bus_num(pdev), 1);
2288 pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1);
2289 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2291 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
2292 if (!sec_bus) {
2293 return;
2296 pci_for_each_device_under_bus(sec_bus, spapr_phb_pci_enumerate_bridge,
2297 bus_no);
2298 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2301 static void spapr_phb_pci_enumerate(SpaprPhbState *phb)
2303 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
2304 unsigned int bus_no = 0;
2306 pci_for_each_device_under_bus(bus, spapr_phb_pci_enumerate_bridge,
2307 &bus_no);
2311 int spapr_dt_phb(SpaprMachineState *spapr, SpaprPhbState *phb,
2312 uint32_t intc_phandle, void *fdt, int *node_offset)
2314 int bus_off, i, j, ret;
2315 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
2316 struct {
2317 uint32_t hi;
2318 uint64_t child;
2319 uint64_t parent;
2320 uint64_t size;
2321 } QEMU_PACKED ranges[] = {
2323 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
2324 cpu_to_be64(phb->io_win_addr),
2325 cpu_to_be64(memory_region_size(&phb->iospace)),
2328 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
2329 cpu_to_be64(phb->mem_win_addr),
2330 cpu_to_be64(phb->mem_win_size),
2333 cpu_to_be32(b_ss(3)), cpu_to_be64(phb->mem64_win_pciaddr),
2334 cpu_to_be64(phb->mem64_win_addr),
2335 cpu_to_be64(phb->mem64_win_size),
2338 const unsigned sizeof_ranges =
2339 (phb->mem64_win_size ? 3 : 2) * sizeof(ranges[0]);
2340 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
2341 uint32_t interrupt_map_mask[] = {
2342 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
2343 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
2344 uint32_t ddw_applicable[] = {
2345 cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW),
2346 cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW),
2347 cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW)
2349 uint32_t ddw_extensions[] = {
2350 cpu_to_be32(2),
2351 cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW),
2352 cpu_to_be32(1), /* 1: ibm,query-pe-dma-window 6 outputs, PAPR 2.8 */
2354 SpaprTceTable *tcet;
2355 SpaprDrc *drc;
2357 /* Start populating the FDT */
2358 _FDT(bus_off = fdt_add_subnode(fdt, 0, phb->dtbusname));
2359 if (node_offset) {
2360 *node_offset = bus_off;
2363 /* Write PHB properties */
2364 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
2365 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
2366 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
2367 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
2368 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
2369 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
2370 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
2371 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
2372 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi",
2373 spapr_irq_nr_msis(spapr)));
2375 /* Dynamic DMA window */
2376 if (phb->ddw_enabled) {
2377 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable,
2378 sizeof(ddw_applicable)));
2379 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions",
2380 &ddw_extensions, sizeof(ddw_extensions)));
2383 /* Advertise NUMA via ibm,associativity */
2384 if (phb->numa_node != -1) {
2385 spapr_numa_write_associativity_dt(spapr, fdt, bus_off, phb->numa_node);
2388 /* Build the interrupt-map, this must matches what is done
2389 * in pci_swizzle_map_irq_fn
2391 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
2392 &interrupt_map_mask, sizeof(interrupt_map_mask)));
2393 for (i = 0; i < PCI_SLOT_MAX; i++) {
2394 for (j = 0; j < PCI_NUM_PINS; j++) {
2395 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
2396 int lsi_num = pci_swizzle(i, j);
2398 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
2399 irqmap[1] = 0;
2400 irqmap[2] = 0;
2401 irqmap[3] = cpu_to_be32(j+1);
2402 irqmap[4] = cpu_to_be32(intc_phandle);
2403 spapr_dt_irq(&irqmap[5], phb->lsi_table[lsi_num].irq, true);
2406 /* Write interrupt map */
2407 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
2408 sizeof(interrupt_map)));
2410 tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]);
2411 if (!tcet) {
2412 return -1;
2414 spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
2415 tcet->liobn, tcet->bus_offset,
2416 tcet->nb_table << tcet->page_shift);
2418 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, phb->index);
2419 if (drc) {
2420 uint32_t drc_index = cpu_to_be32(spapr_drc_index(drc));
2422 _FDT(fdt_setprop(fdt, bus_off, "ibm,my-drc-index", &drc_index,
2423 sizeof(drc_index)));
2426 /* Walk the bridges and program the bus numbers*/
2427 spapr_phb_pci_enumerate(phb);
2428 _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1));
2430 /* Walk the bridge and subordinate buses */
2431 ret = spapr_dt_pci_bus(phb, PCI_HOST_BRIDGE(phb)->bus, fdt, bus_off);
2432 if (ret < 0) {
2433 return ret;
2436 return 0;
2439 void spapr_pci_rtas_init(void)
2441 spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
2442 rtas_read_pci_config);
2443 spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
2444 rtas_write_pci_config);
2445 spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
2446 rtas_ibm_read_pci_config);
2447 spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
2448 rtas_ibm_write_pci_config);
2449 if (msi_nonbroken) {
2450 spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
2451 "ibm,query-interrupt-source-number",
2452 rtas_ibm_query_interrupt_source_number);
2453 spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
2454 rtas_ibm_change_msi);
2457 spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
2458 "ibm,set-eeh-option",
2459 rtas_ibm_set_eeh_option);
2460 spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
2461 "ibm,get-config-addr-info2",
2462 rtas_ibm_get_config_addr_info2);
2463 spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
2464 "ibm,read-slot-reset-state2",
2465 rtas_ibm_read_slot_reset_state2);
2466 spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
2467 "ibm,set-slot-reset",
2468 rtas_ibm_set_slot_reset);
2469 spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
2470 "ibm,configure-pe",
2471 rtas_ibm_configure_pe);
2472 spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
2473 "ibm,slot-error-detail",
2474 rtas_ibm_slot_error_detail);
2477 static void spapr_pci_register_types(void)
2479 type_register_static(&spapr_phb_info);
2482 type_init(spapr_pci_register_types)
2484 static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
2486 bool be = *(bool *)opaque;
2488 if (object_dynamic_cast(OBJECT(dev), "VGA")
2489 || object_dynamic_cast(OBJECT(dev), "secondary-vga")
2490 || object_dynamic_cast(OBJECT(dev), "bochs-display")
2491 || object_dynamic_cast(OBJECT(dev), "virtio-vga")) {
2492 object_property_set_bool(OBJECT(dev), "big-endian-framebuffer", be,
2493 &error_abort);
2495 return 0;
2498 void spapr_pci_switch_vga(SpaprMachineState *spapr, bool big_endian)
2500 SpaprPhbState *sphb;
2503 * For backward compatibility with existing guests, we switch
2504 * the endianness of the VGA controller when changing the guest
2505 * interrupt mode
2507 QLIST_FOREACH(sphb, &spapr->phbs, list) {
2508 BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
2509 qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
2510 &big_endian);