4 * This provides the API that is available to the plugins to interact
5 * with QEMU. We have to be careful not to expose internal details of
6 * how QEMU works so we abstract out things like translation and
7 * instructions to anonymous data types:
11 * qemu_plugin_register
13 * Which can then be passed back into the API to do additional things.
14 * As such all the public functions in here are exported in
17 * The general life-cycle of a plugin is:
19 * - plugin is loaded, public qemu_plugin_install called
20 * - the install func registers callbacks for events
21 * - usually an atexit_cb is registered to dump info at the end
22 * - when a registered event occurs the plugin is called
23 * - some events pass additional info
24 * - during translation the plugin can decide to instrument any
26 * - when QEMU exits all the registered atexit callbacks are called
28 * Copyright (C) 2017, Emilio G. Cota <cota@braap.org>
29 * Copyright (C) 2019, Linaro
31 * License: GNU GPL, version 2 or later.
32 * See the COPYING file in the top-level directory.
34 * SPDX-License-Identifier: GPL-2.0-or-later
38 #include "qemu/osdep.h"
39 #include "qemu/main-loop.h"
40 #include "qemu/plugin.h"
43 #include "exec/exec-all.h"
44 #include "exec/gdbstub.h"
45 #include "exec/ram_addr.h"
46 #include "disas/disas.h"
48 #ifndef CONFIG_USER_ONLY
49 #include "qemu/plugin-memory.h"
50 #include "hw/boards.h"
58 /* Uninstall and Reset handlers */
60 void qemu_plugin_uninstall(qemu_plugin_id_t id
, qemu_plugin_simple_cb_t cb
)
62 plugin_reset_uninstall(id
, cb
, false);
65 void qemu_plugin_reset(qemu_plugin_id_t id
, qemu_plugin_simple_cb_t cb
)
67 plugin_reset_uninstall(id
, cb
, true);
71 * Plugin Register Functions
73 * This allows the plugin to register callbacks for various events
74 * during the translation.
77 void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id
,
78 qemu_plugin_vcpu_simple_cb_t cb
)
80 plugin_register_cb(id
, QEMU_PLUGIN_EV_VCPU_INIT
, cb
);
83 void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id
,
84 qemu_plugin_vcpu_simple_cb_t cb
)
86 plugin_register_cb(id
, QEMU_PLUGIN_EV_VCPU_EXIT
, cb
);
89 void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb
*tb
,
90 qemu_plugin_vcpu_udata_cb_t cb
,
91 enum qemu_plugin_cb_flags flags
,
95 int index
= flags
== QEMU_PLUGIN_CB_R_REGS
||
96 flags
== QEMU_PLUGIN_CB_RW_REGS
?
97 PLUGIN_CB_REGULAR_R
: PLUGIN_CB_REGULAR
;
99 plugin_register_dyn_cb__udata(&tb
->cbs
[index
],
104 void qemu_plugin_register_vcpu_tb_exec_inline_per_vcpu(
105 struct qemu_plugin_tb
*tb
,
106 enum qemu_plugin_op op
,
107 qemu_plugin_u64 entry
,
111 plugin_register_inline_op_on_entry(
112 &tb
->cbs
[PLUGIN_CB_INLINE
], 0, op
, entry
, imm
);
116 void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn
*insn
,
117 qemu_plugin_vcpu_udata_cb_t cb
,
118 enum qemu_plugin_cb_flags flags
,
121 if (!insn
->mem_only
) {
122 int index
= flags
== QEMU_PLUGIN_CB_R_REGS
||
123 flags
== QEMU_PLUGIN_CB_RW_REGS
?
124 PLUGIN_CB_REGULAR_R
: PLUGIN_CB_REGULAR
;
126 plugin_register_dyn_cb__udata(&insn
->cbs
[PLUGIN_CB_INSN
][index
],
131 void qemu_plugin_register_vcpu_insn_exec_inline_per_vcpu(
132 struct qemu_plugin_insn
*insn
,
133 enum qemu_plugin_op op
,
134 qemu_plugin_u64 entry
,
137 if (!insn
->mem_only
) {
138 plugin_register_inline_op_on_entry(
139 &insn
->cbs
[PLUGIN_CB_INSN
][PLUGIN_CB_INLINE
], 0, op
, entry
, imm
);
145 * We always plant memory instrumentation because they don't finalise until
146 * after the operation has complete.
148 void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn
*insn
,
149 qemu_plugin_vcpu_mem_cb_t cb
,
150 enum qemu_plugin_cb_flags flags
,
151 enum qemu_plugin_mem_rw rw
,
154 plugin_register_vcpu_mem_cb(&insn
->cbs
[PLUGIN_CB_MEM
][PLUGIN_CB_REGULAR
],
155 cb
, flags
, rw
, udata
);
158 void qemu_plugin_register_vcpu_mem_inline_per_vcpu(
159 struct qemu_plugin_insn
*insn
,
160 enum qemu_plugin_mem_rw rw
,
161 enum qemu_plugin_op op
,
162 qemu_plugin_u64 entry
,
165 plugin_register_inline_op_on_entry(
166 &insn
->cbs
[PLUGIN_CB_MEM
][PLUGIN_CB_INLINE
], rw
, op
, entry
, imm
);
169 void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id
,
170 qemu_plugin_vcpu_tb_trans_cb_t cb
)
172 plugin_register_cb(id
, QEMU_PLUGIN_EV_VCPU_TB_TRANS
, cb
);
175 void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id
,
176 qemu_plugin_vcpu_syscall_cb_t cb
)
178 plugin_register_cb(id
, QEMU_PLUGIN_EV_VCPU_SYSCALL
, cb
);
182 qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id
,
183 qemu_plugin_vcpu_syscall_ret_cb_t cb
)
185 plugin_register_cb(id
, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET
, cb
);
191 * These are queries that the plugin can make to gauge information
192 * from our opaque data types. We do not want to leak internal details
193 * here just information useful to the plugin.
197 * Translation block information:
199 * A plugin can query the virtual address of the start of the block
200 * and the number of instructions in it. It can also get access to
201 * each translated instruction.
204 size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb
*tb
)
209 uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb
*tb
)
214 struct qemu_plugin_insn
*
215 qemu_plugin_tb_get_insn(const struct qemu_plugin_tb
*tb
, size_t idx
)
217 struct qemu_plugin_insn
*insn
;
218 if (unlikely(idx
>= tb
->n
)) {
221 insn
= g_ptr_array_index(tb
->insns
, idx
);
222 insn
->mem_only
= tb
->mem_only
;
227 * Instruction information
229 * These queries allow the plugin to retrieve information about each
230 * instruction being translated.
233 const void *qemu_plugin_insn_data(const struct qemu_plugin_insn
*insn
)
235 return insn
->data
->data
;
238 size_t qemu_plugin_insn_size(const struct qemu_plugin_insn
*insn
)
240 return insn
->data
->len
;
243 uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn
*insn
)
248 void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn
*insn
)
253 char *qemu_plugin_insn_disas(const struct qemu_plugin_insn
*insn
)
255 CPUState
*cpu
= current_cpu
;
256 return plugin_disas(cpu
, insn
->vaddr
, insn
->data
->len
);
259 const char *qemu_plugin_insn_symbol(const struct qemu_plugin_insn
*insn
)
261 const char *sym
= lookup_symbol(insn
->vaddr
);
262 return sym
[0] != 0 ? sym
: NULL
;
266 * The memory queries allow the plugin to query information about a
270 unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info
)
272 MemOp op
= get_memop(info
);
276 bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info
)
278 MemOp op
= get_memop(info
);
282 bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info
)
284 MemOp op
= get_memop(info
);
285 return (op
& MO_BSWAP
) == MO_BE
;
288 bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info
)
290 return get_plugin_meminfo_rw(info
) & QEMU_PLUGIN_MEM_W
;
294 * Virtual Memory queries
297 #ifdef CONFIG_SOFTMMU
298 static __thread
struct qemu_plugin_hwaddr hwaddr_info
;
301 struct qemu_plugin_hwaddr
*qemu_plugin_get_hwaddr(qemu_plugin_meminfo_t info
,
304 #ifdef CONFIG_SOFTMMU
305 CPUState
*cpu
= current_cpu
;
306 unsigned int mmu_idx
= get_mmuidx(info
);
307 enum qemu_plugin_mem_rw rw
= get_plugin_meminfo_rw(info
);
308 hwaddr_info
.is_store
= (rw
& QEMU_PLUGIN_MEM_W
) != 0;
310 assert(mmu_idx
< NB_MMU_MODES
);
312 if (!tlb_plugin_lookup(cpu
, vaddr
, mmu_idx
,
313 hwaddr_info
.is_store
, &hwaddr_info
)) {
314 error_report("invalid use of qemu_plugin_get_hwaddr");
324 bool qemu_plugin_hwaddr_is_io(const struct qemu_plugin_hwaddr
*haddr
)
326 #ifdef CONFIG_SOFTMMU
333 uint64_t qemu_plugin_hwaddr_phys_addr(const struct qemu_plugin_hwaddr
*haddr
)
335 #ifdef CONFIG_SOFTMMU
337 return haddr
->phys_addr
;
343 const char *qemu_plugin_hwaddr_device_name(const struct qemu_plugin_hwaddr
*h
)
345 #ifdef CONFIG_SOFTMMU
347 MemoryRegion
*mr
= h
->mr
;
349 unsigned maddr
= (uintptr_t)mr
;
350 g_autofree
char *temp
= g_strdup_printf("anon%08x", maddr
);
351 return g_intern_string(temp
);
353 return g_intern_string(mr
->name
);
356 return g_intern_static_string("RAM");
359 return g_intern_static_string("Invalid");
363 int qemu_plugin_num_vcpus(void)
365 return plugin_num_vcpus();
371 void qemu_plugin_outs(const char *string
)
373 qemu_log_mask(CPU_LOG_PLUGIN
, "%s", string
);
376 bool qemu_plugin_bool_parse(const char *name
, const char *value
, bool *ret
)
378 return name
&& value
&& qapi_bool_parse(name
, value
, ret
, NULL
);
382 * Binary path, start and end locations
384 const char *qemu_plugin_path_to_binary(void)
387 #ifdef CONFIG_USER_ONLY
388 TaskState
*ts
= get_task_state(current_cpu
);
389 path
= g_strdup(ts
->bprm
->filename
);
394 uint64_t qemu_plugin_start_code(void)
397 #ifdef CONFIG_USER_ONLY
398 TaskState
*ts
= get_task_state(current_cpu
);
399 start
= ts
->info
->start_code
;
404 uint64_t qemu_plugin_end_code(void)
407 #ifdef CONFIG_USER_ONLY
408 TaskState
*ts
= get_task_state(current_cpu
);
409 end
= ts
->info
->end_code
;
414 uint64_t qemu_plugin_entry_code(void)
417 #ifdef CONFIG_USER_ONLY
418 TaskState
*ts
= get_task_state(current_cpu
);
419 entry
= ts
->info
->entry
;
425 * Create register handles.
427 * We need to create a handle for each register so the plugin
428 * infrastructure can call gdbstub to read a register. They are
429 * currently just a pointer encapsulation of the gdb_reg but in
430 * future may hold internal plugin state so its important plugin
431 * authors are not tempted to treat them as numbers.
433 * We also construct a result array with those handles and some
434 * ancillary data the plugin might find useful.
437 static GArray
*create_register_handles(GArray
*gdbstub_regs
)
439 GArray
*find_data
= g_array_new(true, true,
440 sizeof(qemu_plugin_reg_descriptor
));
442 for (int i
= 0; i
< gdbstub_regs
->len
; i
++) {
443 GDBRegDesc
*grd
= &g_array_index(gdbstub_regs
, GDBRegDesc
, i
);
444 qemu_plugin_reg_descriptor desc
;
446 /* skip "un-named" regs */
451 /* Create a record for the plugin */
452 desc
.handle
= GINT_TO_POINTER(grd
->gdb_reg
);
453 desc
.name
= g_intern_string(grd
->name
);
454 desc
.feature
= g_intern_string(grd
->feature_name
);
455 g_array_append_val(find_data
, desc
);
461 GArray
*qemu_plugin_get_registers(void)
463 g_assert(current_cpu
);
465 g_autoptr(GArray
) regs
= gdb_get_register_list(current_cpu
);
466 return create_register_handles(regs
);
469 int qemu_plugin_read_register(struct qemu_plugin_register
*reg
, GByteArray
*buf
)
471 g_assert(current_cpu
);
473 return gdb_read_register(current_cpu
, buf
, GPOINTER_TO_INT(reg
));
476 struct qemu_plugin_scoreboard
*qemu_plugin_scoreboard_new(size_t element_size
)
478 return plugin_scoreboard_new(element_size
);
481 void qemu_plugin_scoreboard_free(struct qemu_plugin_scoreboard
*score
)
483 plugin_scoreboard_free(score
);
486 void *qemu_plugin_scoreboard_find(struct qemu_plugin_scoreboard
*score
,
487 unsigned int vcpu_index
)
489 g_assert(vcpu_index
< qemu_plugin_num_vcpus());
490 /* we can't use g_array_index since entry size is not statically known */
491 char *base_ptr
= score
->data
->data
;
492 return base_ptr
+ vcpu_index
* g_array_get_element_size(score
->data
);
495 static uint64_t *plugin_u64_address(qemu_plugin_u64 entry
,
496 unsigned int vcpu_index
)
498 char *ptr
= qemu_plugin_scoreboard_find(entry
.score
, vcpu_index
);
499 return (uint64_t *)(ptr
+ entry
.offset
);
502 void qemu_plugin_u64_add(qemu_plugin_u64 entry
, unsigned int vcpu_index
,
505 *plugin_u64_address(entry
, vcpu_index
) += added
;
508 uint64_t qemu_plugin_u64_get(qemu_plugin_u64 entry
,
509 unsigned int vcpu_index
)
511 return *plugin_u64_address(entry
, vcpu_index
);
514 void qemu_plugin_u64_set(qemu_plugin_u64 entry
, unsigned int vcpu_index
,
517 *plugin_u64_address(entry
, vcpu_index
) = val
;
520 uint64_t qemu_plugin_u64_sum(qemu_plugin_u64 entry
)
523 for (int i
= 0, n
= qemu_plugin_num_vcpus(); i
< n
; ++i
) {
524 total
+= qemu_plugin_u64_get(entry
, i
);