migration/rdma: Clean up two more harmless signed vs. unsigned issues
[qemu/armbru.git] / tests / unit / test-crypto-hmac.c
blob23eb724d94250f5c8a37c21fb4fd9f1dd874fca9
1 /*
2 * QEMU Crypto hmac algorithms tests
4 * Copyright (c) 2016 HUAWEI TECHNOLOGIES CO., LTD.
6 * Authors:
7 * Longpeng(Mike) <longpeng2@huawei.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or
10 * (at your option) any later version. See the COPYING file in the
11 * top-level directory.
15 #include "qemu/osdep.h"
16 #include "crypto/init.h"
17 #include "crypto/hmac.h"
19 #define INPUT_TEXT1 "ABCDEFGHIJKLMNOPQRSTUVWXY"
20 #define INPUT_TEXT2 "Zabcdefghijklmnopqrstuvwx"
21 #define INPUT_TEXT3 "yz0123456789"
22 #define INPUT_TEXT INPUT_TEXT1 \
23 INPUT_TEXT2 \
24 INPUT_TEXT3
26 #define KEY "monkey monkey monkey monkey"
28 typedef struct QCryptoHmacTestData QCryptoHmacTestData;
29 struct QCryptoHmacTestData {
30 QCryptoHashAlgorithm alg;
31 const char *hex_digest;
34 static QCryptoHmacTestData test_data[] = {
36 .alg = QCRYPTO_HASH_ALG_MD5,
37 .hex_digest =
38 "ede9cb83679ba82d88fbeae865b3f8fc",
41 .alg = QCRYPTO_HASH_ALG_SHA1,
42 .hex_digest =
43 "c7b5a631e3aac975c4ededfcd346e469"
44 "dbc5f2d1",
47 .alg = QCRYPTO_HASH_ALG_SHA224,
48 .hex_digest =
49 "5f768179dbb29ca722875d0f461a2e2f"
50 "597d0210340a84df1a8e9c63",
53 .alg = QCRYPTO_HASH_ALG_SHA256,
54 .hex_digest =
55 "3798f363c57afa6edaffe39016ca7bad"
56 "efd1e670afb0e3987194307dec3197db",
59 .alg = QCRYPTO_HASH_ALG_SHA384,
60 .hex_digest =
61 "d218680a6032d33dccd9882d6a6a7164"
62 "64f26623be257a9b2919b185294f4a49"
63 "9e54b190bfd6bc5cedd2cd05c7e65e82",
66 .alg = QCRYPTO_HASH_ALG_SHA512,
67 .hex_digest =
68 "835a4f5b3750b4c1fccfa88da2f746a4"
69 "900160c9f18964309bb736c13b59491b"
70 "8e32d37b724cc5aebb0f554c6338a3b5"
71 "94c4ba26862b2dadb59b7ede1d08d53e",
74 .alg = QCRYPTO_HASH_ALG_RIPEMD160,
75 .hex_digest =
76 "94964ed4c1155b62b668c241d67279e5"
77 "8a711676",
81 static const char hex[] = "0123456789abcdef";
83 static void test_hmac_alloc(void)
85 size_t i;
87 for (i = 0; i < G_N_ELEMENTS(test_data); i++) {
88 QCryptoHmacTestData *data = &test_data[i];
89 QCryptoHmac *hmac = NULL;
90 uint8_t *result = NULL;
91 size_t resultlen = 0;
92 const char *exp_output = NULL;
93 int ret;
94 size_t j;
96 if (!qcrypto_hmac_supports(data->alg)) {
97 return;
100 exp_output = data->hex_digest;
102 hmac = qcrypto_hmac_new(data->alg, (const uint8_t *)KEY,
103 strlen(KEY), &error_fatal);
104 g_assert(hmac != NULL);
106 ret = qcrypto_hmac_bytes(hmac, (const char *)INPUT_TEXT,
107 strlen(INPUT_TEXT), &result,
108 &resultlen, &error_fatal);
109 g_assert(ret == 0);
111 for (j = 0; j < resultlen; j++) {
112 g_assert(exp_output[j * 2] == hex[(result[j] >> 4) & 0xf]);
113 g_assert(exp_output[j * 2 + 1] == hex[result[j] & 0xf]);
116 qcrypto_hmac_free(hmac);
118 g_free(result);
122 static void test_hmac_prealloc(void)
124 size_t i;
126 for (i = 0; i < G_N_ELEMENTS(test_data); i++) {
127 QCryptoHmacTestData *data = &test_data[i];
128 QCryptoHmac *hmac = NULL;
129 uint8_t *result = NULL;
130 size_t resultlen = 0;
131 const char *exp_output = NULL;
132 int ret;
133 size_t j;
135 if (!qcrypto_hmac_supports(data->alg)) {
136 return;
139 exp_output = data->hex_digest;
141 resultlen = strlen(exp_output) / 2;
142 result = g_new0(uint8_t, resultlen);
144 hmac = qcrypto_hmac_new(data->alg, (const uint8_t *)KEY,
145 strlen(KEY), &error_fatal);
146 g_assert(hmac != NULL);
148 ret = qcrypto_hmac_bytes(hmac, (const char *)INPUT_TEXT,
149 strlen(INPUT_TEXT), &result,
150 &resultlen, &error_fatal);
151 g_assert(ret == 0);
153 exp_output = data->hex_digest;
154 for (j = 0; j < resultlen; j++) {
155 g_assert(exp_output[j * 2] == hex[(result[j] >> 4) & 0xf]);
156 g_assert(exp_output[j * 2 + 1] == hex[result[j] & 0xf]);
159 qcrypto_hmac_free(hmac);
161 g_free(result);
165 static void test_hmac_iov(void)
167 size_t i;
169 for (i = 0; i < G_N_ELEMENTS(test_data); i++) {
170 QCryptoHmacTestData *data = &test_data[i];
171 QCryptoHmac *hmac = NULL;
172 uint8_t *result = NULL;
173 size_t resultlen = 0;
174 const char *exp_output = NULL;
175 int ret;
176 size_t j;
177 struct iovec iov[3] = {
178 { .iov_base = (char *)INPUT_TEXT1, .iov_len = strlen(INPUT_TEXT1) },
179 { .iov_base = (char *)INPUT_TEXT2, .iov_len = strlen(INPUT_TEXT2) },
180 { .iov_base = (char *)INPUT_TEXT3, .iov_len = strlen(INPUT_TEXT3) },
183 if (!qcrypto_hmac_supports(data->alg)) {
184 return;
187 exp_output = data->hex_digest;
189 hmac = qcrypto_hmac_new(data->alg, (const uint8_t *)KEY,
190 strlen(KEY), &error_fatal);
191 g_assert(hmac != NULL);
193 ret = qcrypto_hmac_bytesv(hmac, iov, 3, &result,
194 &resultlen, &error_fatal);
195 g_assert(ret == 0);
197 for (j = 0; j < resultlen; j++) {
198 g_assert(exp_output[j * 2] == hex[(result[j] >> 4) & 0xf]);
199 g_assert(exp_output[j * 2 + 1] == hex[result[j] & 0xf]);
202 qcrypto_hmac_free(hmac);
204 g_free(result);
208 static void test_hmac_digest(void)
210 size_t i;
212 for (i = 0; i < G_N_ELEMENTS(test_data); i++) {
213 QCryptoHmacTestData *data = &test_data[i];
214 QCryptoHmac *hmac = NULL;
215 uint8_t *result = NULL;
216 const char *exp_output = NULL;
217 int ret;
219 if (!qcrypto_hmac_supports(data->alg)) {
220 return;
223 exp_output = data->hex_digest;
225 hmac = qcrypto_hmac_new(data->alg, (const uint8_t *)KEY,
226 strlen(KEY), &error_fatal);
227 g_assert(hmac != NULL);
229 ret = qcrypto_hmac_digest(hmac, (const char *)INPUT_TEXT,
230 strlen(INPUT_TEXT), (char **)&result,
231 &error_fatal);
232 g_assert(ret == 0);
234 g_assert_cmpstr((const char *)result, ==, exp_output);
236 qcrypto_hmac_free(hmac);
238 g_free(result);
242 int main(int argc, char **argv)
244 g_test_init(&argc, &argv, NULL);
246 g_assert(qcrypto_init(NULL) == 0);
248 g_test_add_func("/crypto/hmac/iov", test_hmac_iov);
249 g_test_add_func("/crypto/hmac/alloc", test_hmac_alloc);
250 g_test_add_func("/crypto/hmac/prealloc", test_hmac_prealloc);
251 g_test_add_func("/crypto/hmac/digest", test_hmac_digest);
253 return g_test_run();