MAINTAINERS: Add entry for rdma migration
[qemu/armbru.git] / util / thread-pool.c
blob22f9ba3286689bb7e4a8688c1fc6767336ea3021
1 /*
2 * QEMU block layer thread pool
4 * Copyright IBM, Corp. 2008
5 * Copyright Red Hat, Inc. 2012
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Paolo Bonzini <pbonzini@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2. See
12 * the COPYING file in the top-level directory.
14 * Contributions after 2012-01-13 are licensed under the terms of the
15 * GNU GPL, version 2 or (at your option) any later version.
17 #include "qemu/osdep.h"
18 #include "qemu/queue.h"
19 #include "qemu/thread.h"
20 #include "qemu/coroutine.h"
21 #include "trace.h"
22 #include "block/thread-pool.h"
23 #include "qemu/main-loop.h"
25 static void do_spawn_thread(ThreadPool *pool);
27 typedef struct ThreadPoolElement ThreadPoolElement;
29 enum ThreadState {
30 THREAD_QUEUED,
31 THREAD_ACTIVE,
32 THREAD_DONE,
35 struct ThreadPoolElement {
36 BlockAIOCB common;
37 ThreadPool *pool;
38 ThreadPoolFunc *func;
39 void *arg;
41 /* Moving state out of THREAD_QUEUED is protected by lock. After
42 * that, only the worker thread can write to it. Reads and writes
43 * of state and ret are ordered with memory barriers.
45 enum ThreadState state;
46 int ret;
48 /* Access to this list is protected by lock. */
49 QTAILQ_ENTRY(ThreadPoolElement) reqs;
51 /* This list is only written by the thread pool's mother thread. */
52 QLIST_ENTRY(ThreadPoolElement) all;
55 struct ThreadPool {
56 AioContext *ctx;
57 QEMUBH *completion_bh;
58 QemuMutex lock;
59 QemuCond worker_stopped;
60 QemuCond request_cond;
61 QEMUBH *new_thread_bh;
63 /* The following variables are only accessed from one AioContext. */
64 QLIST_HEAD(, ThreadPoolElement) head;
66 /* The following variables are protected by lock. */
67 QTAILQ_HEAD(, ThreadPoolElement) request_list;
68 int cur_threads;
69 int idle_threads;
70 int new_threads; /* backlog of threads we need to create */
71 int pending_threads; /* threads created but not running yet */
72 int min_threads;
73 int max_threads;
76 static void *worker_thread(void *opaque)
78 ThreadPool *pool = opaque;
80 qemu_mutex_lock(&pool->lock);
81 pool->pending_threads--;
82 do_spawn_thread(pool);
84 while (pool->cur_threads <= pool->max_threads) {
85 ThreadPoolElement *req;
86 int ret;
88 if (QTAILQ_EMPTY(&pool->request_list)) {
89 pool->idle_threads++;
90 ret = qemu_cond_timedwait(&pool->request_cond, &pool->lock, 10000);
91 pool->idle_threads--;
92 if (ret == 0 &&
93 QTAILQ_EMPTY(&pool->request_list) &&
94 pool->cur_threads > pool->min_threads) {
95 /* Timed out + no work to do + no need for warm threads = exit. */
96 break;
99 * Even if there was some work to do, check if there aren't
100 * too many worker threads before picking it up.
102 continue;
105 req = QTAILQ_FIRST(&pool->request_list);
106 QTAILQ_REMOVE(&pool->request_list, req, reqs);
107 req->state = THREAD_ACTIVE;
108 qemu_mutex_unlock(&pool->lock);
110 ret = req->func(req->arg);
112 req->ret = ret;
113 /* Write ret before state. */
114 smp_wmb();
115 req->state = THREAD_DONE;
117 qemu_bh_schedule(pool->completion_bh);
118 qemu_mutex_lock(&pool->lock);
121 pool->cur_threads--;
122 qemu_cond_signal(&pool->worker_stopped);
125 * Wake up another thread, in case we got a wakeup but decided
126 * to exit due to pool->cur_threads > pool->max_threads.
128 qemu_cond_signal(&pool->request_cond);
129 qemu_mutex_unlock(&pool->lock);
130 return NULL;
133 static void do_spawn_thread(ThreadPool *pool)
135 QemuThread t;
137 /* Runs with lock taken. */
138 if (!pool->new_threads) {
139 return;
142 pool->new_threads--;
143 pool->pending_threads++;
145 qemu_thread_create(&t, "worker", worker_thread, pool, QEMU_THREAD_DETACHED);
148 static void spawn_thread_bh_fn(void *opaque)
150 ThreadPool *pool = opaque;
152 qemu_mutex_lock(&pool->lock);
153 do_spawn_thread(pool);
154 qemu_mutex_unlock(&pool->lock);
157 static void spawn_thread(ThreadPool *pool)
159 pool->cur_threads++;
160 pool->new_threads++;
161 /* If there are threads being created, they will spawn new workers, so
162 * we don't spend time creating many threads in a loop holding a mutex or
163 * starving the current vcpu.
165 * If there are no idle threads, ask the main thread to create one, so we
166 * inherit the correct affinity instead of the vcpu affinity.
168 if (!pool->pending_threads) {
169 qemu_bh_schedule(pool->new_thread_bh);
173 static void thread_pool_completion_bh(void *opaque)
175 ThreadPool *pool = opaque;
176 ThreadPoolElement *elem, *next;
178 restart:
179 QLIST_FOREACH_SAFE(elem, &pool->head, all, next) {
180 if (elem->state != THREAD_DONE) {
181 continue;
184 trace_thread_pool_complete(pool, elem, elem->common.opaque,
185 elem->ret);
186 QLIST_REMOVE(elem, all);
188 if (elem->common.cb) {
189 /* Read state before ret. */
190 smp_rmb();
192 /* Schedule ourselves in case elem->common.cb() calls aio_poll() to
193 * wait for another request that completed at the same time.
195 qemu_bh_schedule(pool->completion_bh);
197 elem->common.cb(elem->common.opaque, elem->ret);
199 /* We can safely cancel the completion_bh here regardless of someone
200 * else having scheduled it meanwhile because we reenter the
201 * completion function anyway (goto restart).
203 qemu_bh_cancel(pool->completion_bh);
205 qemu_aio_unref(elem);
206 goto restart;
207 } else {
208 qemu_aio_unref(elem);
213 static void thread_pool_cancel(BlockAIOCB *acb)
215 ThreadPoolElement *elem = (ThreadPoolElement *)acb;
216 ThreadPool *pool = elem->pool;
218 trace_thread_pool_cancel(elem, elem->common.opaque);
220 QEMU_LOCK_GUARD(&pool->lock);
221 if (elem->state == THREAD_QUEUED) {
222 QTAILQ_REMOVE(&pool->request_list, elem, reqs);
223 qemu_bh_schedule(pool->completion_bh);
225 elem->state = THREAD_DONE;
226 elem->ret = -ECANCELED;
231 static const AIOCBInfo thread_pool_aiocb_info = {
232 .aiocb_size = sizeof(ThreadPoolElement),
233 .cancel_async = thread_pool_cancel,
236 BlockAIOCB *thread_pool_submit_aio(ThreadPoolFunc *func, void *arg,
237 BlockCompletionFunc *cb, void *opaque)
239 ThreadPoolElement *req;
240 AioContext *ctx = qemu_get_current_aio_context();
241 ThreadPool *pool = aio_get_thread_pool(ctx);
243 /* Assert that the thread submitting work is the same running the pool */
244 assert(pool->ctx == qemu_get_current_aio_context());
246 req = qemu_aio_get(&thread_pool_aiocb_info, NULL, cb, opaque);
247 req->func = func;
248 req->arg = arg;
249 req->state = THREAD_QUEUED;
250 req->pool = pool;
252 QLIST_INSERT_HEAD(&pool->head, req, all);
254 trace_thread_pool_submit(pool, req, arg);
256 qemu_mutex_lock(&pool->lock);
257 if (pool->idle_threads == 0 && pool->cur_threads < pool->max_threads) {
258 spawn_thread(pool);
260 QTAILQ_INSERT_TAIL(&pool->request_list, req, reqs);
261 qemu_mutex_unlock(&pool->lock);
262 qemu_cond_signal(&pool->request_cond);
263 return &req->common;
266 typedef struct ThreadPoolCo {
267 Coroutine *co;
268 int ret;
269 } ThreadPoolCo;
271 static void thread_pool_co_cb(void *opaque, int ret)
273 ThreadPoolCo *co = opaque;
275 co->ret = ret;
276 aio_co_wake(co->co);
279 int coroutine_fn thread_pool_submit_co(ThreadPoolFunc *func, void *arg)
281 ThreadPoolCo tpc = { .co = qemu_coroutine_self(), .ret = -EINPROGRESS };
282 assert(qemu_in_coroutine());
283 thread_pool_submit_aio(func, arg, thread_pool_co_cb, &tpc);
284 qemu_coroutine_yield();
285 return tpc.ret;
288 void thread_pool_submit(ThreadPoolFunc *func, void *arg)
290 thread_pool_submit_aio(func, arg, NULL, NULL);
293 void thread_pool_update_params(ThreadPool *pool, AioContext *ctx)
295 qemu_mutex_lock(&pool->lock);
297 pool->min_threads = ctx->thread_pool_min;
298 pool->max_threads = ctx->thread_pool_max;
301 * We either have to:
302 * - Increase the number available of threads until over the min_threads
303 * threshold.
304 * - Bump the worker threads so that they exit, until under the max_threads
305 * threshold.
306 * - Do nothing. The current number of threads fall in between the min and
307 * max thresholds. We'll let the pool manage itself.
309 for (int i = pool->cur_threads; i < pool->min_threads; i++) {
310 spawn_thread(pool);
313 for (int i = pool->cur_threads; i > pool->max_threads; i--) {
314 qemu_cond_signal(&pool->request_cond);
317 qemu_mutex_unlock(&pool->lock);
320 static void thread_pool_init_one(ThreadPool *pool, AioContext *ctx)
322 if (!ctx) {
323 ctx = qemu_get_aio_context();
326 memset(pool, 0, sizeof(*pool));
327 pool->ctx = ctx;
328 pool->completion_bh = aio_bh_new(ctx, thread_pool_completion_bh, pool);
329 qemu_mutex_init(&pool->lock);
330 qemu_cond_init(&pool->worker_stopped);
331 qemu_cond_init(&pool->request_cond);
332 pool->new_thread_bh = aio_bh_new(ctx, spawn_thread_bh_fn, pool);
334 QLIST_INIT(&pool->head);
335 QTAILQ_INIT(&pool->request_list);
337 thread_pool_update_params(pool, ctx);
340 ThreadPool *thread_pool_new(AioContext *ctx)
342 ThreadPool *pool = g_new(ThreadPool, 1);
343 thread_pool_init_one(pool, ctx);
344 return pool;
347 void thread_pool_free(ThreadPool *pool)
349 if (!pool) {
350 return;
353 assert(QLIST_EMPTY(&pool->head));
355 qemu_mutex_lock(&pool->lock);
357 /* Stop new threads from spawning */
358 qemu_bh_delete(pool->new_thread_bh);
359 pool->cur_threads -= pool->new_threads;
360 pool->new_threads = 0;
362 /* Wait for worker threads to terminate */
363 pool->max_threads = 0;
364 qemu_cond_broadcast(&pool->request_cond);
365 while (pool->cur_threads > 0) {
366 qemu_cond_wait(&pool->worker_stopped, &pool->lock);
369 qemu_mutex_unlock(&pool->lock);
371 qemu_bh_delete(pool->completion_bh);
372 qemu_cond_destroy(&pool->request_cond);
373 qemu_cond_destroy(&pool->worker_stopped);
374 qemu_mutex_destroy(&pool->lock);
375 g_free(pool);