4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 /* Needed early for CONFIG_BSD etc. */
26 #include "qemu/osdep.h"
27 #include "qemu-common.h"
28 #include "qemu/config-file.h"
30 #include "monitor/monitor.h"
31 #include "qapi/qmp/qerror.h"
32 #include "qemu/error-report.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/block-backend.h"
35 #include "exec/gdbstub.h"
36 #include "sysemu/dma.h"
37 #include "sysemu/hw_accel.h"
38 #include "sysemu/kvm.h"
39 #include "sysemu/hax.h"
40 #include "sysemu/hvf.h"
41 #include "qmp-commands.h"
42 #include "exec/exec-all.h"
44 #include "qemu/thread.h"
45 #include "sysemu/cpus.h"
46 #include "sysemu/qtest.h"
47 #include "qemu/main-loop.h"
48 #include "qemu/bitmap.h"
49 #include "qemu/seqlock.h"
51 #include "qapi-event.h"
53 #include "sysemu/replay.h"
54 #include "hw/boards.h"
58 #include <sys/prctl.h>
61 #define PR_MCE_KILL 33
64 #ifndef PR_MCE_KILL_SET
65 #define PR_MCE_KILL_SET 1
68 #ifndef PR_MCE_KILL_EARLY
69 #define PR_MCE_KILL_EARLY 1
72 #endif /* CONFIG_LINUX */
77 /* vcpu throttling controls */
78 static QEMUTimer
*throttle_timer
;
79 static unsigned int throttle_percentage
;
81 #define CPU_THROTTLE_PCT_MIN 1
82 #define CPU_THROTTLE_PCT_MAX 99
83 #define CPU_THROTTLE_TIMESLICE_NS 10000000
85 bool cpu_is_stopped(CPUState
*cpu
)
87 return cpu
->stopped
|| !runstate_is_running();
90 static bool cpu_thread_is_idle(CPUState
*cpu
)
92 if (cpu
->stop
|| cpu
->queued_work_first
) {
95 if (cpu_is_stopped(cpu
)) {
98 if (!cpu
->halted
|| cpu_has_work(cpu
) ||
99 kvm_halt_in_kernel()) {
105 static bool all_cpu_threads_idle(void)
110 if (!cpu_thread_is_idle(cpu
)) {
117 /***********************************************************/
118 /* guest cycle counter */
120 /* Protected by TimersState seqlock */
122 static bool icount_sleep
= true;
123 /* Conversion factor from emulated instructions to virtual clock ticks. */
124 static int icount_time_shift
;
125 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
126 #define MAX_ICOUNT_SHIFT 10
128 typedef struct TimersState
{
129 /* Protected by BQL. */
130 int64_t cpu_ticks_prev
;
131 int64_t cpu_ticks_offset
;
133 /* cpu_clock_offset can be read out of BQL, so protect it with
136 QemuSeqLock vm_clock_seqlock
;
137 int64_t cpu_clock_offset
;
138 int32_t cpu_ticks_enabled
;
141 /* Compensate for varying guest execution speed. */
142 int64_t qemu_icount_bias
;
143 /* Only written by TCG thread */
145 /* for adjusting icount */
146 int64_t vm_clock_warp_start
;
147 QEMUTimer
*icount_rt_timer
;
148 QEMUTimer
*icount_vm_timer
;
149 QEMUTimer
*icount_warp_timer
;
152 static TimersState timers_state
;
156 * We default to false if we know other options have been enabled
157 * which are currently incompatible with MTTCG. Otherwise when each
158 * guest (target) has been updated to support:
159 * - atomic instructions
160 * - memory ordering primitives (barriers)
161 * they can set the appropriate CONFIG flags in ${target}-softmmu.mak
163 * Once a guest architecture has been converted to the new primitives
164 * there are two remaining limitations to check.
166 * - The guest can't be oversized (e.g. 64 bit guest on 32 bit host)
167 * - The host must have a stronger memory order than the guest
169 * It may be possible in future to support strong guests on weak hosts
170 * but that will require tagging all load/stores in a guest with their
171 * implicit memory order requirements which would likely slow things
175 static bool check_tcg_memory_orders_compatible(void)
177 #if defined(TCG_GUEST_DEFAULT_MO) && defined(TCG_TARGET_DEFAULT_MO)
178 return (TCG_GUEST_DEFAULT_MO
& ~TCG_TARGET_DEFAULT_MO
) == 0;
184 static bool default_mttcg_enabled(void)
186 if (use_icount
|| TCG_OVERSIZED_GUEST
) {
189 #ifdef TARGET_SUPPORTS_MTTCG
190 return check_tcg_memory_orders_compatible();
197 void qemu_tcg_configure(QemuOpts
*opts
, Error
**errp
)
199 const char *t
= qemu_opt_get(opts
, "thread");
201 if (strcmp(t
, "multi") == 0) {
202 if (TCG_OVERSIZED_GUEST
) {
203 error_setg(errp
, "No MTTCG when guest word size > hosts");
204 } else if (use_icount
) {
205 error_setg(errp
, "No MTTCG when icount is enabled");
207 #ifndef TARGET_SUPPORTS_MTTCG
208 error_report("Guest not yet converted to MTTCG - "
209 "you may get unexpected results");
211 if (!check_tcg_memory_orders_compatible()) {
212 error_report("Guest expects a stronger memory ordering "
213 "than the host provides");
214 error_printf("This may cause strange/hard to debug errors\n");
216 mttcg_enabled
= true;
218 } else if (strcmp(t
, "single") == 0) {
219 mttcg_enabled
= false;
221 error_setg(errp
, "Invalid 'thread' setting %s", t
);
224 mttcg_enabled
= default_mttcg_enabled();
228 /* The current number of executed instructions is based on what we
229 * originally budgeted minus the current state of the decrementing
230 * icount counters in extra/u16.low.
232 static int64_t cpu_get_icount_executed(CPUState
*cpu
)
234 return cpu
->icount_budget
- (cpu
->icount_decr
.u16
.low
+ cpu
->icount_extra
);
238 * Update the global shared timer_state.qemu_icount to take into
239 * account executed instructions. This is done by the TCG vCPU
240 * thread so the main-loop can see time has moved forward.
242 void cpu_update_icount(CPUState
*cpu
)
244 int64_t executed
= cpu_get_icount_executed(cpu
);
245 cpu
->icount_budget
-= executed
;
247 #ifdef CONFIG_ATOMIC64
248 atomic_set__nocheck(&timers_state
.qemu_icount
,
249 atomic_read__nocheck(&timers_state
.qemu_icount
) +
251 #else /* FIXME: we need 64bit atomics to do this safely */
252 timers_state
.qemu_icount
+= executed
;
256 int64_t cpu_get_icount_raw(void)
258 CPUState
*cpu
= current_cpu
;
260 if (cpu
&& cpu
->running
) {
261 if (!cpu
->can_do_io
) {
262 fprintf(stderr
, "Bad icount read\n");
265 /* Take into account what has run */
266 cpu_update_icount(cpu
);
268 #ifdef CONFIG_ATOMIC64
269 return atomic_read__nocheck(&timers_state
.qemu_icount
);
270 #else /* FIXME: we need 64bit atomics to do this safely */
271 return timers_state
.qemu_icount
;
275 /* Return the virtual CPU time, based on the instruction counter. */
276 static int64_t cpu_get_icount_locked(void)
278 int64_t icount
= cpu_get_icount_raw();
279 return timers_state
.qemu_icount_bias
+ cpu_icount_to_ns(icount
);
282 int64_t cpu_get_icount(void)
288 start
= seqlock_read_begin(&timers_state
.vm_clock_seqlock
);
289 icount
= cpu_get_icount_locked();
290 } while (seqlock_read_retry(&timers_state
.vm_clock_seqlock
, start
));
295 int64_t cpu_icount_to_ns(int64_t icount
)
297 return icount
<< icount_time_shift
;
300 /* return the time elapsed in VM between vm_start and vm_stop. Unless
301 * icount is active, cpu_get_ticks() uses units of the host CPU cycle
304 * Caller must hold the BQL
306 int64_t cpu_get_ticks(void)
311 return cpu_get_icount();
314 ticks
= timers_state
.cpu_ticks_offset
;
315 if (timers_state
.cpu_ticks_enabled
) {
316 ticks
+= cpu_get_host_ticks();
319 if (timers_state
.cpu_ticks_prev
> ticks
) {
320 /* Note: non increasing ticks may happen if the host uses
322 timers_state
.cpu_ticks_offset
+= timers_state
.cpu_ticks_prev
- ticks
;
323 ticks
= timers_state
.cpu_ticks_prev
;
326 timers_state
.cpu_ticks_prev
= ticks
;
330 static int64_t cpu_get_clock_locked(void)
334 time
= timers_state
.cpu_clock_offset
;
335 if (timers_state
.cpu_ticks_enabled
) {
342 /* Return the monotonic time elapsed in VM, i.e.,
343 * the time between vm_start and vm_stop
345 int64_t cpu_get_clock(void)
351 start
= seqlock_read_begin(&timers_state
.vm_clock_seqlock
);
352 ti
= cpu_get_clock_locked();
353 } while (seqlock_read_retry(&timers_state
.vm_clock_seqlock
, start
));
358 /* enable cpu_get_ticks()
359 * Caller must hold BQL which serves as mutex for vm_clock_seqlock.
361 void cpu_enable_ticks(void)
363 /* Here, the really thing protected by seqlock is cpu_clock_offset. */
364 seqlock_write_begin(&timers_state
.vm_clock_seqlock
);
365 if (!timers_state
.cpu_ticks_enabled
) {
366 timers_state
.cpu_ticks_offset
-= cpu_get_host_ticks();
367 timers_state
.cpu_clock_offset
-= get_clock();
368 timers_state
.cpu_ticks_enabled
= 1;
370 seqlock_write_end(&timers_state
.vm_clock_seqlock
);
373 /* disable cpu_get_ticks() : the clock is stopped. You must not call
374 * cpu_get_ticks() after that.
375 * Caller must hold BQL which serves as mutex for vm_clock_seqlock.
377 void cpu_disable_ticks(void)
379 /* Here, the really thing protected by seqlock is cpu_clock_offset. */
380 seqlock_write_begin(&timers_state
.vm_clock_seqlock
);
381 if (timers_state
.cpu_ticks_enabled
) {
382 timers_state
.cpu_ticks_offset
+= cpu_get_host_ticks();
383 timers_state
.cpu_clock_offset
= cpu_get_clock_locked();
384 timers_state
.cpu_ticks_enabled
= 0;
386 seqlock_write_end(&timers_state
.vm_clock_seqlock
);
389 /* Correlation between real and virtual time is always going to be
390 fairly approximate, so ignore small variation.
391 When the guest is idle real and virtual time will be aligned in
393 #define ICOUNT_WOBBLE (NANOSECONDS_PER_SECOND / 10)
395 static void icount_adjust(void)
401 /* Protected by TimersState mutex. */
402 static int64_t last_delta
;
404 /* If the VM is not running, then do nothing. */
405 if (!runstate_is_running()) {
409 seqlock_write_begin(&timers_state
.vm_clock_seqlock
);
410 cur_time
= cpu_get_clock_locked();
411 cur_icount
= cpu_get_icount_locked();
413 delta
= cur_icount
- cur_time
;
414 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
416 && last_delta
+ ICOUNT_WOBBLE
< delta
* 2
417 && icount_time_shift
> 0) {
418 /* The guest is getting too far ahead. Slow time down. */
422 && last_delta
- ICOUNT_WOBBLE
> delta
* 2
423 && icount_time_shift
< MAX_ICOUNT_SHIFT
) {
424 /* The guest is getting too far behind. Speed time up. */
428 timers_state
.qemu_icount_bias
= cur_icount
429 - (timers_state
.qemu_icount
<< icount_time_shift
);
430 seqlock_write_end(&timers_state
.vm_clock_seqlock
);
433 static void icount_adjust_rt(void *opaque
)
435 timer_mod(timers_state
.icount_rt_timer
,
436 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT
) + 1000);
440 static void icount_adjust_vm(void *opaque
)
442 timer_mod(timers_state
.icount_vm_timer
,
443 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) +
444 NANOSECONDS_PER_SECOND
/ 10);
448 static int64_t qemu_icount_round(int64_t count
)
450 return (count
+ (1 << icount_time_shift
) - 1) >> icount_time_shift
;
453 static void icount_warp_rt(void)
458 /* The icount_warp_timer is rescheduled soon after vm_clock_warp_start
459 * changes from -1 to another value, so the race here is okay.
462 seq
= seqlock_read_begin(&timers_state
.vm_clock_seqlock
);
463 warp_start
= timers_state
.vm_clock_warp_start
;
464 } while (seqlock_read_retry(&timers_state
.vm_clock_seqlock
, seq
));
466 if (warp_start
== -1) {
470 seqlock_write_begin(&timers_state
.vm_clock_seqlock
);
471 if (runstate_is_running()) {
472 int64_t clock
= REPLAY_CLOCK(REPLAY_CLOCK_VIRTUAL_RT
,
473 cpu_get_clock_locked());
476 warp_delta
= clock
- timers_state
.vm_clock_warp_start
;
477 if (use_icount
== 2) {
479 * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too
480 * far ahead of real time.
482 int64_t cur_icount
= cpu_get_icount_locked();
483 int64_t delta
= clock
- cur_icount
;
484 warp_delta
= MIN(warp_delta
, delta
);
486 timers_state
.qemu_icount_bias
+= warp_delta
;
488 timers_state
.vm_clock_warp_start
= -1;
489 seqlock_write_end(&timers_state
.vm_clock_seqlock
);
491 if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL
)) {
492 qemu_clock_notify(QEMU_CLOCK_VIRTUAL
);
496 static void icount_timer_cb(void *opaque
)
498 /* No need for a checkpoint because the timer already synchronizes
499 * with CHECKPOINT_CLOCK_VIRTUAL_RT.
504 void qtest_clock_warp(int64_t dest
)
506 int64_t clock
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
507 AioContext
*aio_context
;
508 assert(qtest_enabled());
509 aio_context
= qemu_get_aio_context();
510 while (clock
< dest
) {
511 int64_t deadline
= qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL
);
512 int64_t warp
= qemu_soonest_timeout(dest
- clock
, deadline
);
514 seqlock_write_begin(&timers_state
.vm_clock_seqlock
);
515 timers_state
.qemu_icount_bias
+= warp
;
516 seqlock_write_end(&timers_state
.vm_clock_seqlock
);
518 qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL
);
519 timerlist_run_timers(aio_context
->tlg
.tl
[QEMU_CLOCK_VIRTUAL
]);
520 clock
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
522 qemu_clock_notify(QEMU_CLOCK_VIRTUAL
);
525 void qemu_start_warp_timer(void)
534 /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
535 * do not fire, so computing the deadline does not make sense.
537 if (!runstate_is_running()) {
541 /* warp clock deterministically in record/replay mode */
542 if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_START
)) {
546 if (!all_cpu_threads_idle()) {
550 if (qtest_enabled()) {
551 /* When testing, qtest commands advance icount. */
555 /* We want to use the earliest deadline from ALL vm_clocks */
556 clock
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT
);
557 deadline
= qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL
);
559 static bool notified
;
560 if (!icount_sleep
&& !notified
) {
561 warn_report("icount sleep disabled and no active timers");
569 * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to
570 * sleep. Otherwise, the CPU might be waiting for a future timer
571 * interrupt to wake it up, but the interrupt never comes because
572 * the vCPU isn't running any insns and thus doesn't advance the
573 * QEMU_CLOCK_VIRTUAL.
577 * We never let VCPUs sleep in no sleep icount mode.
578 * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance
579 * to the next QEMU_CLOCK_VIRTUAL event and notify it.
580 * It is useful when we want a deterministic execution time,
581 * isolated from host latencies.
583 seqlock_write_begin(&timers_state
.vm_clock_seqlock
);
584 timers_state
.qemu_icount_bias
+= deadline
;
585 seqlock_write_end(&timers_state
.vm_clock_seqlock
);
586 qemu_clock_notify(QEMU_CLOCK_VIRTUAL
);
589 * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some
590 * "real" time, (related to the time left until the next event) has
591 * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this.
592 * This avoids that the warps are visible externally; for example,
593 * you will not be sending network packets continuously instead of
596 seqlock_write_begin(&timers_state
.vm_clock_seqlock
);
597 if (timers_state
.vm_clock_warp_start
== -1
598 || timers_state
.vm_clock_warp_start
> clock
) {
599 timers_state
.vm_clock_warp_start
= clock
;
601 seqlock_write_end(&timers_state
.vm_clock_seqlock
);
602 timer_mod_anticipate(timers_state
.icount_warp_timer
,
605 } else if (deadline
== 0) {
606 qemu_clock_notify(QEMU_CLOCK_VIRTUAL
);
610 static void qemu_account_warp_timer(void)
612 if (!use_icount
|| !icount_sleep
) {
616 /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
617 * do not fire, so computing the deadline does not make sense.
619 if (!runstate_is_running()) {
623 /* warp clock deterministically in record/replay mode */
624 if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_ACCOUNT
)) {
628 timer_del(timers_state
.icount_warp_timer
);
632 static bool icount_state_needed(void *opaque
)
637 static bool warp_timer_state_needed(void *opaque
)
639 TimersState
*s
= opaque
;
640 return s
->icount_warp_timer
!= NULL
;
643 static bool adjust_timers_state_needed(void *opaque
)
645 TimersState
*s
= opaque
;
646 return s
->icount_rt_timer
!= NULL
;
650 * Subsection for warp timer migration is optional, because may not be created
652 static const VMStateDescription icount_vmstate_warp_timer
= {
653 .name
= "timer/icount/warp_timer",
655 .minimum_version_id
= 1,
656 .needed
= warp_timer_state_needed
,
657 .fields
= (VMStateField
[]) {
658 VMSTATE_INT64(vm_clock_warp_start
, TimersState
),
659 VMSTATE_TIMER_PTR(icount_warp_timer
, TimersState
),
660 VMSTATE_END_OF_LIST()
664 static const VMStateDescription icount_vmstate_adjust_timers
= {
665 .name
= "timer/icount/timers",
667 .minimum_version_id
= 1,
668 .needed
= adjust_timers_state_needed
,
669 .fields
= (VMStateField
[]) {
670 VMSTATE_TIMER_PTR(icount_rt_timer
, TimersState
),
671 VMSTATE_TIMER_PTR(icount_vm_timer
, TimersState
),
672 VMSTATE_END_OF_LIST()
677 * This is a subsection for icount migration.
679 static const VMStateDescription icount_vmstate_timers
= {
680 .name
= "timer/icount",
682 .minimum_version_id
= 1,
683 .needed
= icount_state_needed
,
684 .fields
= (VMStateField
[]) {
685 VMSTATE_INT64(qemu_icount_bias
, TimersState
),
686 VMSTATE_INT64(qemu_icount
, TimersState
),
687 VMSTATE_END_OF_LIST()
689 .subsections
= (const VMStateDescription
*[]) {
690 &icount_vmstate_warp_timer
,
691 &icount_vmstate_adjust_timers
,
696 static const VMStateDescription vmstate_timers
= {
699 .minimum_version_id
= 1,
700 .fields
= (VMStateField
[]) {
701 VMSTATE_INT64(cpu_ticks_offset
, TimersState
),
702 VMSTATE_INT64(dummy
, TimersState
),
703 VMSTATE_INT64_V(cpu_clock_offset
, TimersState
, 2),
704 VMSTATE_END_OF_LIST()
706 .subsections
= (const VMStateDescription
*[]) {
707 &icount_vmstate_timers
,
712 static void cpu_throttle_thread(CPUState
*cpu
, run_on_cpu_data opaque
)
715 double throttle_ratio
;
718 if (!cpu_throttle_get_percentage()) {
722 pct
= (double)cpu_throttle_get_percentage()/100;
723 throttle_ratio
= pct
/ (1 - pct
);
724 sleeptime_ns
= (long)(throttle_ratio
* CPU_THROTTLE_TIMESLICE_NS
);
726 qemu_mutex_unlock_iothread();
727 g_usleep(sleeptime_ns
/ 1000); /* Convert ns to us for usleep call */
728 qemu_mutex_lock_iothread();
729 atomic_set(&cpu
->throttle_thread_scheduled
, 0);
732 static void cpu_throttle_timer_tick(void *opaque
)
737 /* Stop the timer if needed */
738 if (!cpu_throttle_get_percentage()) {
742 if (!atomic_xchg(&cpu
->throttle_thread_scheduled
, 1)) {
743 async_run_on_cpu(cpu
, cpu_throttle_thread
,
748 pct
= (double)cpu_throttle_get_percentage()/100;
749 timer_mod(throttle_timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT
) +
750 CPU_THROTTLE_TIMESLICE_NS
/ (1-pct
));
753 void cpu_throttle_set(int new_throttle_pct
)
755 /* Ensure throttle percentage is within valid range */
756 new_throttle_pct
= MIN(new_throttle_pct
, CPU_THROTTLE_PCT_MAX
);
757 new_throttle_pct
= MAX(new_throttle_pct
, CPU_THROTTLE_PCT_MIN
);
759 atomic_set(&throttle_percentage
, new_throttle_pct
);
761 timer_mod(throttle_timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT
) +
762 CPU_THROTTLE_TIMESLICE_NS
);
765 void cpu_throttle_stop(void)
767 atomic_set(&throttle_percentage
, 0);
770 bool cpu_throttle_active(void)
772 return (cpu_throttle_get_percentage() != 0);
775 int cpu_throttle_get_percentage(void)
777 return atomic_read(&throttle_percentage
);
780 void cpu_ticks_init(void)
782 seqlock_init(&timers_state
.vm_clock_seqlock
);
783 vmstate_register(NULL
, 0, &vmstate_timers
, &timers_state
);
784 throttle_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL_RT
,
785 cpu_throttle_timer_tick
, NULL
);
788 void configure_icount(QemuOpts
*opts
, Error
**errp
)
791 char *rem_str
= NULL
;
793 option
= qemu_opt_get(opts
, "shift");
795 if (qemu_opt_get(opts
, "align") != NULL
) {
796 error_setg(errp
, "Please specify shift option when using align");
801 icount_sleep
= qemu_opt_get_bool(opts
, "sleep", true);
803 timers_state
.icount_warp_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL_RT
,
804 icount_timer_cb
, NULL
);
807 icount_align_option
= qemu_opt_get_bool(opts
, "align", false);
809 if (icount_align_option
&& !icount_sleep
) {
810 error_setg(errp
, "align=on and sleep=off are incompatible");
812 if (strcmp(option
, "auto") != 0) {
814 icount_time_shift
= strtol(option
, &rem_str
, 0);
815 if (errno
!= 0 || *rem_str
!= '\0' || !strlen(option
)) {
816 error_setg(errp
, "icount: Invalid shift value");
820 } else if (icount_align_option
) {
821 error_setg(errp
, "shift=auto and align=on are incompatible");
822 } else if (!icount_sleep
) {
823 error_setg(errp
, "shift=auto and sleep=off are incompatible");
828 /* 125MIPS seems a reasonable initial guess at the guest speed.
829 It will be corrected fairly quickly anyway. */
830 icount_time_shift
= 3;
832 /* Have both realtime and virtual time triggers for speed adjustment.
833 The realtime trigger catches emulated time passing too slowly,
834 the virtual time trigger catches emulated time passing too fast.
835 Realtime triggers occur even when idle, so use them less frequently
837 timers_state
.vm_clock_warp_start
= -1;
838 timers_state
.icount_rt_timer
= timer_new_ms(QEMU_CLOCK_VIRTUAL_RT
,
839 icount_adjust_rt
, NULL
);
840 timer_mod(timers_state
.icount_rt_timer
,
841 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT
) + 1000);
842 timers_state
.icount_vm_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
,
843 icount_adjust_vm
, NULL
);
844 timer_mod(timers_state
.icount_vm_timer
,
845 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) +
846 NANOSECONDS_PER_SECOND
/ 10);
849 /***********************************************************/
850 /* TCG vCPU kick timer
852 * The kick timer is responsible for moving single threaded vCPU
853 * emulation on to the next vCPU. If more than one vCPU is running a
854 * timer event with force a cpu->exit so the next vCPU can get
857 * The timer is removed if all vCPUs are idle and restarted again once
858 * idleness is complete.
861 static QEMUTimer
*tcg_kick_vcpu_timer
;
862 static CPUState
*tcg_current_rr_cpu
;
864 #define TCG_KICK_PERIOD (NANOSECONDS_PER_SECOND / 10)
866 static inline int64_t qemu_tcg_next_kick(void)
868 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + TCG_KICK_PERIOD
;
871 /* Kick the currently round-robin scheduled vCPU */
872 static void qemu_cpu_kick_rr_cpu(void)
876 cpu
= atomic_mb_read(&tcg_current_rr_cpu
);
880 } while (cpu
!= atomic_mb_read(&tcg_current_rr_cpu
));
883 static void do_nothing(CPUState
*cpu
, run_on_cpu_data unused
)
887 void qemu_timer_notify_cb(void *opaque
, QEMUClockType type
)
889 if (!use_icount
|| type
!= QEMU_CLOCK_VIRTUAL
) {
894 if (!qemu_in_vcpu_thread() && first_cpu
) {
895 /* qemu_cpu_kick is not enough to kick a halted CPU out of
896 * qemu_tcg_wait_io_event. async_run_on_cpu, instead,
897 * causes cpu_thread_is_idle to return false. This way,
898 * handle_icount_deadline can run.
900 async_run_on_cpu(first_cpu
, do_nothing
, RUN_ON_CPU_NULL
);
904 static void kick_tcg_thread(void *opaque
)
906 timer_mod(tcg_kick_vcpu_timer
, qemu_tcg_next_kick());
907 qemu_cpu_kick_rr_cpu();
910 static void start_tcg_kick_timer(void)
912 assert(!mttcg_enabled
);
913 if (!tcg_kick_vcpu_timer
&& CPU_NEXT(first_cpu
)) {
914 tcg_kick_vcpu_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
,
915 kick_tcg_thread
, NULL
);
916 timer_mod(tcg_kick_vcpu_timer
, qemu_tcg_next_kick());
920 static void stop_tcg_kick_timer(void)
922 assert(!mttcg_enabled
);
923 if (tcg_kick_vcpu_timer
) {
924 timer_del(tcg_kick_vcpu_timer
);
925 tcg_kick_vcpu_timer
= NULL
;
929 /***********************************************************/
930 void hw_error(const char *fmt
, ...)
936 fprintf(stderr
, "qemu: hardware error: ");
937 vfprintf(stderr
, fmt
, ap
);
938 fprintf(stderr
, "\n");
940 fprintf(stderr
, "CPU #%d:\n", cpu
->cpu_index
);
941 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
);
947 void cpu_synchronize_all_states(void)
952 cpu_synchronize_state(cpu
);
953 /* TODO: move to cpu_synchronize_state() */
955 hvf_cpu_synchronize_state(cpu
);
960 void cpu_synchronize_all_post_reset(void)
965 cpu_synchronize_post_reset(cpu
);
966 /* TODO: move to cpu_synchronize_post_reset() */
968 hvf_cpu_synchronize_post_reset(cpu
);
973 void cpu_synchronize_all_post_init(void)
978 cpu_synchronize_post_init(cpu
);
979 /* TODO: move to cpu_synchronize_post_init() */
981 hvf_cpu_synchronize_post_init(cpu
);
986 void cpu_synchronize_all_pre_loadvm(void)
991 cpu_synchronize_pre_loadvm(cpu
);
995 static int do_vm_stop(RunState state
)
999 if (runstate_is_running()) {
1000 cpu_disable_ticks();
1002 runstate_set(state
);
1003 vm_state_notify(0, state
);
1004 qapi_event_send_stop(&error_abort
);
1008 replay_disable_events();
1009 ret
= bdrv_flush_all();
1014 static bool cpu_can_run(CPUState
*cpu
)
1019 if (cpu_is_stopped(cpu
)) {
1025 static void cpu_handle_guest_debug(CPUState
*cpu
)
1027 gdb_set_stop_cpu(cpu
);
1028 qemu_system_debug_request();
1029 cpu
->stopped
= true;
1033 static void sigbus_reraise(void)
1036 struct sigaction action
;
1038 memset(&action
, 0, sizeof(action
));
1039 action
.sa_handler
= SIG_DFL
;
1040 if (!sigaction(SIGBUS
, &action
, NULL
)) {
1043 sigaddset(&set
, SIGBUS
);
1044 pthread_sigmask(SIG_UNBLOCK
, &set
, NULL
);
1046 perror("Failed to re-raise SIGBUS!\n");
1050 static void sigbus_handler(int n
, siginfo_t
*siginfo
, void *ctx
)
1052 if (siginfo
->si_code
!= BUS_MCEERR_AO
&& siginfo
->si_code
!= BUS_MCEERR_AR
) {
1057 /* Called asynchronously in VCPU thread. */
1058 if (kvm_on_sigbus_vcpu(current_cpu
, siginfo
->si_code
, siginfo
->si_addr
)) {
1062 /* Called synchronously (via signalfd) in main thread. */
1063 if (kvm_on_sigbus(siginfo
->si_code
, siginfo
->si_addr
)) {
1069 static void qemu_init_sigbus(void)
1071 struct sigaction action
;
1073 memset(&action
, 0, sizeof(action
));
1074 action
.sa_flags
= SA_SIGINFO
;
1075 action
.sa_sigaction
= sigbus_handler
;
1076 sigaction(SIGBUS
, &action
, NULL
);
1078 prctl(PR_MCE_KILL
, PR_MCE_KILL_SET
, PR_MCE_KILL_EARLY
, 0, 0);
1080 #else /* !CONFIG_LINUX */
1081 static void qemu_init_sigbus(void)
1084 #endif /* !CONFIG_LINUX */
1086 static QemuMutex qemu_global_mutex
;
1088 static QemuThread io_thread
;
1091 static QemuCond qemu_cpu_cond
;
1093 static QemuCond qemu_pause_cond
;
1095 void qemu_init_cpu_loop(void)
1098 qemu_cond_init(&qemu_cpu_cond
);
1099 qemu_cond_init(&qemu_pause_cond
);
1100 qemu_mutex_init(&qemu_global_mutex
);
1102 qemu_thread_get_self(&io_thread
);
1105 void run_on_cpu(CPUState
*cpu
, run_on_cpu_func func
, run_on_cpu_data data
)
1107 do_run_on_cpu(cpu
, func
, data
, &qemu_global_mutex
);
1110 static void qemu_kvm_destroy_vcpu(CPUState
*cpu
)
1112 if (kvm_destroy_vcpu(cpu
) < 0) {
1113 error_report("kvm_destroy_vcpu failed");
1118 static void qemu_tcg_destroy_vcpu(CPUState
*cpu
)
1122 static void qemu_cpu_stop(CPUState
*cpu
, bool exit
)
1124 g_assert(qemu_cpu_is_self(cpu
));
1126 cpu
->stopped
= true;
1130 qemu_cond_broadcast(&qemu_pause_cond
);
1133 static void qemu_wait_io_event_common(CPUState
*cpu
)
1135 atomic_mb_set(&cpu
->thread_kicked
, false);
1137 qemu_cpu_stop(cpu
, false);
1139 process_queued_cpu_work(cpu
);
1142 static void qemu_tcg_rr_wait_io_event(CPUState
*cpu
)
1144 while (all_cpu_threads_idle()) {
1145 stop_tcg_kick_timer();
1146 qemu_cond_wait(cpu
->halt_cond
, &qemu_global_mutex
);
1149 start_tcg_kick_timer();
1151 qemu_wait_io_event_common(cpu
);
1154 static void qemu_wait_io_event(CPUState
*cpu
)
1156 while (cpu_thread_is_idle(cpu
)) {
1157 qemu_cond_wait(cpu
->halt_cond
, &qemu_global_mutex
);
1161 /* Eat dummy APC queued by qemu_cpu_kick_thread. */
1162 if (!tcg_enabled()) {
1166 qemu_wait_io_event_common(cpu
);
1169 static void *qemu_kvm_cpu_thread_fn(void *arg
)
1171 CPUState
*cpu
= arg
;
1174 rcu_register_thread();
1176 qemu_mutex_lock_iothread();
1177 qemu_thread_get_self(cpu
->thread
);
1178 cpu
->thread_id
= qemu_get_thread_id();
1182 r
= kvm_init_vcpu(cpu
);
1184 fprintf(stderr
, "kvm_init_vcpu failed: %s\n", strerror(-r
));
1188 kvm_init_cpu_signals(cpu
);
1190 /* signal CPU creation */
1191 cpu
->created
= true;
1192 qemu_cond_signal(&qemu_cpu_cond
);
1195 if (cpu_can_run(cpu
)) {
1196 r
= kvm_cpu_exec(cpu
);
1197 if (r
== EXCP_DEBUG
) {
1198 cpu_handle_guest_debug(cpu
);
1201 qemu_wait_io_event(cpu
);
1202 } while (!cpu
->unplug
|| cpu_can_run(cpu
));
1204 qemu_kvm_destroy_vcpu(cpu
);
1205 cpu
->created
= false;
1206 qemu_cond_signal(&qemu_cpu_cond
);
1207 qemu_mutex_unlock_iothread();
1208 rcu_unregister_thread();
1212 static void *qemu_dummy_cpu_thread_fn(void *arg
)
1215 fprintf(stderr
, "qtest is not supported under Windows\n");
1218 CPUState
*cpu
= arg
;
1222 rcu_register_thread();
1224 qemu_mutex_lock_iothread();
1225 qemu_thread_get_self(cpu
->thread
);
1226 cpu
->thread_id
= qemu_get_thread_id();
1230 sigemptyset(&waitset
);
1231 sigaddset(&waitset
, SIG_IPI
);
1233 /* signal CPU creation */
1234 cpu
->created
= true;
1235 qemu_cond_signal(&qemu_cpu_cond
);
1238 qemu_mutex_unlock_iothread();
1241 r
= sigwait(&waitset
, &sig
);
1242 } while (r
== -1 && (errno
== EAGAIN
|| errno
== EINTR
));
1247 qemu_mutex_lock_iothread();
1248 qemu_wait_io_event(cpu
);
1249 } while (!cpu
->unplug
);
1251 rcu_unregister_thread();
1256 static int64_t tcg_get_icount_limit(void)
1260 if (replay_mode
!= REPLAY_MODE_PLAY
) {
1261 deadline
= qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL
);
1263 /* Maintain prior (possibly buggy) behaviour where if no deadline
1264 * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than
1265 * INT32_MAX nanoseconds ahead, we still use INT32_MAX
1268 if ((deadline
< 0) || (deadline
> INT32_MAX
)) {
1269 deadline
= INT32_MAX
;
1272 return qemu_icount_round(deadline
);
1274 return replay_get_instructions();
1278 static void handle_icount_deadline(void)
1280 assert(qemu_in_vcpu_thread());
1283 qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL
);
1285 if (deadline
== 0) {
1286 /* Wake up other AioContexts. */
1287 qemu_clock_notify(QEMU_CLOCK_VIRTUAL
);
1288 qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL
);
1293 static void prepare_icount_for_run(CPUState
*cpu
)
1298 /* These should always be cleared by process_icount_data after
1299 * each vCPU execution. However u16.high can be raised
1300 * asynchronously by cpu_exit/cpu_interrupt/tcg_handle_interrupt
1302 g_assert(cpu
->icount_decr
.u16
.low
== 0);
1303 g_assert(cpu
->icount_extra
== 0);
1305 cpu
->icount_budget
= tcg_get_icount_limit();
1306 insns_left
= MIN(0xffff, cpu
->icount_budget
);
1307 cpu
->icount_decr
.u16
.low
= insns_left
;
1308 cpu
->icount_extra
= cpu
->icount_budget
- insns_left
;
1312 static void process_icount_data(CPUState
*cpu
)
1315 /* Account for executed instructions */
1316 cpu_update_icount(cpu
);
1318 /* Reset the counters */
1319 cpu
->icount_decr
.u16
.low
= 0;
1320 cpu
->icount_extra
= 0;
1321 cpu
->icount_budget
= 0;
1323 replay_account_executed_instructions();
1328 static int tcg_cpu_exec(CPUState
*cpu
)
1331 #ifdef CONFIG_PROFILER
1335 #ifdef CONFIG_PROFILER
1336 ti
= profile_getclock();
1338 qemu_mutex_unlock_iothread();
1339 cpu_exec_start(cpu
);
1340 ret
= cpu_exec(cpu
);
1342 qemu_mutex_lock_iothread();
1343 #ifdef CONFIG_PROFILER
1344 tcg_time
+= profile_getclock() - ti
;
1349 /* Destroy any remaining vCPUs which have been unplugged and have
1352 static void deal_with_unplugged_cpus(void)
1357 if (cpu
->unplug
&& !cpu_can_run(cpu
)) {
1358 qemu_tcg_destroy_vcpu(cpu
);
1359 cpu
->created
= false;
1360 qemu_cond_signal(&qemu_cpu_cond
);
1366 /* Single-threaded TCG
1368 * In the single-threaded case each vCPU is simulated in turn. If
1369 * there is more than a single vCPU we create a simple timer to kick
1370 * the vCPU and ensure we don't get stuck in a tight loop in one vCPU.
1371 * This is done explicitly rather than relying on side-effects
1375 static void *qemu_tcg_rr_cpu_thread_fn(void *arg
)
1377 CPUState
*cpu
= arg
;
1379 rcu_register_thread();
1380 tcg_register_thread();
1382 qemu_mutex_lock_iothread();
1383 qemu_thread_get_self(cpu
->thread
);
1386 cpu
->thread_id
= qemu_get_thread_id();
1387 cpu
->created
= true;
1390 qemu_cond_signal(&qemu_cpu_cond
);
1392 /* wait for initial kick-off after machine start */
1393 while (first_cpu
->stopped
) {
1394 qemu_cond_wait(first_cpu
->halt_cond
, &qemu_global_mutex
);
1396 /* process any pending work */
1399 qemu_wait_io_event_common(cpu
);
1403 start_tcg_kick_timer();
1407 /* process any pending work */
1408 cpu
->exit_request
= 1;
1411 /* Account partial waits to QEMU_CLOCK_VIRTUAL. */
1412 qemu_account_warp_timer();
1414 /* Run the timers here. This is much more efficient than
1415 * waking up the I/O thread and waiting for completion.
1417 handle_icount_deadline();
1423 while (cpu
&& !cpu
->queued_work_first
&& !cpu
->exit_request
) {
1425 atomic_mb_set(&tcg_current_rr_cpu
, cpu
);
1428 qemu_clock_enable(QEMU_CLOCK_VIRTUAL
,
1429 (cpu
->singlestep_enabled
& SSTEP_NOTIMER
) == 0);
1431 if (cpu_can_run(cpu
)) {
1434 prepare_icount_for_run(cpu
);
1436 r
= tcg_cpu_exec(cpu
);
1438 process_icount_data(cpu
);
1440 if (r
== EXCP_DEBUG
) {
1441 cpu_handle_guest_debug(cpu
);
1443 } else if (r
== EXCP_ATOMIC
) {
1444 qemu_mutex_unlock_iothread();
1445 cpu_exec_step_atomic(cpu
);
1446 qemu_mutex_lock_iothread();
1449 } else if (cpu
->stop
) {
1451 cpu
= CPU_NEXT(cpu
);
1456 cpu
= CPU_NEXT(cpu
);
1457 } /* while (cpu && !cpu->exit_request).. */
1459 /* Does not need atomic_mb_set because a spurious wakeup is okay. */
1460 atomic_set(&tcg_current_rr_cpu
, NULL
);
1462 if (cpu
&& cpu
->exit_request
) {
1463 atomic_mb_set(&cpu
->exit_request
, 0);
1466 qemu_tcg_rr_wait_io_event(cpu
? cpu
: QTAILQ_FIRST(&cpus
));
1467 deal_with_unplugged_cpus();
1470 rcu_unregister_thread();
1474 static void *qemu_hax_cpu_thread_fn(void *arg
)
1476 CPUState
*cpu
= arg
;
1479 rcu_register_thread();
1480 qemu_mutex_lock_iothread();
1481 qemu_thread_get_self(cpu
->thread
);
1483 cpu
->thread_id
= qemu_get_thread_id();
1484 cpu
->created
= true;
1489 qemu_cond_signal(&qemu_cpu_cond
);
1492 if (cpu_can_run(cpu
)) {
1493 r
= hax_smp_cpu_exec(cpu
);
1494 if (r
== EXCP_DEBUG
) {
1495 cpu_handle_guest_debug(cpu
);
1499 qemu_wait_io_event(cpu
);
1500 } while (!cpu
->unplug
|| cpu_can_run(cpu
));
1501 rcu_unregister_thread();
1505 /* The HVF-specific vCPU thread function. This one should only run when the host
1506 * CPU supports the VMX "unrestricted guest" feature. */
1507 static void *qemu_hvf_cpu_thread_fn(void *arg
)
1509 CPUState
*cpu
= arg
;
1513 assert(hvf_enabled());
1515 rcu_register_thread();
1517 qemu_mutex_lock_iothread();
1518 qemu_thread_get_self(cpu
->thread
);
1520 cpu
->thread_id
= qemu_get_thread_id();
1526 /* signal CPU creation */
1527 cpu
->created
= true;
1528 qemu_cond_signal(&qemu_cpu_cond
);
1531 if (cpu_can_run(cpu
)) {
1532 r
= hvf_vcpu_exec(cpu
);
1533 if (r
== EXCP_DEBUG
) {
1534 cpu_handle_guest_debug(cpu
);
1537 qemu_wait_io_event(cpu
);
1538 } while (!cpu
->unplug
|| cpu_can_run(cpu
));
1540 hvf_vcpu_destroy(cpu
);
1541 cpu
->created
= false;
1542 qemu_cond_signal(&qemu_cpu_cond
);
1543 qemu_mutex_unlock_iothread();
1544 rcu_unregister_thread();
1549 static void CALLBACK
dummy_apc_func(ULONG_PTR unused
)
1554 /* Multi-threaded TCG
1556 * In the multi-threaded case each vCPU has its own thread. The TLS
1557 * variable current_cpu can be used deep in the code to find the
1558 * current CPUState for a given thread.
1561 static void *qemu_tcg_cpu_thread_fn(void *arg
)
1563 CPUState
*cpu
= arg
;
1565 g_assert(!use_icount
);
1567 rcu_register_thread();
1568 tcg_register_thread();
1570 qemu_mutex_lock_iothread();
1571 qemu_thread_get_self(cpu
->thread
);
1573 cpu
->thread_id
= qemu_get_thread_id();
1574 cpu
->created
= true;
1577 qemu_cond_signal(&qemu_cpu_cond
);
1579 /* process any pending work */
1580 cpu
->exit_request
= 1;
1583 if (cpu_can_run(cpu
)) {
1585 r
= tcg_cpu_exec(cpu
);
1588 cpu_handle_guest_debug(cpu
);
1591 /* during start-up the vCPU is reset and the thread is
1592 * kicked several times. If we don't ensure we go back
1593 * to sleep in the halted state we won't cleanly
1594 * start-up when the vCPU is enabled.
1596 * cpu->halted should ensure we sleep in wait_io_event
1598 g_assert(cpu
->halted
);
1601 qemu_mutex_unlock_iothread();
1602 cpu_exec_step_atomic(cpu
);
1603 qemu_mutex_lock_iothread();
1605 /* Ignore everything else? */
1610 atomic_mb_set(&cpu
->exit_request
, 0);
1611 qemu_wait_io_event(cpu
);
1612 } while (!cpu
->unplug
|| cpu_can_run(cpu
));
1614 qemu_tcg_destroy_vcpu(cpu
);
1615 cpu
->created
= false;
1616 qemu_cond_signal(&qemu_cpu_cond
);
1617 qemu_mutex_unlock_iothread();
1618 rcu_unregister_thread();
1622 static void qemu_cpu_kick_thread(CPUState
*cpu
)
1627 if (cpu
->thread_kicked
) {
1630 cpu
->thread_kicked
= true;
1631 err
= pthread_kill(cpu
->thread
->thread
, SIG_IPI
);
1633 fprintf(stderr
, "qemu:%s: %s", __func__
, strerror(err
));
1637 if (!qemu_cpu_is_self(cpu
)) {
1638 if (!QueueUserAPC(dummy_apc_func
, cpu
->hThread
, 0)) {
1639 fprintf(stderr
, "%s: QueueUserAPC failed with error %lu\n",
1640 __func__
, GetLastError());
1647 void qemu_cpu_kick(CPUState
*cpu
)
1649 qemu_cond_broadcast(cpu
->halt_cond
);
1650 if (tcg_enabled()) {
1652 /* NOP unless doing single-thread RR */
1653 qemu_cpu_kick_rr_cpu();
1655 if (hax_enabled()) {
1657 * FIXME: race condition with the exit_request check in
1660 cpu
->exit_request
= 1;
1662 qemu_cpu_kick_thread(cpu
);
1666 void qemu_cpu_kick_self(void)
1668 assert(current_cpu
);
1669 qemu_cpu_kick_thread(current_cpu
);
1672 bool qemu_cpu_is_self(CPUState
*cpu
)
1674 return qemu_thread_is_self(cpu
->thread
);
1677 bool qemu_in_vcpu_thread(void)
1679 return current_cpu
&& qemu_cpu_is_self(current_cpu
);
1682 static __thread
bool iothread_locked
= false;
1684 bool qemu_mutex_iothread_locked(void)
1686 return iothread_locked
;
1689 void qemu_mutex_lock_iothread(void)
1691 g_assert(!qemu_mutex_iothread_locked());
1692 qemu_mutex_lock(&qemu_global_mutex
);
1693 iothread_locked
= true;
1696 void qemu_mutex_unlock_iothread(void)
1698 g_assert(qemu_mutex_iothread_locked());
1699 iothread_locked
= false;
1700 qemu_mutex_unlock(&qemu_global_mutex
);
1703 static bool all_vcpus_paused(void)
1708 if (!cpu
->stopped
) {
1716 void pause_all_vcpus(void)
1720 qemu_clock_enable(QEMU_CLOCK_VIRTUAL
, false);
1722 if (qemu_cpu_is_self(cpu
)) {
1723 qemu_cpu_stop(cpu
, true);
1730 while (!all_vcpus_paused()) {
1731 qemu_cond_wait(&qemu_pause_cond
, &qemu_global_mutex
);
1738 void cpu_resume(CPUState
*cpu
)
1741 cpu
->stopped
= false;
1745 void resume_all_vcpus(void)
1749 qemu_clock_enable(QEMU_CLOCK_VIRTUAL
, true);
1755 void cpu_remove_sync(CPUState
*cpu
)
1760 qemu_mutex_unlock_iothread();
1761 qemu_thread_join(cpu
->thread
);
1762 qemu_mutex_lock_iothread();
1765 /* For temporary buffers for forming a name */
1766 #define VCPU_THREAD_NAME_SIZE 16
1768 static void qemu_tcg_init_vcpu(CPUState
*cpu
)
1770 char thread_name
[VCPU_THREAD_NAME_SIZE
];
1771 static QemuCond
*single_tcg_halt_cond
;
1772 static QemuThread
*single_tcg_cpu_thread
;
1773 static int tcg_region_inited
;
1776 * Initialize TCG regions--once. Now is a good time, because:
1777 * (1) TCG's init context, prologue and target globals have been set up.
1778 * (2) qemu_tcg_mttcg_enabled() works now (TCG init code runs before the
1779 * -accel flag is processed, so the check doesn't work then).
1781 if (!tcg_region_inited
) {
1782 tcg_region_inited
= 1;
1786 if (qemu_tcg_mttcg_enabled() || !single_tcg_cpu_thread
) {
1787 cpu
->thread
= g_malloc0(sizeof(QemuThread
));
1788 cpu
->halt_cond
= g_malloc0(sizeof(QemuCond
));
1789 qemu_cond_init(cpu
->halt_cond
);
1791 if (qemu_tcg_mttcg_enabled()) {
1792 /* create a thread per vCPU with TCG (MTTCG) */
1793 parallel_cpus
= true;
1794 snprintf(thread_name
, VCPU_THREAD_NAME_SIZE
, "CPU %d/TCG",
1797 qemu_thread_create(cpu
->thread
, thread_name
, qemu_tcg_cpu_thread_fn
,
1798 cpu
, QEMU_THREAD_JOINABLE
);
1801 /* share a single thread for all cpus with TCG */
1802 snprintf(thread_name
, VCPU_THREAD_NAME_SIZE
, "ALL CPUs/TCG");
1803 qemu_thread_create(cpu
->thread
, thread_name
,
1804 qemu_tcg_rr_cpu_thread_fn
,
1805 cpu
, QEMU_THREAD_JOINABLE
);
1807 single_tcg_halt_cond
= cpu
->halt_cond
;
1808 single_tcg_cpu_thread
= cpu
->thread
;
1811 cpu
->hThread
= qemu_thread_get_handle(cpu
->thread
);
1813 while (!cpu
->created
) {
1814 qemu_cond_wait(&qemu_cpu_cond
, &qemu_global_mutex
);
1817 /* For non-MTTCG cases we share the thread */
1818 cpu
->thread
= single_tcg_cpu_thread
;
1819 cpu
->halt_cond
= single_tcg_halt_cond
;
1823 static void qemu_hax_start_vcpu(CPUState
*cpu
)
1825 char thread_name
[VCPU_THREAD_NAME_SIZE
];
1827 cpu
->thread
= g_malloc0(sizeof(QemuThread
));
1828 cpu
->halt_cond
= g_malloc0(sizeof(QemuCond
));
1829 qemu_cond_init(cpu
->halt_cond
);
1831 snprintf(thread_name
, VCPU_THREAD_NAME_SIZE
, "CPU %d/HAX",
1833 qemu_thread_create(cpu
->thread
, thread_name
, qemu_hax_cpu_thread_fn
,
1834 cpu
, QEMU_THREAD_JOINABLE
);
1836 cpu
->hThread
= qemu_thread_get_handle(cpu
->thread
);
1838 while (!cpu
->created
) {
1839 qemu_cond_wait(&qemu_cpu_cond
, &qemu_global_mutex
);
1843 static void qemu_kvm_start_vcpu(CPUState
*cpu
)
1845 char thread_name
[VCPU_THREAD_NAME_SIZE
];
1847 cpu
->thread
= g_malloc0(sizeof(QemuThread
));
1848 cpu
->halt_cond
= g_malloc0(sizeof(QemuCond
));
1849 qemu_cond_init(cpu
->halt_cond
);
1850 snprintf(thread_name
, VCPU_THREAD_NAME_SIZE
, "CPU %d/KVM",
1852 qemu_thread_create(cpu
->thread
, thread_name
, qemu_kvm_cpu_thread_fn
,
1853 cpu
, QEMU_THREAD_JOINABLE
);
1854 while (!cpu
->created
) {
1855 qemu_cond_wait(&qemu_cpu_cond
, &qemu_global_mutex
);
1859 static void qemu_hvf_start_vcpu(CPUState
*cpu
)
1861 char thread_name
[VCPU_THREAD_NAME_SIZE
];
1863 /* HVF currently does not support TCG, and only runs in
1864 * unrestricted-guest mode. */
1865 assert(hvf_enabled());
1867 cpu
->thread
= g_malloc0(sizeof(QemuThread
));
1868 cpu
->halt_cond
= g_malloc0(sizeof(QemuCond
));
1869 qemu_cond_init(cpu
->halt_cond
);
1871 snprintf(thread_name
, VCPU_THREAD_NAME_SIZE
, "CPU %d/HVF",
1873 qemu_thread_create(cpu
->thread
, thread_name
, qemu_hvf_cpu_thread_fn
,
1874 cpu
, QEMU_THREAD_JOINABLE
);
1875 while (!cpu
->created
) {
1876 qemu_cond_wait(&qemu_cpu_cond
, &qemu_global_mutex
);
1880 static void qemu_dummy_start_vcpu(CPUState
*cpu
)
1882 char thread_name
[VCPU_THREAD_NAME_SIZE
];
1884 cpu
->thread
= g_malloc0(sizeof(QemuThread
));
1885 cpu
->halt_cond
= g_malloc0(sizeof(QemuCond
));
1886 qemu_cond_init(cpu
->halt_cond
);
1887 snprintf(thread_name
, VCPU_THREAD_NAME_SIZE
, "CPU %d/DUMMY",
1889 qemu_thread_create(cpu
->thread
, thread_name
, qemu_dummy_cpu_thread_fn
, cpu
,
1890 QEMU_THREAD_JOINABLE
);
1891 while (!cpu
->created
) {
1892 qemu_cond_wait(&qemu_cpu_cond
, &qemu_global_mutex
);
1896 void qemu_init_vcpu(CPUState
*cpu
)
1898 cpu
->nr_cores
= smp_cores
;
1899 cpu
->nr_threads
= smp_threads
;
1900 cpu
->stopped
= true;
1903 /* If the target cpu hasn't set up any address spaces itself,
1904 * give it the default one.
1907 cpu_address_space_init(cpu
, 0, "cpu-memory", cpu
->memory
);
1910 if (kvm_enabled()) {
1911 qemu_kvm_start_vcpu(cpu
);
1912 } else if (hax_enabled()) {
1913 qemu_hax_start_vcpu(cpu
);
1914 } else if (hvf_enabled()) {
1915 qemu_hvf_start_vcpu(cpu
);
1916 } else if (tcg_enabled()) {
1917 qemu_tcg_init_vcpu(cpu
);
1919 qemu_dummy_start_vcpu(cpu
);
1923 void cpu_stop_current(void)
1926 qemu_cpu_stop(current_cpu
, true);
1930 int vm_stop(RunState state
)
1932 if (qemu_in_vcpu_thread()) {
1933 qemu_system_vmstop_request_prepare();
1934 qemu_system_vmstop_request(state
);
1936 * FIXME: should not return to device code in case
1937 * vm_stop() has been requested.
1943 return do_vm_stop(state
);
1947 * Prepare for (re)starting the VM.
1948 * Returns -1 if the vCPUs are not to be restarted (e.g. if they are already
1949 * running or in case of an error condition), 0 otherwise.
1951 int vm_prepare_start(void)
1956 qemu_vmstop_requested(&requested
);
1957 if (runstate_is_running() && requested
== RUN_STATE__MAX
) {
1961 /* Ensure that a STOP/RESUME pair of events is emitted if a
1962 * vmstop request was pending. The BLOCK_IO_ERROR event, for
1963 * example, according to documentation is always followed by
1966 if (runstate_is_running()) {
1967 qapi_event_send_stop(&error_abort
);
1970 replay_enable_events();
1972 runstate_set(RUN_STATE_RUNNING
);
1973 vm_state_notify(1, RUN_STATE_RUNNING
);
1976 /* We are sending this now, but the CPUs will be resumed shortly later */
1977 qapi_event_send_resume(&error_abort
);
1983 if (!vm_prepare_start()) {
1988 /* does a state transition even if the VM is already stopped,
1989 current state is forgotten forever */
1990 int vm_stop_force_state(RunState state
)
1992 if (runstate_is_running()) {
1993 return vm_stop(state
);
1995 runstate_set(state
);
1998 /* Make sure to return an error if the flush in a previous vm_stop()
2000 return bdrv_flush_all();
2004 void list_cpus(FILE *f
, fprintf_function cpu_fprintf
, const char *optarg
)
2006 /* XXX: implement xxx_cpu_list for targets that still miss it */
2007 #if defined(cpu_list)
2008 cpu_list(f
, cpu_fprintf
);
2012 CpuInfoList
*qmp_query_cpus(Error
**errp
)
2014 MachineState
*ms
= MACHINE(qdev_get_machine());
2015 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
2016 CpuInfoList
*head
= NULL
, *cur_item
= NULL
;
2021 #if defined(TARGET_I386)
2022 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2023 CPUX86State
*env
= &x86_cpu
->env
;
2024 #elif defined(TARGET_PPC)
2025 PowerPCCPU
*ppc_cpu
= POWERPC_CPU(cpu
);
2026 CPUPPCState
*env
= &ppc_cpu
->env
;
2027 #elif defined(TARGET_SPARC)
2028 SPARCCPU
*sparc_cpu
= SPARC_CPU(cpu
);
2029 CPUSPARCState
*env
= &sparc_cpu
->env
;
2030 #elif defined(TARGET_MIPS)
2031 MIPSCPU
*mips_cpu
= MIPS_CPU(cpu
);
2032 CPUMIPSState
*env
= &mips_cpu
->env
;
2033 #elif defined(TARGET_TRICORE)
2034 TriCoreCPU
*tricore_cpu
= TRICORE_CPU(cpu
);
2035 CPUTriCoreState
*env
= &tricore_cpu
->env
;
2038 cpu_synchronize_state(cpu
);
2040 info
= g_malloc0(sizeof(*info
));
2041 info
->value
= g_malloc0(sizeof(*info
->value
));
2042 info
->value
->CPU
= cpu
->cpu_index
;
2043 info
->value
->current
= (cpu
== first_cpu
);
2044 info
->value
->halted
= cpu
->halted
;
2045 info
->value
->qom_path
= object_get_canonical_path(OBJECT(cpu
));
2046 info
->value
->thread_id
= cpu
->thread_id
;
2047 #if defined(TARGET_I386)
2048 info
->value
->arch
= CPU_INFO_ARCH_X86
;
2049 info
->value
->u
.x86
.pc
= env
->eip
+ env
->segs
[R_CS
].base
;
2050 #elif defined(TARGET_PPC)
2051 info
->value
->arch
= CPU_INFO_ARCH_PPC
;
2052 info
->value
->u
.ppc
.nip
= env
->nip
;
2053 #elif defined(TARGET_SPARC)
2054 info
->value
->arch
= CPU_INFO_ARCH_SPARC
;
2055 info
->value
->u
.q_sparc
.pc
= env
->pc
;
2056 info
->value
->u
.q_sparc
.npc
= env
->npc
;
2057 #elif defined(TARGET_MIPS)
2058 info
->value
->arch
= CPU_INFO_ARCH_MIPS
;
2059 info
->value
->u
.q_mips
.PC
= env
->active_tc
.PC
;
2060 #elif defined(TARGET_TRICORE)
2061 info
->value
->arch
= CPU_INFO_ARCH_TRICORE
;
2062 info
->value
->u
.tricore
.PC
= env
->PC
;
2064 info
->value
->arch
= CPU_INFO_ARCH_OTHER
;
2066 info
->value
->has_props
= !!mc
->cpu_index_to_instance_props
;
2067 if (info
->value
->has_props
) {
2068 CpuInstanceProperties
*props
;
2069 props
= g_malloc0(sizeof(*props
));
2070 *props
= mc
->cpu_index_to_instance_props(ms
, cpu
->cpu_index
);
2071 info
->value
->props
= props
;
2074 /* XXX: waiting for the qapi to support GSList */
2076 head
= cur_item
= info
;
2078 cur_item
->next
= info
;
2086 void qmp_memsave(int64_t addr
, int64_t size
, const char *filename
,
2087 bool has_cpu
, int64_t cpu_index
, Error
**errp
)
2093 int64_t orig_addr
= addr
, orig_size
= size
;
2099 cpu
= qemu_get_cpu(cpu_index
);
2101 error_setg(errp
, QERR_INVALID_PARAMETER_VALUE
, "cpu-index",
2106 f
= fopen(filename
, "wb");
2108 error_setg_file_open(errp
, errno
, filename
);
2116 if (cpu_memory_rw_debug(cpu
, addr
, buf
, l
, 0) != 0) {
2117 error_setg(errp
, "Invalid addr 0x%016" PRIx64
"/size %" PRId64
2118 " specified", orig_addr
, orig_size
);
2121 if (fwrite(buf
, 1, l
, f
) != l
) {
2122 error_setg(errp
, QERR_IO_ERROR
);
2133 void qmp_pmemsave(int64_t addr
, int64_t size
, const char *filename
,
2140 f
= fopen(filename
, "wb");
2142 error_setg_file_open(errp
, errno
, filename
);
2150 cpu_physical_memory_read(addr
, buf
, l
);
2151 if (fwrite(buf
, 1, l
, f
) != l
) {
2152 error_setg(errp
, QERR_IO_ERROR
);
2163 void qmp_inject_nmi(Error
**errp
)
2165 nmi_monitor_handle(monitor_get_cpu_index(), errp
);
2168 void dump_drift_info(FILE *f
, fprintf_function cpu_fprintf
)
2174 cpu_fprintf(f
, "Host - Guest clock %"PRIi64
" ms\n",
2175 (cpu_get_clock() - cpu_get_icount())/SCALE_MS
);
2176 if (icount_align_option
) {
2177 cpu_fprintf(f
, "Max guest delay %"PRIi64
" ms\n", -max_delay
/SCALE_MS
);
2178 cpu_fprintf(f
, "Max guest advance %"PRIi64
" ms\n", max_advance
/SCALE_MS
);
2180 cpu_fprintf(f
, "Max guest delay NA\n");
2181 cpu_fprintf(f
, "Max guest advance NA\n");