plugins: Update the documentation block for plugin-gen.c
[qemu/armbru.git] / hw / ppc / spapr_hcall.c
blob5e1d020e3df6f7255555325489bc6605f9f3261b
1 #include "qemu/osdep.h"
2 #include "qemu/cutils.h"
3 #include "qapi/error.h"
4 #include "sysemu/hw_accel.h"
5 #include "sysemu/runstate.h"
6 #include "sysemu/tcg.h"
7 #include "qemu/log.h"
8 #include "qemu/main-loop.h"
9 #include "qemu/module.h"
10 #include "qemu/error-report.h"
11 #include "exec/tb-flush.h"
12 #include "helper_regs.h"
13 #include "hw/ppc/ppc.h"
14 #include "hw/ppc/spapr.h"
15 #include "hw/ppc/spapr_cpu_core.h"
16 #include "hw/ppc/spapr_nested.h"
17 #include "mmu-hash64.h"
18 #include "cpu-models.h"
19 #include "trace.h"
20 #include "kvm_ppc.h"
21 #include "hw/ppc/fdt.h"
22 #include "hw/ppc/spapr_ovec.h"
23 #include "hw/ppc/spapr_numa.h"
24 #include "mmu-book3s-v3.h"
25 #include "hw/mem/memory-device.h"
27 bool is_ram_address(SpaprMachineState *spapr, hwaddr addr)
29 MachineState *machine = MACHINE(spapr);
30 DeviceMemoryState *dms = machine->device_memory;
32 if (addr < machine->ram_size) {
33 return true;
35 if (dms && (addr >= dms->base)
36 && ((addr - dms->base) < memory_region_size(&dms->mr))) {
37 return true;
40 return false;
43 /* Convert a return code from the KVM ioctl()s implementing resize HPT
44 * into a PAPR hypercall return code */
45 static target_ulong resize_hpt_convert_rc(int ret)
47 if (ret >= 100000) {
48 return H_LONG_BUSY_ORDER_100_SEC;
49 } else if (ret >= 10000) {
50 return H_LONG_BUSY_ORDER_10_SEC;
51 } else if (ret >= 1000) {
52 return H_LONG_BUSY_ORDER_1_SEC;
53 } else if (ret >= 100) {
54 return H_LONG_BUSY_ORDER_100_MSEC;
55 } else if (ret >= 10) {
56 return H_LONG_BUSY_ORDER_10_MSEC;
57 } else if (ret > 0) {
58 return H_LONG_BUSY_ORDER_1_MSEC;
61 switch (ret) {
62 case 0:
63 return H_SUCCESS;
64 case -EPERM:
65 return H_AUTHORITY;
66 case -EINVAL:
67 return H_PARAMETER;
68 case -ENXIO:
69 return H_CLOSED;
70 case -ENOSPC:
71 return H_PTEG_FULL;
72 case -EBUSY:
73 return H_BUSY;
74 case -ENOMEM:
75 return H_NO_MEM;
76 default:
77 return H_HARDWARE;
81 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
82 SpaprMachineState *spapr,
83 target_ulong opcode,
84 target_ulong *args)
86 target_ulong flags = args[0];
87 int shift = args[1];
88 uint64_t current_ram_size;
89 int rc;
91 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
92 return H_AUTHORITY;
95 if (!spapr->htab_shift) {
96 /* Radix guest, no HPT */
97 return H_NOT_AVAILABLE;
100 trace_spapr_h_resize_hpt_prepare(flags, shift);
102 if (flags != 0) {
103 return H_PARAMETER;
106 if (shift && ((shift < 18) || (shift > 46))) {
107 return H_PARAMETER;
110 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
112 /* We only allow the guest to allocate an HPT one order above what
113 * we'd normally give them (to stop a small guest claiming a huge
114 * chunk of resources in the HPT */
115 if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
116 return H_RESOURCE;
119 rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
120 if (rc != -ENOSYS) {
121 return resize_hpt_convert_rc(rc);
124 if (kvm_enabled()) {
125 return H_HARDWARE;
126 } else if (tcg_enabled()) {
127 return vhyp_mmu_resize_hpt_prepare(cpu, spapr, shift);
128 } else {
129 g_assert_not_reached();
133 static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
135 int ret;
137 cpu_synchronize_state(cs);
139 ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
140 if (ret < 0) {
141 error_report("failed to push sregs to KVM: %s", strerror(-ret));
142 exit(1);
146 void push_sregs_to_kvm_pr(SpaprMachineState *spapr)
148 CPUState *cs;
151 * This is a hack for the benefit of KVM PR - it abuses the SDR1
152 * slot in kvm_sregs to communicate the userspace address of the
153 * HPT
155 if (!kvm_enabled() || !spapr->htab) {
156 return;
159 CPU_FOREACH(cs) {
160 run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
164 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
165 SpaprMachineState *spapr,
166 target_ulong opcode,
167 target_ulong *args)
169 target_ulong flags = args[0];
170 target_ulong shift = args[1];
171 int rc;
173 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
174 return H_AUTHORITY;
177 if (!spapr->htab_shift) {
178 /* Radix guest, no HPT */
179 return H_NOT_AVAILABLE;
182 trace_spapr_h_resize_hpt_commit(flags, shift);
184 rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
185 if (rc != -ENOSYS) {
186 rc = resize_hpt_convert_rc(rc);
187 if (rc == H_SUCCESS) {
188 /* Need to set the new htab_shift in the machine state */
189 spapr->htab_shift = shift;
191 return rc;
194 if (kvm_enabled()) {
195 return H_HARDWARE;
196 } else if (tcg_enabled()) {
197 return vhyp_mmu_resize_hpt_commit(cpu, spapr, flags, shift);
198 } else {
199 g_assert_not_reached();
205 static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr,
206 target_ulong opcode, target_ulong *args)
208 cpu_synchronize_state(CPU(cpu));
209 cpu->env.spr[SPR_SPRG0] = args[0];
211 return H_SUCCESS;
214 static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
215 target_ulong opcode, target_ulong *args)
217 if (!ppc_has_spr(cpu, SPR_DABR)) {
218 return H_HARDWARE; /* DABR register not available */
220 cpu_synchronize_state(CPU(cpu));
222 if (ppc_has_spr(cpu, SPR_DABRX)) {
223 cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */
224 } else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */
225 return H_RESERVED_DABR;
228 cpu->env.spr[SPR_DABR] = args[0];
229 return H_SUCCESS;
232 static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
233 target_ulong opcode, target_ulong *args)
235 target_ulong dabrx = args[1];
237 if (!ppc_has_spr(cpu, SPR_DABR) || !ppc_has_spr(cpu, SPR_DABRX)) {
238 return H_HARDWARE;
241 if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
242 || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
243 return H_PARAMETER;
246 cpu_synchronize_state(CPU(cpu));
247 cpu->env.spr[SPR_DABRX] = dabrx;
248 cpu->env.spr[SPR_DABR] = args[0];
250 return H_SUCCESS;
253 static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr,
254 target_ulong opcode, target_ulong *args)
256 target_ulong flags = args[0];
257 hwaddr dst = args[1];
258 hwaddr src = args[2];
259 hwaddr len = TARGET_PAGE_SIZE;
260 uint8_t *pdst, *psrc;
261 target_long ret = H_SUCCESS;
263 if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
264 | H_COPY_PAGE | H_ZERO_PAGE)) {
265 qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
266 flags);
267 return H_PARAMETER;
270 /* Map-in destination */
271 if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
272 return H_PARAMETER;
274 pdst = cpu_physical_memory_map(dst, &len, true);
275 if (!pdst || len != TARGET_PAGE_SIZE) {
276 return H_PARAMETER;
279 if (flags & H_COPY_PAGE) {
280 /* Map-in source, copy to destination, and unmap source again */
281 if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
282 ret = H_PARAMETER;
283 goto unmap_out;
285 psrc = cpu_physical_memory_map(src, &len, false);
286 if (!psrc || len != TARGET_PAGE_SIZE) {
287 ret = H_PARAMETER;
288 goto unmap_out;
290 memcpy(pdst, psrc, len);
291 cpu_physical_memory_unmap(psrc, len, 0, len);
292 } else if (flags & H_ZERO_PAGE) {
293 memset(pdst, 0, len); /* Just clear the destination page */
296 if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
297 kvmppc_dcbst_range(cpu, pdst, len);
299 if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
300 if (kvm_enabled()) {
301 kvmppc_icbi_range(cpu, pdst, len);
302 } else {
303 tb_flush(CPU(cpu));
307 unmap_out:
308 cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
309 return ret;
312 #define FLAGS_REGISTER_VPA 0x0000200000000000ULL
313 #define FLAGS_REGISTER_DTL 0x0000400000000000ULL
314 #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL
315 #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL
316 #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL
317 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
319 static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
321 CPUState *cs = CPU(cpu);
322 CPUPPCState *env = &cpu->env;
323 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
324 uint16_t size;
325 uint8_t tmp;
327 if (vpa == 0) {
328 hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
329 return H_HARDWARE;
332 if (vpa % env->dcache_line_size) {
333 return H_PARAMETER;
335 /* FIXME: bounds check the address */
337 size = lduw_be_phys(cs->as, vpa + 0x4);
339 if (size < VPA_MIN_SIZE) {
340 return H_PARAMETER;
343 /* VPA is not allowed to cross a page boundary */
344 if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
345 return H_PARAMETER;
348 spapr_cpu->vpa_addr = vpa;
350 tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
351 tmp |= VPA_SHARED_PROC_VAL;
352 stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
354 return H_SUCCESS;
357 static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
359 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
361 if (spapr_cpu->slb_shadow_addr) {
362 return H_RESOURCE;
365 if (spapr_cpu->dtl_addr) {
366 return H_RESOURCE;
369 spapr_cpu->vpa_addr = 0;
370 return H_SUCCESS;
373 static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
375 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
376 uint32_t size;
378 if (addr == 0) {
379 hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
380 return H_HARDWARE;
383 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
384 if (size < 0x8) {
385 return H_PARAMETER;
388 if ((addr / 4096) != ((addr + size - 1) / 4096)) {
389 return H_PARAMETER;
392 if (!spapr_cpu->vpa_addr) {
393 return H_RESOURCE;
396 spapr_cpu->slb_shadow_addr = addr;
397 spapr_cpu->slb_shadow_size = size;
399 return H_SUCCESS;
402 static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
404 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
406 spapr_cpu->slb_shadow_addr = 0;
407 spapr_cpu->slb_shadow_size = 0;
408 return H_SUCCESS;
411 static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
413 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
414 uint32_t size;
416 if (addr == 0) {
417 hcall_dprintf("Can't cope with DTL at logical 0\n");
418 return H_HARDWARE;
421 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
423 if (size < 48) {
424 return H_PARAMETER;
427 if (!spapr_cpu->vpa_addr) {
428 return H_RESOURCE;
431 spapr_cpu->dtl_addr = addr;
432 spapr_cpu->dtl_size = size;
434 return H_SUCCESS;
437 static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
439 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
441 spapr_cpu->dtl_addr = 0;
442 spapr_cpu->dtl_size = 0;
444 return H_SUCCESS;
447 static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr,
448 target_ulong opcode, target_ulong *args)
450 target_ulong flags = args[0];
451 target_ulong procno = args[1];
452 target_ulong vpa = args[2];
453 target_ulong ret = H_PARAMETER;
454 PowerPCCPU *tcpu;
456 tcpu = spapr_find_cpu(procno);
457 if (!tcpu) {
458 return H_PARAMETER;
461 switch (flags) {
462 case FLAGS_REGISTER_VPA:
463 ret = register_vpa(tcpu, vpa);
464 break;
466 case FLAGS_DEREGISTER_VPA:
467 ret = deregister_vpa(tcpu, vpa);
468 break;
470 case FLAGS_REGISTER_SLBSHADOW:
471 ret = register_slb_shadow(tcpu, vpa);
472 break;
474 case FLAGS_DEREGISTER_SLBSHADOW:
475 ret = deregister_slb_shadow(tcpu, vpa);
476 break;
478 case FLAGS_REGISTER_DTL:
479 ret = register_dtl(tcpu, vpa);
480 break;
482 case FLAGS_DEREGISTER_DTL:
483 ret = deregister_dtl(tcpu, vpa);
484 break;
487 return ret;
490 static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr,
491 target_ulong opcode, target_ulong *args)
493 CPUPPCState *env = &cpu->env;
494 CPUState *cs = CPU(cpu);
495 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
497 env->msr |= (1ULL << MSR_EE);
498 hreg_compute_hflags(env);
499 ppc_maybe_interrupt(env);
501 if (spapr_cpu->prod) {
502 spapr_cpu->prod = false;
503 return H_SUCCESS;
506 if (!cpu_has_work(cs)) {
507 cs->halted = 1;
508 cs->exception_index = EXCP_HLT;
509 cs->exit_request = 1;
510 ppc_maybe_interrupt(env);
513 return H_SUCCESS;
517 * Confer to self, aka join. Cede could use the same pattern as well, if
518 * EXCP_HLT can be changed to ECXP_HALTED.
520 static target_ulong h_confer_self(PowerPCCPU *cpu)
522 CPUState *cs = CPU(cpu);
523 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
525 if (spapr_cpu->prod) {
526 spapr_cpu->prod = false;
527 return H_SUCCESS;
529 cs->halted = 1;
530 cs->exception_index = EXCP_HALTED;
531 cs->exit_request = 1;
532 ppc_maybe_interrupt(&cpu->env);
534 return H_SUCCESS;
537 static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr,
538 target_ulong opcode, target_ulong *args)
540 CPUPPCState *env = &cpu->env;
541 CPUState *cs;
542 bool last_unjoined = true;
544 if (env->msr & (1ULL << MSR_EE)) {
545 return H_BAD_MODE;
549 * Must not join the last CPU running. Interestingly, no such restriction
550 * for H_CONFER-to-self, but that is probably not intended to be used
551 * when H_JOIN is available.
553 CPU_FOREACH(cs) {
554 PowerPCCPU *c = POWERPC_CPU(cs);
555 CPUPPCState *e = &c->env;
556 if (c == cpu) {
557 continue;
560 /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */
561 if (!cs->halted || (e->msr & (1ULL << MSR_EE))) {
562 last_unjoined = false;
563 break;
566 if (last_unjoined) {
567 return H_CONTINUE;
570 return h_confer_self(cpu);
573 static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr,
574 target_ulong opcode, target_ulong *args)
576 target_long target = args[0];
577 uint32_t dispatch = args[1];
578 CPUState *cs = CPU(cpu);
579 SpaprCpuState *spapr_cpu;
582 * -1 means confer to all other CPUs without dispatch counter check,
583 * otherwise it's a targeted confer.
585 if (target != -1) {
586 PowerPCCPU *target_cpu = spapr_find_cpu(target);
587 uint32_t target_dispatch;
589 if (!target_cpu) {
590 return H_PARAMETER;
594 * target == self is a special case, we wait until prodded, without
595 * dispatch counter check.
597 if (cpu == target_cpu) {
598 return h_confer_self(cpu);
601 spapr_cpu = spapr_cpu_state(target_cpu);
602 if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) {
603 return H_SUCCESS;
606 target_dispatch = ldl_be_phys(cs->as,
607 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
608 if (target_dispatch != dispatch) {
609 return H_SUCCESS;
613 * The targeted confer does not do anything special beyond yielding
614 * the current vCPU, but even this should be better than nothing.
615 * At least for single-threaded tcg, it gives the target a chance to
616 * run before we run again. Multi-threaded tcg does not really do
617 * anything with EXCP_YIELD yet.
621 cs->exception_index = EXCP_YIELD;
622 cs->exit_request = 1;
623 cpu_loop_exit(cs);
625 return H_SUCCESS;
628 static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr,
629 target_ulong opcode, target_ulong *args)
631 target_long target = args[0];
632 PowerPCCPU *tcpu;
633 CPUState *cs;
634 SpaprCpuState *spapr_cpu;
636 tcpu = spapr_find_cpu(target);
637 cs = CPU(tcpu);
638 if (!cs) {
639 return H_PARAMETER;
642 spapr_cpu = spapr_cpu_state(tcpu);
643 spapr_cpu->prod = true;
644 cs->halted = 0;
645 ppc_maybe_interrupt(&cpu->env);
646 qemu_cpu_kick(cs);
648 return H_SUCCESS;
651 static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr,
652 target_ulong opcode, target_ulong *args)
654 target_ulong rtas_r3 = args[0];
655 uint32_t token = rtas_ld(rtas_r3, 0);
656 uint32_t nargs = rtas_ld(rtas_r3, 1);
657 uint32_t nret = rtas_ld(rtas_r3, 2);
659 return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
660 nret, rtas_r3 + 12 + 4*nargs);
663 static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr,
664 target_ulong opcode, target_ulong *args)
666 CPUState *cs = CPU(cpu);
667 target_ulong size = args[0];
668 target_ulong addr = args[1];
670 switch (size) {
671 case 1:
672 args[0] = ldub_phys(cs->as, addr);
673 return H_SUCCESS;
674 case 2:
675 args[0] = lduw_phys(cs->as, addr);
676 return H_SUCCESS;
677 case 4:
678 args[0] = ldl_phys(cs->as, addr);
679 return H_SUCCESS;
680 case 8:
681 args[0] = ldq_phys(cs->as, addr);
682 return H_SUCCESS;
684 return H_PARAMETER;
687 static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr,
688 target_ulong opcode, target_ulong *args)
690 CPUState *cs = CPU(cpu);
692 target_ulong size = args[0];
693 target_ulong addr = args[1];
694 target_ulong val = args[2];
696 switch (size) {
697 case 1:
698 stb_phys(cs->as, addr, val);
699 return H_SUCCESS;
700 case 2:
701 stw_phys(cs->as, addr, val);
702 return H_SUCCESS;
703 case 4:
704 stl_phys(cs->as, addr, val);
705 return H_SUCCESS;
706 case 8:
707 stq_phys(cs->as, addr, val);
708 return H_SUCCESS;
710 return H_PARAMETER;
713 static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr,
714 target_ulong opcode, target_ulong *args)
716 CPUState *cs = CPU(cpu);
718 target_ulong dst = args[0]; /* Destination address */
719 target_ulong src = args[1]; /* Source address */
720 target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
721 target_ulong count = args[3]; /* Element count */
722 target_ulong op = args[4]; /* 0 = copy, 1 = invert */
723 uint64_t tmp;
724 unsigned int mask = (1 << esize) - 1;
725 int step = 1 << esize;
727 if (count > 0x80000000) {
728 return H_PARAMETER;
731 if ((dst & mask) || (src & mask) || (op > 1)) {
732 return H_PARAMETER;
735 if (dst >= src && dst < (src + (count << esize))) {
736 dst = dst + ((count - 1) << esize);
737 src = src + ((count - 1) << esize);
738 step = -step;
741 while (count--) {
742 switch (esize) {
743 case 0:
744 tmp = ldub_phys(cs->as, src);
745 break;
746 case 1:
747 tmp = lduw_phys(cs->as, src);
748 break;
749 case 2:
750 tmp = ldl_phys(cs->as, src);
751 break;
752 case 3:
753 tmp = ldq_phys(cs->as, src);
754 break;
755 default:
756 return H_PARAMETER;
758 if (op == 1) {
759 tmp = ~tmp;
761 switch (esize) {
762 case 0:
763 stb_phys(cs->as, dst, tmp);
764 break;
765 case 1:
766 stw_phys(cs->as, dst, tmp);
767 break;
768 case 2:
769 stl_phys(cs->as, dst, tmp);
770 break;
771 case 3:
772 stq_phys(cs->as, dst, tmp);
773 break;
775 dst = dst + step;
776 src = src + step;
779 return H_SUCCESS;
782 static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr,
783 target_ulong opcode, target_ulong *args)
785 /* Nothing to do on emulation, KVM will trap this in the kernel */
786 return H_SUCCESS;
789 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr,
790 target_ulong opcode, target_ulong *args)
792 /* Nothing to do on emulation, KVM will trap this in the kernel */
793 return H_SUCCESS;
796 static target_ulong h_set_mode_resource_set_ciabr(PowerPCCPU *cpu,
797 SpaprMachineState *spapr,
798 target_ulong mflags,
799 target_ulong value1,
800 target_ulong value2)
802 CPUPPCState *env = &cpu->env;
804 assert(tcg_enabled()); /* KVM will have handled this */
806 if (mflags) {
807 return H_UNSUPPORTED_FLAG;
809 if (value2) {
810 return H_P4;
812 if ((value1 & PPC_BITMASK(62, 63)) == 0x3) {
813 return H_P3;
816 ppc_store_ciabr(env, value1);
818 return H_SUCCESS;
821 static target_ulong h_set_mode_resource_set_dawr0(PowerPCCPU *cpu,
822 SpaprMachineState *spapr,
823 target_ulong mflags,
824 target_ulong value1,
825 target_ulong value2)
827 CPUPPCState *env = &cpu->env;
829 assert(tcg_enabled()); /* KVM will have handled this */
831 if (mflags) {
832 return H_UNSUPPORTED_FLAG;
834 if (value2 & PPC_BIT(61)) {
835 return H_P4;
838 ppc_store_dawr0(env, value1);
839 ppc_store_dawrx0(env, value2);
841 return H_SUCCESS;
844 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
845 SpaprMachineState *spapr,
846 target_ulong mflags,
847 target_ulong value1,
848 target_ulong value2)
850 if (value1) {
851 return H_P3;
853 if (value2) {
854 return H_P4;
857 switch (mflags) {
858 case H_SET_MODE_ENDIAN_BIG:
859 spapr_set_all_lpcrs(0, LPCR_ILE);
860 spapr_pci_switch_vga(spapr, true);
861 return H_SUCCESS;
863 case H_SET_MODE_ENDIAN_LITTLE:
864 spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE);
865 spapr_pci_switch_vga(spapr, false);
866 return H_SUCCESS;
869 return H_UNSUPPORTED_FLAG;
872 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
873 SpaprMachineState *spapr,
874 target_ulong mflags,
875 target_ulong value1,
876 target_ulong value2)
878 if (value1) {
879 return H_P3;
882 if (value2) {
883 return H_P4;
887 * AIL-1 is not architected, and AIL-2 is not supported by QEMU spapr.
888 * It is supported for faithful emulation of bare metal systems, but for
889 * compatibility concerns we leave it out of the pseries machine.
891 if (mflags != 0 && mflags != 3) {
892 return H_UNSUPPORTED_FLAG;
895 if (mflags == 3) {
896 if (!spapr_get_cap(spapr, SPAPR_CAP_AIL_MODE_3)) {
897 return H_UNSUPPORTED_FLAG;
901 spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL);
903 return H_SUCCESS;
906 static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr,
907 target_ulong opcode, target_ulong *args)
909 target_ulong resource = args[1];
910 target_ulong ret = H_P2;
912 switch (resource) {
913 case H_SET_MODE_RESOURCE_SET_CIABR:
914 ret = h_set_mode_resource_set_ciabr(cpu, spapr, args[0], args[2],
915 args[3]);
916 break;
917 case H_SET_MODE_RESOURCE_SET_DAWR0:
918 ret = h_set_mode_resource_set_dawr0(cpu, spapr, args[0], args[2],
919 args[3]);
920 break;
921 case H_SET_MODE_RESOURCE_LE:
922 ret = h_set_mode_resource_le(cpu, spapr, args[0], args[2], args[3]);
923 break;
924 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
925 ret = h_set_mode_resource_addr_trans_mode(cpu, spapr, args[0],
926 args[2], args[3]);
927 break;
930 return ret;
933 static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr,
934 target_ulong opcode, target_ulong *args)
936 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
937 opcode, " (H_CLEAN_SLB)");
938 return H_FUNCTION;
941 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr,
942 target_ulong opcode, target_ulong *args)
944 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
945 opcode, " (H_INVALIDATE_PID)");
946 return H_FUNCTION;
949 static void spapr_check_setup_free_hpt(SpaprMachineState *spapr,
950 uint64_t patbe_old, uint64_t patbe_new)
953 * We have 4 Options:
954 * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
955 * HASH->RADIX : Free HPT
956 * RADIX->HASH : Allocate HPT
957 * NOTHING->HASH : Allocate HPT
958 * Note: NOTHING implies the case where we said the guest could choose
959 * later and so assumed radix and now it's called H_REG_PROC_TBL
962 if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) {
963 /* We assume RADIX, so this catches all the "Do Nothing" cases */
964 } else if (!(patbe_old & PATE1_GR)) {
965 /* HASH->RADIX : Free HPT */
966 spapr_free_hpt(spapr);
967 } else if (!(patbe_new & PATE1_GR)) {
968 /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
969 spapr_setup_hpt(spapr);
971 return;
974 #define FLAGS_MASK 0x01FULL
975 #define FLAG_MODIFY 0x10
976 #define FLAG_REGISTER 0x08
977 #define FLAG_RADIX 0x04
978 #define FLAG_HASH_PROC_TBL 0x02
979 #define FLAG_GTSE 0x01
981 static target_ulong h_register_process_table(PowerPCCPU *cpu,
982 SpaprMachineState *spapr,
983 target_ulong opcode,
984 target_ulong *args)
986 target_ulong flags = args[0];
987 target_ulong proc_tbl = args[1];
988 target_ulong page_size = args[2];
989 target_ulong table_size = args[3];
990 target_ulong update_lpcr = 0;
991 target_ulong table_byte_size;
992 uint64_t cproc;
994 if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
995 return H_PARAMETER;
997 if (flags & FLAG_MODIFY) {
998 if (flags & FLAG_REGISTER) {
999 /* Check process table alignment */
1000 table_byte_size = 1ULL << (table_size + 12);
1001 if (proc_tbl & (table_byte_size - 1)) {
1002 qemu_log_mask(LOG_GUEST_ERROR,
1003 "%s: process table not properly aligned: proc_tbl 0x"
1004 TARGET_FMT_lx" proc_tbl_size 0x"TARGET_FMT_lx"\n",
1005 __func__, proc_tbl, table_byte_size);
1007 if (flags & FLAG_RADIX) { /* Register new RADIX process table */
1008 if (proc_tbl & 0xfff || proc_tbl >> 60) {
1009 return H_P2;
1010 } else if (page_size) {
1011 return H_P3;
1012 } else if (table_size > 24) {
1013 return H_P4;
1015 cproc = PATE1_GR | proc_tbl | table_size;
1016 } else { /* Register new HPT process table */
1017 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
1018 /* TODO - Not Supported */
1019 /* Technically caused by flag bits => H_PARAMETER */
1020 return H_PARAMETER;
1021 } else { /* Hash with SLB */
1022 if (proc_tbl >> 38) {
1023 return H_P2;
1024 } else if (page_size & ~0x7) {
1025 return H_P3;
1026 } else if (table_size > 24) {
1027 return H_P4;
1030 cproc = (proc_tbl << 25) | page_size << 5 | table_size;
1033 } else { /* Deregister current process table */
1035 * Set to benign value: (current GR) | 0. This allows
1036 * deregistration in KVM to succeed even if the radix bit
1037 * in flags doesn't match the radix bit in the old PATE.
1039 cproc = spapr->patb_entry & PATE1_GR;
1041 } else { /* Maintain current registration */
1042 if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) {
1043 /* Technically caused by flag bits => H_PARAMETER */
1044 return H_PARAMETER; /* Existing Process Table Mismatch */
1046 cproc = spapr->patb_entry;
1049 /* Check if we need to setup OR free the hpt */
1050 spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
1052 spapr->patb_entry = cproc; /* Save new process table */
1054 /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
1055 if (flags & FLAG_RADIX) /* Radix must use process tables, also set HR */
1056 update_lpcr |= (LPCR_UPRT | LPCR_HR);
1057 else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */
1058 update_lpcr |= LPCR_UPRT;
1059 if (flags & FLAG_GTSE) /* Guest translation shootdown enable */
1060 update_lpcr |= LPCR_GTSE;
1062 spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE);
1064 if (kvm_enabled()) {
1065 return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
1066 flags & FLAG_GTSE, cproc);
1068 return H_SUCCESS;
1071 #define H_SIGNAL_SYS_RESET_ALL -1
1072 #define H_SIGNAL_SYS_RESET_ALLBUTSELF -2
1074 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
1075 SpaprMachineState *spapr,
1076 target_ulong opcode, target_ulong *args)
1078 target_long target = args[0];
1079 CPUState *cs;
1081 if (target < 0) {
1082 /* Broadcast */
1083 if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1084 return H_PARAMETER;
1087 CPU_FOREACH(cs) {
1088 PowerPCCPU *c = POWERPC_CPU(cs);
1090 if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1091 if (c == cpu) {
1092 continue;
1095 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1097 return H_SUCCESS;
1099 } else {
1100 /* Unicast */
1101 cs = CPU(spapr_find_cpu(target));
1102 if (cs) {
1103 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1104 return H_SUCCESS;
1106 return H_PARAMETER;
1110 /* Returns either a logical PVR or zero if none was found */
1111 static uint32_t cas_check_pvr(PowerPCCPU *cpu, uint32_t max_compat,
1112 target_ulong *addr, bool *raw_mode_supported)
1114 bool explicit_match = false; /* Matched the CPU's real PVR */
1115 uint32_t best_compat = 0;
1116 int i;
1119 * We scan the supplied table of PVRs looking for two things
1120 * 1. Is our real CPU PVR in the list?
1121 * 2. What's the "best" listed logical PVR
1123 for (i = 0; i < 512; ++i) {
1124 uint32_t pvr, pvr_mask;
1126 pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1127 pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1128 *addr += 8;
1130 if (~pvr_mask & pvr) {
1131 break; /* Terminator record */
1134 if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1135 explicit_match = true;
1136 } else {
1137 if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1138 best_compat = pvr;
1143 *raw_mode_supported = explicit_match;
1145 /* Parsing finished */
1146 trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1148 return best_compat;
1151 static
1152 target_ulong do_client_architecture_support(PowerPCCPU *cpu,
1153 SpaprMachineState *spapr,
1154 target_ulong vec,
1155 target_ulong fdt_bufsize)
1157 target_ulong ov_table; /* Working address in data buffer */
1158 uint32_t cas_pvr;
1159 SpaprOptionVector *ov1_guest, *ov5_guest;
1160 bool guest_radix;
1161 bool raw_mode_supported = false;
1162 bool guest_xive;
1163 CPUState *cs;
1164 void *fdt;
1165 uint32_t max_compat = spapr->max_compat_pvr;
1167 /* CAS is supposed to be called early when only the boot vCPU is active. */
1168 CPU_FOREACH(cs) {
1169 if (cs == CPU(cpu)) {
1170 continue;
1172 if (!cs->halted) {
1173 warn_report("guest has multiple active vCPUs at CAS, which is not allowed");
1174 return H_MULTI_THREADS_ACTIVE;
1178 cas_pvr = cas_check_pvr(cpu, max_compat, &vec, &raw_mode_supported);
1179 if (!cas_pvr && (!raw_mode_supported || max_compat)) {
1181 * We couldn't find a suitable compatibility mode, and either
1182 * the guest doesn't support "raw" mode for this CPU, or "raw"
1183 * mode is disabled because a maximum compat mode is set.
1185 error_report("Couldn't negotiate a suitable PVR during CAS");
1186 return H_HARDWARE;
1189 /* Update CPUs */
1190 if (cpu->compat_pvr != cas_pvr) {
1191 Error *local_err = NULL;
1193 if (ppc_set_compat_all(cas_pvr, &local_err) < 0) {
1194 /* We fail to set compat mode (likely because running with KVM PR),
1195 * but maybe we can fallback to raw mode if the guest supports it.
1197 if (!raw_mode_supported) {
1198 error_report_err(local_err);
1199 return H_HARDWARE;
1201 error_free(local_err);
1205 /* For the future use: here @ov_table points to the first option vector */
1206 ov_table = vec;
1208 ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1209 if (!ov1_guest) {
1210 warn_report("guest didn't provide option vector 1");
1211 return H_PARAMETER;
1213 ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1214 if (!ov5_guest) {
1215 spapr_ovec_cleanup(ov1_guest);
1216 warn_report("guest didn't provide option vector 5");
1217 return H_PARAMETER;
1219 if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1220 error_report("guest requested hash and radix MMU, which is invalid.");
1221 exit(EXIT_FAILURE);
1223 if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) {
1224 error_report("guest requested an invalid interrupt mode");
1225 exit(EXIT_FAILURE);
1228 guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1230 guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT);
1233 * HPT resizing is a bit of a special case, because when enabled
1234 * we assume an HPT guest will support it until it says it
1235 * doesn't, instead of assuming it won't support it until it says
1236 * it does. Strictly speaking that approach could break for
1237 * guests which don't make a CAS call, but those are so old we
1238 * don't care about them. Without that assumption we'd have to
1239 * make at least a temporary allocation of an HPT sized for max
1240 * memory, which could be impossibly difficult under KVM HV if
1241 * maxram is large.
1243 if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
1244 int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1246 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
1247 error_report(
1248 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1249 exit(1);
1252 if (spapr->htab_shift < maxshift) {
1253 /* Guest doesn't know about HPT resizing, so we
1254 * pre-emptively resize for the maximum permitted RAM. At
1255 * the point this is called, nothing should have been
1256 * entered into the existing HPT */
1257 spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
1258 push_sregs_to_kvm_pr(spapr);
1262 /* NOTE: there are actually a number of ov5 bits where input from the
1263 * guest is always zero, and the platform/QEMU enables them independently
1264 * of guest input. To model these properly we'd want some sort of mask,
1265 * but since they only currently apply to memory migration as defined
1266 * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1267 * to worry about this for now.
1270 /* full range of negotiated ov5 capabilities */
1271 spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1272 spapr_ovec_cleanup(ov5_guest);
1274 spapr_check_mmu_mode(guest_radix);
1276 spapr->cas_pre_isa3_guest = !spapr_ovec_test(ov1_guest, OV1_PPC_3_00);
1277 spapr_ovec_cleanup(ov1_guest);
1280 * Check for NUMA affinity conditions now that we know which NUMA
1281 * affinity the guest will use.
1283 spapr_numa_associativity_check(spapr);
1286 * Ensure the guest asks for an interrupt mode we support;
1287 * otherwise terminate the boot.
1289 if (guest_xive) {
1290 if (!spapr->irq->xive) {
1291 error_report(
1292 "Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property");
1293 exit(EXIT_FAILURE);
1295 } else {
1296 if (!spapr->irq->xics) {
1297 error_report(
1298 "Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual");
1299 exit(EXIT_FAILURE);
1303 spapr_irq_update_active_intc(spapr);
1306 * Process all pending hot-plug/unplug requests now. An updated full
1307 * rendered FDT will be returned to the guest.
1309 spapr_drc_reset_all(spapr);
1310 spapr_clear_pending_hotplug_events(spapr);
1313 * If spapr_machine_reset() did not set up a HPT but one is necessary
1314 * (because the guest isn't going to use radix) then set it up here.
1316 if ((spapr->patb_entry & PATE1_GR) && !guest_radix) {
1317 /* legacy hash or new hash: */
1318 spapr_setup_hpt(spapr);
1321 fdt = spapr_build_fdt(spapr, spapr->vof != NULL, fdt_bufsize);
1322 g_free(spapr->fdt_blob);
1323 spapr->fdt_size = fdt_totalsize(fdt);
1324 spapr->fdt_initial_size = spapr->fdt_size;
1325 spapr->fdt_blob = fdt;
1328 * Set the machine->fdt pointer again since we just freed
1329 * it above (by freeing spapr->fdt_blob). We set this
1330 * pointer to enable support for the 'dumpdtb' QMP/HMP
1331 * command.
1333 MACHINE(spapr)->fdt = fdt;
1335 return H_SUCCESS;
1338 static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1339 SpaprMachineState *spapr,
1340 target_ulong opcode,
1341 target_ulong *args)
1343 target_ulong vec = ppc64_phys_to_real(args[0]);
1344 target_ulong fdt_buf = args[1];
1345 target_ulong fdt_bufsize = args[2];
1346 target_ulong ret;
1347 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
1349 if (fdt_bufsize < sizeof(hdr)) {
1350 error_report("SLOF provided insufficient CAS buffer "
1351 TARGET_FMT_lu " (min: %zu)", fdt_bufsize, sizeof(hdr));
1352 exit(EXIT_FAILURE);
1355 fdt_bufsize -= sizeof(hdr);
1357 ret = do_client_architecture_support(cpu, spapr, vec, fdt_bufsize);
1358 if (ret == H_SUCCESS) {
1359 _FDT((fdt_pack(spapr->fdt_blob)));
1360 spapr->fdt_size = fdt_totalsize(spapr->fdt_blob);
1361 spapr->fdt_initial_size = spapr->fdt_size;
1363 cpu_physical_memory_write(fdt_buf, &hdr, sizeof(hdr));
1364 cpu_physical_memory_write(fdt_buf + sizeof(hdr), spapr->fdt_blob,
1365 spapr->fdt_size);
1366 trace_spapr_cas_continue(spapr->fdt_size + sizeof(hdr));
1369 return ret;
1372 target_ulong spapr_vof_client_architecture_support(MachineState *ms,
1373 CPUState *cs,
1374 target_ulong ovec_addr)
1376 SpaprMachineState *spapr = SPAPR_MACHINE(ms);
1378 target_ulong ret = do_client_architecture_support(POWERPC_CPU(cs), spapr,
1379 ovec_addr, FDT_MAX_SIZE);
1382 * This adds stdout and generates phandles for boottime and CAS FDTs.
1383 * It is alright to update the FDT here as do_client_architecture_support()
1384 * does not pack it.
1386 spapr_vof_client_dt_finalize(spapr, spapr->fdt_blob);
1388 return ret;
1391 static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
1392 SpaprMachineState *spapr,
1393 target_ulong opcode,
1394 target_ulong *args)
1396 uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
1397 ~H_CPU_CHAR_THR_RECONF_TRIG;
1398 uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
1399 uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
1400 uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
1401 uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
1402 uint8_t count_cache_flush_assist = spapr_get_cap(spapr,
1403 SPAPR_CAP_CCF_ASSIST);
1405 switch (safe_cache) {
1406 case SPAPR_CAP_WORKAROUND:
1407 characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
1408 characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
1409 characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
1410 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1411 break;
1412 case SPAPR_CAP_FIXED:
1413 behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_ENTRY;
1414 behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_UACCESS;
1415 break;
1416 default: /* broken */
1417 assert(safe_cache == SPAPR_CAP_BROKEN);
1418 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1419 break;
1422 switch (safe_bounds_check) {
1423 case SPAPR_CAP_WORKAROUND:
1424 characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
1425 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1426 break;
1427 case SPAPR_CAP_FIXED:
1428 break;
1429 default: /* broken */
1430 assert(safe_bounds_check == SPAPR_CAP_BROKEN);
1431 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1432 break;
1435 switch (safe_indirect_branch) {
1436 case SPAPR_CAP_FIXED_NA:
1437 break;
1438 case SPAPR_CAP_FIXED_CCD:
1439 characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
1440 break;
1441 case SPAPR_CAP_FIXED_IBS:
1442 characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
1443 break;
1444 case SPAPR_CAP_WORKAROUND:
1445 behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE;
1446 if (count_cache_flush_assist) {
1447 characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST;
1449 break;
1450 default: /* broken */
1451 assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
1452 break;
1455 args[0] = characteristics;
1456 args[1] = behaviour;
1457 return H_SUCCESS;
1460 static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr,
1461 target_ulong opcode, target_ulong *args)
1463 target_ulong dt = ppc64_phys_to_real(args[0]);
1464 struct fdt_header hdr = { 0 };
1465 unsigned cb;
1466 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1467 void *fdt;
1469 cpu_physical_memory_read(dt, &hdr, sizeof(hdr));
1470 cb = fdt32_to_cpu(hdr.totalsize);
1472 if (!smc->update_dt_enabled) {
1473 return H_SUCCESS;
1476 /* Check that the fdt did not grow out of proportion */
1477 if (cb > spapr->fdt_initial_size * 2) {
1478 trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb,
1479 fdt32_to_cpu(hdr.magic));
1480 return H_PARAMETER;
1483 fdt = g_malloc0(cb);
1484 cpu_physical_memory_read(dt, fdt, cb);
1486 /* Check the fdt consistency */
1487 if (fdt_check_full(fdt, cb)) {
1488 trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb,
1489 fdt32_to_cpu(hdr.magic));
1490 return H_PARAMETER;
1493 g_free(spapr->fdt_blob);
1494 spapr->fdt_size = cb;
1495 spapr->fdt_blob = fdt;
1496 trace_spapr_update_dt(cb);
1498 return H_SUCCESS;
1501 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1502 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1503 static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1];
1505 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1507 spapr_hcall_fn *slot;
1509 if (opcode <= MAX_HCALL_OPCODE) {
1510 assert((opcode & 0x3) == 0);
1512 slot = &papr_hypercall_table[opcode / 4];
1513 } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) {
1514 /* we only have SVM-related hcall numbers assigned in multiples of 4 */
1515 assert((opcode & 0x3) == 0);
1517 slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1518 } else {
1519 assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1521 slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1524 assert(!(*slot));
1525 *slot = fn;
1528 void spapr_unregister_hypercall(target_ulong opcode)
1530 spapr_hcall_fn *slot;
1532 if (opcode <= MAX_HCALL_OPCODE) {
1533 assert((opcode & 0x3) == 0);
1535 slot = &papr_hypercall_table[opcode / 4];
1536 } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) {
1537 /* we only have SVM-related hcall numbers assigned in multiples of 4 */
1538 assert((opcode & 0x3) == 0);
1540 slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1541 } else {
1542 assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1544 slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1547 *slot = NULL;
1550 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1551 target_ulong *args)
1553 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1555 if ((opcode <= MAX_HCALL_OPCODE)
1556 && ((opcode & 0x3) == 0)) {
1557 spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1559 if (fn) {
1560 return fn(cpu, spapr, opcode, args);
1562 } else if ((opcode >= SVM_HCALL_BASE) &&
1563 (opcode <= SVM_HCALL_MAX)) {
1564 spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1566 if (fn) {
1567 return fn(cpu, spapr, opcode, args);
1569 } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1570 (opcode <= KVMPPC_HCALL_MAX)) {
1571 spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1573 if (fn) {
1574 return fn(cpu, spapr, opcode, args);
1578 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1579 opcode);
1580 return H_FUNCTION;
1583 #ifdef CONFIG_TCG
1584 static void hypercall_register_softmmu(void)
1586 /* DO NOTHING */
1588 #else
1589 static target_ulong h_softmmu(PowerPCCPU *cpu, SpaprMachineState *spapr,
1590 target_ulong opcode, target_ulong *args)
1592 g_assert_not_reached();
1595 static void hypercall_register_softmmu(void)
1597 /* hcall-pft */
1598 spapr_register_hypercall(H_ENTER, h_softmmu);
1599 spapr_register_hypercall(H_REMOVE, h_softmmu);
1600 spapr_register_hypercall(H_PROTECT, h_softmmu);
1601 spapr_register_hypercall(H_READ, h_softmmu);
1603 /* hcall-bulk */
1604 spapr_register_hypercall(H_BULK_REMOVE, h_softmmu);
1606 #endif
1608 static void hypercall_register_types(void)
1610 hypercall_register_softmmu();
1612 /* hcall-hpt-resize */
1613 spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
1614 spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
1616 /* hcall-splpar */
1617 spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1618 spapr_register_hypercall(H_CEDE, h_cede);
1619 spapr_register_hypercall(H_CONFER, h_confer);
1620 spapr_register_hypercall(H_PROD, h_prod);
1622 /* hcall-join */
1623 spapr_register_hypercall(H_JOIN, h_join);
1625 spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1627 /* processor register resource access h-calls */
1628 spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1629 spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1630 spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1631 spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1632 spapr_register_hypercall(H_SET_MODE, h_set_mode);
1634 /* In Memory Table MMU h-calls */
1635 spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
1636 spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
1637 spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
1639 /* hcall-get-cpu-characteristics */
1640 spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
1641 h_get_cpu_characteristics);
1643 /* "debugger" hcalls (also used by SLOF). Note: We do -not- differentiate
1644 * here between the "CI" and the "CACHE" variants, they will use whatever
1645 * mapping attributes qemu is using. When using KVM, the kernel will
1646 * enforce the attributes more strongly
1648 spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1649 spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1650 spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1651 spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1652 spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1653 spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1654 spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1656 /* qemu/KVM-PPC specific hcalls */
1657 spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1659 /* ibm,client-architecture-support support */
1660 spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1662 spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt);
1665 type_init(hypercall_register_types)