1 #include "qemu/osdep.h"
2 #include "qemu/cutils.h"
3 #include "qapi/error.h"
4 #include "sysemu/hw_accel.h"
5 #include "sysemu/runstate.h"
6 #include "sysemu/tcg.h"
8 #include "qemu/main-loop.h"
9 #include "qemu/module.h"
10 #include "qemu/error-report.h"
11 #include "exec/tb-flush.h"
12 #include "helper_regs.h"
13 #include "hw/ppc/ppc.h"
14 #include "hw/ppc/spapr.h"
15 #include "hw/ppc/spapr_cpu_core.h"
16 #include "hw/ppc/spapr_nested.h"
17 #include "mmu-hash64.h"
18 #include "cpu-models.h"
21 #include "hw/ppc/fdt.h"
22 #include "hw/ppc/spapr_ovec.h"
23 #include "hw/ppc/spapr_numa.h"
24 #include "mmu-book3s-v3.h"
25 #include "hw/mem/memory-device.h"
27 bool is_ram_address(SpaprMachineState
*spapr
, hwaddr addr
)
29 MachineState
*machine
= MACHINE(spapr
);
30 DeviceMemoryState
*dms
= machine
->device_memory
;
32 if (addr
< machine
->ram_size
) {
35 if (dms
&& (addr
>= dms
->base
)
36 && ((addr
- dms
->base
) < memory_region_size(&dms
->mr
))) {
43 /* Convert a return code from the KVM ioctl()s implementing resize HPT
44 * into a PAPR hypercall return code */
45 static target_ulong
resize_hpt_convert_rc(int ret
)
48 return H_LONG_BUSY_ORDER_100_SEC
;
49 } else if (ret
>= 10000) {
50 return H_LONG_BUSY_ORDER_10_SEC
;
51 } else if (ret
>= 1000) {
52 return H_LONG_BUSY_ORDER_1_SEC
;
53 } else if (ret
>= 100) {
54 return H_LONG_BUSY_ORDER_100_MSEC
;
55 } else if (ret
>= 10) {
56 return H_LONG_BUSY_ORDER_10_MSEC
;
58 return H_LONG_BUSY_ORDER_1_MSEC
;
81 static target_ulong
h_resize_hpt_prepare(PowerPCCPU
*cpu
,
82 SpaprMachineState
*spapr
,
86 target_ulong flags
= args
[0];
88 uint64_t current_ram_size
;
91 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DISABLED
) {
95 if (!spapr
->htab_shift
) {
96 /* Radix guest, no HPT */
97 return H_NOT_AVAILABLE
;
100 trace_spapr_h_resize_hpt_prepare(flags
, shift
);
106 if (shift
&& ((shift
< 18) || (shift
> 46))) {
110 current_ram_size
= MACHINE(spapr
)->ram_size
+ get_plugged_memory_size();
112 /* We only allow the guest to allocate an HPT one order above what
113 * we'd normally give them (to stop a small guest claiming a huge
114 * chunk of resources in the HPT */
115 if (shift
> (spapr_hpt_shift_for_ramsize(current_ram_size
) + 1)) {
119 rc
= kvmppc_resize_hpt_prepare(cpu
, flags
, shift
);
121 return resize_hpt_convert_rc(rc
);
126 } else if (tcg_enabled()) {
127 return vhyp_mmu_resize_hpt_prepare(cpu
, spapr
, shift
);
129 g_assert_not_reached();
133 static void do_push_sregs_to_kvm_pr(CPUState
*cs
, run_on_cpu_data data
)
137 cpu_synchronize_state(cs
);
139 ret
= kvmppc_put_books_sregs(POWERPC_CPU(cs
));
141 error_report("failed to push sregs to KVM: %s", strerror(-ret
));
146 void push_sregs_to_kvm_pr(SpaprMachineState
*spapr
)
151 * This is a hack for the benefit of KVM PR - it abuses the SDR1
152 * slot in kvm_sregs to communicate the userspace address of the
155 if (!kvm_enabled() || !spapr
->htab
) {
160 run_on_cpu(cs
, do_push_sregs_to_kvm_pr
, RUN_ON_CPU_NULL
);
164 static target_ulong
h_resize_hpt_commit(PowerPCCPU
*cpu
,
165 SpaprMachineState
*spapr
,
169 target_ulong flags
= args
[0];
170 target_ulong shift
= args
[1];
173 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DISABLED
) {
177 if (!spapr
->htab_shift
) {
178 /* Radix guest, no HPT */
179 return H_NOT_AVAILABLE
;
182 trace_spapr_h_resize_hpt_commit(flags
, shift
);
184 rc
= kvmppc_resize_hpt_commit(cpu
, flags
, shift
);
186 rc
= resize_hpt_convert_rc(rc
);
187 if (rc
== H_SUCCESS
) {
188 /* Need to set the new htab_shift in the machine state */
189 spapr
->htab_shift
= shift
;
196 } else if (tcg_enabled()) {
197 return vhyp_mmu_resize_hpt_commit(cpu
, spapr
, flags
, shift
);
199 g_assert_not_reached();
205 static target_ulong
h_set_sprg0(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
206 target_ulong opcode
, target_ulong
*args
)
208 cpu_synchronize_state(CPU(cpu
));
209 cpu
->env
.spr
[SPR_SPRG0
] = args
[0];
214 static target_ulong
h_set_dabr(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
215 target_ulong opcode
, target_ulong
*args
)
217 if (!ppc_has_spr(cpu
, SPR_DABR
)) {
218 return H_HARDWARE
; /* DABR register not available */
220 cpu_synchronize_state(CPU(cpu
));
222 if (ppc_has_spr(cpu
, SPR_DABRX
)) {
223 cpu
->env
.spr
[SPR_DABRX
] = 0x3; /* Use Problem and Privileged state */
224 } else if (!(args
[0] & 0x4)) { /* Breakpoint Translation set? */
225 return H_RESERVED_DABR
;
228 cpu
->env
.spr
[SPR_DABR
] = args
[0];
232 static target_ulong
h_set_xdabr(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
233 target_ulong opcode
, target_ulong
*args
)
235 target_ulong dabrx
= args
[1];
237 if (!ppc_has_spr(cpu
, SPR_DABR
) || !ppc_has_spr(cpu
, SPR_DABRX
)) {
241 if ((dabrx
& ~0xfULL
) != 0 || (dabrx
& H_DABRX_HYPERVISOR
) != 0
242 || (dabrx
& (H_DABRX_KERNEL
| H_DABRX_USER
)) == 0) {
246 cpu_synchronize_state(CPU(cpu
));
247 cpu
->env
.spr
[SPR_DABRX
] = dabrx
;
248 cpu
->env
.spr
[SPR_DABR
] = args
[0];
253 static target_ulong
h_page_init(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
254 target_ulong opcode
, target_ulong
*args
)
256 target_ulong flags
= args
[0];
257 hwaddr dst
= args
[1];
258 hwaddr src
= args
[2];
259 hwaddr len
= TARGET_PAGE_SIZE
;
260 uint8_t *pdst
, *psrc
;
261 target_long ret
= H_SUCCESS
;
263 if (flags
& ~(H_ICACHE_SYNCHRONIZE
| H_ICACHE_INVALIDATE
264 | H_COPY_PAGE
| H_ZERO_PAGE
)) {
265 qemu_log_mask(LOG_UNIMP
, "h_page_init: Bad flags (" TARGET_FMT_lx
"\n",
270 /* Map-in destination */
271 if (!is_ram_address(spapr
, dst
) || (dst
& ~TARGET_PAGE_MASK
) != 0) {
274 pdst
= cpu_physical_memory_map(dst
, &len
, true);
275 if (!pdst
|| len
!= TARGET_PAGE_SIZE
) {
279 if (flags
& H_COPY_PAGE
) {
280 /* Map-in source, copy to destination, and unmap source again */
281 if (!is_ram_address(spapr
, src
) || (src
& ~TARGET_PAGE_MASK
) != 0) {
285 psrc
= cpu_physical_memory_map(src
, &len
, false);
286 if (!psrc
|| len
!= TARGET_PAGE_SIZE
) {
290 memcpy(pdst
, psrc
, len
);
291 cpu_physical_memory_unmap(psrc
, len
, 0, len
);
292 } else if (flags
& H_ZERO_PAGE
) {
293 memset(pdst
, 0, len
); /* Just clear the destination page */
296 if (kvm_enabled() && (flags
& H_ICACHE_SYNCHRONIZE
) != 0) {
297 kvmppc_dcbst_range(cpu
, pdst
, len
);
299 if (flags
& (H_ICACHE_SYNCHRONIZE
| H_ICACHE_INVALIDATE
)) {
301 kvmppc_icbi_range(cpu
, pdst
, len
);
308 cpu_physical_memory_unmap(pdst
, TARGET_PAGE_SIZE
, 1, len
);
312 #define FLAGS_REGISTER_VPA 0x0000200000000000ULL
313 #define FLAGS_REGISTER_DTL 0x0000400000000000ULL
314 #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL
315 #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL
316 #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL
317 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
319 static target_ulong
register_vpa(PowerPCCPU
*cpu
, target_ulong vpa
)
321 CPUState
*cs
= CPU(cpu
);
322 CPUPPCState
*env
= &cpu
->env
;
323 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
328 hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
332 if (vpa
% env
->dcache_line_size
) {
335 /* FIXME: bounds check the address */
337 size
= lduw_be_phys(cs
->as
, vpa
+ 0x4);
339 if (size
< VPA_MIN_SIZE
) {
343 /* VPA is not allowed to cross a page boundary */
344 if ((vpa
/ 4096) != ((vpa
+ size
- 1) / 4096)) {
348 spapr_cpu
->vpa_addr
= vpa
;
350 tmp
= ldub_phys(cs
->as
, spapr_cpu
->vpa_addr
+ VPA_SHARED_PROC_OFFSET
);
351 tmp
|= VPA_SHARED_PROC_VAL
;
352 stb_phys(cs
->as
, spapr_cpu
->vpa_addr
+ VPA_SHARED_PROC_OFFSET
, tmp
);
357 static target_ulong
deregister_vpa(PowerPCCPU
*cpu
, target_ulong vpa
)
359 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
361 if (spapr_cpu
->slb_shadow_addr
) {
365 if (spapr_cpu
->dtl_addr
) {
369 spapr_cpu
->vpa_addr
= 0;
373 static target_ulong
register_slb_shadow(PowerPCCPU
*cpu
, target_ulong addr
)
375 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
379 hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
383 size
= ldl_be_phys(CPU(cpu
)->as
, addr
+ 0x4);
388 if ((addr
/ 4096) != ((addr
+ size
- 1) / 4096)) {
392 if (!spapr_cpu
->vpa_addr
) {
396 spapr_cpu
->slb_shadow_addr
= addr
;
397 spapr_cpu
->slb_shadow_size
= size
;
402 static target_ulong
deregister_slb_shadow(PowerPCCPU
*cpu
, target_ulong addr
)
404 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
406 spapr_cpu
->slb_shadow_addr
= 0;
407 spapr_cpu
->slb_shadow_size
= 0;
411 static target_ulong
register_dtl(PowerPCCPU
*cpu
, target_ulong addr
)
413 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
417 hcall_dprintf("Can't cope with DTL at logical 0\n");
421 size
= ldl_be_phys(CPU(cpu
)->as
, addr
+ 0x4);
427 if (!spapr_cpu
->vpa_addr
) {
431 spapr_cpu
->dtl_addr
= addr
;
432 spapr_cpu
->dtl_size
= size
;
437 static target_ulong
deregister_dtl(PowerPCCPU
*cpu
, target_ulong addr
)
439 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
441 spapr_cpu
->dtl_addr
= 0;
442 spapr_cpu
->dtl_size
= 0;
447 static target_ulong
h_register_vpa(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
448 target_ulong opcode
, target_ulong
*args
)
450 target_ulong flags
= args
[0];
451 target_ulong procno
= args
[1];
452 target_ulong vpa
= args
[2];
453 target_ulong ret
= H_PARAMETER
;
456 tcpu
= spapr_find_cpu(procno
);
462 case FLAGS_REGISTER_VPA
:
463 ret
= register_vpa(tcpu
, vpa
);
466 case FLAGS_DEREGISTER_VPA
:
467 ret
= deregister_vpa(tcpu
, vpa
);
470 case FLAGS_REGISTER_SLBSHADOW
:
471 ret
= register_slb_shadow(tcpu
, vpa
);
474 case FLAGS_DEREGISTER_SLBSHADOW
:
475 ret
= deregister_slb_shadow(tcpu
, vpa
);
478 case FLAGS_REGISTER_DTL
:
479 ret
= register_dtl(tcpu
, vpa
);
482 case FLAGS_DEREGISTER_DTL
:
483 ret
= deregister_dtl(tcpu
, vpa
);
490 static target_ulong
h_cede(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
491 target_ulong opcode
, target_ulong
*args
)
493 CPUPPCState
*env
= &cpu
->env
;
494 CPUState
*cs
= CPU(cpu
);
495 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
497 env
->msr
|= (1ULL << MSR_EE
);
498 hreg_compute_hflags(env
);
499 ppc_maybe_interrupt(env
);
501 if (spapr_cpu
->prod
) {
502 spapr_cpu
->prod
= false;
506 if (!cpu_has_work(cs
)) {
508 cs
->exception_index
= EXCP_HLT
;
509 cs
->exit_request
= 1;
510 ppc_maybe_interrupt(env
);
517 * Confer to self, aka join. Cede could use the same pattern as well, if
518 * EXCP_HLT can be changed to ECXP_HALTED.
520 static target_ulong
h_confer_self(PowerPCCPU
*cpu
)
522 CPUState
*cs
= CPU(cpu
);
523 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
525 if (spapr_cpu
->prod
) {
526 spapr_cpu
->prod
= false;
530 cs
->exception_index
= EXCP_HALTED
;
531 cs
->exit_request
= 1;
532 ppc_maybe_interrupt(&cpu
->env
);
537 static target_ulong
h_join(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
538 target_ulong opcode
, target_ulong
*args
)
540 CPUPPCState
*env
= &cpu
->env
;
542 bool last_unjoined
= true;
544 if (env
->msr
& (1ULL << MSR_EE
)) {
549 * Must not join the last CPU running. Interestingly, no such restriction
550 * for H_CONFER-to-self, but that is probably not intended to be used
551 * when H_JOIN is available.
554 PowerPCCPU
*c
= POWERPC_CPU(cs
);
555 CPUPPCState
*e
= &c
->env
;
560 /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */
561 if (!cs
->halted
|| (e
->msr
& (1ULL << MSR_EE
))) {
562 last_unjoined
= false;
570 return h_confer_self(cpu
);
573 static target_ulong
h_confer(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
574 target_ulong opcode
, target_ulong
*args
)
576 target_long target
= args
[0];
577 uint32_t dispatch
= args
[1];
578 CPUState
*cs
= CPU(cpu
);
579 SpaprCpuState
*spapr_cpu
;
582 * -1 means confer to all other CPUs without dispatch counter check,
583 * otherwise it's a targeted confer.
586 PowerPCCPU
*target_cpu
= spapr_find_cpu(target
);
587 uint32_t target_dispatch
;
594 * target == self is a special case, we wait until prodded, without
595 * dispatch counter check.
597 if (cpu
== target_cpu
) {
598 return h_confer_self(cpu
);
601 spapr_cpu
= spapr_cpu_state(target_cpu
);
602 if (!spapr_cpu
->vpa_addr
|| ((dispatch
& 1) == 0)) {
606 target_dispatch
= ldl_be_phys(cs
->as
,
607 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
);
608 if (target_dispatch
!= dispatch
) {
613 * The targeted confer does not do anything special beyond yielding
614 * the current vCPU, but even this should be better than nothing.
615 * At least for single-threaded tcg, it gives the target a chance to
616 * run before we run again. Multi-threaded tcg does not really do
617 * anything with EXCP_YIELD yet.
621 cs
->exception_index
= EXCP_YIELD
;
622 cs
->exit_request
= 1;
628 static target_ulong
h_prod(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
629 target_ulong opcode
, target_ulong
*args
)
631 target_long target
= args
[0];
634 SpaprCpuState
*spapr_cpu
;
636 tcpu
= spapr_find_cpu(target
);
642 spapr_cpu
= spapr_cpu_state(tcpu
);
643 spapr_cpu
->prod
= true;
645 ppc_maybe_interrupt(&cpu
->env
);
651 static target_ulong
h_rtas(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
652 target_ulong opcode
, target_ulong
*args
)
654 target_ulong rtas_r3
= args
[0];
655 uint32_t token
= rtas_ld(rtas_r3
, 0);
656 uint32_t nargs
= rtas_ld(rtas_r3
, 1);
657 uint32_t nret
= rtas_ld(rtas_r3
, 2);
659 return spapr_rtas_call(cpu
, spapr
, token
, nargs
, rtas_r3
+ 12,
660 nret
, rtas_r3
+ 12 + 4*nargs
);
663 static target_ulong
h_logical_load(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
664 target_ulong opcode
, target_ulong
*args
)
666 CPUState
*cs
= CPU(cpu
);
667 target_ulong size
= args
[0];
668 target_ulong addr
= args
[1];
672 args
[0] = ldub_phys(cs
->as
, addr
);
675 args
[0] = lduw_phys(cs
->as
, addr
);
678 args
[0] = ldl_phys(cs
->as
, addr
);
681 args
[0] = ldq_phys(cs
->as
, addr
);
687 static target_ulong
h_logical_store(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
688 target_ulong opcode
, target_ulong
*args
)
690 CPUState
*cs
= CPU(cpu
);
692 target_ulong size
= args
[0];
693 target_ulong addr
= args
[1];
694 target_ulong val
= args
[2];
698 stb_phys(cs
->as
, addr
, val
);
701 stw_phys(cs
->as
, addr
, val
);
704 stl_phys(cs
->as
, addr
, val
);
707 stq_phys(cs
->as
, addr
, val
);
713 static target_ulong
h_logical_memop(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
714 target_ulong opcode
, target_ulong
*args
)
716 CPUState
*cs
= CPU(cpu
);
718 target_ulong dst
= args
[0]; /* Destination address */
719 target_ulong src
= args
[1]; /* Source address */
720 target_ulong esize
= args
[2]; /* Element size (0=1,1=2,2=4,3=8) */
721 target_ulong count
= args
[3]; /* Element count */
722 target_ulong op
= args
[4]; /* 0 = copy, 1 = invert */
724 unsigned int mask
= (1 << esize
) - 1;
725 int step
= 1 << esize
;
727 if (count
> 0x80000000) {
731 if ((dst
& mask
) || (src
& mask
) || (op
> 1)) {
735 if (dst
>= src
&& dst
< (src
+ (count
<< esize
))) {
736 dst
= dst
+ ((count
- 1) << esize
);
737 src
= src
+ ((count
- 1) << esize
);
744 tmp
= ldub_phys(cs
->as
, src
);
747 tmp
= lduw_phys(cs
->as
, src
);
750 tmp
= ldl_phys(cs
->as
, src
);
753 tmp
= ldq_phys(cs
->as
, src
);
763 stb_phys(cs
->as
, dst
, tmp
);
766 stw_phys(cs
->as
, dst
, tmp
);
769 stl_phys(cs
->as
, dst
, tmp
);
772 stq_phys(cs
->as
, dst
, tmp
);
782 static target_ulong
h_logical_icbi(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
783 target_ulong opcode
, target_ulong
*args
)
785 /* Nothing to do on emulation, KVM will trap this in the kernel */
789 static target_ulong
h_logical_dcbf(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
790 target_ulong opcode
, target_ulong
*args
)
792 /* Nothing to do on emulation, KVM will trap this in the kernel */
796 static target_ulong
h_set_mode_resource_set_ciabr(PowerPCCPU
*cpu
,
797 SpaprMachineState
*spapr
,
802 CPUPPCState
*env
= &cpu
->env
;
804 assert(tcg_enabled()); /* KVM will have handled this */
807 return H_UNSUPPORTED_FLAG
;
812 if ((value1
& PPC_BITMASK(62, 63)) == 0x3) {
816 ppc_store_ciabr(env
, value1
);
821 static target_ulong
h_set_mode_resource_set_dawr0(PowerPCCPU
*cpu
,
822 SpaprMachineState
*spapr
,
827 CPUPPCState
*env
= &cpu
->env
;
829 assert(tcg_enabled()); /* KVM will have handled this */
832 return H_UNSUPPORTED_FLAG
;
834 if (value2
& PPC_BIT(61)) {
838 ppc_store_dawr0(env
, value1
);
839 ppc_store_dawrx0(env
, value2
);
844 static target_ulong
h_set_mode_resource_le(PowerPCCPU
*cpu
,
845 SpaprMachineState
*spapr
,
858 case H_SET_MODE_ENDIAN_BIG
:
859 spapr_set_all_lpcrs(0, LPCR_ILE
);
860 spapr_pci_switch_vga(spapr
, true);
863 case H_SET_MODE_ENDIAN_LITTLE
:
864 spapr_set_all_lpcrs(LPCR_ILE
, LPCR_ILE
);
865 spapr_pci_switch_vga(spapr
, false);
869 return H_UNSUPPORTED_FLAG
;
872 static target_ulong
h_set_mode_resource_addr_trans_mode(PowerPCCPU
*cpu
,
873 SpaprMachineState
*spapr
,
887 * AIL-1 is not architected, and AIL-2 is not supported by QEMU spapr.
888 * It is supported for faithful emulation of bare metal systems, but for
889 * compatibility concerns we leave it out of the pseries machine.
891 if (mflags
!= 0 && mflags
!= 3) {
892 return H_UNSUPPORTED_FLAG
;
896 if (!spapr_get_cap(spapr
, SPAPR_CAP_AIL_MODE_3
)) {
897 return H_UNSUPPORTED_FLAG
;
901 spapr_set_all_lpcrs(mflags
<< LPCR_AIL_SHIFT
, LPCR_AIL
);
906 static target_ulong
h_set_mode(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
907 target_ulong opcode
, target_ulong
*args
)
909 target_ulong resource
= args
[1];
910 target_ulong ret
= H_P2
;
913 case H_SET_MODE_RESOURCE_SET_CIABR
:
914 ret
= h_set_mode_resource_set_ciabr(cpu
, spapr
, args
[0], args
[2],
917 case H_SET_MODE_RESOURCE_SET_DAWR0
:
918 ret
= h_set_mode_resource_set_dawr0(cpu
, spapr
, args
[0], args
[2],
921 case H_SET_MODE_RESOURCE_LE
:
922 ret
= h_set_mode_resource_le(cpu
, spapr
, args
[0], args
[2], args
[3]);
924 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE
:
925 ret
= h_set_mode_resource_addr_trans_mode(cpu
, spapr
, args
[0],
933 static target_ulong
h_clean_slb(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
934 target_ulong opcode
, target_ulong
*args
)
936 qemu_log_mask(LOG_UNIMP
, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx
"%s\n",
937 opcode
, " (H_CLEAN_SLB)");
941 static target_ulong
h_invalidate_pid(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
942 target_ulong opcode
, target_ulong
*args
)
944 qemu_log_mask(LOG_UNIMP
, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx
"%s\n",
945 opcode
, " (H_INVALIDATE_PID)");
949 static void spapr_check_setup_free_hpt(SpaprMachineState
*spapr
,
950 uint64_t patbe_old
, uint64_t patbe_new
)
954 * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
955 * HASH->RADIX : Free HPT
956 * RADIX->HASH : Allocate HPT
957 * NOTHING->HASH : Allocate HPT
958 * Note: NOTHING implies the case where we said the guest could choose
959 * later and so assumed radix and now it's called H_REG_PROC_TBL
962 if ((patbe_old
& PATE1_GR
) == (patbe_new
& PATE1_GR
)) {
963 /* We assume RADIX, so this catches all the "Do Nothing" cases */
964 } else if (!(patbe_old
& PATE1_GR
)) {
965 /* HASH->RADIX : Free HPT */
966 spapr_free_hpt(spapr
);
967 } else if (!(patbe_new
& PATE1_GR
)) {
968 /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
969 spapr_setup_hpt(spapr
);
974 #define FLAGS_MASK 0x01FULL
975 #define FLAG_MODIFY 0x10
976 #define FLAG_REGISTER 0x08
977 #define FLAG_RADIX 0x04
978 #define FLAG_HASH_PROC_TBL 0x02
979 #define FLAG_GTSE 0x01
981 static target_ulong
h_register_process_table(PowerPCCPU
*cpu
,
982 SpaprMachineState
*spapr
,
986 target_ulong flags
= args
[0];
987 target_ulong proc_tbl
= args
[1];
988 target_ulong page_size
= args
[2];
989 target_ulong table_size
= args
[3];
990 target_ulong update_lpcr
= 0;
991 target_ulong table_byte_size
;
994 if (flags
& ~FLAGS_MASK
) { /* Check no reserved bits are set */
997 if (flags
& FLAG_MODIFY
) {
998 if (flags
& FLAG_REGISTER
) {
999 /* Check process table alignment */
1000 table_byte_size
= 1ULL << (table_size
+ 12);
1001 if (proc_tbl
& (table_byte_size
- 1)) {
1002 qemu_log_mask(LOG_GUEST_ERROR
,
1003 "%s: process table not properly aligned: proc_tbl 0x"
1004 TARGET_FMT_lx
" proc_tbl_size 0x"TARGET_FMT_lx
"\n",
1005 __func__
, proc_tbl
, table_byte_size
);
1007 if (flags
& FLAG_RADIX
) { /* Register new RADIX process table */
1008 if (proc_tbl
& 0xfff || proc_tbl
>> 60) {
1010 } else if (page_size
) {
1012 } else if (table_size
> 24) {
1015 cproc
= PATE1_GR
| proc_tbl
| table_size
;
1016 } else { /* Register new HPT process table */
1017 if (flags
& FLAG_HASH_PROC_TBL
) { /* Hash with Segment Tables */
1018 /* TODO - Not Supported */
1019 /* Technically caused by flag bits => H_PARAMETER */
1021 } else { /* Hash with SLB */
1022 if (proc_tbl
>> 38) {
1024 } else if (page_size
& ~0x7) {
1026 } else if (table_size
> 24) {
1030 cproc
= (proc_tbl
<< 25) | page_size
<< 5 | table_size
;
1033 } else { /* Deregister current process table */
1035 * Set to benign value: (current GR) | 0. This allows
1036 * deregistration in KVM to succeed even if the radix bit
1037 * in flags doesn't match the radix bit in the old PATE.
1039 cproc
= spapr
->patb_entry
& PATE1_GR
;
1041 } else { /* Maintain current registration */
1042 if (!(flags
& FLAG_RADIX
) != !(spapr
->patb_entry
& PATE1_GR
)) {
1043 /* Technically caused by flag bits => H_PARAMETER */
1044 return H_PARAMETER
; /* Existing Process Table Mismatch */
1046 cproc
= spapr
->patb_entry
;
1049 /* Check if we need to setup OR free the hpt */
1050 spapr_check_setup_free_hpt(spapr
, spapr
->patb_entry
, cproc
);
1052 spapr
->patb_entry
= cproc
; /* Save new process table */
1054 /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
1055 if (flags
& FLAG_RADIX
) /* Radix must use process tables, also set HR */
1056 update_lpcr
|= (LPCR_UPRT
| LPCR_HR
);
1057 else if (flags
& FLAG_HASH_PROC_TBL
) /* Hash with process tables */
1058 update_lpcr
|= LPCR_UPRT
;
1059 if (flags
& FLAG_GTSE
) /* Guest translation shootdown enable */
1060 update_lpcr
|= LPCR_GTSE
;
1062 spapr_set_all_lpcrs(update_lpcr
, LPCR_UPRT
| LPCR_HR
| LPCR_GTSE
);
1064 if (kvm_enabled()) {
1065 return kvmppc_configure_v3_mmu(cpu
, flags
& FLAG_RADIX
,
1066 flags
& FLAG_GTSE
, cproc
);
1071 #define H_SIGNAL_SYS_RESET_ALL -1
1072 #define H_SIGNAL_SYS_RESET_ALLBUTSELF -2
1074 static target_ulong
h_signal_sys_reset(PowerPCCPU
*cpu
,
1075 SpaprMachineState
*spapr
,
1076 target_ulong opcode
, target_ulong
*args
)
1078 target_long target
= args
[0];
1083 if (target
< H_SIGNAL_SYS_RESET_ALLBUTSELF
) {
1088 PowerPCCPU
*c
= POWERPC_CPU(cs
);
1090 if (target
== H_SIGNAL_SYS_RESET_ALLBUTSELF
) {
1095 run_on_cpu(cs
, spapr_do_system_reset_on_cpu
, RUN_ON_CPU_NULL
);
1101 cs
= CPU(spapr_find_cpu(target
));
1103 run_on_cpu(cs
, spapr_do_system_reset_on_cpu
, RUN_ON_CPU_NULL
);
1110 /* Returns either a logical PVR or zero if none was found */
1111 static uint32_t cas_check_pvr(PowerPCCPU
*cpu
, uint32_t max_compat
,
1112 target_ulong
*addr
, bool *raw_mode_supported
)
1114 bool explicit_match
= false; /* Matched the CPU's real PVR */
1115 uint32_t best_compat
= 0;
1119 * We scan the supplied table of PVRs looking for two things
1120 * 1. Is our real CPU PVR in the list?
1121 * 2. What's the "best" listed logical PVR
1123 for (i
= 0; i
< 512; ++i
) {
1124 uint32_t pvr
, pvr_mask
;
1126 pvr_mask
= ldl_be_phys(&address_space_memory
, *addr
);
1127 pvr
= ldl_be_phys(&address_space_memory
, *addr
+ 4);
1130 if (~pvr_mask
& pvr
) {
1131 break; /* Terminator record */
1134 if ((cpu
->env
.spr
[SPR_PVR
] & pvr_mask
) == (pvr
& pvr_mask
)) {
1135 explicit_match
= true;
1137 if (ppc_check_compat(cpu
, pvr
, best_compat
, max_compat
)) {
1143 *raw_mode_supported
= explicit_match
;
1145 /* Parsing finished */
1146 trace_spapr_cas_pvr(cpu
->compat_pvr
, explicit_match
, best_compat
);
1152 target_ulong
do_client_architecture_support(PowerPCCPU
*cpu
,
1153 SpaprMachineState
*spapr
,
1155 target_ulong fdt_bufsize
)
1157 target_ulong ov_table
; /* Working address in data buffer */
1159 SpaprOptionVector
*ov1_guest
, *ov5_guest
;
1161 bool raw_mode_supported
= false;
1165 uint32_t max_compat
= spapr
->max_compat_pvr
;
1167 /* CAS is supposed to be called early when only the boot vCPU is active. */
1169 if (cs
== CPU(cpu
)) {
1173 warn_report("guest has multiple active vCPUs at CAS, which is not allowed");
1174 return H_MULTI_THREADS_ACTIVE
;
1178 cas_pvr
= cas_check_pvr(cpu
, max_compat
, &vec
, &raw_mode_supported
);
1179 if (!cas_pvr
&& (!raw_mode_supported
|| max_compat
)) {
1181 * We couldn't find a suitable compatibility mode, and either
1182 * the guest doesn't support "raw" mode for this CPU, or "raw"
1183 * mode is disabled because a maximum compat mode is set.
1185 error_report("Couldn't negotiate a suitable PVR during CAS");
1190 if (cpu
->compat_pvr
!= cas_pvr
) {
1191 Error
*local_err
= NULL
;
1193 if (ppc_set_compat_all(cas_pvr
, &local_err
) < 0) {
1194 /* We fail to set compat mode (likely because running with KVM PR),
1195 * but maybe we can fallback to raw mode if the guest supports it.
1197 if (!raw_mode_supported
) {
1198 error_report_err(local_err
);
1201 error_free(local_err
);
1205 /* For the future use: here @ov_table points to the first option vector */
1208 ov1_guest
= spapr_ovec_parse_vector(ov_table
, 1);
1210 warn_report("guest didn't provide option vector 1");
1213 ov5_guest
= spapr_ovec_parse_vector(ov_table
, 5);
1215 spapr_ovec_cleanup(ov1_guest
);
1216 warn_report("guest didn't provide option vector 5");
1219 if (spapr_ovec_test(ov5_guest
, OV5_MMU_BOTH
)) {
1220 error_report("guest requested hash and radix MMU, which is invalid.");
1223 if (spapr_ovec_test(ov5_guest
, OV5_XIVE_BOTH
)) {
1224 error_report("guest requested an invalid interrupt mode");
1228 guest_radix
= spapr_ovec_test(ov5_guest
, OV5_MMU_RADIX_300
);
1230 guest_xive
= spapr_ovec_test(ov5_guest
, OV5_XIVE_EXPLOIT
);
1233 * HPT resizing is a bit of a special case, because when enabled
1234 * we assume an HPT guest will support it until it says it
1235 * doesn't, instead of assuming it won't support it until it says
1236 * it does. Strictly speaking that approach could break for
1237 * guests which don't make a CAS call, but those are so old we
1238 * don't care about them. Without that assumption we'd have to
1239 * make at least a temporary allocation of an HPT sized for max
1240 * memory, which could be impossibly difficult under KVM HV if
1243 if (!guest_radix
&& !spapr_ovec_test(ov5_guest
, OV5_HPT_RESIZE
)) {
1244 int maxshift
= spapr_hpt_shift_for_ramsize(MACHINE(spapr
)->maxram_size
);
1246 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_REQUIRED
) {
1248 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1252 if (spapr
->htab_shift
< maxshift
) {
1253 /* Guest doesn't know about HPT resizing, so we
1254 * pre-emptively resize for the maximum permitted RAM. At
1255 * the point this is called, nothing should have been
1256 * entered into the existing HPT */
1257 spapr_reallocate_hpt(spapr
, maxshift
, &error_fatal
);
1258 push_sregs_to_kvm_pr(spapr
);
1262 /* NOTE: there are actually a number of ov5 bits where input from the
1263 * guest is always zero, and the platform/QEMU enables them independently
1264 * of guest input. To model these properly we'd want some sort of mask,
1265 * but since they only currently apply to memory migration as defined
1266 * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1267 * to worry about this for now.
1270 /* full range of negotiated ov5 capabilities */
1271 spapr_ovec_intersect(spapr
->ov5_cas
, spapr
->ov5
, ov5_guest
);
1272 spapr_ovec_cleanup(ov5_guest
);
1274 spapr_check_mmu_mode(guest_radix
);
1276 spapr
->cas_pre_isa3_guest
= !spapr_ovec_test(ov1_guest
, OV1_PPC_3_00
);
1277 spapr_ovec_cleanup(ov1_guest
);
1280 * Check for NUMA affinity conditions now that we know which NUMA
1281 * affinity the guest will use.
1283 spapr_numa_associativity_check(spapr
);
1286 * Ensure the guest asks for an interrupt mode we support;
1287 * otherwise terminate the boot.
1290 if (!spapr
->irq
->xive
) {
1292 "Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property");
1296 if (!spapr
->irq
->xics
) {
1298 "Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual");
1303 spapr_irq_update_active_intc(spapr
);
1306 * Process all pending hot-plug/unplug requests now. An updated full
1307 * rendered FDT will be returned to the guest.
1309 spapr_drc_reset_all(spapr
);
1310 spapr_clear_pending_hotplug_events(spapr
);
1313 * If spapr_machine_reset() did not set up a HPT but one is necessary
1314 * (because the guest isn't going to use radix) then set it up here.
1316 if ((spapr
->patb_entry
& PATE1_GR
) && !guest_radix
) {
1317 /* legacy hash or new hash: */
1318 spapr_setup_hpt(spapr
);
1321 fdt
= spapr_build_fdt(spapr
, spapr
->vof
!= NULL
, fdt_bufsize
);
1322 g_free(spapr
->fdt_blob
);
1323 spapr
->fdt_size
= fdt_totalsize(fdt
);
1324 spapr
->fdt_initial_size
= spapr
->fdt_size
;
1325 spapr
->fdt_blob
= fdt
;
1328 * Set the machine->fdt pointer again since we just freed
1329 * it above (by freeing spapr->fdt_blob). We set this
1330 * pointer to enable support for the 'dumpdtb' QMP/HMP
1333 MACHINE(spapr
)->fdt
= fdt
;
1338 static target_ulong
h_client_architecture_support(PowerPCCPU
*cpu
,
1339 SpaprMachineState
*spapr
,
1340 target_ulong opcode
,
1343 target_ulong vec
= ppc64_phys_to_real(args
[0]);
1344 target_ulong fdt_buf
= args
[1];
1345 target_ulong fdt_bufsize
= args
[2];
1347 SpaprDeviceTreeUpdateHeader hdr
= { .version_id
= 1 };
1349 if (fdt_bufsize
< sizeof(hdr
)) {
1350 error_report("SLOF provided insufficient CAS buffer "
1351 TARGET_FMT_lu
" (min: %zu)", fdt_bufsize
, sizeof(hdr
));
1355 fdt_bufsize
-= sizeof(hdr
);
1357 ret
= do_client_architecture_support(cpu
, spapr
, vec
, fdt_bufsize
);
1358 if (ret
== H_SUCCESS
) {
1359 _FDT((fdt_pack(spapr
->fdt_blob
)));
1360 spapr
->fdt_size
= fdt_totalsize(spapr
->fdt_blob
);
1361 spapr
->fdt_initial_size
= spapr
->fdt_size
;
1363 cpu_physical_memory_write(fdt_buf
, &hdr
, sizeof(hdr
));
1364 cpu_physical_memory_write(fdt_buf
+ sizeof(hdr
), spapr
->fdt_blob
,
1366 trace_spapr_cas_continue(spapr
->fdt_size
+ sizeof(hdr
));
1372 target_ulong
spapr_vof_client_architecture_support(MachineState
*ms
,
1374 target_ulong ovec_addr
)
1376 SpaprMachineState
*spapr
= SPAPR_MACHINE(ms
);
1378 target_ulong ret
= do_client_architecture_support(POWERPC_CPU(cs
), spapr
,
1379 ovec_addr
, FDT_MAX_SIZE
);
1382 * This adds stdout and generates phandles for boottime and CAS FDTs.
1383 * It is alright to update the FDT here as do_client_architecture_support()
1386 spapr_vof_client_dt_finalize(spapr
, spapr
->fdt_blob
);
1391 static target_ulong
h_get_cpu_characteristics(PowerPCCPU
*cpu
,
1392 SpaprMachineState
*spapr
,
1393 target_ulong opcode
,
1396 uint64_t characteristics
= H_CPU_CHAR_HON_BRANCH_HINTS
&
1397 ~H_CPU_CHAR_THR_RECONF_TRIG
;
1398 uint64_t behaviour
= H_CPU_BEHAV_FAVOUR_SECURITY
;
1399 uint8_t safe_cache
= spapr_get_cap(spapr
, SPAPR_CAP_CFPC
);
1400 uint8_t safe_bounds_check
= spapr_get_cap(spapr
, SPAPR_CAP_SBBC
);
1401 uint8_t safe_indirect_branch
= spapr_get_cap(spapr
, SPAPR_CAP_IBS
);
1402 uint8_t count_cache_flush_assist
= spapr_get_cap(spapr
,
1403 SPAPR_CAP_CCF_ASSIST
);
1405 switch (safe_cache
) {
1406 case SPAPR_CAP_WORKAROUND
:
1407 characteristics
|= H_CPU_CHAR_L1D_FLUSH_ORI30
;
1408 characteristics
|= H_CPU_CHAR_L1D_FLUSH_TRIG2
;
1409 characteristics
|= H_CPU_CHAR_L1D_THREAD_PRIV
;
1410 behaviour
|= H_CPU_BEHAV_L1D_FLUSH_PR
;
1412 case SPAPR_CAP_FIXED
:
1413 behaviour
|= H_CPU_BEHAV_NO_L1D_FLUSH_ENTRY
;
1414 behaviour
|= H_CPU_BEHAV_NO_L1D_FLUSH_UACCESS
;
1416 default: /* broken */
1417 assert(safe_cache
== SPAPR_CAP_BROKEN
);
1418 behaviour
|= H_CPU_BEHAV_L1D_FLUSH_PR
;
1422 switch (safe_bounds_check
) {
1423 case SPAPR_CAP_WORKAROUND
:
1424 characteristics
|= H_CPU_CHAR_SPEC_BAR_ORI31
;
1425 behaviour
|= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR
;
1427 case SPAPR_CAP_FIXED
:
1429 default: /* broken */
1430 assert(safe_bounds_check
== SPAPR_CAP_BROKEN
);
1431 behaviour
|= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR
;
1435 switch (safe_indirect_branch
) {
1436 case SPAPR_CAP_FIXED_NA
:
1438 case SPAPR_CAP_FIXED_CCD
:
1439 characteristics
|= H_CPU_CHAR_CACHE_COUNT_DIS
;
1441 case SPAPR_CAP_FIXED_IBS
:
1442 characteristics
|= H_CPU_CHAR_BCCTRL_SERIALISED
;
1444 case SPAPR_CAP_WORKAROUND
:
1445 behaviour
|= H_CPU_BEHAV_FLUSH_COUNT_CACHE
;
1446 if (count_cache_flush_assist
) {
1447 characteristics
|= H_CPU_CHAR_BCCTR_FLUSH_ASSIST
;
1450 default: /* broken */
1451 assert(safe_indirect_branch
== SPAPR_CAP_BROKEN
);
1455 args
[0] = characteristics
;
1456 args
[1] = behaviour
;
1460 static target_ulong
h_update_dt(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
1461 target_ulong opcode
, target_ulong
*args
)
1463 target_ulong dt
= ppc64_phys_to_real(args
[0]);
1464 struct fdt_header hdr
= { 0 };
1466 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
1469 cpu_physical_memory_read(dt
, &hdr
, sizeof(hdr
));
1470 cb
= fdt32_to_cpu(hdr
.totalsize
);
1472 if (!smc
->update_dt_enabled
) {
1476 /* Check that the fdt did not grow out of proportion */
1477 if (cb
> spapr
->fdt_initial_size
* 2) {
1478 trace_spapr_update_dt_failed_size(spapr
->fdt_initial_size
, cb
,
1479 fdt32_to_cpu(hdr
.magic
));
1483 fdt
= g_malloc0(cb
);
1484 cpu_physical_memory_read(dt
, fdt
, cb
);
1486 /* Check the fdt consistency */
1487 if (fdt_check_full(fdt
, cb
)) {
1488 trace_spapr_update_dt_failed_check(spapr
->fdt_initial_size
, cb
,
1489 fdt32_to_cpu(hdr
.magic
));
1493 g_free(spapr
->fdt_blob
);
1494 spapr
->fdt_size
= cb
;
1495 spapr
->fdt_blob
= fdt
;
1496 trace_spapr_update_dt(cb
);
1501 static spapr_hcall_fn papr_hypercall_table
[(MAX_HCALL_OPCODE
/ 4) + 1];
1502 static spapr_hcall_fn kvmppc_hypercall_table
[KVMPPC_HCALL_MAX
- KVMPPC_HCALL_BASE
+ 1];
1503 static spapr_hcall_fn svm_hypercall_table
[(SVM_HCALL_MAX
- SVM_HCALL_BASE
) / 4 + 1];
1505 void spapr_register_hypercall(target_ulong opcode
, spapr_hcall_fn fn
)
1507 spapr_hcall_fn
*slot
;
1509 if (opcode
<= MAX_HCALL_OPCODE
) {
1510 assert((opcode
& 0x3) == 0);
1512 slot
= &papr_hypercall_table
[opcode
/ 4];
1513 } else if (opcode
>= SVM_HCALL_BASE
&& opcode
<= SVM_HCALL_MAX
) {
1514 /* we only have SVM-related hcall numbers assigned in multiples of 4 */
1515 assert((opcode
& 0x3) == 0);
1517 slot
= &svm_hypercall_table
[(opcode
- SVM_HCALL_BASE
) / 4];
1519 assert((opcode
>= KVMPPC_HCALL_BASE
) && (opcode
<= KVMPPC_HCALL_MAX
));
1521 slot
= &kvmppc_hypercall_table
[opcode
- KVMPPC_HCALL_BASE
];
1528 void spapr_unregister_hypercall(target_ulong opcode
)
1530 spapr_hcall_fn
*slot
;
1532 if (opcode
<= MAX_HCALL_OPCODE
) {
1533 assert((opcode
& 0x3) == 0);
1535 slot
= &papr_hypercall_table
[opcode
/ 4];
1536 } else if (opcode
>= SVM_HCALL_BASE
&& opcode
<= SVM_HCALL_MAX
) {
1537 /* we only have SVM-related hcall numbers assigned in multiples of 4 */
1538 assert((opcode
& 0x3) == 0);
1540 slot
= &svm_hypercall_table
[(opcode
- SVM_HCALL_BASE
) / 4];
1542 assert((opcode
>= KVMPPC_HCALL_BASE
) && (opcode
<= KVMPPC_HCALL_MAX
));
1544 slot
= &kvmppc_hypercall_table
[opcode
- KVMPPC_HCALL_BASE
];
1550 target_ulong
spapr_hypercall(PowerPCCPU
*cpu
, target_ulong opcode
,
1553 SpaprMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
1555 if ((opcode
<= MAX_HCALL_OPCODE
)
1556 && ((opcode
& 0x3) == 0)) {
1557 spapr_hcall_fn fn
= papr_hypercall_table
[opcode
/ 4];
1560 return fn(cpu
, spapr
, opcode
, args
);
1562 } else if ((opcode
>= SVM_HCALL_BASE
) &&
1563 (opcode
<= SVM_HCALL_MAX
)) {
1564 spapr_hcall_fn fn
= svm_hypercall_table
[(opcode
- SVM_HCALL_BASE
) / 4];
1567 return fn(cpu
, spapr
, opcode
, args
);
1569 } else if ((opcode
>= KVMPPC_HCALL_BASE
) &&
1570 (opcode
<= KVMPPC_HCALL_MAX
)) {
1571 spapr_hcall_fn fn
= kvmppc_hypercall_table
[opcode
- KVMPPC_HCALL_BASE
];
1574 return fn(cpu
, spapr
, opcode
, args
);
1578 qemu_log_mask(LOG_UNIMP
, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx
"\n",
1584 static void hypercall_register_softmmu(void)
1589 static target_ulong
h_softmmu(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
1590 target_ulong opcode
, target_ulong
*args
)
1592 g_assert_not_reached();
1595 static void hypercall_register_softmmu(void)
1598 spapr_register_hypercall(H_ENTER
, h_softmmu
);
1599 spapr_register_hypercall(H_REMOVE
, h_softmmu
);
1600 spapr_register_hypercall(H_PROTECT
, h_softmmu
);
1601 spapr_register_hypercall(H_READ
, h_softmmu
);
1604 spapr_register_hypercall(H_BULK_REMOVE
, h_softmmu
);
1608 static void hypercall_register_types(void)
1610 hypercall_register_softmmu();
1612 /* hcall-hpt-resize */
1613 spapr_register_hypercall(H_RESIZE_HPT_PREPARE
, h_resize_hpt_prepare
);
1614 spapr_register_hypercall(H_RESIZE_HPT_COMMIT
, h_resize_hpt_commit
);
1617 spapr_register_hypercall(H_REGISTER_VPA
, h_register_vpa
);
1618 spapr_register_hypercall(H_CEDE
, h_cede
);
1619 spapr_register_hypercall(H_CONFER
, h_confer
);
1620 spapr_register_hypercall(H_PROD
, h_prod
);
1623 spapr_register_hypercall(H_JOIN
, h_join
);
1625 spapr_register_hypercall(H_SIGNAL_SYS_RESET
, h_signal_sys_reset
);
1627 /* processor register resource access h-calls */
1628 spapr_register_hypercall(H_SET_SPRG0
, h_set_sprg0
);
1629 spapr_register_hypercall(H_SET_DABR
, h_set_dabr
);
1630 spapr_register_hypercall(H_SET_XDABR
, h_set_xdabr
);
1631 spapr_register_hypercall(H_PAGE_INIT
, h_page_init
);
1632 spapr_register_hypercall(H_SET_MODE
, h_set_mode
);
1634 /* In Memory Table MMU h-calls */
1635 spapr_register_hypercall(H_CLEAN_SLB
, h_clean_slb
);
1636 spapr_register_hypercall(H_INVALIDATE_PID
, h_invalidate_pid
);
1637 spapr_register_hypercall(H_REGISTER_PROC_TBL
, h_register_process_table
);
1639 /* hcall-get-cpu-characteristics */
1640 spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS
,
1641 h_get_cpu_characteristics
);
1643 /* "debugger" hcalls (also used by SLOF). Note: We do -not- differentiate
1644 * here between the "CI" and the "CACHE" variants, they will use whatever
1645 * mapping attributes qemu is using. When using KVM, the kernel will
1646 * enforce the attributes more strongly
1648 spapr_register_hypercall(H_LOGICAL_CI_LOAD
, h_logical_load
);
1649 spapr_register_hypercall(H_LOGICAL_CI_STORE
, h_logical_store
);
1650 spapr_register_hypercall(H_LOGICAL_CACHE_LOAD
, h_logical_load
);
1651 spapr_register_hypercall(H_LOGICAL_CACHE_STORE
, h_logical_store
);
1652 spapr_register_hypercall(H_LOGICAL_ICBI
, h_logical_icbi
);
1653 spapr_register_hypercall(H_LOGICAL_DCBF
, h_logical_dcbf
);
1654 spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP
, h_logical_memop
);
1656 /* qemu/KVM-PPC specific hcalls */
1657 spapr_register_hypercall(KVMPPC_H_RTAS
, h_rtas
);
1659 /* ibm,client-architecture-support support */
1660 spapr_register_hypercall(KVMPPC_H_CAS
, h_client_architecture_support
);
1662 spapr_register_hypercall(KVMPPC_H_UPDATE_DT
, h_update_dt
);
1665 type_init(hypercall_register_types
)