4 * Copyright (c) 2003 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include "qemu/memfd.h"
24 #include "qemu/queue.h"
25 #include "qemu/plugin.h"
26 #include "tcg/startup.h"
27 #include "target_mman.h"
34 #include <sys/mount.h>
36 #include <sys/fsuid.h>
37 #include <sys/personality.h>
38 #include <sys/prctl.h>
39 #include <sys/resource.h>
41 #include <linux/capability.h>
43 #include <sys/timex.h>
44 #include <sys/socket.h>
45 #include <linux/sockios.h>
49 #include <sys/times.h>
52 #include <sys/statfs.h>
54 #include <sys/sysinfo.h>
55 #include <sys/signalfd.h>
56 //#include <sys/user.h>
57 #include <netinet/in.h>
58 #include <netinet/ip.h>
59 #include <netinet/tcp.h>
60 #include <netinet/udp.h>
61 #include <linux/wireless.h>
62 #include <linux/icmp.h>
63 #include <linux/icmpv6.h>
64 #include <linux/if_tun.h>
65 #include <linux/in6.h>
66 #include <linux/errqueue.h>
67 #include <linux/random.h>
69 #include <sys/timerfd.h>
72 #include <sys/eventfd.h>
75 #include <sys/epoll.h>
78 #include "qemu/xattr.h"
80 #ifdef CONFIG_SENDFILE
81 #include <sys/sendfile.h>
83 #ifdef HAVE_SYS_KCOV_H
87 #define termios host_termios
88 #define winsize host_winsize
89 #define termio host_termio
90 #define sgttyb host_sgttyb /* same as target */
91 #define tchars host_tchars /* same as target */
92 #define ltchars host_ltchars /* same as target */
94 #include <linux/termios.h>
95 #include <linux/unistd.h>
96 #include <linux/cdrom.h>
97 #include <linux/hdreg.h>
98 #include <linux/soundcard.h>
100 #include <linux/mtio.h>
101 #include <linux/fs.h>
102 #include <linux/fd.h>
103 #if defined(CONFIG_FIEMAP)
104 #include <linux/fiemap.h>
106 #include <linux/fb.h>
107 #if defined(CONFIG_USBFS)
108 #include <linux/usbdevice_fs.h>
109 #include <linux/usb/ch9.h>
111 #include <linux/vt.h>
112 #include <linux/dm-ioctl.h>
113 #include <linux/reboot.h>
114 #include <linux/route.h>
115 #include <linux/filter.h>
116 #include <linux/blkpg.h>
117 #include <netpacket/packet.h>
118 #include <linux/netlink.h>
119 #include <linux/if_alg.h>
120 #include <linux/rtc.h>
121 #include <sound/asound.h>
123 #include <linux/btrfs.h>
126 #include <libdrm/drm.h>
127 #include <libdrm/i915_drm.h>
129 #include "linux_loop.h"
133 #include "user-internals.h"
135 #include "signal-common.h"
137 #include "user-mmap.h"
138 #include "user/safe-syscall.h"
139 #include "qemu/guest-random.h"
140 #include "qemu/selfmap.h"
141 #include "user/syscall-trace.h"
142 #include "special-errno.h"
143 #include "qapi/error.h"
144 #include "fd-trans.h"
145 #include "cpu_loop-common.h"
148 #define CLONE_IO 0x80000000 /* Clone io context */
151 /* We can't directly call the host clone syscall, because this will
152 * badly confuse libc (breaking mutexes, for example). So we must
153 * divide clone flags into:
154 * * flag combinations that look like pthread_create()
155 * * flag combinations that look like fork()
156 * * flags we can implement within QEMU itself
157 * * flags we can't support and will return an error for
159 /* For thread creation, all these flags must be present; for
160 * fork, none must be present.
162 #define CLONE_THREAD_FLAGS \
163 (CLONE_VM | CLONE_FS | CLONE_FILES | \
164 CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
166 /* These flags are ignored:
167 * CLONE_DETACHED is now ignored by the kernel;
168 * CLONE_IO is just an optimisation hint to the I/O scheduler
170 #define CLONE_IGNORED_FLAGS \
171 (CLONE_DETACHED | CLONE_IO)
174 # define CLONE_PIDFD 0x00001000
177 /* Flags for fork which we can implement within QEMU itself */
178 #define CLONE_OPTIONAL_FORK_FLAGS \
179 (CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_PIDFD | \
180 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
182 /* Flags for thread creation which we can implement within QEMU itself */
183 #define CLONE_OPTIONAL_THREAD_FLAGS \
184 (CLONE_SETTLS | CLONE_PARENT_SETTID | \
185 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
187 #define CLONE_INVALID_FORK_FLAGS \
188 (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
190 #define CLONE_INVALID_THREAD_FLAGS \
191 (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS | \
192 CLONE_IGNORED_FLAGS))
194 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
195 * have almost all been allocated. We cannot support any of
196 * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
197 * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
198 * The checks against the invalid thread masks above will catch these.
199 * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
202 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
203 * once. This exercises the codepaths for restart.
205 //#define DEBUG_ERESTARTSYS
207 //#include <linux/msdos_fs.h>
208 #define VFAT_IOCTL_READDIR_BOTH \
209 _IOC(_IOC_READ, 'r', 1, (sizeof(struct linux_dirent) + 256) * 2)
210 #define VFAT_IOCTL_READDIR_SHORT \
211 _IOC(_IOC_READ, 'r', 2, (sizeof(struct linux_dirent) + 256) * 2)
221 #define _syscall0(type,name) \
222 static type name (void) \
224 return syscall(__NR_##name); \
227 #define _syscall1(type,name,type1,arg1) \
228 static type name (type1 arg1) \
230 return syscall(__NR_##name, arg1); \
233 #define _syscall2(type,name,type1,arg1,type2,arg2) \
234 static type name (type1 arg1,type2 arg2) \
236 return syscall(__NR_##name, arg1, arg2); \
239 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \
240 static type name (type1 arg1,type2 arg2,type3 arg3) \
242 return syscall(__NR_##name, arg1, arg2, arg3); \
245 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \
246 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \
248 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \
251 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
253 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \
255 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
259 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
260 type5,arg5,type6,arg6) \
261 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \
264 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
268 #define __NR_sys_uname __NR_uname
269 #define __NR_sys_getcwd1 __NR_getcwd
270 #define __NR_sys_getdents __NR_getdents
271 #define __NR_sys_getdents64 __NR_getdents64
272 #define __NR_sys_getpriority __NR_getpriority
273 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
274 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
275 #define __NR_sys_syslog __NR_syslog
276 #if defined(__NR_futex)
277 # define __NR_sys_futex __NR_futex
279 #if defined(__NR_futex_time64)
280 # define __NR_sys_futex_time64 __NR_futex_time64
282 #define __NR_sys_statx __NR_statx
284 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
285 #define __NR__llseek __NR_lseek
288 /* Newer kernel ports have llseek() instead of _llseek() */
289 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
290 #define TARGET_NR__llseek TARGET_NR_llseek
293 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */
294 #ifndef TARGET_O_NONBLOCK_MASK
295 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK
298 #define __NR_sys_gettid __NR_gettid
299 _syscall0(int, sys_gettid
)
301 /* For the 64-bit guest on 32-bit host case we must emulate
302 * getdents using getdents64, because otherwise the host
303 * might hand us back more dirent records than we can fit
304 * into the guest buffer after structure format conversion.
305 * Otherwise we emulate getdents with getdents if the host has it.
307 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS
308 #define EMULATE_GETDENTS_WITH_GETDENTS
311 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS)
312 _syscall3(int, sys_getdents
, unsigned int, fd
, struct linux_dirent
*, dirp
, unsigned int, count
);
314 #if (defined(TARGET_NR_getdents) && \
315 !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \
316 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
317 _syscall3(int, sys_getdents64
, unsigned int, fd
, struct linux_dirent64
*, dirp
, unsigned int, count
);
319 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
320 _syscall5(int, _llseek
, unsigned int, fd
, unsigned long, hi
, unsigned long, lo
,
321 loff_t
*, res
, unsigned int, wh
);
323 _syscall3(int, sys_rt_sigqueueinfo
, pid_t
, pid
, int, sig
, siginfo_t
*, uinfo
)
324 _syscall4(int, sys_rt_tgsigqueueinfo
, pid_t
, pid
, pid_t
, tid
, int, sig
,
326 _syscall3(int,sys_syslog
,int,type
,char*,bufp
,int,len
)
327 #ifdef __NR_exit_group
328 _syscall1(int,exit_group
,int,error_code
)
330 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
331 #define __NR_sys_close_range __NR_close_range
332 _syscall3(int,sys_close_range
,int,first
,int,last
,int,flags
)
333 #ifndef CLOSE_RANGE_CLOEXEC
334 #define CLOSE_RANGE_CLOEXEC (1U << 2)
337 #if defined(__NR_futex)
338 _syscall6(int,sys_futex
,int *,uaddr
,int,op
,int,val
,
339 const struct timespec
*,timeout
,int *,uaddr2
,int,val3
)
341 #if defined(__NR_futex_time64)
342 _syscall6(int,sys_futex_time64
,int *,uaddr
,int,op
,int,val
,
343 const struct timespec
*,timeout
,int *,uaddr2
,int,val3
)
345 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
346 _syscall2(int, pidfd_open
, pid_t
, pid
, unsigned int, flags
);
348 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
349 _syscall4(int, pidfd_send_signal
, int, pidfd
, int, sig
, siginfo_t
*, info
,
350 unsigned int, flags
);
352 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
353 _syscall3(int, pidfd_getfd
, int, pidfd
, int, targetfd
, unsigned int, flags
);
355 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
356 _syscall3(int, sys_sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
357 unsigned long *, user_mask_ptr
);
358 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
359 _syscall3(int, sys_sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
360 unsigned long *, user_mask_ptr
);
361 /* sched_attr is not defined in glibc */
364 uint32_t sched_policy
;
365 uint64_t sched_flags
;
367 uint32_t sched_priority
;
368 uint64_t sched_runtime
;
369 uint64_t sched_deadline
;
370 uint64_t sched_period
;
371 uint32_t sched_util_min
;
372 uint32_t sched_util_max
;
374 #define __NR_sys_sched_getattr __NR_sched_getattr
375 _syscall4(int, sys_sched_getattr
, pid_t
, pid
, struct sched_attr
*, attr
,
376 unsigned int, size
, unsigned int, flags
);
377 #define __NR_sys_sched_setattr __NR_sched_setattr
378 _syscall3(int, sys_sched_setattr
, pid_t
, pid
, struct sched_attr
*, attr
,
379 unsigned int, flags
);
380 #define __NR_sys_sched_getscheduler __NR_sched_getscheduler
381 _syscall1(int, sys_sched_getscheduler
, pid_t
, pid
);
382 #define __NR_sys_sched_setscheduler __NR_sched_setscheduler
383 _syscall3(int, sys_sched_setscheduler
, pid_t
, pid
, int, policy
,
384 const struct sched_param
*, param
);
385 #define __NR_sys_sched_getparam __NR_sched_getparam
386 _syscall2(int, sys_sched_getparam
, pid_t
, pid
,
387 struct sched_param
*, param
);
388 #define __NR_sys_sched_setparam __NR_sched_setparam
389 _syscall2(int, sys_sched_setparam
, pid_t
, pid
,
390 const struct sched_param
*, param
);
391 #define __NR_sys_getcpu __NR_getcpu
392 _syscall3(int, sys_getcpu
, unsigned *, cpu
, unsigned *, node
, void *, tcache
);
393 _syscall4(int, reboot
, int, magic1
, int, magic2
, unsigned int, cmd
,
395 _syscall2(int, capget
, struct __user_cap_header_struct
*, header
,
396 struct __user_cap_data_struct
*, data
);
397 _syscall2(int, capset
, struct __user_cap_header_struct
*, header
,
398 struct __user_cap_data_struct
*, data
);
399 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
400 _syscall2(int, ioprio_get
, int, which
, int, who
)
402 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
403 _syscall3(int, ioprio_set
, int, which
, int, who
, int, ioprio
)
405 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
406 _syscall3(int, getrandom
, void *, buf
, size_t, buflen
, unsigned int, flags
)
409 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
410 _syscall5(int, kcmp
, pid_t
, pid1
, pid_t
, pid2
, int, type
,
411 unsigned long, idx1
, unsigned long, idx2
)
415 * It is assumed that struct statx is architecture independent.
417 #if defined(TARGET_NR_statx) && defined(__NR_statx)
418 _syscall5(int, sys_statx
, int, dirfd
, const char *, pathname
, int, flags
,
419 unsigned int, mask
, struct target_statx
*, statxbuf
)
421 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier)
422 _syscall2(int, membarrier
, int, cmd
, int, flags
)
425 static const bitmask_transtbl fcntl_flags_tbl
[] = {
426 { TARGET_O_ACCMODE
, TARGET_O_WRONLY
, O_ACCMODE
, O_WRONLY
, },
427 { TARGET_O_ACCMODE
, TARGET_O_RDWR
, O_ACCMODE
, O_RDWR
, },
428 { TARGET_O_CREAT
, TARGET_O_CREAT
, O_CREAT
, O_CREAT
, },
429 { TARGET_O_EXCL
, TARGET_O_EXCL
, O_EXCL
, O_EXCL
, },
430 { TARGET_O_NOCTTY
, TARGET_O_NOCTTY
, O_NOCTTY
, O_NOCTTY
, },
431 { TARGET_O_TRUNC
, TARGET_O_TRUNC
, O_TRUNC
, O_TRUNC
, },
432 { TARGET_O_APPEND
, TARGET_O_APPEND
, O_APPEND
, O_APPEND
, },
433 { TARGET_O_NONBLOCK
, TARGET_O_NONBLOCK
, O_NONBLOCK
, O_NONBLOCK
, },
434 { TARGET_O_SYNC
, TARGET_O_DSYNC
, O_SYNC
, O_DSYNC
, },
435 { TARGET_O_SYNC
, TARGET_O_SYNC
, O_SYNC
, O_SYNC
, },
436 { TARGET_FASYNC
, TARGET_FASYNC
, FASYNC
, FASYNC
, },
437 { TARGET_O_DIRECTORY
, TARGET_O_DIRECTORY
, O_DIRECTORY
, O_DIRECTORY
, },
438 { TARGET_O_NOFOLLOW
, TARGET_O_NOFOLLOW
, O_NOFOLLOW
, O_NOFOLLOW
, },
439 #if defined(O_DIRECT)
440 { TARGET_O_DIRECT
, TARGET_O_DIRECT
, O_DIRECT
, O_DIRECT
, },
442 #if defined(O_NOATIME)
443 { TARGET_O_NOATIME
, TARGET_O_NOATIME
, O_NOATIME
, O_NOATIME
},
445 #if defined(O_CLOEXEC)
446 { TARGET_O_CLOEXEC
, TARGET_O_CLOEXEC
, O_CLOEXEC
, O_CLOEXEC
},
449 { TARGET_O_PATH
, TARGET_O_PATH
, O_PATH
, O_PATH
},
451 #if defined(O_TMPFILE)
452 { TARGET_O_TMPFILE
, TARGET_O_TMPFILE
, O_TMPFILE
, O_TMPFILE
},
454 /* Don't terminate the list prematurely on 64-bit host+guest. */
455 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
456 { TARGET_O_LARGEFILE
, TARGET_O_LARGEFILE
, O_LARGEFILE
, O_LARGEFILE
, },
460 _syscall2(int, sys_getcwd1
, char *, buf
, size_t, size
)
462 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64)
463 #if defined(__NR_utimensat)
464 #define __NR_sys_utimensat __NR_utimensat
465 _syscall4(int,sys_utimensat
,int,dirfd
,const char *,pathname
,
466 const struct timespec
*,tsp
,int,flags
)
468 static int sys_utimensat(int dirfd
, const char *pathname
,
469 const struct timespec times
[2], int flags
)
475 #endif /* TARGET_NR_utimensat */
477 #ifdef TARGET_NR_renameat2
478 #if defined(__NR_renameat2)
479 #define __NR_sys_renameat2 __NR_renameat2
480 _syscall5(int, sys_renameat2
, int, oldfd
, const char *, old
, int, newfd
,
481 const char *, new, unsigned int, flags
)
483 static int sys_renameat2(int oldfd
, const char *old
,
484 int newfd
, const char *new, int flags
)
487 return renameat(oldfd
, old
, newfd
, new);
493 #endif /* TARGET_NR_renameat2 */
495 #ifdef CONFIG_INOTIFY
496 #include <sys/inotify.h>
498 /* Userspace can usually survive runtime without inotify */
499 #undef TARGET_NR_inotify_init
500 #undef TARGET_NR_inotify_init1
501 #undef TARGET_NR_inotify_add_watch
502 #undef TARGET_NR_inotify_rm_watch
503 #endif /* CONFIG_INOTIFY */
505 #if defined(TARGET_NR_prlimit64)
506 #ifndef __NR_prlimit64
507 # define __NR_prlimit64 -1
509 #define __NR_sys_prlimit64 __NR_prlimit64
510 /* The glibc rlimit structure may not be that used by the underlying syscall */
511 struct host_rlimit64
{
515 _syscall4(int, sys_prlimit64
, pid_t
, pid
, int, resource
,
516 const struct host_rlimit64
*, new_limit
,
517 struct host_rlimit64
*, old_limit
)
521 #if defined(TARGET_NR_timer_create)
522 /* Maximum of 32 active POSIX timers allowed at any one time. */
523 #define GUEST_TIMER_MAX 32
524 static timer_t g_posix_timers
[GUEST_TIMER_MAX
];
525 static int g_posix_timer_allocated
[GUEST_TIMER_MAX
];
527 static inline int next_free_host_timer(void)
530 for (k
= 0; k
< ARRAY_SIZE(g_posix_timer_allocated
); k
++) {
531 if (qatomic_xchg(g_posix_timer_allocated
+ k
, 1) == 0) {
538 static inline void free_host_timer_slot(int id
)
540 qatomic_store_release(g_posix_timer_allocated
+ id
, 0);
544 static inline int host_to_target_errno(int host_errno
)
546 switch (host_errno
) {
547 #define E(X) case X: return TARGET_##X;
548 #include "errnos.c.inc"
555 static inline int target_to_host_errno(int target_errno
)
557 switch (target_errno
) {
558 #define E(X) case TARGET_##X: return X;
559 #include "errnos.c.inc"
566 abi_long
get_errno(abi_long ret
)
569 return -host_to_target_errno(errno
);
574 const char *target_strerror(int err
)
576 if (err
== QEMU_ERESTARTSYS
) {
577 return "To be restarted";
579 if (err
== QEMU_ESIGRETURN
) {
580 return "Successful exit from sigreturn";
583 return strerror(target_to_host_errno(err
));
586 static int check_zeroed_user(abi_long addr
, size_t ksize
, size_t usize
)
590 if (usize
<= ksize
) {
593 for (i
= ksize
; i
< usize
; i
++) {
594 if (get_user_u8(b
, addr
+ i
)) {
595 return -TARGET_EFAULT
;
604 #define safe_syscall0(type, name) \
605 static type safe_##name(void) \
607 return safe_syscall(__NR_##name); \
610 #define safe_syscall1(type, name, type1, arg1) \
611 static type safe_##name(type1 arg1) \
613 return safe_syscall(__NR_##name, arg1); \
616 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
617 static type safe_##name(type1 arg1, type2 arg2) \
619 return safe_syscall(__NR_##name, arg1, arg2); \
622 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
623 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
625 return safe_syscall(__NR_##name, arg1, arg2, arg3); \
628 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
630 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
632 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
635 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
636 type4, arg4, type5, arg5) \
637 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
640 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
643 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
644 type4, arg4, type5, arg5, type6, arg6) \
645 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
646 type5 arg5, type6 arg6) \
648 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
651 safe_syscall3(ssize_t
, read
, int, fd
, void *, buff
, size_t, count
)
652 safe_syscall3(ssize_t
, write
, int, fd
, const void *, buff
, size_t, count
)
653 safe_syscall4(int, openat
, int, dirfd
, const char *, pathname
, \
654 int, flags
, mode_t
, mode
)
655 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid)
656 safe_syscall4(pid_t
, wait4
, pid_t
, pid
, int *, status
, int, options
, \
657 struct rusage
*, rusage
)
659 safe_syscall5(int, waitid
, idtype_t
, idtype
, id_t
, id
, siginfo_t
*, infop
, \
660 int, options
, struct rusage
*, rusage
)
661 safe_syscall3(int, execve
, const char *, filename
, char **, argv
, char **, envp
)
662 safe_syscall5(int, execveat
, int, dirfd
, const char *, filename
,
663 char **, argv
, char **, envp
, int, flags
)
664 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
665 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
666 safe_syscall6(int, pselect6
, int, nfds
, fd_set
*, readfds
, fd_set
*, writefds
, \
667 fd_set
*, exceptfds
, struct timespec
*, timeout
, void *, sig
)
669 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64)
670 safe_syscall5(int, ppoll
, struct pollfd
*, ufds
, unsigned int, nfds
,
671 struct timespec
*, tsp
, const sigset_t
*, sigmask
,
674 safe_syscall6(int, epoll_pwait
, int, epfd
, struct epoll_event
*, events
,
675 int, maxevents
, int, timeout
, const sigset_t
*, sigmask
,
677 #if defined(__NR_futex)
678 safe_syscall6(int,futex
,int *,uaddr
,int,op
,int,val
, \
679 const struct timespec
*,timeout
,int *,uaddr2
,int,val3
)
681 #if defined(__NR_futex_time64)
682 safe_syscall6(int,futex_time64
,int *,uaddr
,int,op
,int,val
, \
683 const struct timespec
*,timeout
,int *,uaddr2
,int,val3
)
685 safe_syscall2(int, rt_sigsuspend
, sigset_t
*, newset
, size_t, sigsetsize
)
686 safe_syscall2(int, kill
, pid_t
, pid
, int, sig
)
687 safe_syscall2(int, tkill
, int, tid
, int, sig
)
688 safe_syscall3(int, tgkill
, int, tgid
, int, pid
, int, sig
)
689 safe_syscall3(ssize_t
, readv
, int, fd
, const struct iovec
*, iov
, int, iovcnt
)
690 safe_syscall3(ssize_t
, writev
, int, fd
, const struct iovec
*, iov
, int, iovcnt
)
691 safe_syscall5(ssize_t
, preadv
, int, fd
, const struct iovec
*, iov
, int, iovcnt
,
692 unsigned long, pos_l
, unsigned long, pos_h
)
693 safe_syscall5(ssize_t
, pwritev
, int, fd
, const struct iovec
*, iov
, int, iovcnt
,
694 unsigned long, pos_l
, unsigned long, pos_h
)
695 safe_syscall3(int, connect
, int, fd
, const struct sockaddr
*, addr
,
697 safe_syscall6(ssize_t
, sendto
, int, fd
, const void *, buf
, size_t, len
,
698 int, flags
, const struct sockaddr
*, addr
, socklen_t
, addrlen
)
699 safe_syscall6(ssize_t
, recvfrom
, int, fd
, void *, buf
, size_t, len
,
700 int, flags
, struct sockaddr
*, addr
, socklen_t
*, addrlen
)
701 safe_syscall3(ssize_t
, sendmsg
, int, fd
, const struct msghdr
*, msg
, int, flags
)
702 safe_syscall3(ssize_t
, recvmsg
, int, fd
, struct msghdr
*, msg
, int, flags
)
703 safe_syscall2(int, flock
, int, fd
, int, operation
)
704 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64)
705 safe_syscall4(int, rt_sigtimedwait
, const sigset_t
*, these
, siginfo_t
*, uinfo
,
706 const struct timespec
*, uts
, size_t, sigsetsize
)
708 safe_syscall4(int, accept4
, int, fd
, struct sockaddr
*, addr
, socklen_t
*, len
,
710 #if defined(TARGET_NR_nanosleep)
711 safe_syscall2(int, nanosleep
, const struct timespec
*, req
,
712 struct timespec
*, rem
)
714 #if defined(TARGET_NR_clock_nanosleep) || \
715 defined(TARGET_NR_clock_nanosleep_time64)
716 safe_syscall4(int, clock_nanosleep
, const clockid_t
, clock
, int, flags
,
717 const struct timespec
*, req
, struct timespec
*, rem
)
721 safe_syscall5(int, ipc
, int, call
, long, first
, long, second
, long, third
,
724 safe_syscall6(int, ipc
, int, call
, long, first
, long, second
, long, third
,
725 void *, ptr
, long, fifth
)
729 safe_syscall4(int, msgsnd
, int, msgid
, const void *, msgp
, size_t, sz
,
733 safe_syscall5(int, msgrcv
, int, msgid
, void *, msgp
, size_t, sz
,
734 long, msgtype
, int, flags
)
736 #ifdef __NR_semtimedop
737 safe_syscall4(int, semtimedop
, int, semid
, struct sembuf
*, tsops
,
738 unsigned, nsops
, const struct timespec
*, timeout
)
740 #if defined(TARGET_NR_mq_timedsend) || \
741 defined(TARGET_NR_mq_timedsend_time64)
742 safe_syscall5(int, mq_timedsend
, int, mqdes
, const char *, msg_ptr
,
743 size_t, len
, unsigned, prio
, const struct timespec
*, timeout
)
745 #if defined(TARGET_NR_mq_timedreceive) || \
746 defined(TARGET_NR_mq_timedreceive_time64)
747 safe_syscall5(int, mq_timedreceive
, int, mqdes
, char *, msg_ptr
,
748 size_t, len
, unsigned *, prio
, const struct timespec
*, timeout
)
750 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
751 safe_syscall6(ssize_t
, copy_file_range
, int, infd
, loff_t
*, pinoff
,
752 int, outfd
, loff_t
*, poutoff
, size_t, length
,
756 /* We do ioctl like this rather than via safe_syscall3 to preserve the
757 * "third argument might be integer or pointer or not present" behaviour of
760 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
761 /* Similarly for fcntl. Note that callers must always:
762 * pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
763 * use the flock64 struct rather than unsuffixed flock
764 * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
767 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
769 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
772 static inline int host_to_target_sock_type(int host_type
)
776 switch (host_type
& 0xf /* SOCK_TYPE_MASK */) {
778 target_type
= TARGET_SOCK_DGRAM
;
781 target_type
= TARGET_SOCK_STREAM
;
784 target_type
= host_type
& 0xf /* SOCK_TYPE_MASK */;
788 #if defined(SOCK_CLOEXEC)
789 if (host_type
& SOCK_CLOEXEC
) {
790 target_type
|= TARGET_SOCK_CLOEXEC
;
794 #if defined(SOCK_NONBLOCK)
795 if (host_type
& SOCK_NONBLOCK
) {
796 target_type
|= TARGET_SOCK_NONBLOCK
;
803 static abi_ulong target_brk
, initial_target_brk
;
805 void target_set_brk(abi_ulong new_brk
)
807 target_brk
= TARGET_PAGE_ALIGN(new_brk
);
808 initial_target_brk
= target_brk
;
811 /* do_brk() must return target values and target errnos. */
812 abi_long
do_brk(abi_ulong brk_val
)
814 abi_long mapped_addr
;
818 /* brk pointers are always untagged */
820 /* do not allow to shrink below initial brk value */
821 if (brk_val
< initial_target_brk
) {
825 new_brk
= TARGET_PAGE_ALIGN(brk_val
);
826 old_brk
= TARGET_PAGE_ALIGN(target_brk
);
828 /* new and old target_brk might be on the same page */
829 if (new_brk
== old_brk
) {
830 target_brk
= brk_val
;
834 /* Release heap if necessary */
835 if (new_brk
< old_brk
) {
836 target_munmap(new_brk
, old_brk
- new_brk
);
838 target_brk
= brk_val
;
842 mapped_addr
= target_mmap(old_brk
, new_brk
- old_brk
,
843 PROT_READ
| PROT_WRITE
,
844 MAP_FIXED_NOREPLACE
| MAP_ANON
| MAP_PRIVATE
,
847 if (mapped_addr
== old_brk
) {
848 target_brk
= brk_val
;
852 #if defined(TARGET_ALPHA)
853 /* We (partially) emulate OSF/1 on Alpha, which requires we
854 return a proper errno, not an unchanged brk value. */
855 return -TARGET_ENOMEM
;
857 /* For everything else, return the previous break. */
861 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
862 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
863 static inline abi_long
copy_from_user_fdset(fd_set
*fds
,
864 abi_ulong target_fds_addr
,
868 abi_ulong b
, *target_fds
;
870 nw
= DIV_ROUND_UP(n
, TARGET_ABI_BITS
);
871 if (!(target_fds
= lock_user(VERIFY_READ
,
873 sizeof(abi_ulong
) * nw
,
875 return -TARGET_EFAULT
;
879 for (i
= 0; i
< nw
; i
++) {
880 /* grab the abi_ulong */
881 __get_user(b
, &target_fds
[i
]);
882 for (j
= 0; j
< TARGET_ABI_BITS
; j
++) {
883 /* check the bit inside the abi_ulong */
890 unlock_user(target_fds
, target_fds_addr
, 0);
895 static inline abi_ulong
copy_from_user_fdset_ptr(fd_set
*fds
, fd_set
**fds_ptr
,
896 abi_ulong target_fds_addr
,
899 if (target_fds_addr
) {
900 if (copy_from_user_fdset(fds
, target_fds_addr
, n
))
901 return -TARGET_EFAULT
;
909 static inline abi_long
copy_to_user_fdset(abi_ulong target_fds_addr
,
915 abi_ulong
*target_fds
;
917 nw
= DIV_ROUND_UP(n
, TARGET_ABI_BITS
);
918 if (!(target_fds
= lock_user(VERIFY_WRITE
,
920 sizeof(abi_ulong
) * nw
,
922 return -TARGET_EFAULT
;
925 for (i
= 0; i
< nw
; i
++) {
927 for (j
= 0; j
< TARGET_ABI_BITS
; j
++) {
928 v
|= ((abi_ulong
)(FD_ISSET(k
, fds
) != 0) << j
);
931 __put_user(v
, &target_fds
[i
]);
934 unlock_user(target_fds
, target_fds_addr
, sizeof(abi_ulong
) * nw
);
940 #if defined(__alpha__)
946 static inline abi_long
host_to_target_clock_t(long ticks
)
948 #if HOST_HZ == TARGET_HZ
951 return ((int64_t)ticks
* TARGET_HZ
) / HOST_HZ
;
955 static inline abi_long
host_to_target_rusage(abi_ulong target_addr
,
956 const struct rusage
*rusage
)
958 struct target_rusage
*target_rusage
;
960 if (!lock_user_struct(VERIFY_WRITE
, target_rusage
, target_addr
, 0))
961 return -TARGET_EFAULT
;
962 target_rusage
->ru_utime
.tv_sec
= tswapal(rusage
->ru_utime
.tv_sec
);
963 target_rusage
->ru_utime
.tv_usec
= tswapal(rusage
->ru_utime
.tv_usec
);
964 target_rusage
->ru_stime
.tv_sec
= tswapal(rusage
->ru_stime
.tv_sec
);
965 target_rusage
->ru_stime
.tv_usec
= tswapal(rusage
->ru_stime
.tv_usec
);
966 target_rusage
->ru_maxrss
= tswapal(rusage
->ru_maxrss
);
967 target_rusage
->ru_ixrss
= tswapal(rusage
->ru_ixrss
);
968 target_rusage
->ru_idrss
= tswapal(rusage
->ru_idrss
);
969 target_rusage
->ru_isrss
= tswapal(rusage
->ru_isrss
);
970 target_rusage
->ru_minflt
= tswapal(rusage
->ru_minflt
);
971 target_rusage
->ru_majflt
= tswapal(rusage
->ru_majflt
);
972 target_rusage
->ru_nswap
= tswapal(rusage
->ru_nswap
);
973 target_rusage
->ru_inblock
= tswapal(rusage
->ru_inblock
);
974 target_rusage
->ru_oublock
= tswapal(rusage
->ru_oublock
);
975 target_rusage
->ru_msgsnd
= tswapal(rusage
->ru_msgsnd
);
976 target_rusage
->ru_msgrcv
= tswapal(rusage
->ru_msgrcv
);
977 target_rusage
->ru_nsignals
= tswapal(rusage
->ru_nsignals
);
978 target_rusage
->ru_nvcsw
= tswapal(rusage
->ru_nvcsw
);
979 target_rusage
->ru_nivcsw
= tswapal(rusage
->ru_nivcsw
);
980 unlock_user_struct(target_rusage
, target_addr
, 1);
985 #ifdef TARGET_NR_setrlimit
986 static inline rlim_t
target_to_host_rlim(abi_ulong target_rlim
)
988 abi_ulong target_rlim_swap
;
991 target_rlim_swap
= tswapal(target_rlim
);
992 if (target_rlim_swap
== TARGET_RLIM_INFINITY
)
993 return RLIM_INFINITY
;
995 result
= target_rlim_swap
;
996 if (target_rlim_swap
!= (rlim_t
)result
)
997 return RLIM_INFINITY
;
1003 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit)
1004 static inline abi_ulong
host_to_target_rlim(rlim_t rlim
)
1006 abi_ulong target_rlim_swap
;
1009 if (rlim
== RLIM_INFINITY
|| rlim
!= (abi_long
)rlim
)
1010 target_rlim_swap
= TARGET_RLIM_INFINITY
;
1012 target_rlim_swap
= rlim
;
1013 result
= tswapal(target_rlim_swap
);
1019 static inline int target_to_host_resource(int code
)
1022 case TARGET_RLIMIT_AS
:
1024 case TARGET_RLIMIT_CORE
:
1026 case TARGET_RLIMIT_CPU
:
1028 case TARGET_RLIMIT_DATA
:
1030 case TARGET_RLIMIT_FSIZE
:
1031 return RLIMIT_FSIZE
;
1032 case TARGET_RLIMIT_LOCKS
:
1033 return RLIMIT_LOCKS
;
1034 case TARGET_RLIMIT_MEMLOCK
:
1035 return RLIMIT_MEMLOCK
;
1036 case TARGET_RLIMIT_MSGQUEUE
:
1037 return RLIMIT_MSGQUEUE
;
1038 case TARGET_RLIMIT_NICE
:
1040 case TARGET_RLIMIT_NOFILE
:
1041 return RLIMIT_NOFILE
;
1042 case TARGET_RLIMIT_NPROC
:
1043 return RLIMIT_NPROC
;
1044 case TARGET_RLIMIT_RSS
:
1046 case TARGET_RLIMIT_RTPRIO
:
1047 return RLIMIT_RTPRIO
;
1048 #ifdef RLIMIT_RTTIME
1049 case TARGET_RLIMIT_RTTIME
:
1050 return RLIMIT_RTTIME
;
1052 case TARGET_RLIMIT_SIGPENDING
:
1053 return RLIMIT_SIGPENDING
;
1054 case TARGET_RLIMIT_STACK
:
1055 return RLIMIT_STACK
;
1061 static inline abi_long
copy_from_user_timeval(struct timeval
*tv
,
1062 abi_ulong target_tv_addr
)
1064 struct target_timeval
*target_tv
;
1066 if (!lock_user_struct(VERIFY_READ
, target_tv
, target_tv_addr
, 1)) {
1067 return -TARGET_EFAULT
;
1070 __get_user(tv
->tv_sec
, &target_tv
->tv_sec
);
1071 __get_user(tv
->tv_usec
, &target_tv
->tv_usec
);
1073 unlock_user_struct(target_tv
, target_tv_addr
, 0);
1078 static inline abi_long
copy_to_user_timeval(abi_ulong target_tv_addr
,
1079 const struct timeval
*tv
)
1081 struct target_timeval
*target_tv
;
1083 if (!lock_user_struct(VERIFY_WRITE
, target_tv
, target_tv_addr
, 0)) {
1084 return -TARGET_EFAULT
;
1087 __put_user(tv
->tv_sec
, &target_tv
->tv_sec
);
1088 __put_user(tv
->tv_usec
, &target_tv
->tv_usec
);
1090 unlock_user_struct(target_tv
, target_tv_addr
, 1);
1095 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
1096 static inline abi_long
copy_from_user_timeval64(struct timeval
*tv
,
1097 abi_ulong target_tv_addr
)
1099 struct target__kernel_sock_timeval
*target_tv
;
1101 if (!lock_user_struct(VERIFY_READ
, target_tv
, target_tv_addr
, 1)) {
1102 return -TARGET_EFAULT
;
1105 __get_user(tv
->tv_sec
, &target_tv
->tv_sec
);
1106 __get_user(tv
->tv_usec
, &target_tv
->tv_usec
);
1108 unlock_user_struct(target_tv
, target_tv_addr
, 0);
1114 static inline abi_long
copy_to_user_timeval64(abi_ulong target_tv_addr
,
1115 const struct timeval
*tv
)
1117 struct target__kernel_sock_timeval
*target_tv
;
1119 if (!lock_user_struct(VERIFY_WRITE
, target_tv
, target_tv_addr
, 0)) {
1120 return -TARGET_EFAULT
;
1123 __put_user(tv
->tv_sec
, &target_tv
->tv_sec
);
1124 __put_user(tv
->tv_usec
, &target_tv
->tv_usec
);
1126 unlock_user_struct(target_tv
, target_tv_addr
, 1);
1131 #if defined(TARGET_NR_futex) || \
1132 defined(TARGET_NR_rt_sigtimedwait) || \
1133 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \
1134 defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \
1135 defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \
1136 defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \
1137 defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \
1138 defined(TARGET_NR_timer_settime) || \
1139 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
1140 static inline abi_long
target_to_host_timespec(struct timespec
*host_ts
,
1141 abi_ulong target_addr
)
1143 struct target_timespec
*target_ts
;
1145 if (!lock_user_struct(VERIFY_READ
, target_ts
, target_addr
, 1)) {
1146 return -TARGET_EFAULT
;
1148 __get_user(host_ts
->tv_sec
, &target_ts
->tv_sec
);
1149 __get_user(host_ts
->tv_nsec
, &target_ts
->tv_nsec
);
1150 unlock_user_struct(target_ts
, target_addr
, 0);
1155 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \
1156 defined(TARGET_NR_timer_settime64) || \
1157 defined(TARGET_NR_mq_timedsend_time64) || \
1158 defined(TARGET_NR_mq_timedreceive_time64) || \
1159 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \
1160 defined(TARGET_NR_clock_nanosleep_time64) || \
1161 defined(TARGET_NR_rt_sigtimedwait_time64) || \
1162 defined(TARGET_NR_utimensat) || \
1163 defined(TARGET_NR_utimensat_time64) || \
1164 defined(TARGET_NR_semtimedop_time64) || \
1165 defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64)
1166 static inline abi_long
target_to_host_timespec64(struct timespec
*host_ts
,
1167 abi_ulong target_addr
)
1169 struct target__kernel_timespec
*target_ts
;
1171 if (!lock_user_struct(VERIFY_READ
, target_ts
, target_addr
, 1)) {
1172 return -TARGET_EFAULT
;
1174 __get_user(host_ts
->tv_sec
, &target_ts
->tv_sec
);
1175 __get_user(host_ts
->tv_nsec
, &target_ts
->tv_nsec
);
1176 /* in 32bit mode, this drops the padding */
1177 host_ts
->tv_nsec
= (long)(abi_long
)host_ts
->tv_nsec
;
1178 unlock_user_struct(target_ts
, target_addr
, 0);
1183 static inline abi_long
host_to_target_timespec(abi_ulong target_addr
,
1184 struct timespec
*host_ts
)
1186 struct target_timespec
*target_ts
;
1188 if (!lock_user_struct(VERIFY_WRITE
, target_ts
, target_addr
, 0)) {
1189 return -TARGET_EFAULT
;
1191 __put_user(host_ts
->tv_sec
, &target_ts
->tv_sec
);
1192 __put_user(host_ts
->tv_nsec
, &target_ts
->tv_nsec
);
1193 unlock_user_struct(target_ts
, target_addr
, 1);
1197 static inline abi_long
host_to_target_timespec64(abi_ulong target_addr
,
1198 struct timespec
*host_ts
)
1200 struct target__kernel_timespec
*target_ts
;
1202 if (!lock_user_struct(VERIFY_WRITE
, target_ts
, target_addr
, 0)) {
1203 return -TARGET_EFAULT
;
1205 __put_user(host_ts
->tv_sec
, &target_ts
->tv_sec
);
1206 __put_user(host_ts
->tv_nsec
, &target_ts
->tv_nsec
);
1207 unlock_user_struct(target_ts
, target_addr
, 1);
1211 #if defined(TARGET_NR_gettimeofday)
1212 static inline abi_long
copy_to_user_timezone(abi_ulong target_tz_addr
,
1213 struct timezone
*tz
)
1215 struct target_timezone
*target_tz
;
1217 if (!lock_user_struct(VERIFY_WRITE
, target_tz
, target_tz_addr
, 1)) {
1218 return -TARGET_EFAULT
;
1221 __put_user(tz
->tz_minuteswest
, &target_tz
->tz_minuteswest
);
1222 __put_user(tz
->tz_dsttime
, &target_tz
->tz_dsttime
);
1224 unlock_user_struct(target_tz
, target_tz_addr
, 1);
1230 #if defined(TARGET_NR_settimeofday)
1231 static inline abi_long
copy_from_user_timezone(struct timezone
*tz
,
1232 abi_ulong target_tz_addr
)
1234 struct target_timezone
*target_tz
;
1236 if (!lock_user_struct(VERIFY_READ
, target_tz
, target_tz_addr
, 1)) {
1237 return -TARGET_EFAULT
;
1240 __get_user(tz
->tz_minuteswest
, &target_tz
->tz_minuteswest
);
1241 __get_user(tz
->tz_dsttime
, &target_tz
->tz_dsttime
);
1243 unlock_user_struct(target_tz
, target_tz_addr
, 0);
1249 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1252 static inline abi_long
copy_from_user_mq_attr(struct mq_attr
*attr
,
1253 abi_ulong target_mq_attr_addr
)
1255 struct target_mq_attr
*target_mq_attr
;
1257 if (!lock_user_struct(VERIFY_READ
, target_mq_attr
,
1258 target_mq_attr_addr
, 1))
1259 return -TARGET_EFAULT
;
1261 __get_user(attr
->mq_flags
, &target_mq_attr
->mq_flags
);
1262 __get_user(attr
->mq_maxmsg
, &target_mq_attr
->mq_maxmsg
);
1263 __get_user(attr
->mq_msgsize
, &target_mq_attr
->mq_msgsize
);
1264 __get_user(attr
->mq_curmsgs
, &target_mq_attr
->mq_curmsgs
);
1266 unlock_user_struct(target_mq_attr
, target_mq_attr_addr
, 0);
1271 static inline abi_long
copy_to_user_mq_attr(abi_ulong target_mq_attr_addr
,
1272 const struct mq_attr
*attr
)
1274 struct target_mq_attr
*target_mq_attr
;
1276 if (!lock_user_struct(VERIFY_WRITE
, target_mq_attr
,
1277 target_mq_attr_addr
, 0))
1278 return -TARGET_EFAULT
;
1280 __put_user(attr
->mq_flags
, &target_mq_attr
->mq_flags
);
1281 __put_user(attr
->mq_maxmsg
, &target_mq_attr
->mq_maxmsg
);
1282 __put_user(attr
->mq_msgsize
, &target_mq_attr
->mq_msgsize
);
1283 __put_user(attr
->mq_curmsgs
, &target_mq_attr
->mq_curmsgs
);
1285 unlock_user_struct(target_mq_attr
, target_mq_attr_addr
, 1);
1291 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1292 /* do_select() must return target values and target errnos. */
1293 static abi_long
do_select(int n
,
1294 abi_ulong rfd_addr
, abi_ulong wfd_addr
,
1295 abi_ulong efd_addr
, abi_ulong target_tv_addr
)
1297 fd_set rfds
, wfds
, efds
;
1298 fd_set
*rfds_ptr
, *wfds_ptr
, *efds_ptr
;
1300 struct timespec ts
, *ts_ptr
;
1303 ret
= copy_from_user_fdset_ptr(&rfds
, &rfds_ptr
, rfd_addr
, n
);
1307 ret
= copy_from_user_fdset_ptr(&wfds
, &wfds_ptr
, wfd_addr
, n
);
1311 ret
= copy_from_user_fdset_ptr(&efds
, &efds_ptr
, efd_addr
, n
);
1316 if (target_tv_addr
) {
1317 if (copy_from_user_timeval(&tv
, target_tv_addr
))
1318 return -TARGET_EFAULT
;
1319 ts
.tv_sec
= tv
.tv_sec
;
1320 ts
.tv_nsec
= tv
.tv_usec
* 1000;
1326 ret
= get_errno(safe_pselect6(n
, rfds_ptr
, wfds_ptr
, efds_ptr
,
1329 if (!is_error(ret
)) {
1330 if (rfd_addr
&& copy_to_user_fdset(rfd_addr
, &rfds
, n
))
1331 return -TARGET_EFAULT
;
1332 if (wfd_addr
&& copy_to_user_fdset(wfd_addr
, &wfds
, n
))
1333 return -TARGET_EFAULT
;
1334 if (efd_addr
&& copy_to_user_fdset(efd_addr
, &efds
, n
))
1335 return -TARGET_EFAULT
;
1337 if (target_tv_addr
) {
1338 tv
.tv_sec
= ts
.tv_sec
;
1339 tv
.tv_usec
= ts
.tv_nsec
/ 1000;
1340 if (copy_to_user_timeval(target_tv_addr
, &tv
)) {
1341 return -TARGET_EFAULT
;
1349 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1350 static abi_long
do_old_select(abi_ulong arg1
)
1352 struct target_sel_arg_struct
*sel
;
1353 abi_ulong inp
, outp
, exp
, tvp
;
1356 if (!lock_user_struct(VERIFY_READ
, sel
, arg1
, 1)) {
1357 return -TARGET_EFAULT
;
1360 nsel
= tswapal(sel
->n
);
1361 inp
= tswapal(sel
->inp
);
1362 outp
= tswapal(sel
->outp
);
1363 exp
= tswapal(sel
->exp
);
1364 tvp
= tswapal(sel
->tvp
);
1366 unlock_user_struct(sel
, arg1
, 0);
1368 return do_select(nsel
, inp
, outp
, exp
, tvp
);
1373 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
1374 static abi_long
do_pselect6(abi_long arg1
, abi_long arg2
, abi_long arg3
,
1375 abi_long arg4
, abi_long arg5
, abi_long arg6
,
1378 abi_long rfd_addr
, wfd_addr
, efd_addr
, n
, ts_addr
;
1379 fd_set rfds
, wfds
, efds
;
1380 fd_set
*rfds_ptr
, *wfds_ptr
, *efds_ptr
;
1381 struct timespec ts
, *ts_ptr
;
1385 * The 6th arg is actually two args smashed together,
1386 * so we cannot use the C library.
1393 abi_ulong arg_sigset
, arg_sigsize
, *arg7
;
1401 ret
= copy_from_user_fdset_ptr(&rfds
, &rfds_ptr
, rfd_addr
, n
);
1405 ret
= copy_from_user_fdset_ptr(&wfds
, &wfds_ptr
, wfd_addr
, n
);
1409 ret
= copy_from_user_fdset_ptr(&efds
, &efds_ptr
, efd_addr
, n
);
1415 * This takes a timespec, and not a timeval, so we cannot
1416 * use the do_select() helper ...
1420 if (target_to_host_timespec64(&ts
, ts_addr
)) {
1421 return -TARGET_EFAULT
;
1424 if (target_to_host_timespec(&ts
, ts_addr
)) {
1425 return -TARGET_EFAULT
;
1433 /* Extract the two packed args for the sigset */
1436 arg7
= lock_user(VERIFY_READ
, arg6
, sizeof(*arg7
) * 2, 1);
1438 return -TARGET_EFAULT
;
1440 arg_sigset
= tswapal(arg7
[0]);
1441 arg_sigsize
= tswapal(arg7
[1]);
1442 unlock_user(arg7
, arg6
, 0);
1445 ret
= process_sigsuspend_mask(&sig
.set
, arg_sigset
, arg_sigsize
);
1450 sig
.size
= SIGSET_T_SIZE
;
1454 ret
= get_errno(safe_pselect6(n
, rfds_ptr
, wfds_ptr
, efds_ptr
,
1458 finish_sigsuspend_mask(ret
);
1461 if (!is_error(ret
)) {
1462 if (rfd_addr
&& copy_to_user_fdset(rfd_addr
, &rfds
, n
)) {
1463 return -TARGET_EFAULT
;
1465 if (wfd_addr
&& copy_to_user_fdset(wfd_addr
, &wfds
, n
)) {
1466 return -TARGET_EFAULT
;
1468 if (efd_addr
&& copy_to_user_fdset(efd_addr
, &efds
, n
)) {
1469 return -TARGET_EFAULT
;
1472 if (ts_addr
&& host_to_target_timespec64(ts_addr
, &ts
)) {
1473 return -TARGET_EFAULT
;
1476 if (ts_addr
&& host_to_target_timespec(ts_addr
, &ts
)) {
1477 return -TARGET_EFAULT
;
1485 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \
1486 defined(TARGET_NR_ppoll_time64)
1487 static abi_long
do_ppoll(abi_long arg1
, abi_long arg2
, abi_long arg3
,
1488 abi_long arg4
, abi_long arg5
, bool ppoll
, bool time64
)
1490 struct target_pollfd
*target_pfd
;
1491 unsigned int nfds
= arg2
;
1499 if (nfds
> (INT_MAX
/ sizeof(struct target_pollfd
))) {
1500 return -TARGET_EINVAL
;
1502 target_pfd
= lock_user(VERIFY_WRITE
, arg1
,
1503 sizeof(struct target_pollfd
) * nfds
, 1);
1505 return -TARGET_EFAULT
;
1508 pfd
= alloca(sizeof(struct pollfd
) * nfds
);
1509 for (i
= 0; i
< nfds
; i
++) {
1510 pfd
[i
].fd
= tswap32(target_pfd
[i
].fd
);
1511 pfd
[i
].events
= tswap16(target_pfd
[i
].events
);
1515 struct timespec _timeout_ts
, *timeout_ts
= &_timeout_ts
;
1516 sigset_t
*set
= NULL
;
1520 if (target_to_host_timespec64(timeout_ts
, arg3
)) {
1521 unlock_user(target_pfd
, arg1
, 0);
1522 return -TARGET_EFAULT
;
1525 if (target_to_host_timespec(timeout_ts
, arg3
)) {
1526 unlock_user(target_pfd
, arg1
, 0);
1527 return -TARGET_EFAULT
;
1535 ret
= process_sigsuspend_mask(&set
, arg4
, arg5
);
1537 unlock_user(target_pfd
, arg1
, 0);
1542 ret
= get_errno(safe_ppoll(pfd
, nfds
, timeout_ts
,
1543 set
, SIGSET_T_SIZE
));
1546 finish_sigsuspend_mask(ret
);
1548 if (!is_error(ret
) && arg3
) {
1550 if (host_to_target_timespec64(arg3
, timeout_ts
)) {
1551 return -TARGET_EFAULT
;
1554 if (host_to_target_timespec(arg3
, timeout_ts
)) {
1555 return -TARGET_EFAULT
;
1560 struct timespec ts
, *pts
;
1563 /* Convert ms to secs, ns */
1564 ts
.tv_sec
= arg3
/ 1000;
1565 ts
.tv_nsec
= (arg3
% 1000) * 1000000LL;
1568 /* -ve poll() timeout means "infinite" */
1571 ret
= get_errno(safe_ppoll(pfd
, nfds
, pts
, NULL
, 0));
1574 if (!is_error(ret
)) {
1575 for (i
= 0; i
< nfds
; i
++) {
1576 target_pfd
[i
].revents
= tswap16(pfd
[i
].revents
);
1579 unlock_user(target_pfd
, arg1
, sizeof(struct target_pollfd
) * nfds
);
1584 static abi_long
do_pipe(CPUArchState
*cpu_env
, abi_ulong pipedes
,
1585 int flags
, int is_pipe2
)
1589 ret
= pipe2(host_pipe
, flags
);
1592 return get_errno(ret
);
1594 /* Several targets have special calling conventions for the original
1595 pipe syscall, but didn't replicate this into the pipe2 syscall. */
1597 #if defined(TARGET_ALPHA)
1598 cpu_env
->ir
[IR_A4
] = host_pipe
[1];
1599 return host_pipe
[0];
1600 #elif defined(TARGET_MIPS)
1601 cpu_env
->active_tc
.gpr
[3] = host_pipe
[1];
1602 return host_pipe
[0];
1603 #elif defined(TARGET_SH4)
1604 cpu_env
->gregs
[1] = host_pipe
[1];
1605 return host_pipe
[0];
1606 #elif defined(TARGET_SPARC)
1607 cpu_env
->regwptr
[1] = host_pipe
[1];
1608 return host_pipe
[0];
1612 if (put_user_s32(host_pipe
[0], pipedes
)
1613 || put_user_s32(host_pipe
[1], pipedes
+ sizeof(abi_int
)))
1614 return -TARGET_EFAULT
;
1615 return get_errno(ret
);
1618 static inline abi_long
target_to_host_ip_mreq(struct ip_mreqn
*mreqn
,
1619 abi_ulong target_addr
,
1622 struct target_ip_mreqn
*target_smreqn
;
1624 target_smreqn
= lock_user(VERIFY_READ
, target_addr
, len
, 1);
1626 return -TARGET_EFAULT
;
1627 mreqn
->imr_multiaddr
.s_addr
= target_smreqn
->imr_multiaddr
.s_addr
;
1628 mreqn
->imr_address
.s_addr
= target_smreqn
->imr_address
.s_addr
;
1629 if (len
== sizeof(struct target_ip_mreqn
))
1630 mreqn
->imr_ifindex
= tswapal(target_smreqn
->imr_ifindex
);
1631 unlock_user(target_smreqn
, target_addr
, 0);
1636 static inline abi_long
target_to_host_sockaddr(int fd
, struct sockaddr
*addr
,
1637 abi_ulong target_addr
,
1640 const socklen_t unix_maxlen
= sizeof (struct sockaddr_un
);
1641 sa_family_t sa_family
;
1642 struct target_sockaddr
*target_saddr
;
1644 if (fd_trans_target_to_host_addr(fd
)) {
1645 return fd_trans_target_to_host_addr(fd
)(addr
, target_addr
, len
);
1648 target_saddr
= lock_user(VERIFY_READ
, target_addr
, len
, 1);
1650 return -TARGET_EFAULT
;
1652 sa_family
= tswap16(target_saddr
->sa_family
);
1654 /* Oops. The caller might send a incomplete sun_path; sun_path
1655 * must be terminated by \0 (see the manual page), but
1656 * unfortunately it is quite common to specify sockaddr_un
1657 * length as "strlen(x->sun_path)" while it should be
1658 * "strlen(...) + 1". We'll fix that here if needed.
1659 * Linux kernel has a similar feature.
1662 if (sa_family
== AF_UNIX
) {
1663 if (len
< unix_maxlen
&& len
> 0) {
1664 char *cp
= (char*)target_saddr
;
1666 if ( cp
[len
-1] && !cp
[len
] )
1669 if (len
> unix_maxlen
)
1673 memcpy(addr
, target_saddr
, len
);
1674 addr
->sa_family
= sa_family
;
1675 if (sa_family
== AF_NETLINK
) {
1676 struct sockaddr_nl
*nladdr
;
1678 nladdr
= (struct sockaddr_nl
*)addr
;
1679 nladdr
->nl_pid
= tswap32(nladdr
->nl_pid
);
1680 nladdr
->nl_groups
= tswap32(nladdr
->nl_groups
);
1681 } else if (sa_family
== AF_PACKET
) {
1682 struct target_sockaddr_ll
*lladdr
;
1684 lladdr
= (struct target_sockaddr_ll
*)addr
;
1685 lladdr
->sll_ifindex
= tswap32(lladdr
->sll_ifindex
);
1686 lladdr
->sll_hatype
= tswap16(lladdr
->sll_hatype
);
1687 } else if (sa_family
== AF_INET6
) {
1688 struct sockaddr_in6
*in6addr
;
1690 in6addr
= (struct sockaddr_in6
*)addr
;
1691 in6addr
->sin6_scope_id
= tswap32(in6addr
->sin6_scope_id
);
1693 unlock_user(target_saddr
, target_addr
, 0);
1698 static inline abi_long
host_to_target_sockaddr(abi_ulong target_addr
,
1699 struct sockaddr
*addr
,
1702 struct target_sockaddr
*target_saddr
;
1709 target_saddr
= lock_user(VERIFY_WRITE
, target_addr
, len
, 0);
1711 return -TARGET_EFAULT
;
1712 memcpy(target_saddr
, addr
, len
);
1713 if (len
>= offsetof(struct target_sockaddr
, sa_family
) +
1714 sizeof(target_saddr
->sa_family
)) {
1715 target_saddr
->sa_family
= tswap16(addr
->sa_family
);
1717 if (addr
->sa_family
== AF_NETLINK
&&
1718 len
>= sizeof(struct target_sockaddr_nl
)) {
1719 struct target_sockaddr_nl
*target_nl
=
1720 (struct target_sockaddr_nl
*)target_saddr
;
1721 target_nl
->nl_pid
= tswap32(target_nl
->nl_pid
);
1722 target_nl
->nl_groups
= tswap32(target_nl
->nl_groups
);
1723 } else if (addr
->sa_family
== AF_PACKET
) {
1724 struct sockaddr_ll
*target_ll
= (struct sockaddr_ll
*)target_saddr
;
1725 target_ll
->sll_ifindex
= tswap32(target_ll
->sll_ifindex
);
1726 target_ll
->sll_hatype
= tswap16(target_ll
->sll_hatype
);
1727 } else if (addr
->sa_family
== AF_INET6
&&
1728 len
>= sizeof(struct target_sockaddr_in6
)) {
1729 struct target_sockaddr_in6
*target_in6
=
1730 (struct target_sockaddr_in6
*)target_saddr
;
1731 target_in6
->sin6_scope_id
= tswap16(target_in6
->sin6_scope_id
);
1733 unlock_user(target_saddr
, target_addr
, len
);
1738 static inline abi_long
target_to_host_cmsg(struct msghdr
*msgh
,
1739 struct target_msghdr
*target_msgh
)
1741 struct cmsghdr
*cmsg
= CMSG_FIRSTHDR(msgh
);
1742 abi_long msg_controllen
;
1743 abi_ulong target_cmsg_addr
;
1744 struct target_cmsghdr
*target_cmsg
, *target_cmsg_start
;
1745 socklen_t space
= 0;
1747 msg_controllen
= tswapal(target_msgh
->msg_controllen
);
1748 if (msg_controllen
< sizeof (struct target_cmsghdr
))
1750 target_cmsg_addr
= tswapal(target_msgh
->msg_control
);
1751 target_cmsg
= lock_user(VERIFY_READ
, target_cmsg_addr
, msg_controllen
, 1);
1752 target_cmsg_start
= target_cmsg
;
1754 return -TARGET_EFAULT
;
1756 while (cmsg
&& target_cmsg
) {
1757 void *data
= CMSG_DATA(cmsg
);
1758 void *target_data
= TARGET_CMSG_DATA(target_cmsg
);
1760 int len
= tswapal(target_cmsg
->cmsg_len
)
1761 - sizeof(struct target_cmsghdr
);
1763 space
+= CMSG_SPACE(len
);
1764 if (space
> msgh
->msg_controllen
) {
1765 space
-= CMSG_SPACE(len
);
1766 /* This is a QEMU bug, since we allocated the payload
1767 * area ourselves (unlike overflow in host-to-target
1768 * conversion, which is just the guest giving us a buffer
1769 * that's too small). It can't happen for the payload types
1770 * we currently support; if it becomes an issue in future
1771 * we would need to improve our allocation strategy to
1772 * something more intelligent than "twice the size of the
1773 * target buffer we're reading from".
1775 qemu_log_mask(LOG_UNIMP
,
1776 ("Unsupported ancillary data %d/%d: "
1777 "unhandled msg size\n"),
1778 tswap32(target_cmsg
->cmsg_level
),
1779 tswap32(target_cmsg
->cmsg_type
));
1783 if (tswap32(target_cmsg
->cmsg_level
) == TARGET_SOL_SOCKET
) {
1784 cmsg
->cmsg_level
= SOL_SOCKET
;
1786 cmsg
->cmsg_level
= tswap32(target_cmsg
->cmsg_level
);
1788 cmsg
->cmsg_type
= tswap32(target_cmsg
->cmsg_type
);
1789 cmsg
->cmsg_len
= CMSG_LEN(len
);
1791 if (cmsg
->cmsg_level
== SOL_SOCKET
&& cmsg
->cmsg_type
== SCM_RIGHTS
) {
1792 int *fd
= (int *)data
;
1793 int *target_fd
= (int *)target_data
;
1794 int i
, numfds
= len
/ sizeof(int);
1796 for (i
= 0; i
< numfds
; i
++) {
1797 __get_user(fd
[i
], target_fd
+ i
);
1799 } else if (cmsg
->cmsg_level
== SOL_SOCKET
1800 && cmsg
->cmsg_type
== SCM_CREDENTIALS
) {
1801 struct ucred
*cred
= (struct ucred
*)data
;
1802 struct target_ucred
*target_cred
=
1803 (struct target_ucred
*)target_data
;
1805 __get_user(cred
->pid
, &target_cred
->pid
);
1806 __get_user(cred
->uid
, &target_cred
->uid
);
1807 __get_user(cred
->gid
, &target_cred
->gid
);
1808 } else if (cmsg
->cmsg_level
== SOL_ALG
) {
1809 uint32_t *dst
= (uint32_t *)data
;
1811 memcpy(dst
, target_data
, len
);
1812 /* fix endianness of first 32-bit word */
1813 if (len
>= sizeof(uint32_t)) {
1814 *dst
= tswap32(*dst
);
1817 qemu_log_mask(LOG_UNIMP
, "Unsupported ancillary data: %d/%d\n",
1818 cmsg
->cmsg_level
, cmsg
->cmsg_type
);
1819 memcpy(data
, target_data
, len
);
1822 cmsg
= CMSG_NXTHDR(msgh
, cmsg
);
1823 target_cmsg
= TARGET_CMSG_NXTHDR(target_msgh
, target_cmsg
,
1826 unlock_user(target_cmsg
, target_cmsg_addr
, 0);
1828 msgh
->msg_controllen
= space
;
1832 static inline abi_long
host_to_target_cmsg(struct target_msghdr
*target_msgh
,
1833 struct msghdr
*msgh
)
1835 struct cmsghdr
*cmsg
= CMSG_FIRSTHDR(msgh
);
1836 abi_long msg_controllen
;
1837 abi_ulong target_cmsg_addr
;
1838 struct target_cmsghdr
*target_cmsg
, *target_cmsg_start
;
1839 socklen_t space
= 0;
1841 msg_controllen
= tswapal(target_msgh
->msg_controllen
);
1842 if (msg_controllen
< sizeof (struct target_cmsghdr
))
1844 target_cmsg_addr
= tswapal(target_msgh
->msg_control
);
1845 target_cmsg
= lock_user(VERIFY_WRITE
, target_cmsg_addr
, msg_controllen
, 0);
1846 target_cmsg_start
= target_cmsg
;
1848 return -TARGET_EFAULT
;
1850 while (cmsg
&& target_cmsg
) {
1851 void *data
= CMSG_DATA(cmsg
);
1852 void *target_data
= TARGET_CMSG_DATA(target_cmsg
);
1854 int len
= cmsg
->cmsg_len
- sizeof(struct cmsghdr
);
1855 int tgt_len
, tgt_space
;
1857 /* We never copy a half-header but may copy half-data;
1858 * this is Linux's behaviour in put_cmsg(). Note that
1859 * truncation here is a guest problem (which we report
1860 * to the guest via the CTRUNC bit), unlike truncation
1861 * in target_to_host_cmsg, which is a QEMU bug.
1863 if (msg_controllen
< sizeof(struct target_cmsghdr
)) {
1864 target_msgh
->msg_flags
|= tswap32(MSG_CTRUNC
);
1868 if (cmsg
->cmsg_level
== SOL_SOCKET
) {
1869 target_cmsg
->cmsg_level
= tswap32(TARGET_SOL_SOCKET
);
1871 target_cmsg
->cmsg_level
= tswap32(cmsg
->cmsg_level
);
1873 target_cmsg
->cmsg_type
= tswap32(cmsg
->cmsg_type
);
1875 /* Payload types which need a different size of payload on
1876 * the target must adjust tgt_len here.
1879 switch (cmsg
->cmsg_level
) {
1881 switch (cmsg
->cmsg_type
) {
1883 tgt_len
= sizeof(struct target_timeval
);
1893 if (msg_controllen
< TARGET_CMSG_LEN(tgt_len
)) {
1894 target_msgh
->msg_flags
|= tswap32(MSG_CTRUNC
);
1895 tgt_len
= msg_controllen
- sizeof(struct target_cmsghdr
);
1898 /* We must now copy-and-convert len bytes of payload
1899 * into tgt_len bytes of destination space. Bear in mind
1900 * that in both source and destination we may be dealing
1901 * with a truncated value!
1903 switch (cmsg
->cmsg_level
) {
1905 switch (cmsg
->cmsg_type
) {
1908 int *fd
= (int *)data
;
1909 int *target_fd
= (int *)target_data
;
1910 int i
, numfds
= tgt_len
/ sizeof(int);
1912 for (i
= 0; i
< numfds
; i
++) {
1913 __put_user(fd
[i
], target_fd
+ i
);
1919 struct timeval
*tv
= (struct timeval
*)data
;
1920 struct target_timeval
*target_tv
=
1921 (struct target_timeval
*)target_data
;
1923 if (len
!= sizeof(struct timeval
) ||
1924 tgt_len
!= sizeof(struct target_timeval
)) {
1928 /* copy struct timeval to target */
1929 __put_user(tv
->tv_sec
, &target_tv
->tv_sec
);
1930 __put_user(tv
->tv_usec
, &target_tv
->tv_usec
);
1933 case SCM_CREDENTIALS
:
1935 struct ucred
*cred
= (struct ucred
*)data
;
1936 struct target_ucred
*target_cred
=
1937 (struct target_ucred
*)target_data
;
1939 __put_user(cred
->pid
, &target_cred
->pid
);
1940 __put_user(cred
->uid
, &target_cred
->uid
);
1941 __put_user(cred
->gid
, &target_cred
->gid
);
1950 switch (cmsg
->cmsg_type
) {
1953 uint32_t *v
= (uint32_t *)data
;
1954 uint32_t *t_int
= (uint32_t *)target_data
;
1956 if (len
!= sizeof(uint32_t) ||
1957 tgt_len
!= sizeof(uint32_t)) {
1960 __put_user(*v
, t_int
);
1966 struct sock_extended_err ee
;
1967 struct sockaddr_in offender
;
1969 struct errhdr_t
*errh
= (struct errhdr_t
*)data
;
1970 struct errhdr_t
*target_errh
=
1971 (struct errhdr_t
*)target_data
;
1973 if (len
!= sizeof(struct errhdr_t
) ||
1974 tgt_len
!= sizeof(struct errhdr_t
)) {
1977 __put_user(errh
->ee
.ee_errno
, &target_errh
->ee
.ee_errno
);
1978 __put_user(errh
->ee
.ee_origin
, &target_errh
->ee
.ee_origin
);
1979 __put_user(errh
->ee
.ee_type
, &target_errh
->ee
.ee_type
);
1980 __put_user(errh
->ee
.ee_code
, &target_errh
->ee
.ee_code
);
1981 __put_user(errh
->ee
.ee_pad
, &target_errh
->ee
.ee_pad
);
1982 __put_user(errh
->ee
.ee_info
, &target_errh
->ee
.ee_info
);
1983 __put_user(errh
->ee
.ee_data
, &target_errh
->ee
.ee_data
);
1984 host_to_target_sockaddr((unsigned long) &target_errh
->offender
,
1985 (void *) &errh
->offender
, sizeof(errh
->offender
));
1994 switch (cmsg
->cmsg_type
) {
1997 uint32_t *v
= (uint32_t *)data
;
1998 uint32_t *t_int
= (uint32_t *)target_data
;
2000 if (len
!= sizeof(uint32_t) ||
2001 tgt_len
!= sizeof(uint32_t)) {
2004 __put_user(*v
, t_int
);
2010 struct sock_extended_err ee
;
2011 struct sockaddr_in6 offender
;
2013 struct errhdr6_t
*errh
= (struct errhdr6_t
*)data
;
2014 struct errhdr6_t
*target_errh
=
2015 (struct errhdr6_t
*)target_data
;
2017 if (len
!= sizeof(struct errhdr6_t
) ||
2018 tgt_len
!= sizeof(struct errhdr6_t
)) {
2021 __put_user(errh
->ee
.ee_errno
, &target_errh
->ee
.ee_errno
);
2022 __put_user(errh
->ee
.ee_origin
, &target_errh
->ee
.ee_origin
);
2023 __put_user(errh
->ee
.ee_type
, &target_errh
->ee
.ee_type
);
2024 __put_user(errh
->ee
.ee_code
, &target_errh
->ee
.ee_code
);
2025 __put_user(errh
->ee
.ee_pad
, &target_errh
->ee
.ee_pad
);
2026 __put_user(errh
->ee
.ee_info
, &target_errh
->ee
.ee_info
);
2027 __put_user(errh
->ee
.ee_data
, &target_errh
->ee
.ee_data
);
2028 host_to_target_sockaddr((unsigned long) &target_errh
->offender
,
2029 (void *) &errh
->offender
, sizeof(errh
->offender
));
2039 qemu_log_mask(LOG_UNIMP
, "Unsupported ancillary data: %d/%d\n",
2040 cmsg
->cmsg_level
, cmsg
->cmsg_type
);
2041 memcpy(target_data
, data
, MIN(len
, tgt_len
));
2042 if (tgt_len
> len
) {
2043 memset(target_data
+ len
, 0, tgt_len
- len
);
2047 target_cmsg
->cmsg_len
= tswapal(TARGET_CMSG_LEN(tgt_len
));
2048 tgt_space
= TARGET_CMSG_SPACE(tgt_len
);
2049 if (msg_controllen
< tgt_space
) {
2050 tgt_space
= msg_controllen
;
2052 msg_controllen
-= tgt_space
;
2054 cmsg
= CMSG_NXTHDR(msgh
, cmsg
);
2055 target_cmsg
= TARGET_CMSG_NXTHDR(target_msgh
, target_cmsg
,
2058 unlock_user(target_cmsg
, target_cmsg_addr
, space
);
2060 target_msgh
->msg_controllen
= tswapal(space
);
2064 /* do_setsockopt() Must return target values and target errnos. */
2065 static abi_long
do_setsockopt(int sockfd
, int level
, int optname
,
2066 abi_ulong optval_addr
, socklen_t optlen
)
2070 struct ip_mreqn
*ip_mreq
;
2071 struct ip_mreq_source
*ip_mreq_source
;
2076 /* TCP and UDP options all take an 'int' value. */
2077 if (optlen
< sizeof(uint32_t))
2078 return -TARGET_EINVAL
;
2080 if (get_user_u32(val
, optval_addr
))
2081 return -TARGET_EFAULT
;
2082 ret
= get_errno(setsockopt(sockfd
, level
, optname
, &val
, sizeof(val
)));
2089 case IP_ROUTER_ALERT
:
2093 case IP_MTU_DISCOVER
:
2100 case IP_MULTICAST_TTL
:
2101 case IP_MULTICAST_LOOP
:
2103 if (optlen
>= sizeof(uint32_t)) {
2104 if (get_user_u32(val
, optval_addr
))
2105 return -TARGET_EFAULT
;
2106 } else if (optlen
>= 1) {
2107 if (get_user_u8(val
, optval_addr
))
2108 return -TARGET_EFAULT
;
2110 ret
= get_errno(setsockopt(sockfd
, level
, optname
, &val
, sizeof(val
)));
2112 case IP_ADD_MEMBERSHIP
:
2113 case IP_DROP_MEMBERSHIP
:
2114 if (optlen
< sizeof (struct target_ip_mreq
) ||
2115 optlen
> sizeof (struct target_ip_mreqn
))
2116 return -TARGET_EINVAL
;
2118 ip_mreq
= (struct ip_mreqn
*) alloca(optlen
);
2119 target_to_host_ip_mreq(ip_mreq
, optval_addr
, optlen
);
2120 ret
= get_errno(setsockopt(sockfd
, level
, optname
, ip_mreq
, optlen
));
2123 case IP_BLOCK_SOURCE
:
2124 case IP_UNBLOCK_SOURCE
:
2125 case IP_ADD_SOURCE_MEMBERSHIP
:
2126 case IP_DROP_SOURCE_MEMBERSHIP
:
2127 if (optlen
!= sizeof (struct target_ip_mreq_source
))
2128 return -TARGET_EINVAL
;
2130 ip_mreq_source
= lock_user(VERIFY_READ
, optval_addr
, optlen
, 1);
2131 if (!ip_mreq_source
) {
2132 return -TARGET_EFAULT
;
2134 ret
= get_errno(setsockopt(sockfd
, level
, optname
, ip_mreq_source
, optlen
));
2135 unlock_user (ip_mreq_source
, optval_addr
, 0);
2144 case IPV6_MTU_DISCOVER
:
2147 case IPV6_RECVPKTINFO
:
2148 case IPV6_UNICAST_HOPS
:
2149 case IPV6_MULTICAST_HOPS
:
2150 case IPV6_MULTICAST_LOOP
:
2152 case IPV6_RECVHOPLIMIT
:
2153 case IPV6_2292HOPLIMIT
:
2156 case IPV6_2292PKTINFO
:
2157 case IPV6_RECVTCLASS
:
2158 case IPV6_RECVRTHDR
:
2159 case IPV6_2292RTHDR
:
2160 case IPV6_RECVHOPOPTS
:
2161 case IPV6_2292HOPOPTS
:
2162 case IPV6_RECVDSTOPTS
:
2163 case IPV6_2292DSTOPTS
:
2165 case IPV6_ADDR_PREFERENCES
:
2166 #ifdef IPV6_RECVPATHMTU
2167 case IPV6_RECVPATHMTU
:
2169 #ifdef IPV6_TRANSPARENT
2170 case IPV6_TRANSPARENT
:
2172 #ifdef IPV6_FREEBIND
2175 #ifdef IPV6_RECVORIGDSTADDR
2176 case IPV6_RECVORIGDSTADDR
:
2179 if (optlen
< sizeof(uint32_t)) {
2180 return -TARGET_EINVAL
;
2182 if (get_user_u32(val
, optval_addr
)) {
2183 return -TARGET_EFAULT
;
2185 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2186 &val
, sizeof(val
)));
2190 struct in6_pktinfo pki
;
2192 if (optlen
< sizeof(pki
)) {
2193 return -TARGET_EINVAL
;
2196 if (copy_from_user(&pki
, optval_addr
, sizeof(pki
))) {
2197 return -TARGET_EFAULT
;
2200 pki
.ipi6_ifindex
= tswap32(pki
.ipi6_ifindex
);
2202 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2203 &pki
, sizeof(pki
)));
2206 case IPV6_ADD_MEMBERSHIP
:
2207 case IPV6_DROP_MEMBERSHIP
:
2209 struct ipv6_mreq ipv6mreq
;
2211 if (optlen
< sizeof(ipv6mreq
)) {
2212 return -TARGET_EINVAL
;
2215 if (copy_from_user(&ipv6mreq
, optval_addr
, sizeof(ipv6mreq
))) {
2216 return -TARGET_EFAULT
;
2219 ipv6mreq
.ipv6mr_interface
= tswap32(ipv6mreq
.ipv6mr_interface
);
2221 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2222 &ipv6mreq
, sizeof(ipv6mreq
)));
2233 struct icmp6_filter icmp6f
;
2235 if (optlen
> sizeof(icmp6f
)) {
2236 optlen
= sizeof(icmp6f
);
2239 if (copy_from_user(&icmp6f
, optval_addr
, optlen
)) {
2240 return -TARGET_EFAULT
;
2243 for (val
= 0; val
< 8; val
++) {
2244 icmp6f
.data
[val
] = tswap32(icmp6f
.data
[val
]);
2247 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2259 /* those take an u32 value */
2260 if (optlen
< sizeof(uint32_t)) {
2261 return -TARGET_EINVAL
;
2264 if (get_user_u32(val
, optval_addr
)) {
2265 return -TARGET_EFAULT
;
2267 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2268 &val
, sizeof(val
)));
2275 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE)
2280 char *alg_key
= g_malloc(optlen
);
2283 return -TARGET_ENOMEM
;
2285 if (copy_from_user(alg_key
, optval_addr
, optlen
)) {
2287 return -TARGET_EFAULT
;
2289 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2294 case ALG_SET_AEAD_AUTHSIZE
:
2296 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2305 case TARGET_SOL_SOCKET
:
2307 case TARGET_SO_RCVTIMEO
:
2311 optname
= SO_RCVTIMEO
;
2314 if (optlen
!= sizeof(struct target_timeval
)) {
2315 return -TARGET_EINVAL
;
2318 if (copy_from_user_timeval(&tv
, optval_addr
)) {
2319 return -TARGET_EFAULT
;
2322 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
, optname
,
2326 case TARGET_SO_SNDTIMEO
:
2327 optname
= SO_SNDTIMEO
;
2329 case TARGET_SO_ATTACH_FILTER
:
2331 struct target_sock_fprog
*tfprog
;
2332 struct target_sock_filter
*tfilter
;
2333 struct sock_fprog fprog
;
2334 struct sock_filter
*filter
;
2337 if (optlen
!= sizeof(*tfprog
)) {
2338 return -TARGET_EINVAL
;
2340 if (!lock_user_struct(VERIFY_READ
, tfprog
, optval_addr
, 0)) {
2341 return -TARGET_EFAULT
;
2343 if (!lock_user_struct(VERIFY_READ
, tfilter
,
2344 tswapal(tfprog
->filter
), 0)) {
2345 unlock_user_struct(tfprog
, optval_addr
, 1);
2346 return -TARGET_EFAULT
;
2349 fprog
.len
= tswap16(tfprog
->len
);
2350 filter
= g_try_new(struct sock_filter
, fprog
.len
);
2351 if (filter
== NULL
) {
2352 unlock_user_struct(tfilter
, tfprog
->filter
, 1);
2353 unlock_user_struct(tfprog
, optval_addr
, 1);
2354 return -TARGET_ENOMEM
;
2356 for (i
= 0; i
< fprog
.len
; i
++) {
2357 filter
[i
].code
= tswap16(tfilter
[i
].code
);
2358 filter
[i
].jt
= tfilter
[i
].jt
;
2359 filter
[i
].jf
= tfilter
[i
].jf
;
2360 filter
[i
].k
= tswap32(tfilter
[i
].k
);
2362 fprog
.filter
= filter
;
2364 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
,
2365 SO_ATTACH_FILTER
, &fprog
, sizeof(fprog
)));
2368 unlock_user_struct(tfilter
, tfprog
->filter
, 1);
2369 unlock_user_struct(tfprog
, optval_addr
, 1);
2372 case TARGET_SO_BINDTODEVICE
:
2374 char *dev_ifname
, *addr_ifname
;
2376 if (optlen
> IFNAMSIZ
- 1) {
2377 optlen
= IFNAMSIZ
- 1;
2379 dev_ifname
= lock_user(VERIFY_READ
, optval_addr
, optlen
, 1);
2381 return -TARGET_EFAULT
;
2383 optname
= SO_BINDTODEVICE
;
2384 addr_ifname
= alloca(IFNAMSIZ
);
2385 memcpy(addr_ifname
, dev_ifname
, optlen
);
2386 addr_ifname
[optlen
] = 0;
2387 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
, optname
,
2388 addr_ifname
, optlen
));
2389 unlock_user (dev_ifname
, optval_addr
, 0);
2392 case TARGET_SO_LINGER
:
2395 struct target_linger
*tlg
;
2397 if (optlen
!= sizeof(struct target_linger
)) {
2398 return -TARGET_EINVAL
;
2400 if (!lock_user_struct(VERIFY_READ
, tlg
, optval_addr
, 1)) {
2401 return -TARGET_EFAULT
;
2403 __get_user(lg
.l_onoff
, &tlg
->l_onoff
);
2404 __get_user(lg
.l_linger
, &tlg
->l_linger
);
2405 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
, SO_LINGER
,
2407 unlock_user_struct(tlg
, optval_addr
, 0);
2410 /* Options with 'int' argument. */
2411 case TARGET_SO_DEBUG
:
2414 case TARGET_SO_REUSEADDR
:
2415 optname
= SO_REUSEADDR
;
2418 case TARGET_SO_REUSEPORT
:
2419 optname
= SO_REUSEPORT
;
2422 case TARGET_SO_TYPE
:
2425 case TARGET_SO_ERROR
:
2428 case TARGET_SO_DONTROUTE
:
2429 optname
= SO_DONTROUTE
;
2431 case TARGET_SO_BROADCAST
:
2432 optname
= SO_BROADCAST
;
2434 case TARGET_SO_SNDBUF
:
2435 optname
= SO_SNDBUF
;
2437 case TARGET_SO_SNDBUFFORCE
:
2438 optname
= SO_SNDBUFFORCE
;
2440 case TARGET_SO_RCVBUF
:
2441 optname
= SO_RCVBUF
;
2443 case TARGET_SO_RCVBUFFORCE
:
2444 optname
= SO_RCVBUFFORCE
;
2446 case TARGET_SO_KEEPALIVE
:
2447 optname
= SO_KEEPALIVE
;
2449 case TARGET_SO_OOBINLINE
:
2450 optname
= SO_OOBINLINE
;
2452 case TARGET_SO_NO_CHECK
:
2453 optname
= SO_NO_CHECK
;
2455 case TARGET_SO_PRIORITY
:
2456 optname
= SO_PRIORITY
;
2459 case TARGET_SO_BSDCOMPAT
:
2460 optname
= SO_BSDCOMPAT
;
2463 case TARGET_SO_PASSCRED
:
2464 optname
= SO_PASSCRED
;
2466 case TARGET_SO_PASSSEC
:
2467 optname
= SO_PASSSEC
;
2469 case TARGET_SO_TIMESTAMP
:
2470 optname
= SO_TIMESTAMP
;
2472 case TARGET_SO_RCVLOWAT
:
2473 optname
= SO_RCVLOWAT
;
2478 if (optlen
< sizeof(uint32_t))
2479 return -TARGET_EINVAL
;
2481 if (get_user_u32(val
, optval_addr
))
2482 return -TARGET_EFAULT
;
2483 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
, optname
, &val
, sizeof(val
)));
2488 case NETLINK_PKTINFO
:
2489 case NETLINK_ADD_MEMBERSHIP
:
2490 case NETLINK_DROP_MEMBERSHIP
:
2491 case NETLINK_BROADCAST_ERROR
:
2492 case NETLINK_NO_ENOBUFS
:
2493 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2494 case NETLINK_LISTEN_ALL_NSID
:
2495 case NETLINK_CAP_ACK
:
2496 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2497 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2498 case NETLINK_EXT_ACK
:
2499 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2500 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2501 case NETLINK_GET_STRICT_CHK
:
2502 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2508 if (optlen
< sizeof(uint32_t)) {
2509 return -TARGET_EINVAL
;
2511 if (get_user_u32(val
, optval_addr
)) {
2512 return -TARGET_EFAULT
;
2514 ret
= get_errno(setsockopt(sockfd
, SOL_NETLINK
, optname
, &val
,
2517 #endif /* SOL_NETLINK */
2520 qemu_log_mask(LOG_UNIMP
, "Unsupported setsockopt level=%d optname=%d\n",
2522 ret
= -TARGET_ENOPROTOOPT
;
2527 /* do_getsockopt() Must return target values and target errnos. */
2528 static abi_long
do_getsockopt(int sockfd
, int level
, int optname
,
2529 abi_ulong optval_addr
, abi_ulong optlen
)
2536 case TARGET_SOL_SOCKET
:
2539 /* These don't just return a single integer */
2540 case TARGET_SO_PEERNAME
:
2542 case TARGET_SO_RCVTIMEO
: {
2546 optname
= SO_RCVTIMEO
;
2549 if (get_user_u32(len
, optlen
)) {
2550 return -TARGET_EFAULT
;
2553 return -TARGET_EINVAL
;
2557 ret
= get_errno(getsockopt(sockfd
, level
, optname
,
2562 if (len
> sizeof(struct target_timeval
)) {
2563 len
= sizeof(struct target_timeval
);
2565 if (copy_to_user_timeval(optval_addr
, &tv
)) {
2566 return -TARGET_EFAULT
;
2568 if (put_user_u32(len
, optlen
)) {
2569 return -TARGET_EFAULT
;
2573 case TARGET_SO_SNDTIMEO
:
2574 optname
= SO_SNDTIMEO
;
2576 case TARGET_SO_PEERCRED
: {
2579 struct target_ucred
*tcr
;
2581 if (get_user_u32(len
, optlen
)) {
2582 return -TARGET_EFAULT
;
2585 return -TARGET_EINVAL
;
2589 ret
= get_errno(getsockopt(sockfd
, level
, SO_PEERCRED
,
2597 if (!lock_user_struct(VERIFY_WRITE
, tcr
, optval_addr
, 0)) {
2598 return -TARGET_EFAULT
;
2600 __put_user(cr
.pid
, &tcr
->pid
);
2601 __put_user(cr
.uid
, &tcr
->uid
);
2602 __put_user(cr
.gid
, &tcr
->gid
);
2603 unlock_user_struct(tcr
, optval_addr
, 1);
2604 if (put_user_u32(len
, optlen
)) {
2605 return -TARGET_EFAULT
;
2609 case TARGET_SO_PEERSEC
: {
2612 if (get_user_u32(len
, optlen
)) {
2613 return -TARGET_EFAULT
;
2616 return -TARGET_EINVAL
;
2618 name
= lock_user(VERIFY_WRITE
, optval_addr
, len
, 0);
2620 return -TARGET_EFAULT
;
2623 ret
= get_errno(getsockopt(sockfd
, level
, SO_PEERSEC
,
2625 if (put_user_u32(lv
, optlen
)) {
2626 ret
= -TARGET_EFAULT
;
2628 unlock_user(name
, optval_addr
, lv
);
2631 case TARGET_SO_LINGER
:
2635 struct target_linger
*tlg
;
2637 if (get_user_u32(len
, optlen
)) {
2638 return -TARGET_EFAULT
;
2641 return -TARGET_EINVAL
;
2645 ret
= get_errno(getsockopt(sockfd
, level
, SO_LINGER
,
2653 if (!lock_user_struct(VERIFY_WRITE
, tlg
, optval_addr
, 0)) {
2654 return -TARGET_EFAULT
;
2656 __put_user(lg
.l_onoff
, &tlg
->l_onoff
);
2657 __put_user(lg
.l_linger
, &tlg
->l_linger
);
2658 unlock_user_struct(tlg
, optval_addr
, 1);
2659 if (put_user_u32(len
, optlen
)) {
2660 return -TARGET_EFAULT
;
2664 /* Options with 'int' argument. */
2665 case TARGET_SO_DEBUG
:
2668 case TARGET_SO_REUSEADDR
:
2669 optname
= SO_REUSEADDR
;
2672 case TARGET_SO_REUSEPORT
:
2673 optname
= SO_REUSEPORT
;
2676 case TARGET_SO_TYPE
:
2679 case TARGET_SO_ERROR
:
2682 case TARGET_SO_DONTROUTE
:
2683 optname
= SO_DONTROUTE
;
2685 case TARGET_SO_BROADCAST
:
2686 optname
= SO_BROADCAST
;
2688 case TARGET_SO_SNDBUF
:
2689 optname
= SO_SNDBUF
;
2691 case TARGET_SO_RCVBUF
:
2692 optname
= SO_RCVBUF
;
2694 case TARGET_SO_KEEPALIVE
:
2695 optname
= SO_KEEPALIVE
;
2697 case TARGET_SO_OOBINLINE
:
2698 optname
= SO_OOBINLINE
;
2700 case TARGET_SO_NO_CHECK
:
2701 optname
= SO_NO_CHECK
;
2703 case TARGET_SO_PRIORITY
:
2704 optname
= SO_PRIORITY
;
2707 case TARGET_SO_BSDCOMPAT
:
2708 optname
= SO_BSDCOMPAT
;
2711 case TARGET_SO_PASSCRED
:
2712 optname
= SO_PASSCRED
;
2714 case TARGET_SO_TIMESTAMP
:
2715 optname
= SO_TIMESTAMP
;
2717 case TARGET_SO_RCVLOWAT
:
2718 optname
= SO_RCVLOWAT
;
2720 case TARGET_SO_ACCEPTCONN
:
2721 optname
= SO_ACCEPTCONN
;
2723 case TARGET_SO_PROTOCOL
:
2724 optname
= SO_PROTOCOL
;
2726 case TARGET_SO_DOMAIN
:
2727 optname
= SO_DOMAIN
;
2735 /* TCP and UDP options all take an 'int' value. */
2737 if (get_user_u32(len
, optlen
))
2738 return -TARGET_EFAULT
;
2740 return -TARGET_EINVAL
;
2742 ret
= get_errno(getsockopt(sockfd
, level
, optname
, &val
, &lv
));
2747 val
= host_to_target_sock_type(val
);
2750 val
= host_to_target_errno(val
);
2756 if (put_user_u32(val
, optval_addr
))
2757 return -TARGET_EFAULT
;
2759 if (put_user_u8(val
, optval_addr
))
2760 return -TARGET_EFAULT
;
2762 if (put_user_u32(len
, optlen
))
2763 return -TARGET_EFAULT
;
2770 case IP_ROUTER_ALERT
:
2774 case IP_MTU_DISCOVER
:
2780 case IP_MULTICAST_TTL
:
2781 case IP_MULTICAST_LOOP
:
2782 if (get_user_u32(len
, optlen
))
2783 return -TARGET_EFAULT
;
2785 return -TARGET_EINVAL
;
2787 ret
= get_errno(getsockopt(sockfd
, level
, optname
, &val
, &lv
));
2790 if (len
< sizeof(int) && len
> 0 && val
>= 0 && val
< 255) {
2792 if (put_user_u32(len
, optlen
)
2793 || put_user_u8(val
, optval_addr
))
2794 return -TARGET_EFAULT
;
2796 if (len
> sizeof(int))
2798 if (put_user_u32(len
, optlen
)
2799 || put_user_u32(val
, optval_addr
))
2800 return -TARGET_EFAULT
;
2804 ret
= -TARGET_ENOPROTOOPT
;
2810 case IPV6_MTU_DISCOVER
:
2813 case IPV6_RECVPKTINFO
:
2814 case IPV6_UNICAST_HOPS
:
2815 case IPV6_MULTICAST_HOPS
:
2816 case IPV6_MULTICAST_LOOP
:
2818 case IPV6_RECVHOPLIMIT
:
2819 case IPV6_2292HOPLIMIT
:
2822 case IPV6_2292PKTINFO
:
2823 case IPV6_RECVTCLASS
:
2824 case IPV6_RECVRTHDR
:
2825 case IPV6_2292RTHDR
:
2826 case IPV6_RECVHOPOPTS
:
2827 case IPV6_2292HOPOPTS
:
2828 case IPV6_RECVDSTOPTS
:
2829 case IPV6_2292DSTOPTS
:
2831 case IPV6_ADDR_PREFERENCES
:
2832 #ifdef IPV6_RECVPATHMTU
2833 case IPV6_RECVPATHMTU
:
2835 #ifdef IPV6_TRANSPARENT
2836 case IPV6_TRANSPARENT
:
2838 #ifdef IPV6_FREEBIND
2841 #ifdef IPV6_RECVORIGDSTADDR
2842 case IPV6_RECVORIGDSTADDR
:
2844 if (get_user_u32(len
, optlen
))
2845 return -TARGET_EFAULT
;
2847 return -TARGET_EINVAL
;
2849 ret
= get_errno(getsockopt(sockfd
, level
, optname
, &val
, &lv
));
2852 if (len
< sizeof(int) && len
> 0 && val
>= 0 && val
< 255) {
2854 if (put_user_u32(len
, optlen
)
2855 || put_user_u8(val
, optval_addr
))
2856 return -TARGET_EFAULT
;
2858 if (len
> sizeof(int))
2860 if (put_user_u32(len
, optlen
)
2861 || put_user_u32(val
, optval_addr
))
2862 return -TARGET_EFAULT
;
2866 ret
= -TARGET_ENOPROTOOPT
;
2873 case NETLINK_PKTINFO
:
2874 case NETLINK_BROADCAST_ERROR
:
2875 case NETLINK_NO_ENOBUFS
:
2876 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2877 case NETLINK_LISTEN_ALL_NSID
:
2878 case NETLINK_CAP_ACK
:
2879 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2880 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2881 case NETLINK_EXT_ACK
:
2882 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2883 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2884 case NETLINK_GET_STRICT_CHK
:
2885 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2886 if (get_user_u32(len
, optlen
)) {
2887 return -TARGET_EFAULT
;
2889 if (len
!= sizeof(val
)) {
2890 return -TARGET_EINVAL
;
2893 ret
= get_errno(getsockopt(sockfd
, level
, optname
, &val
, &lv
));
2897 if (put_user_u32(lv
, optlen
)
2898 || put_user_u32(val
, optval_addr
)) {
2899 return -TARGET_EFAULT
;
2902 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2903 case NETLINK_LIST_MEMBERSHIPS
:
2907 if (get_user_u32(len
, optlen
)) {
2908 return -TARGET_EFAULT
;
2911 return -TARGET_EINVAL
;
2913 results
= lock_user(VERIFY_WRITE
, optval_addr
, len
, 1);
2914 if (!results
&& len
> 0) {
2915 return -TARGET_EFAULT
;
2918 ret
= get_errno(getsockopt(sockfd
, level
, optname
, results
, &lv
));
2920 unlock_user(results
, optval_addr
, 0);
2923 /* swap host endianness to target endianness. */
2924 for (i
= 0; i
< (len
/ sizeof(uint32_t)); i
++) {
2925 results
[i
] = tswap32(results
[i
]);
2927 if (put_user_u32(lv
, optlen
)) {
2928 return -TARGET_EFAULT
;
2930 unlock_user(results
, optval_addr
, 0);
2933 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2938 #endif /* SOL_NETLINK */
2941 qemu_log_mask(LOG_UNIMP
,
2942 "getsockopt level=%d optname=%d not yet supported\n",
2944 ret
= -TARGET_EOPNOTSUPP
;
2950 /* Convert target low/high pair representing file offset into the host
2951 * low/high pair. This function doesn't handle offsets bigger than 64 bits
2952 * as the kernel doesn't handle them either.
2954 static void target_to_host_low_high(abi_ulong tlow
,
2956 unsigned long *hlow
,
2957 unsigned long *hhigh
)
2959 uint64_t off
= tlow
|
2960 ((unsigned long long)thigh
<< TARGET_LONG_BITS
/ 2) <<
2961 TARGET_LONG_BITS
/ 2;
2964 *hhigh
= (off
>> HOST_LONG_BITS
/ 2) >> HOST_LONG_BITS
/ 2;
2967 static struct iovec
*lock_iovec(int type
, abi_ulong target_addr
,
2968 abi_ulong count
, int copy
)
2970 struct target_iovec
*target_vec
;
2972 abi_ulong total_len
, max_len
;
2975 bool bad_address
= false;
2981 if (count
> IOV_MAX
) {
2986 vec
= g_try_new0(struct iovec
, count
);
2992 target_vec
= lock_user(VERIFY_READ
, target_addr
,
2993 count
* sizeof(struct target_iovec
), 1);
2994 if (target_vec
== NULL
) {
2999 /* ??? If host page size > target page size, this will result in a
3000 value larger than what we can actually support. */
3001 max_len
= 0x7fffffff & TARGET_PAGE_MASK
;
3004 for (i
= 0; i
< count
; i
++) {
3005 abi_ulong base
= tswapal(target_vec
[i
].iov_base
);
3006 abi_long len
= tswapal(target_vec
[i
].iov_len
);
3011 } else if (len
== 0) {
3012 /* Zero length pointer is ignored. */
3013 vec
[i
].iov_base
= 0;
3015 vec
[i
].iov_base
= lock_user(type
, base
, len
, copy
);
3016 /* If the first buffer pointer is bad, this is a fault. But
3017 * subsequent bad buffers will result in a partial write; this
3018 * is realized by filling the vector with null pointers and
3020 if (!vec
[i
].iov_base
) {
3031 if (len
> max_len
- total_len
) {
3032 len
= max_len
- total_len
;
3035 vec
[i
].iov_len
= len
;
3039 unlock_user(target_vec
, target_addr
, 0);
3044 if (tswapal(target_vec
[i
].iov_len
) > 0) {
3045 unlock_user(vec
[i
].iov_base
, tswapal(target_vec
[i
].iov_base
), 0);
3048 unlock_user(target_vec
, target_addr
, 0);
3055 static void unlock_iovec(struct iovec
*vec
, abi_ulong target_addr
,
3056 abi_ulong count
, int copy
)
3058 struct target_iovec
*target_vec
;
3061 target_vec
= lock_user(VERIFY_READ
, target_addr
,
3062 count
* sizeof(struct target_iovec
), 1);
3064 for (i
= 0; i
< count
; i
++) {
3065 abi_ulong base
= tswapal(target_vec
[i
].iov_base
);
3066 abi_long len
= tswapal(target_vec
[i
].iov_len
);
3070 unlock_user(vec
[i
].iov_base
, base
, copy
? vec
[i
].iov_len
: 0);
3072 unlock_user(target_vec
, target_addr
, 0);
3078 static inline int target_to_host_sock_type(int *type
)
3081 int target_type
= *type
;
3083 switch (target_type
& TARGET_SOCK_TYPE_MASK
) {
3084 case TARGET_SOCK_DGRAM
:
3085 host_type
= SOCK_DGRAM
;
3087 case TARGET_SOCK_STREAM
:
3088 host_type
= SOCK_STREAM
;
3091 host_type
= target_type
& TARGET_SOCK_TYPE_MASK
;
3094 if (target_type
& TARGET_SOCK_CLOEXEC
) {
3095 #if defined(SOCK_CLOEXEC)
3096 host_type
|= SOCK_CLOEXEC
;
3098 return -TARGET_EINVAL
;
3101 if (target_type
& TARGET_SOCK_NONBLOCK
) {
3102 #if defined(SOCK_NONBLOCK)
3103 host_type
|= SOCK_NONBLOCK
;
3104 #elif !defined(O_NONBLOCK)
3105 return -TARGET_EINVAL
;
3112 /* Try to emulate socket type flags after socket creation. */
3113 static int sock_flags_fixup(int fd
, int target_type
)
3115 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
3116 if (target_type
& TARGET_SOCK_NONBLOCK
) {
3117 int flags
= fcntl(fd
, F_GETFL
);
3118 if (fcntl(fd
, F_SETFL
, O_NONBLOCK
| flags
) == -1) {
3120 return -TARGET_EINVAL
;
3127 /* do_socket() Must return target values and target errnos. */
3128 static abi_long
do_socket(int domain
, int type
, int protocol
)
3130 int target_type
= type
;
3133 ret
= target_to_host_sock_type(&type
);
3138 if (domain
== PF_NETLINK
&& !(
3139 #ifdef CONFIG_RTNETLINK
3140 protocol
== NETLINK_ROUTE
||
3142 protocol
== NETLINK_KOBJECT_UEVENT
||
3143 protocol
== NETLINK_AUDIT
)) {
3144 return -TARGET_EPROTONOSUPPORT
;
3147 if (domain
== AF_PACKET
||
3148 (domain
== AF_INET
&& type
== SOCK_PACKET
)) {
3149 protocol
= tswap16(protocol
);
3152 ret
= get_errno(socket(domain
, type
, protocol
));
3154 ret
= sock_flags_fixup(ret
, target_type
);
3155 if (type
== SOCK_PACKET
) {
3156 /* Manage an obsolete case :
3157 * if socket type is SOCK_PACKET, bind by name
3159 fd_trans_register(ret
, &target_packet_trans
);
3160 } else if (domain
== PF_NETLINK
) {
3162 #ifdef CONFIG_RTNETLINK
3164 fd_trans_register(ret
, &target_netlink_route_trans
);
3167 case NETLINK_KOBJECT_UEVENT
:
3168 /* nothing to do: messages are strings */
3171 fd_trans_register(ret
, &target_netlink_audit_trans
);
3174 g_assert_not_reached();
3181 /* do_bind() Must return target values and target errnos. */
3182 static abi_long
do_bind(int sockfd
, abi_ulong target_addr
,
3188 if ((int)addrlen
< 0) {
3189 return -TARGET_EINVAL
;
3192 addr
= alloca(addrlen
+1);
3194 ret
= target_to_host_sockaddr(sockfd
, addr
, target_addr
, addrlen
);
3198 return get_errno(bind(sockfd
, addr
, addrlen
));
3201 /* do_connect() Must return target values and target errnos. */
3202 static abi_long
do_connect(int sockfd
, abi_ulong target_addr
,
3208 if ((int)addrlen
< 0) {
3209 return -TARGET_EINVAL
;
3212 addr
= alloca(addrlen
+1);
3214 ret
= target_to_host_sockaddr(sockfd
, addr
, target_addr
, addrlen
);
3218 return get_errno(safe_connect(sockfd
, addr
, addrlen
));
3221 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3222 static abi_long
do_sendrecvmsg_locked(int fd
, struct target_msghdr
*msgp
,
3223 int flags
, int send
)
3229 abi_ulong target_vec
;
3231 if (msgp
->msg_name
) {
3232 msg
.msg_namelen
= tswap32(msgp
->msg_namelen
);
3233 msg
.msg_name
= alloca(msg
.msg_namelen
+1);
3234 ret
= target_to_host_sockaddr(fd
, msg
.msg_name
,
3235 tswapal(msgp
->msg_name
),
3237 if (ret
== -TARGET_EFAULT
) {
3238 /* For connected sockets msg_name and msg_namelen must
3239 * be ignored, so returning EFAULT immediately is wrong.
3240 * Instead, pass a bad msg_name to the host kernel, and
3241 * let it decide whether to return EFAULT or not.
3243 msg
.msg_name
= (void *)-1;
3248 msg
.msg_name
= NULL
;
3249 msg
.msg_namelen
= 0;
3251 msg
.msg_controllen
= 2 * tswapal(msgp
->msg_controllen
);
3252 msg
.msg_control
= alloca(msg
.msg_controllen
);
3253 memset(msg
.msg_control
, 0, msg
.msg_controllen
);
3255 msg
.msg_flags
= tswap32(msgp
->msg_flags
);
3257 count
= tswapal(msgp
->msg_iovlen
);
3258 target_vec
= tswapal(msgp
->msg_iov
);
3260 if (count
> IOV_MAX
) {
3261 /* sendrcvmsg returns a different errno for this condition than
3262 * readv/writev, so we must catch it here before lock_iovec() does.
3264 ret
= -TARGET_EMSGSIZE
;
3268 vec
= lock_iovec(send
? VERIFY_READ
: VERIFY_WRITE
,
3269 target_vec
, count
, send
);
3271 ret
= -host_to_target_errno(errno
);
3272 /* allow sending packet without any iov, e.g. with MSG_MORE flag */
3277 msg
.msg_iovlen
= count
;
3281 if (fd_trans_target_to_host_data(fd
)) {
3284 host_msg
= g_malloc(msg
.msg_iov
->iov_len
);
3285 memcpy(host_msg
, msg
.msg_iov
->iov_base
, msg
.msg_iov
->iov_len
);
3286 ret
= fd_trans_target_to_host_data(fd
)(host_msg
,
3287 msg
.msg_iov
->iov_len
);
3289 msg
.msg_iov
->iov_base
= host_msg
;
3290 ret
= get_errno(safe_sendmsg(fd
, &msg
, flags
));
3294 ret
= target_to_host_cmsg(&msg
, msgp
);
3296 ret
= get_errno(safe_sendmsg(fd
, &msg
, flags
));
3300 ret
= get_errno(safe_recvmsg(fd
, &msg
, flags
));
3301 if (!is_error(ret
)) {
3303 if (fd_trans_host_to_target_data(fd
)) {
3304 ret
= fd_trans_host_to_target_data(fd
)(msg
.msg_iov
->iov_base
,
3305 MIN(msg
.msg_iov
->iov_len
, len
));
3307 if (!is_error(ret
)) {
3308 ret
= host_to_target_cmsg(msgp
, &msg
);
3310 if (!is_error(ret
)) {
3311 msgp
->msg_namelen
= tswap32(msg
.msg_namelen
);
3312 msgp
->msg_flags
= tswap32(msg
.msg_flags
);
3313 if (msg
.msg_name
!= NULL
&& msg
.msg_name
!= (void *)-1) {
3314 ret
= host_to_target_sockaddr(tswapal(msgp
->msg_name
),
3315 msg
.msg_name
, msg
.msg_namelen
);
3328 unlock_iovec(vec
, target_vec
, count
, !send
);
3334 static abi_long
do_sendrecvmsg(int fd
, abi_ulong target_msg
,
3335 int flags
, int send
)
3338 struct target_msghdr
*msgp
;
3340 if (!lock_user_struct(send
? VERIFY_READ
: VERIFY_WRITE
,
3344 return -TARGET_EFAULT
;
3346 ret
= do_sendrecvmsg_locked(fd
, msgp
, flags
, send
);
3347 unlock_user_struct(msgp
, target_msg
, send
? 0 : 1);
3351 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3352 * so it might not have this *mmsg-specific flag either.
3354 #ifndef MSG_WAITFORONE
3355 #define MSG_WAITFORONE 0x10000
3358 static abi_long
do_sendrecvmmsg(int fd
, abi_ulong target_msgvec
,
3359 unsigned int vlen
, unsigned int flags
,
3362 struct target_mmsghdr
*mmsgp
;
3366 if (vlen
> UIO_MAXIOV
) {
3370 mmsgp
= lock_user(VERIFY_WRITE
, target_msgvec
, sizeof(*mmsgp
) * vlen
, 1);
3372 return -TARGET_EFAULT
;
3375 for (i
= 0; i
< vlen
; i
++) {
3376 ret
= do_sendrecvmsg_locked(fd
, &mmsgp
[i
].msg_hdr
, flags
, send
);
3377 if (is_error(ret
)) {
3380 mmsgp
[i
].msg_len
= tswap32(ret
);
3381 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3382 if (flags
& MSG_WAITFORONE
) {
3383 flags
|= MSG_DONTWAIT
;
3387 unlock_user(mmsgp
, target_msgvec
, sizeof(*mmsgp
) * i
);
3389 /* Return number of datagrams sent if we sent any at all;
3390 * otherwise return the error.
3398 /* do_accept4() Must return target values and target errnos. */
3399 static abi_long
do_accept4(int fd
, abi_ulong target_addr
,
3400 abi_ulong target_addrlen_addr
, int flags
)
3402 socklen_t addrlen
, ret_addrlen
;
3407 if (flags
& ~(TARGET_SOCK_CLOEXEC
| TARGET_SOCK_NONBLOCK
)) {
3408 return -TARGET_EINVAL
;
3412 if (flags
& TARGET_SOCK_NONBLOCK
) {
3413 host_flags
|= SOCK_NONBLOCK
;
3415 if (flags
& TARGET_SOCK_CLOEXEC
) {
3416 host_flags
|= SOCK_CLOEXEC
;
3419 if (target_addr
== 0) {
3420 return get_errno(safe_accept4(fd
, NULL
, NULL
, host_flags
));
3423 /* linux returns EFAULT if addrlen pointer is invalid */
3424 if (get_user_u32(addrlen
, target_addrlen_addr
))
3425 return -TARGET_EFAULT
;
3427 if ((int)addrlen
< 0) {
3428 return -TARGET_EINVAL
;
3431 if (!access_ok(thread_cpu
, VERIFY_WRITE
, target_addr
, addrlen
)) {
3432 return -TARGET_EFAULT
;
3435 addr
= alloca(addrlen
);
3437 ret_addrlen
= addrlen
;
3438 ret
= get_errno(safe_accept4(fd
, addr
, &ret_addrlen
, host_flags
));
3439 if (!is_error(ret
)) {
3440 host_to_target_sockaddr(target_addr
, addr
, MIN(addrlen
, ret_addrlen
));
3441 if (put_user_u32(ret_addrlen
, target_addrlen_addr
)) {
3442 ret
= -TARGET_EFAULT
;
3448 /* do_getpeername() Must return target values and target errnos. */
3449 static abi_long
do_getpeername(int fd
, abi_ulong target_addr
,
3450 abi_ulong target_addrlen_addr
)
3452 socklen_t addrlen
, ret_addrlen
;
3456 if (get_user_u32(addrlen
, target_addrlen_addr
))
3457 return -TARGET_EFAULT
;
3459 if ((int)addrlen
< 0) {
3460 return -TARGET_EINVAL
;
3463 if (!access_ok(thread_cpu
, VERIFY_WRITE
, target_addr
, addrlen
)) {
3464 return -TARGET_EFAULT
;
3467 addr
= alloca(addrlen
);
3469 ret_addrlen
= addrlen
;
3470 ret
= get_errno(getpeername(fd
, addr
, &ret_addrlen
));
3471 if (!is_error(ret
)) {
3472 host_to_target_sockaddr(target_addr
, addr
, MIN(addrlen
, ret_addrlen
));
3473 if (put_user_u32(ret_addrlen
, target_addrlen_addr
)) {
3474 ret
= -TARGET_EFAULT
;
3480 /* do_getsockname() Must return target values and target errnos. */
3481 static abi_long
do_getsockname(int fd
, abi_ulong target_addr
,
3482 abi_ulong target_addrlen_addr
)
3484 socklen_t addrlen
, ret_addrlen
;
3488 if (get_user_u32(addrlen
, target_addrlen_addr
))
3489 return -TARGET_EFAULT
;
3491 if ((int)addrlen
< 0) {
3492 return -TARGET_EINVAL
;
3495 if (!access_ok(thread_cpu
, VERIFY_WRITE
, target_addr
, addrlen
)) {
3496 return -TARGET_EFAULT
;
3499 addr
= alloca(addrlen
);
3501 ret_addrlen
= addrlen
;
3502 ret
= get_errno(getsockname(fd
, addr
, &ret_addrlen
));
3503 if (!is_error(ret
)) {
3504 host_to_target_sockaddr(target_addr
, addr
, MIN(addrlen
, ret_addrlen
));
3505 if (put_user_u32(ret_addrlen
, target_addrlen_addr
)) {
3506 ret
= -TARGET_EFAULT
;
3512 /* do_socketpair() Must return target values and target errnos. */
3513 static abi_long
do_socketpair(int domain
, int type
, int protocol
,
3514 abi_ulong target_tab_addr
)
3519 target_to_host_sock_type(&type
);
3521 ret
= get_errno(socketpair(domain
, type
, protocol
, tab
));
3522 if (!is_error(ret
)) {
3523 if (put_user_s32(tab
[0], target_tab_addr
)
3524 || put_user_s32(tab
[1], target_tab_addr
+ sizeof(tab
[0])))
3525 ret
= -TARGET_EFAULT
;
3530 /* do_sendto() Must return target values and target errnos. */
3531 static abi_long
do_sendto(int fd
, abi_ulong msg
, size_t len
, int flags
,
3532 abi_ulong target_addr
, socklen_t addrlen
)
3536 void *copy_msg
= NULL
;
3539 if ((int)addrlen
< 0) {
3540 return -TARGET_EINVAL
;
3543 host_msg
= lock_user(VERIFY_READ
, msg
, len
, 1);
3545 return -TARGET_EFAULT
;
3546 if (fd_trans_target_to_host_data(fd
)) {
3547 copy_msg
= host_msg
;
3548 host_msg
= g_malloc(len
);
3549 memcpy(host_msg
, copy_msg
, len
);
3550 ret
= fd_trans_target_to_host_data(fd
)(host_msg
, len
);
3556 addr
= alloca(addrlen
+1);
3557 ret
= target_to_host_sockaddr(fd
, addr
, target_addr
, addrlen
);
3561 ret
= get_errno(safe_sendto(fd
, host_msg
, len
, flags
, addr
, addrlen
));
3563 ret
= get_errno(safe_sendto(fd
, host_msg
, len
, flags
, NULL
, 0));
3568 host_msg
= copy_msg
;
3570 unlock_user(host_msg
, msg
, 0);
3574 /* do_recvfrom() Must return target values and target errnos. */
3575 static abi_long
do_recvfrom(int fd
, abi_ulong msg
, size_t len
, int flags
,
3576 abi_ulong target_addr
,
3577 abi_ulong target_addrlen
)
3579 socklen_t addrlen
, ret_addrlen
;
3587 host_msg
= lock_user(VERIFY_WRITE
, msg
, len
, 0);
3589 return -TARGET_EFAULT
;
3593 if (get_user_u32(addrlen
, target_addrlen
)) {
3594 ret
= -TARGET_EFAULT
;
3597 if ((int)addrlen
< 0) {
3598 ret
= -TARGET_EINVAL
;
3601 addr
= alloca(addrlen
);
3602 ret_addrlen
= addrlen
;
3603 ret
= get_errno(safe_recvfrom(fd
, host_msg
, len
, flags
,
3604 addr
, &ret_addrlen
));
3606 addr
= NULL
; /* To keep compiler quiet. */
3607 addrlen
= 0; /* To keep compiler quiet. */
3608 ret
= get_errno(safe_recvfrom(fd
, host_msg
, len
, flags
, NULL
, 0));
3610 if (!is_error(ret
)) {
3611 if (fd_trans_host_to_target_data(fd
)) {
3613 trans
= fd_trans_host_to_target_data(fd
)(host_msg
, MIN(ret
, len
));
3614 if (is_error(trans
)) {
3620 host_to_target_sockaddr(target_addr
, addr
,
3621 MIN(addrlen
, ret_addrlen
));
3622 if (put_user_u32(ret_addrlen
, target_addrlen
)) {
3623 ret
= -TARGET_EFAULT
;
3627 unlock_user(host_msg
, msg
, len
);
3630 unlock_user(host_msg
, msg
, 0);
3635 #ifdef TARGET_NR_socketcall
3636 /* do_socketcall() must return target values and target errnos. */
3637 static abi_long
do_socketcall(int num
, abi_ulong vptr
)
3639 static const unsigned nargs
[] = { /* number of arguments per operation */
3640 [TARGET_SYS_SOCKET
] = 3, /* domain, type, protocol */
3641 [TARGET_SYS_BIND
] = 3, /* fd, addr, addrlen */
3642 [TARGET_SYS_CONNECT
] = 3, /* fd, addr, addrlen */
3643 [TARGET_SYS_LISTEN
] = 2, /* fd, backlog */
3644 [TARGET_SYS_ACCEPT
] = 3, /* fd, addr, addrlen */
3645 [TARGET_SYS_GETSOCKNAME
] = 3, /* fd, addr, addrlen */
3646 [TARGET_SYS_GETPEERNAME
] = 3, /* fd, addr, addrlen */
3647 [TARGET_SYS_SOCKETPAIR
] = 4, /* domain, type, protocol, tab */
3648 [TARGET_SYS_SEND
] = 4, /* fd, msg, len, flags */
3649 [TARGET_SYS_RECV
] = 4, /* fd, msg, len, flags */
3650 [TARGET_SYS_SENDTO
] = 6, /* fd, msg, len, flags, addr, addrlen */
3651 [TARGET_SYS_RECVFROM
] = 6, /* fd, msg, len, flags, addr, addrlen */
3652 [TARGET_SYS_SHUTDOWN
] = 2, /* fd, how */
3653 [TARGET_SYS_SETSOCKOPT
] = 5, /* fd, level, optname, optval, optlen */
3654 [TARGET_SYS_GETSOCKOPT
] = 5, /* fd, level, optname, optval, optlen */
3655 [TARGET_SYS_SENDMSG
] = 3, /* fd, msg, flags */
3656 [TARGET_SYS_RECVMSG
] = 3, /* fd, msg, flags */
3657 [TARGET_SYS_ACCEPT4
] = 4, /* fd, addr, addrlen, flags */
3658 [TARGET_SYS_RECVMMSG
] = 4, /* fd, msgvec, vlen, flags */
3659 [TARGET_SYS_SENDMMSG
] = 4, /* fd, msgvec, vlen, flags */
3661 abi_long a
[6]; /* max 6 args */
3664 /* check the range of the first argument num */
3665 /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
3666 if (num
< 1 || num
> TARGET_SYS_SENDMMSG
) {
3667 return -TARGET_EINVAL
;
3669 /* ensure we have space for args */
3670 if (nargs
[num
] > ARRAY_SIZE(a
)) {
3671 return -TARGET_EINVAL
;
3673 /* collect the arguments in a[] according to nargs[] */
3674 for (i
= 0; i
< nargs
[num
]; ++i
) {
3675 if (get_user_ual(a
[i
], vptr
+ i
* sizeof(abi_long
)) != 0) {
3676 return -TARGET_EFAULT
;
3679 /* now when we have the args, invoke the appropriate underlying function */
3681 case TARGET_SYS_SOCKET
: /* domain, type, protocol */
3682 return do_socket(a
[0], a
[1], a
[2]);
3683 case TARGET_SYS_BIND
: /* sockfd, addr, addrlen */
3684 return do_bind(a
[0], a
[1], a
[2]);
3685 case TARGET_SYS_CONNECT
: /* sockfd, addr, addrlen */
3686 return do_connect(a
[0], a
[1], a
[2]);
3687 case TARGET_SYS_LISTEN
: /* sockfd, backlog */
3688 return get_errno(listen(a
[0], a
[1]));
3689 case TARGET_SYS_ACCEPT
: /* sockfd, addr, addrlen */
3690 return do_accept4(a
[0], a
[1], a
[2], 0);
3691 case TARGET_SYS_GETSOCKNAME
: /* sockfd, addr, addrlen */
3692 return do_getsockname(a
[0], a
[1], a
[2]);
3693 case TARGET_SYS_GETPEERNAME
: /* sockfd, addr, addrlen */
3694 return do_getpeername(a
[0], a
[1], a
[2]);
3695 case TARGET_SYS_SOCKETPAIR
: /* domain, type, protocol, tab */
3696 return do_socketpair(a
[0], a
[1], a
[2], a
[3]);
3697 case TARGET_SYS_SEND
: /* sockfd, msg, len, flags */
3698 return do_sendto(a
[0], a
[1], a
[2], a
[3], 0, 0);
3699 case TARGET_SYS_RECV
: /* sockfd, msg, len, flags */
3700 return do_recvfrom(a
[0], a
[1], a
[2], a
[3], 0, 0);
3701 case TARGET_SYS_SENDTO
: /* sockfd, msg, len, flags, addr, addrlen */
3702 return do_sendto(a
[0], a
[1], a
[2], a
[3], a
[4], a
[5]);
3703 case TARGET_SYS_RECVFROM
: /* sockfd, msg, len, flags, addr, addrlen */
3704 return do_recvfrom(a
[0], a
[1], a
[2], a
[3], a
[4], a
[5]);
3705 case TARGET_SYS_SHUTDOWN
: /* sockfd, how */
3706 return get_errno(shutdown(a
[0], a
[1]));
3707 case TARGET_SYS_SETSOCKOPT
: /* sockfd, level, optname, optval, optlen */
3708 return do_setsockopt(a
[0], a
[1], a
[2], a
[3], a
[4]);
3709 case TARGET_SYS_GETSOCKOPT
: /* sockfd, level, optname, optval, optlen */
3710 return do_getsockopt(a
[0], a
[1], a
[2], a
[3], a
[4]);
3711 case TARGET_SYS_SENDMSG
: /* sockfd, msg, flags */
3712 return do_sendrecvmsg(a
[0], a
[1], a
[2], 1);
3713 case TARGET_SYS_RECVMSG
: /* sockfd, msg, flags */
3714 return do_sendrecvmsg(a
[0], a
[1], a
[2], 0);
3715 case TARGET_SYS_ACCEPT4
: /* sockfd, addr, addrlen, flags */
3716 return do_accept4(a
[0], a
[1], a
[2], a
[3]);
3717 case TARGET_SYS_RECVMMSG
: /* sockfd, msgvec, vlen, flags */
3718 return do_sendrecvmmsg(a
[0], a
[1], a
[2], a
[3], 0);
3719 case TARGET_SYS_SENDMMSG
: /* sockfd, msgvec, vlen, flags */
3720 return do_sendrecvmmsg(a
[0], a
[1], a
[2], a
[3], 1);
3722 qemu_log_mask(LOG_UNIMP
, "Unsupported socketcall: %d\n", num
);
3723 return -TARGET_EINVAL
;
3728 #ifndef TARGET_SEMID64_DS
3729 /* asm-generic version of this struct */
3730 struct target_semid64_ds
3732 struct target_ipc_perm sem_perm
;
3733 abi_ulong sem_otime
;
3734 #if TARGET_ABI_BITS == 32
3735 abi_ulong __unused1
;
3737 abi_ulong sem_ctime
;
3738 #if TARGET_ABI_BITS == 32
3739 abi_ulong __unused2
;
3741 abi_ulong sem_nsems
;
3742 abi_ulong __unused3
;
3743 abi_ulong __unused4
;
3747 static inline abi_long
target_to_host_ipc_perm(struct ipc_perm
*host_ip
,
3748 abi_ulong target_addr
)
3750 struct target_ipc_perm
*target_ip
;
3751 struct target_semid64_ds
*target_sd
;
3753 if (!lock_user_struct(VERIFY_READ
, target_sd
, target_addr
, 1))
3754 return -TARGET_EFAULT
;
3755 target_ip
= &(target_sd
->sem_perm
);
3756 host_ip
->__key
= tswap32(target_ip
->__key
);
3757 host_ip
->uid
= tswap32(target_ip
->uid
);
3758 host_ip
->gid
= tswap32(target_ip
->gid
);
3759 host_ip
->cuid
= tswap32(target_ip
->cuid
);
3760 host_ip
->cgid
= tswap32(target_ip
->cgid
);
3761 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3762 host_ip
->mode
= tswap32(target_ip
->mode
);
3764 host_ip
->mode
= tswap16(target_ip
->mode
);
3766 #if defined(TARGET_PPC)
3767 host_ip
->__seq
= tswap32(target_ip
->__seq
);
3769 host_ip
->__seq
= tswap16(target_ip
->__seq
);
3771 unlock_user_struct(target_sd
, target_addr
, 0);
3775 static inline abi_long
host_to_target_ipc_perm(abi_ulong target_addr
,
3776 struct ipc_perm
*host_ip
)
3778 struct target_ipc_perm
*target_ip
;
3779 struct target_semid64_ds
*target_sd
;
3781 if (!lock_user_struct(VERIFY_WRITE
, target_sd
, target_addr
, 0))
3782 return -TARGET_EFAULT
;
3783 target_ip
= &(target_sd
->sem_perm
);
3784 target_ip
->__key
= tswap32(host_ip
->__key
);
3785 target_ip
->uid
= tswap32(host_ip
->uid
);
3786 target_ip
->gid
= tswap32(host_ip
->gid
);
3787 target_ip
->cuid
= tswap32(host_ip
->cuid
);
3788 target_ip
->cgid
= tswap32(host_ip
->cgid
);
3789 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3790 target_ip
->mode
= tswap32(host_ip
->mode
);
3792 target_ip
->mode
= tswap16(host_ip
->mode
);
3794 #if defined(TARGET_PPC)
3795 target_ip
->__seq
= tswap32(host_ip
->__seq
);
3797 target_ip
->__seq
= tswap16(host_ip
->__seq
);
3799 unlock_user_struct(target_sd
, target_addr
, 1);
3803 static inline abi_long
target_to_host_semid_ds(struct semid_ds
*host_sd
,
3804 abi_ulong target_addr
)
3806 struct target_semid64_ds
*target_sd
;
3808 if (!lock_user_struct(VERIFY_READ
, target_sd
, target_addr
, 1))
3809 return -TARGET_EFAULT
;
3810 if (target_to_host_ipc_perm(&(host_sd
->sem_perm
),target_addr
))
3811 return -TARGET_EFAULT
;
3812 host_sd
->sem_nsems
= tswapal(target_sd
->sem_nsems
);
3813 host_sd
->sem_otime
= tswapal(target_sd
->sem_otime
);
3814 host_sd
->sem_ctime
= tswapal(target_sd
->sem_ctime
);
3815 unlock_user_struct(target_sd
, target_addr
, 0);
3819 static inline abi_long
host_to_target_semid_ds(abi_ulong target_addr
,
3820 struct semid_ds
*host_sd
)
3822 struct target_semid64_ds
*target_sd
;
3824 if (!lock_user_struct(VERIFY_WRITE
, target_sd
, target_addr
, 0))
3825 return -TARGET_EFAULT
;
3826 if (host_to_target_ipc_perm(target_addr
,&(host_sd
->sem_perm
)))
3827 return -TARGET_EFAULT
;
3828 target_sd
->sem_nsems
= tswapal(host_sd
->sem_nsems
);
3829 target_sd
->sem_otime
= tswapal(host_sd
->sem_otime
);
3830 target_sd
->sem_ctime
= tswapal(host_sd
->sem_ctime
);
3831 unlock_user_struct(target_sd
, target_addr
, 1);
3835 struct target_seminfo
{
3848 static inline abi_long
host_to_target_seminfo(abi_ulong target_addr
,
3849 struct seminfo
*host_seminfo
)
3851 struct target_seminfo
*target_seminfo
;
3852 if (!lock_user_struct(VERIFY_WRITE
, target_seminfo
, target_addr
, 0))
3853 return -TARGET_EFAULT
;
3854 __put_user(host_seminfo
->semmap
, &target_seminfo
->semmap
);
3855 __put_user(host_seminfo
->semmni
, &target_seminfo
->semmni
);
3856 __put_user(host_seminfo
->semmns
, &target_seminfo
->semmns
);
3857 __put_user(host_seminfo
->semmnu
, &target_seminfo
->semmnu
);
3858 __put_user(host_seminfo
->semmsl
, &target_seminfo
->semmsl
);
3859 __put_user(host_seminfo
->semopm
, &target_seminfo
->semopm
);
3860 __put_user(host_seminfo
->semume
, &target_seminfo
->semume
);
3861 __put_user(host_seminfo
->semusz
, &target_seminfo
->semusz
);
3862 __put_user(host_seminfo
->semvmx
, &target_seminfo
->semvmx
);
3863 __put_user(host_seminfo
->semaem
, &target_seminfo
->semaem
);
3864 unlock_user_struct(target_seminfo
, target_addr
, 1);
3870 struct semid_ds
*buf
;
3871 unsigned short *array
;
3872 struct seminfo
*__buf
;
3875 union target_semun
{
3882 static inline abi_long
target_to_host_semarray(int semid
, unsigned short **host_array
,
3883 abi_ulong target_addr
)
3886 unsigned short *array
;
3888 struct semid_ds semid_ds
;
3891 semun
.buf
= &semid_ds
;
3893 ret
= semctl(semid
, 0, IPC_STAT
, semun
);
3895 return get_errno(ret
);
3897 nsems
= semid_ds
.sem_nsems
;
3899 *host_array
= g_try_new(unsigned short, nsems
);
3901 return -TARGET_ENOMEM
;
3903 array
= lock_user(VERIFY_READ
, target_addr
,
3904 nsems
*sizeof(unsigned short), 1);
3906 g_free(*host_array
);
3907 return -TARGET_EFAULT
;
3910 for(i
=0; i
<nsems
; i
++) {
3911 __get_user((*host_array
)[i
], &array
[i
]);
3913 unlock_user(array
, target_addr
, 0);
3918 static inline abi_long
host_to_target_semarray(int semid
, abi_ulong target_addr
,
3919 unsigned short **host_array
)
3922 unsigned short *array
;
3924 struct semid_ds semid_ds
;
3927 semun
.buf
= &semid_ds
;
3929 ret
= semctl(semid
, 0, IPC_STAT
, semun
);
3931 return get_errno(ret
);
3933 nsems
= semid_ds
.sem_nsems
;
3935 array
= lock_user(VERIFY_WRITE
, target_addr
,
3936 nsems
*sizeof(unsigned short), 0);
3938 return -TARGET_EFAULT
;
3940 for(i
=0; i
<nsems
; i
++) {
3941 __put_user((*host_array
)[i
], &array
[i
]);
3943 g_free(*host_array
);
3944 unlock_user(array
, target_addr
, 1);
3949 static inline abi_long
do_semctl(int semid
, int semnum
, int cmd
,
3950 abi_ulong target_arg
)
3952 union target_semun target_su
= { .buf
= target_arg
};
3954 struct semid_ds dsarg
;
3955 unsigned short *array
= NULL
;
3956 struct seminfo seminfo
;
3957 abi_long ret
= -TARGET_EINVAL
;
3964 /* In 64 bit cross-endian situations, we will erroneously pick up
3965 * the wrong half of the union for the "val" element. To rectify
3966 * this, the entire 8-byte structure is byteswapped, followed by
3967 * a swap of the 4 byte val field. In other cases, the data is
3968 * already in proper host byte order. */
3969 if (sizeof(target_su
.val
) != (sizeof(target_su
.buf
))) {
3970 target_su
.buf
= tswapal(target_su
.buf
);
3971 arg
.val
= tswap32(target_su
.val
);
3973 arg
.val
= target_su
.val
;
3975 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
3979 err
= target_to_host_semarray(semid
, &array
, target_su
.array
);
3983 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
3984 err
= host_to_target_semarray(semid
, target_su
.array
, &array
);
3991 err
= target_to_host_semid_ds(&dsarg
, target_su
.buf
);
3995 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
3996 err
= host_to_target_semid_ds(target_su
.buf
, &dsarg
);
4002 arg
.__buf
= &seminfo
;
4003 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
4004 err
= host_to_target_seminfo(target_su
.__buf
, &seminfo
);
4012 ret
= get_errno(semctl(semid
, semnum
, cmd
, NULL
));
4019 struct target_sembuf
{
4020 unsigned short sem_num
;
4025 static inline abi_long
target_to_host_sembuf(struct sembuf
*host_sembuf
,
4026 abi_ulong target_addr
,
4029 struct target_sembuf
*target_sembuf
;
4032 target_sembuf
= lock_user(VERIFY_READ
, target_addr
,
4033 nsops
*sizeof(struct target_sembuf
), 1);
4035 return -TARGET_EFAULT
;
4037 for(i
=0; i
<nsops
; i
++) {
4038 __get_user(host_sembuf
[i
].sem_num
, &target_sembuf
[i
].sem_num
);
4039 __get_user(host_sembuf
[i
].sem_op
, &target_sembuf
[i
].sem_op
);
4040 __get_user(host_sembuf
[i
].sem_flg
, &target_sembuf
[i
].sem_flg
);
4043 unlock_user(target_sembuf
, target_addr
, 0);
4048 #if defined(TARGET_NR_ipc) || defined(TARGET_NR_semop) || \
4049 defined(TARGET_NR_semtimedop) || defined(TARGET_NR_semtimedop_time64)
4052 * This macro is required to handle the s390 variants, which passes the
4053 * arguments in a different order than default.
4056 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4057 (__nsops), (__timeout), (__sops)
4059 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4060 (__nsops), 0, (__sops), (__timeout)
4063 static inline abi_long
do_semtimedop(int semid
,
4066 abi_long timeout
, bool time64
)
4068 struct sembuf
*sops
;
4069 struct timespec ts
, *pts
= NULL
;
4075 if (target_to_host_timespec64(pts
, timeout
)) {
4076 return -TARGET_EFAULT
;
4079 if (target_to_host_timespec(pts
, timeout
)) {
4080 return -TARGET_EFAULT
;
4085 if (nsops
> TARGET_SEMOPM
) {
4086 return -TARGET_E2BIG
;
4089 sops
= g_new(struct sembuf
, nsops
);
4091 if (target_to_host_sembuf(sops
, ptr
, nsops
)) {
4093 return -TARGET_EFAULT
;
4096 ret
= -TARGET_ENOSYS
;
4097 #ifdef __NR_semtimedop
4098 ret
= get_errno(safe_semtimedop(semid
, sops
, nsops
, pts
));
4101 if (ret
== -TARGET_ENOSYS
) {
4102 ret
= get_errno(safe_ipc(IPCOP_semtimedop
, semid
,
4103 SEMTIMEDOP_IPC_ARGS(nsops
, sops
, (long)pts
)));
4111 struct target_msqid_ds
4113 struct target_ipc_perm msg_perm
;
4114 abi_ulong msg_stime
;
4115 #if TARGET_ABI_BITS == 32
4116 abi_ulong __unused1
;
4118 abi_ulong msg_rtime
;
4119 #if TARGET_ABI_BITS == 32
4120 abi_ulong __unused2
;
4122 abi_ulong msg_ctime
;
4123 #if TARGET_ABI_BITS == 32
4124 abi_ulong __unused3
;
4126 abi_ulong __msg_cbytes
;
4128 abi_ulong msg_qbytes
;
4129 abi_ulong msg_lspid
;
4130 abi_ulong msg_lrpid
;
4131 abi_ulong __unused4
;
4132 abi_ulong __unused5
;
4135 static inline abi_long
target_to_host_msqid_ds(struct msqid_ds
*host_md
,
4136 abi_ulong target_addr
)
4138 struct target_msqid_ds
*target_md
;
4140 if (!lock_user_struct(VERIFY_READ
, target_md
, target_addr
, 1))
4141 return -TARGET_EFAULT
;
4142 if (target_to_host_ipc_perm(&(host_md
->msg_perm
),target_addr
))
4143 return -TARGET_EFAULT
;
4144 host_md
->msg_stime
= tswapal(target_md
->msg_stime
);
4145 host_md
->msg_rtime
= tswapal(target_md
->msg_rtime
);
4146 host_md
->msg_ctime
= tswapal(target_md
->msg_ctime
);
4147 host_md
->__msg_cbytes
= tswapal(target_md
->__msg_cbytes
);
4148 host_md
->msg_qnum
= tswapal(target_md
->msg_qnum
);
4149 host_md
->msg_qbytes
= tswapal(target_md
->msg_qbytes
);
4150 host_md
->msg_lspid
= tswapal(target_md
->msg_lspid
);
4151 host_md
->msg_lrpid
= tswapal(target_md
->msg_lrpid
);
4152 unlock_user_struct(target_md
, target_addr
, 0);
4156 static inline abi_long
host_to_target_msqid_ds(abi_ulong target_addr
,
4157 struct msqid_ds
*host_md
)
4159 struct target_msqid_ds
*target_md
;
4161 if (!lock_user_struct(VERIFY_WRITE
, target_md
, target_addr
, 0))
4162 return -TARGET_EFAULT
;
4163 if (host_to_target_ipc_perm(target_addr
,&(host_md
->msg_perm
)))
4164 return -TARGET_EFAULT
;
4165 target_md
->msg_stime
= tswapal(host_md
->msg_stime
);
4166 target_md
->msg_rtime
= tswapal(host_md
->msg_rtime
);
4167 target_md
->msg_ctime
= tswapal(host_md
->msg_ctime
);
4168 target_md
->__msg_cbytes
= tswapal(host_md
->__msg_cbytes
);
4169 target_md
->msg_qnum
= tswapal(host_md
->msg_qnum
);
4170 target_md
->msg_qbytes
= tswapal(host_md
->msg_qbytes
);
4171 target_md
->msg_lspid
= tswapal(host_md
->msg_lspid
);
4172 target_md
->msg_lrpid
= tswapal(host_md
->msg_lrpid
);
4173 unlock_user_struct(target_md
, target_addr
, 1);
4177 struct target_msginfo
{
4185 unsigned short int msgseg
;
4188 static inline abi_long
host_to_target_msginfo(abi_ulong target_addr
,
4189 struct msginfo
*host_msginfo
)
4191 struct target_msginfo
*target_msginfo
;
4192 if (!lock_user_struct(VERIFY_WRITE
, target_msginfo
, target_addr
, 0))
4193 return -TARGET_EFAULT
;
4194 __put_user(host_msginfo
->msgpool
, &target_msginfo
->msgpool
);
4195 __put_user(host_msginfo
->msgmap
, &target_msginfo
->msgmap
);
4196 __put_user(host_msginfo
->msgmax
, &target_msginfo
->msgmax
);
4197 __put_user(host_msginfo
->msgmnb
, &target_msginfo
->msgmnb
);
4198 __put_user(host_msginfo
->msgmni
, &target_msginfo
->msgmni
);
4199 __put_user(host_msginfo
->msgssz
, &target_msginfo
->msgssz
);
4200 __put_user(host_msginfo
->msgtql
, &target_msginfo
->msgtql
);
4201 __put_user(host_msginfo
->msgseg
, &target_msginfo
->msgseg
);
4202 unlock_user_struct(target_msginfo
, target_addr
, 1);
4206 static inline abi_long
do_msgctl(int msgid
, int cmd
, abi_long ptr
)
4208 struct msqid_ds dsarg
;
4209 struct msginfo msginfo
;
4210 abi_long ret
= -TARGET_EINVAL
;
4218 if (target_to_host_msqid_ds(&dsarg
,ptr
))
4219 return -TARGET_EFAULT
;
4220 ret
= get_errno(msgctl(msgid
, cmd
, &dsarg
));
4221 if (host_to_target_msqid_ds(ptr
,&dsarg
))
4222 return -TARGET_EFAULT
;
4225 ret
= get_errno(msgctl(msgid
, cmd
, NULL
));
4229 ret
= get_errno(msgctl(msgid
, cmd
, (struct msqid_ds
*)&msginfo
));
4230 if (host_to_target_msginfo(ptr
, &msginfo
))
4231 return -TARGET_EFAULT
;
4238 struct target_msgbuf
{
4243 static inline abi_long
do_msgsnd(int msqid
, abi_long msgp
,
4244 ssize_t msgsz
, int msgflg
)
4246 struct target_msgbuf
*target_mb
;
4247 struct msgbuf
*host_mb
;
4251 return -TARGET_EINVAL
;
4254 if (!lock_user_struct(VERIFY_READ
, target_mb
, msgp
, 0))
4255 return -TARGET_EFAULT
;
4256 host_mb
= g_try_malloc(msgsz
+ sizeof(long));
4258 unlock_user_struct(target_mb
, msgp
, 0);
4259 return -TARGET_ENOMEM
;
4261 host_mb
->mtype
= (abi_long
) tswapal(target_mb
->mtype
);
4262 memcpy(host_mb
->mtext
, target_mb
->mtext
, msgsz
);
4263 ret
= -TARGET_ENOSYS
;
4265 ret
= get_errno(safe_msgsnd(msqid
, host_mb
, msgsz
, msgflg
));
4268 if (ret
== -TARGET_ENOSYS
) {
4270 ret
= get_errno(safe_ipc(IPCOP_msgsnd
, msqid
, msgsz
, msgflg
,
4273 ret
= get_errno(safe_ipc(IPCOP_msgsnd
, msqid
, msgsz
, msgflg
,
4279 unlock_user_struct(target_mb
, msgp
, 0);
4285 #if defined(__sparc__)
4286 /* SPARC for msgrcv it does not use the kludge on final 2 arguments. */
4287 #define MSGRCV_ARGS(__msgp, __msgtyp) __msgp, __msgtyp
4288 #elif defined(__s390x__)
4289 /* The s390 sys_ipc variant has only five parameters. */
4290 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4291 ((long int[]){(long int)__msgp, __msgtyp})
4293 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4294 ((long int[]){(long int)__msgp, __msgtyp}), 0
4298 static inline abi_long
do_msgrcv(int msqid
, abi_long msgp
,
4299 ssize_t msgsz
, abi_long msgtyp
,
4302 struct target_msgbuf
*target_mb
;
4304 struct msgbuf
*host_mb
;
4308 return -TARGET_EINVAL
;
4311 if (!lock_user_struct(VERIFY_WRITE
, target_mb
, msgp
, 0))
4312 return -TARGET_EFAULT
;
4314 host_mb
= g_try_malloc(msgsz
+ sizeof(long));
4316 ret
= -TARGET_ENOMEM
;
4319 ret
= -TARGET_ENOSYS
;
4321 ret
= get_errno(safe_msgrcv(msqid
, host_mb
, msgsz
, msgtyp
, msgflg
));
4324 if (ret
== -TARGET_ENOSYS
) {
4325 ret
= get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv
), msqid
, msgsz
,
4326 msgflg
, MSGRCV_ARGS(host_mb
, msgtyp
)));
4331 abi_ulong target_mtext_addr
= msgp
+ sizeof(abi_ulong
);
4332 target_mtext
= lock_user(VERIFY_WRITE
, target_mtext_addr
, ret
, 0);
4333 if (!target_mtext
) {
4334 ret
= -TARGET_EFAULT
;
4337 memcpy(target_mb
->mtext
, host_mb
->mtext
, ret
);
4338 unlock_user(target_mtext
, target_mtext_addr
, ret
);
4341 target_mb
->mtype
= tswapal(host_mb
->mtype
);
4345 unlock_user_struct(target_mb
, msgp
, 1);
4350 static inline abi_long
target_to_host_shmid_ds(struct shmid_ds
*host_sd
,
4351 abi_ulong target_addr
)
4353 struct target_shmid_ds
*target_sd
;
4355 if (!lock_user_struct(VERIFY_READ
, target_sd
, target_addr
, 1))
4356 return -TARGET_EFAULT
;
4357 if (target_to_host_ipc_perm(&(host_sd
->shm_perm
), target_addr
))
4358 return -TARGET_EFAULT
;
4359 __get_user(host_sd
->shm_segsz
, &target_sd
->shm_segsz
);
4360 __get_user(host_sd
->shm_atime
, &target_sd
->shm_atime
);
4361 __get_user(host_sd
->shm_dtime
, &target_sd
->shm_dtime
);
4362 __get_user(host_sd
->shm_ctime
, &target_sd
->shm_ctime
);
4363 __get_user(host_sd
->shm_cpid
, &target_sd
->shm_cpid
);
4364 __get_user(host_sd
->shm_lpid
, &target_sd
->shm_lpid
);
4365 __get_user(host_sd
->shm_nattch
, &target_sd
->shm_nattch
);
4366 unlock_user_struct(target_sd
, target_addr
, 0);
4370 static inline abi_long
host_to_target_shmid_ds(abi_ulong target_addr
,
4371 struct shmid_ds
*host_sd
)
4373 struct target_shmid_ds
*target_sd
;
4375 if (!lock_user_struct(VERIFY_WRITE
, target_sd
, target_addr
, 0))
4376 return -TARGET_EFAULT
;
4377 if (host_to_target_ipc_perm(target_addr
, &(host_sd
->shm_perm
)))
4378 return -TARGET_EFAULT
;
4379 __put_user(host_sd
->shm_segsz
, &target_sd
->shm_segsz
);
4380 __put_user(host_sd
->shm_atime
, &target_sd
->shm_atime
);
4381 __put_user(host_sd
->shm_dtime
, &target_sd
->shm_dtime
);
4382 __put_user(host_sd
->shm_ctime
, &target_sd
->shm_ctime
);
4383 __put_user(host_sd
->shm_cpid
, &target_sd
->shm_cpid
);
4384 __put_user(host_sd
->shm_lpid
, &target_sd
->shm_lpid
);
4385 __put_user(host_sd
->shm_nattch
, &target_sd
->shm_nattch
);
4386 unlock_user_struct(target_sd
, target_addr
, 1);
4390 struct target_shminfo
{
4398 static inline abi_long
host_to_target_shminfo(abi_ulong target_addr
,
4399 struct shminfo
*host_shminfo
)
4401 struct target_shminfo
*target_shminfo
;
4402 if (!lock_user_struct(VERIFY_WRITE
, target_shminfo
, target_addr
, 0))
4403 return -TARGET_EFAULT
;
4404 __put_user(host_shminfo
->shmmax
, &target_shminfo
->shmmax
);
4405 __put_user(host_shminfo
->shmmin
, &target_shminfo
->shmmin
);
4406 __put_user(host_shminfo
->shmmni
, &target_shminfo
->shmmni
);
4407 __put_user(host_shminfo
->shmseg
, &target_shminfo
->shmseg
);
4408 __put_user(host_shminfo
->shmall
, &target_shminfo
->shmall
);
4409 unlock_user_struct(target_shminfo
, target_addr
, 1);
4413 struct target_shm_info
{
4418 abi_ulong swap_attempts
;
4419 abi_ulong swap_successes
;
4422 static inline abi_long
host_to_target_shm_info(abi_ulong target_addr
,
4423 struct shm_info
*host_shm_info
)
4425 struct target_shm_info
*target_shm_info
;
4426 if (!lock_user_struct(VERIFY_WRITE
, target_shm_info
, target_addr
, 0))
4427 return -TARGET_EFAULT
;
4428 __put_user(host_shm_info
->used_ids
, &target_shm_info
->used_ids
);
4429 __put_user(host_shm_info
->shm_tot
, &target_shm_info
->shm_tot
);
4430 __put_user(host_shm_info
->shm_rss
, &target_shm_info
->shm_rss
);
4431 __put_user(host_shm_info
->shm_swp
, &target_shm_info
->shm_swp
);
4432 __put_user(host_shm_info
->swap_attempts
, &target_shm_info
->swap_attempts
);
4433 __put_user(host_shm_info
->swap_successes
, &target_shm_info
->swap_successes
);
4434 unlock_user_struct(target_shm_info
, target_addr
, 1);
4438 static inline abi_long
do_shmctl(int shmid
, int cmd
, abi_long buf
)
4440 struct shmid_ds dsarg
;
4441 struct shminfo shminfo
;
4442 struct shm_info shm_info
;
4443 abi_long ret
= -TARGET_EINVAL
;
4451 if (target_to_host_shmid_ds(&dsarg
, buf
))
4452 return -TARGET_EFAULT
;
4453 ret
= get_errno(shmctl(shmid
, cmd
, &dsarg
));
4454 if (host_to_target_shmid_ds(buf
, &dsarg
))
4455 return -TARGET_EFAULT
;
4458 ret
= get_errno(shmctl(shmid
, cmd
, (struct shmid_ds
*)&shminfo
));
4459 if (host_to_target_shminfo(buf
, &shminfo
))
4460 return -TARGET_EFAULT
;
4463 ret
= get_errno(shmctl(shmid
, cmd
, (struct shmid_ds
*)&shm_info
));
4464 if (host_to_target_shm_info(buf
, &shm_info
))
4465 return -TARGET_EFAULT
;
4470 ret
= get_errno(shmctl(shmid
, cmd
, NULL
));
4477 #ifdef TARGET_NR_ipc
4478 /* ??? This only works with linear mappings. */
4479 /* do_ipc() must return target values and target errnos. */
4480 static abi_long
do_ipc(CPUArchState
*cpu_env
,
4481 unsigned int call
, abi_long first
,
4482 abi_long second
, abi_long third
,
4483 abi_long ptr
, abi_long fifth
)
4488 version
= call
>> 16;
4493 ret
= do_semtimedop(first
, ptr
, second
, 0, false);
4495 case IPCOP_semtimedop
:
4497 * The s390 sys_ipc variant has only five parameters instead of six
4498 * (as for default variant) and the only difference is the handling of
4499 * SEMTIMEDOP where on s390 the third parameter is used as a pointer
4500 * to a struct timespec where the generic variant uses fifth parameter.
4502 #if defined(TARGET_S390X)
4503 ret
= do_semtimedop(first
, ptr
, second
, third
, TARGET_ABI_BITS
== 64);
4505 ret
= do_semtimedop(first
, ptr
, second
, fifth
, TARGET_ABI_BITS
== 64);
4510 ret
= get_errno(semget(first
, second
, third
));
4513 case IPCOP_semctl
: {
4514 /* The semun argument to semctl is passed by value, so dereference the
4517 get_user_ual(atptr
, ptr
);
4518 ret
= do_semctl(first
, second
, third
, atptr
);
4523 ret
= get_errno(msgget(first
, second
));
4527 ret
= do_msgsnd(first
, ptr
, second
, third
);
4531 ret
= do_msgctl(first
, second
, ptr
);
4538 struct target_ipc_kludge
{
4543 if (!lock_user_struct(VERIFY_READ
, tmp
, ptr
, 1)) {
4544 ret
= -TARGET_EFAULT
;
4548 ret
= do_msgrcv(first
, tswapal(tmp
->msgp
), second
, tswapal(tmp
->msgtyp
), third
);
4550 unlock_user_struct(tmp
, ptr
, 0);
4554 ret
= do_msgrcv(first
, ptr
, second
, fifth
, third
);
4563 raddr
= target_shmat(cpu_env
, first
, ptr
, second
);
4564 if (is_error(raddr
))
4565 return get_errno(raddr
);
4566 if (put_user_ual(raddr
, third
))
4567 return -TARGET_EFAULT
;
4571 ret
= -TARGET_EINVAL
;
4576 ret
= target_shmdt(ptr
);
4580 /* IPC_* flag values are the same on all linux platforms */
4581 ret
= get_errno(shmget(first
, second
, third
));
4584 /* IPC_* and SHM_* command values are the same on all linux platforms */
4586 ret
= do_shmctl(first
, second
, ptr
);
4589 qemu_log_mask(LOG_UNIMP
, "Unsupported ipc call: %d (version %d)\n",
4591 ret
= -TARGET_ENOSYS
;
4598 /* kernel structure types definitions */
4600 #define STRUCT(name, ...) STRUCT_ ## name,
4601 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
4603 #include "syscall_types.h"
4607 #undef STRUCT_SPECIAL
4609 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL };
4610 #define STRUCT_SPECIAL(name)
4611 #include "syscall_types.h"
4613 #undef STRUCT_SPECIAL
4615 #define MAX_STRUCT_SIZE 4096
4617 #ifdef CONFIG_FIEMAP
4618 /* So fiemap access checks don't overflow on 32 bit systems.
4619 * This is very slightly smaller than the limit imposed by
4620 * the underlying kernel.
4622 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \
4623 / sizeof(struct fiemap_extent))
4625 static abi_long
do_ioctl_fs_ioc_fiemap(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
4626 int fd
, int cmd
, abi_long arg
)
4628 /* The parameter for this ioctl is a struct fiemap followed
4629 * by an array of struct fiemap_extent whose size is set
4630 * in fiemap->fm_extent_count. The array is filled in by the
4633 int target_size_in
, target_size_out
;
4635 const argtype
*arg_type
= ie
->arg_type
;
4636 const argtype extent_arg_type
[] = { MK_STRUCT(STRUCT_fiemap_extent
) };
4639 int i
, extent_size
= thunk_type_size(extent_arg_type
, 0);
4643 assert(arg_type
[0] == TYPE_PTR
);
4644 assert(ie
->access
== IOC_RW
);
4646 target_size_in
= thunk_type_size(arg_type
, 0);
4647 argptr
= lock_user(VERIFY_READ
, arg
, target_size_in
, 1);
4649 return -TARGET_EFAULT
;
4651 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
4652 unlock_user(argptr
, arg
, 0);
4653 fm
= (struct fiemap
*)buf_temp
;
4654 if (fm
->fm_extent_count
> FIEMAP_MAX_EXTENTS
) {
4655 return -TARGET_EINVAL
;
4658 outbufsz
= sizeof (*fm
) +
4659 (sizeof(struct fiemap_extent
) * fm
->fm_extent_count
);
4661 if (outbufsz
> MAX_STRUCT_SIZE
) {
4662 /* We can't fit all the extents into the fixed size buffer.
4663 * Allocate one that is large enough and use it instead.
4665 fm
= g_try_malloc(outbufsz
);
4667 return -TARGET_ENOMEM
;
4669 memcpy(fm
, buf_temp
, sizeof(struct fiemap
));
4672 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, fm
));
4673 if (!is_error(ret
)) {
4674 target_size_out
= target_size_in
;
4675 /* An extent_count of 0 means we were only counting the extents
4676 * so there are no structs to copy
4678 if (fm
->fm_extent_count
!= 0) {
4679 target_size_out
+= fm
->fm_mapped_extents
* extent_size
;
4681 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size_out
, 0);
4683 ret
= -TARGET_EFAULT
;
4685 /* Convert the struct fiemap */
4686 thunk_convert(argptr
, fm
, arg_type
, THUNK_TARGET
);
4687 if (fm
->fm_extent_count
!= 0) {
4688 p
= argptr
+ target_size_in
;
4689 /* ...and then all the struct fiemap_extents */
4690 for (i
= 0; i
< fm
->fm_mapped_extents
; i
++) {
4691 thunk_convert(p
, &fm
->fm_extents
[i
], extent_arg_type
,
4696 unlock_user(argptr
, arg
, target_size_out
);
4706 static abi_long
do_ioctl_ifconf(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
4707 int fd
, int cmd
, abi_long arg
)
4709 const argtype
*arg_type
= ie
->arg_type
;
4713 struct ifconf
*host_ifconf
;
4715 const argtype ifreq_arg_type
[] = { MK_STRUCT(STRUCT_sockaddr_ifreq
) };
4716 const argtype ifreq_max_type
[] = { MK_STRUCT(STRUCT_ifmap_ifreq
) };
4717 int target_ifreq_size
;
4722 abi_long target_ifc_buf
;
4726 assert(arg_type
[0] == TYPE_PTR
);
4727 assert(ie
->access
== IOC_RW
);
4730 target_size
= thunk_type_size(arg_type
, 0);
4732 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
4734 return -TARGET_EFAULT
;
4735 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
4736 unlock_user(argptr
, arg
, 0);
4738 host_ifconf
= (struct ifconf
*)(unsigned long)buf_temp
;
4739 target_ifc_buf
= (abi_long
)(unsigned long)host_ifconf
->ifc_buf
;
4740 target_ifreq_size
= thunk_type_size(ifreq_max_type
, 0);
4742 if (target_ifc_buf
!= 0) {
4743 target_ifc_len
= host_ifconf
->ifc_len
;
4744 nb_ifreq
= target_ifc_len
/ target_ifreq_size
;
4745 host_ifc_len
= nb_ifreq
* sizeof(struct ifreq
);
4747 outbufsz
= sizeof(*host_ifconf
) + host_ifc_len
;
4748 if (outbufsz
> MAX_STRUCT_SIZE
) {
4750 * We can't fit all the extents into the fixed size buffer.
4751 * Allocate one that is large enough and use it instead.
4753 host_ifconf
= g_try_malloc(outbufsz
);
4755 return -TARGET_ENOMEM
;
4757 memcpy(host_ifconf
, buf_temp
, sizeof(*host_ifconf
));
4760 host_ifc_buf
= (char *)host_ifconf
+ sizeof(*host_ifconf
);
4762 host_ifconf
->ifc_len
= host_ifc_len
;
4764 host_ifc_buf
= NULL
;
4766 host_ifconf
->ifc_buf
= host_ifc_buf
;
4768 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, host_ifconf
));
4769 if (!is_error(ret
)) {
4770 /* convert host ifc_len to target ifc_len */
4772 nb_ifreq
= host_ifconf
->ifc_len
/ sizeof(struct ifreq
);
4773 target_ifc_len
= nb_ifreq
* target_ifreq_size
;
4774 host_ifconf
->ifc_len
= target_ifc_len
;
4776 /* restore target ifc_buf */
4778 host_ifconf
->ifc_buf
= (char *)(unsigned long)target_ifc_buf
;
4780 /* copy struct ifconf to target user */
4782 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
4784 return -TARGET_EFAULT
;
4785 thunk_convert(argptr
, host_ifconf
, arg_type
, THUNK_TARGET
);
4786 unlock_user(argptr
, arg
, target_size
);
4788 if (target_ifc_buf
!= 0) {
4789 /* copy ifreq[] to target user */
4790 argptr
= lock_user(VERIFY_WRITE
, target_ifc_buf
, target_ifc_len
, 0);
4791 for (i
= 0; i
< nb_ifreq
; i
++) {
4792 thunk_convert(argptr
+ i
* target_ifreq_size
,
4793 host_ifc_buf
+ i
* sizeof(struct ifreq
),
4794 ifreq_arg_type
, THUNK_TARGET
);
4796 unlock_user(argptr
, target_ifc_buf
, target_ifc_len
);
4801 g_free(host_ifconf
);
4807 #if defined(CONFIG_USBFS)
4808 #if HOST_LONG_BITS > 64
4809 #error USBDEVFS thunks do not support >64 bit hosts yet.
4812 uint64_t target_urb_adr
;
4813 uint64_t target_buf_adr
;
4814 char *target_buf_ptr
;
4815 struct usbdevfs_urb host_urb
;
4818 static GHashTable
*usbdevfs_urb_hashtable(void)
4820 static GHashTable
*urb_hashtable
;
4822 if (!urb_hashtable
) {
4823 urb_hashtable
= g_hash_table_new(g_int64_hash
, g_int64_equal
);
4825 return urb_hashtable
;
4828 static void urb_hashtable_insert(struct live_urb
*urb
)
4830 GHashTable
*urb_hashtable
= usbdevfs_urb_hashtable();
4831 g_hash_table_insert(urb_hashtable
, urb
, urb
);
4834 static struct live_urb
*urb_hashtable_lookup(uint64_t target_urb_adr
)
4836 GHashTable
*urb_hashtable
= usbdevfs_urb_hashtable();
4837 return g_hash_table_lookup(urb_hashtable
, &target_urb_adr
);
4840 static void urb_hashtable_remove(struct live_urb
*urb
)
4842 GHashTable
*urb_hashtable
= usbdevfs_urb_hashtable();
4843 g_hash_table_remove(urb_hashtable
, urb
);
4847 do_ioctl_usbdevfs_reapurb(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
4848 int fd
, int cmd
, abi_long arg
)
4850 const argtype usbfsurb_arg_type
[] = { MK_STRUCT(STRUCT_usbdevfs_urb
) };
4851 const argtype ptrvoid_arg_type
[] = { TYPE_PTRVOID
, 0, 0 };
4852 struct live_urb
*lurb
;
4856 uintptr_t target_urb_adr
;
4859 target_size
= thunk_type_size(usbfsurb_arg_type
, THUNK_TARGET
);
4861 memset(buf_temp
, 0, sizeof(uint64_t));
4862 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
4863 if (is_error(ret
)) {
4867 memcpy(&hurb
, buf_temp
, sizeof(uint64_t));
4868 lurb
= (void *)((uintptr_t)hurb
- offsetof(struct live_urb
, host_urb
));
4869 if (!lurb
->target_urb_adr
) {
4870 return -TARGET_EFAULT
;
4872 urb_hashtable_remove(lurb
);
4873 unlock_user(lurb
->target_buf_ptr
, lurb
->target_buf_adr
,
4874 lurb
->host_urb
.buffer_length
);
4875 lurb
->target_buf_ptr
= NULL
;
4877 /* restore the guest buffer pointer */
4878 lurb
->host_urb
.buffer
= (void *)(uintptr_t)lurb
->target_buf_adr
;
4880 /* update the guest urb struct */
4881 argptr
= lock_user(VERIFY_WRITE
, lurb
->target_urb_adr
, target_size
, 0);
4884 return -TARGET_EFAULT
;
4886 thunk_convert(argptr
, &lurb
->host_urb
, usbfsurb_arg_type
, THUNK_TARGET
);
4887 unlock_user(argptr
, lurb
->target_urb_adr
, target_size
);
4889 target_size
= thunk_type_size(ptrvoid_arg_type
, THUNK_TARGET
);
4890 /* write back the urb handle */
4891 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
4894 return -TARGET_EFAULT
;
4897 /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */
4898 target_urb_adr
= lurb
->target_urb_adr
;
4899 thunk_convert(argptr
, &target_urb_adr
, ptrvoid_arg_type
, THUNK_TARGET
);
4900 unlock_user(argptr
, arg
, target_size
);
4907 do_ioctl_usbdevfs_discardurb(const IOCTLEntry
*ie
,
4908 uint8_t *buf_temp
__attribute__((unused
)),
4909 int fd
, int cmd
, abi_long arg
)
4911 struct live_urb
*lurb
;
4913 /* map target address back to host URB with metadata. */
4914 lurb
= urb_hashtable_lookup(arg
);
4916 return -TARGET_EFAULT
;
4918 return get_errno(safe_ioctl(fd
, ie
->host_cmd
, &lurb
->host_urb
));
4922 do_ioctl_usbdevfs_submiturb(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
4923 int fd
, int cmd
, abi_long arg
)
4925 const argtype
*arg_type
= ie
->arg_type
;
4930 struct live_urb
*lurb
;
4933 * each submitted URB needs to map to a unique ID for the
4934 * kernel, and that unique ID needs to be a pointer to
4935 * host memory. hence, we need to malloc for each URB.
4936 * isochronous transfers have a variable length struct.
4939 target_size
= thunk_type_size(arg_type
, THUNK_TARGET
);
4941 /* construct host copy of urb and metadata */
4942 lurb
= g_try_new0(struct live_urb
, 1);
4944 return -TARGET_ENOMEM
;
4947 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
4950 return -TARGET_EFAULT
;
4952 thunk_convert(&lurb
->host_urb
, argptr
, arg_type
, THUNK_HOST
);
4953 unlock_user(argptr
, arg
, 0);
4955 lurb
->target_urb_adr
= arg
;
4956 lurb
->target_buf_adr
= (uintptr_t)lurb
->host_urb
.buffer
;
4958 /* buffer space used depends on endpoint type so lock the entire buffer */
4959 /* control type urbs should check the buffer contents for true direction */
4960 rw_dir
= lurb
->host_urb
.endpoint
& USB_DIR_IN
? VERIFY_WRITE
: VERIFY_READ
;
4961 lurb
->target_buf_ptr
= lock_user(rw_dir
, lurb
->target_buf_adr
,
4962 lurb
->host_urb
.buffer_length
, 1);
4963 if (lurb
->target_buf_ptr
== NULL
) {
4965 return -TARGET_EFAULT
;
4968 /* update buffer pointer in host copy */
4969 lurb
->host_urb
.buffer
= lurb
->target_buf_ptr
;
4971 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, &lurb
->host_urb
));
4972 if (is_error(ret
)) {
4973 unlock_user(lurb
->target_buf_ptr
, lurb
->target_buf_adr
, 0);
4976 urb_hashtable_insert(lurb
);
4981 #endif /* CONFIG_USBFS */
4983 static abi_long
do_ioctl_dm(const IOCTLEntry
*ie
, uint8_t *buf_temp
, int fd
,
4984 int cmd
, abi_long arg
)
4987 struct dm_ioctl
*host_dm
;
4988 abi_long guest_data
;
4989 uint32_t guest_data_size
;
4991 const argtype
*arg_type
= ie
->arg_type
;
4993 void *big_buf
= NULL
;
4997 target_size
= thunk_type_size(arg_type
, 0);
4998 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5000 ret
= -TARGET_EFAULT
;
5003 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
5004 unlock_user(argptr
, arg
, 0);
5006 /* buf_temp is too small, so fetch things into a bigger buffer */
5007 big_buf
= g_malloc0(((struct dm_ioctl
*)buf_temp
)->data_size
* 2);
5008 memcpy(big_buf
, buf_temp
, target_size
);
5012 guest_data
= arg
+ host_dm
->data_start
;
5013 if ((guest_data
- arg
) < 0) {
5014 ret
= -TARGET_EINVAL
;
5017 guest_data_size
= host_dm
->data_size
- host_dm
->data_start
;
5018 host_data
= (char*)host_dm
+ host_dm
->data_start
;
5020 argptr
= lock_user(VERIFY_READ
, guest_data
, guest_data_size
, 1);
5022 ret
= -TARGET_EFAULT
;
5026 switch (ie
->host_cmd
) {
5028 case DM_LIST_DEVICES
:
5031 case DM_DEV_SUSPEND
:
5034 case DM_TABLE_STATUS
:
5035 case DM_TABLE_CLEAR
:
5037 case DM_LIST_VERSIONS
:
5041 case DM_DEV_SET_GEOMETRY
:
5042 /* data contains only strings */
5043 memcpy(host_data
, argptr
, guest_data_size
);
5046 memcpy(host_data
, argptr
, guest_data_size
);
5047 *(uint64_t*)host_data
= tswap64(*(uint64_t*)argptr
);
5051 void *gspec
= argptr
;
5052 void *cur_data
= host_data
;
5053 const argtype dm_arg_type
[] = { MK_STRUCT(STRUCT_dm_target_spec
) };
5054 int spec_size
= thunk_type_size(dm_arg_type
, 0);
5057 for (i
= 0; i
< host_dm
->target_count
; i
++) {
5058 struct dm_target_spec
*spec
= cur_data
;
5062 thunk_convert(spec
, gspec
, dm_arg_type
, THUNK_HOST
);
5063 slen
= strlen((char*)gspec
+ spec_size
) + 1;
5065 spec
->next
= sizeof(*spec
) + slen
;
5066 strcpy((char*)&spec
[1], gspec
+ spec_size
);
5068 cur_data
+= spec
->next
;
5073 ret
= -TARGET_EINVAL
;
5074 unlock_user(argptr
, guest_data
, 0);
5077 unlock_user(argptr
, guest_data
, 0);
5079 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
5080 if (!is_error(ret
)) {
5081 guest_data
= arg
+ host_dm
->data_start
;
5082 guest_data_size
= host_dm
->data_size
- host_dm
->data_start
;
5083 argptr
= lock_user(VERIFY_WRITE
, guest_data
, guest_data_size
, 0);
5084 switch (ie
->host_cmd
) {
5089 case DM_DEV_SUSPEND
:
5092 case DM_TABLE_CLEAR
:
5094 case DM_DEV_SET_GEOMETRY
:
5095 /* no return data */
5097 case DM_LIST_DEVICES
:
5099 struct dm_name_list
*nl
= (void*)host_dm
+ host_dm
->data_start
;
5100 uint32_t remaining_data
= guest_data_size
;
5101 void *cur_data
= argptr
;
5102 const argtype dm_arg_type
[] = { MK_STRUCT(STRUCT_dm_name_list
) };
5103 int nl_size
= 12; /* can't use thunk_size due to alignment */
5106 uint32_t next
= nl
->next
;
5108 nl
->next
= nl_size
+ (strlen(nl
->name
) + 1);
5110 if (remaining_data
< nl
->next
) {
5111 host_dm
->flags
|= DM_BUFFER_FULL_FLAG
;
5114 thunk_convert(cur_data
, nl
, dm_arg_type
, THUNK_TARGET
);
5115 strcpy(cur_data
+ nl_size
, nl
->name
);
5116 cur_data
+= nl
->next
;
5117 remaining_data
-= nl
->next
;
5121 nl
= (void*)nl
+ next
;
5126 case DM_TABLE_STATUS
:
5128 struct dm_target_spec
*spec
= (void*)host_dm
+ host_dm
->data_start
;
5129 void *cur_data
= argptr
;
5130 const argtype dm_arg_type
[] = { MK_STRUCT(STRUCT_dm_target_spec
) };
5131 int spec_size
= thunk_type_size(dm_arg_type
, 0);
5134 for (i
= 0; i
< host_dm
->target_count
; i
++) {
5135 uint32_t next
= spec
->next
;
5136 int slen
= strlen((char*)&spec
[1]) + 1;
5137 spec
->next
= (cur_data
- argptr
) + spec_size
+ slen
;
5138 if (guest_data_size
< spec
->next
) {
5139 host_dm
->flags
|= DM_BUFFER_FULL_FLAG
;
5142 thunk_convert(cur_data
, spec
, dm_arg_type
, THUNK_TARGET
);
5143 strcpy(cur_data
+ spec_size
, (char*)&spec
[1]);
5144 cur_data
= argptr
+ spec
->next
;
5145 spec
= (void*)host_dm
+ host_dm
->data_start
+ next
;
5151 void *hdata
= (void*)host_dm
+ host_dm
->data_start
;
5152 int count
= *(uint32_t*)hdata
;
5153 uint64_t *hdev
= hdata
+ 8;
5154 uint64_t *gdev
= argptr
+ 8;
5157 *(uint32_t*)argptr
= tswap32(count
);
5158 for (i
= 0; i
< count
; i
++) {
5159 *gdev
= tswap64(*hdev
);
5165 case DM_LIST_VERSIONS
:
5167 struct dm_target_versions
*vers
= (void*)host_dm
+ host_dm
->data_start
;
5168 uint32_t remaining_data
= guest_data_size
;
5169 void *cur_data
= argptr
;
5170 const argtype dm_arg_type
[] = { MK_STRUCT(STRUCT_dm_target_versions
) };
5171 int vers_size
= thunk_type_size(dm_arg_type
, 0);
5174 uint32_t next
= vers
->next
;
5176 vers
->next
= vers_size
+ (strlen(vers
->name
) + 1);
5178 if (remaining_data
< vers
->next
) {
5179 host_dm
->flags
|= DM_BUFFER_FULL_FLAG
;
5182 thunk_convert(cur_data
, vers
, dm_arg_type
, THUNK_TARGET
);
5183 strcpy(cur_data
+ vers_size
, vers
->name
);
5184 cur_data
+= vers
->next
;
5185 remaining_data
-= vers
->next
;
5189 vers
= (void*)vers
+ next
;
5194 unlock_user(argptr
, guest_data
, 0);
5195 ret
= -TARGET_EINVAL
;
5198 unlock_user(argptr
, guest_data
, guest_data_size
);
5200 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
5202 ret
= -TARGET_EFAULT
;
5205 thunk_convert(argptr
, buf_temp
, arg_type
, THUNK_TARGET
);
5206 unlock_user(argptr
, arg
, target_size
);
5213 static abi_long
do_ioctl_blkpg(const IOCTLEntry
*ie
, uint8_t *buf_temp
, int fd
,
5214 int cmd
, abi_long arg
)
5218 const argtype
*arg_type
= ie
->arg_type
;
5219 const argtype part_arg_type
[] = { MK_STRUCT(STRUCT_blkpg_partition
) };
5222 struct blkpg_ioctl_arg
*host_blkpg
= (void*)buf_temp
;
5223 struct blkpg_partition host_part
;
5225 /* Read and convert blkpg */
5227 target_size
= thunk_type_size(arg_type
, 0);
5228 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5230 ret
= -TARGET_EFAULT
;
5233 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
5234 unlock_user(argptr
, arg
, 0);
5236 switch (host_blkpg
->op
) {
5237 case BLKPG_ADD_PARTITION
:
5238 case BLKPG_DEL_PARTITION
:
5239 /* payload is struct blkpg_partition */
5242 /* Unknown opcode */
5243 ret
= -TARGET_EINVAL
;
5247 /* Read and convert blkpg->data */
5248 arg
= (abi_long
)(uintptr_t)host_blkpg
->data
;
5249 target_size
= thunk_type_size(part_arg_type
, 0);
5250 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5252 ret
= -TARGET_EFAULT
;
5255 thunk_convert(&host_part
, argptr
, part_arg_type
, THUNK_HOST
);
5256 unlock_user(argptr
, arg
, 0);
5258 /* Swizzle the data pointer to our local copy and call! */
5259 host_blkpg
->data
= &host_part
;
5260 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, host_blkpg
));
5266 static abi_long
do_ioctl_rt(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5267 int fd
, int cmd
, abi_long arg
)
5269 const argtype
*arg_type
= ie
->arg_type
;
5270 const StructEntry
*se
;
5271 const argtype
*field_types
;
5272 const int *dst_offsets
, *src_offsets
;
5275 abi_ulong
*target_rt_dev_ptr
= NULL
;
5276 unsigned long *host_rt_dev_ptr
= NULL
;
5280 assert(ie
->access
== IOC_W
);
5281 assert(*arg_type
== TYPE_PTR
);
5283 assert(*arg_type
== TYPE_STRUCT
);
5284 target_size
= thunk_type_size(arg_type
, 0);
5285 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5287 return -TARGET_EFAULT
;
5290 assert(*arg_type
== (int)STRUCT_rtentry
);
5291 se
= struct_entries
+ *arg_type
++;
5292 assert(se
->convert
[0] == NULL
);
5293 /* convert struct here to be able to catch rt_dev string */
5294 field_types
= se
->field_types
;
5295 dst_offsets
= se
->field_offsets
[THUNK_HOST
];
5296 src_offsets
= se
->field_offsets
[THUNK_TARGET
];
5297 for (i
= 0; i
< se
->nb_fields
; i
++) {
5298 if (dst_offsets
[i
] == offsetof(struct rtentry
, rt_dev
)) {
5299 assert(*field_types
== TYPE_PTRVOID
);
5300 target_rt_dev_ptr
= argptr
+ src_offsets
[i
];
5301 host_rt_dev_ptr
= (unsigned long *)(buf_temp
+ dst_offsets
[i
]);
5302 if (*target_rt_dev_ptr
!= 0) {
5303 *host_rt_dev_ptr
= (unsigned long)lock_user_string(
5304 tswapal(*target_rt_dev_ptr
));
5305 if (!*host_rt_dev_ptr
) {
5306 unlock_user(argptr
, arg
, 0);
5307 return -TARGET_EFAULT
;
5310 *host_rt_dev_ptr
= 0;
5315 field_types
= thunk_convert(buf_temp
+ dst_offsets
[i
],
5316 argptr
+ src_offsets
[i
],
5317 field_types
, THUNK_HOST
);
5319 unlock_user(argptr
, arg
, 0);
5321 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
5323 assert(host_rt_dev_ptr
!= NULL
);
5324 assert(target_rt_dev_ptr
!= NULL
);
5325 if (*host_rt_dev_ptr
!= 0) {
5326 unlock_user((void *)*host_rt_dev_ptr
,
5327 *target_rt_dev_ptr
, 0);
5332 static abi_long
do_ioctl_kdsigaccept(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5333 int fd
, int cmd
, abi_long arg
)
5335 int sig
= target_to_host_signal(arg
);
5336 return get_errno(safe_ioctl(fd
, ie
->host_cmd
, sig
));
5339 static abi_long
do_ioctl_SIOCGSTAMP(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5340 int fd
, int cmd
, abi_long arg
)
5345 ret
= get_errno(safe_ioctl(fd
, SIOCGSTAMP
, &tv
));
5346 if (is_error(ret
)) {
5350 if (cmd
== (int)TARGET_SIOCGSTAMP_OLD
) {
5351 if (copy_to_user_timeval(arg
, &tv
)) {
5352 return -TARGET_EFAULT
;
5355 if (copy_to_user_timeval64(arg
, &tv
)) {
5356 return -TARGET_EFAULT
;
5363 static abi_long
do_ioctl_SIOCGSTAMPNS(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5364 int fd
, int cmd
, abi_long arg
)
5369 ret
= get_errno(safe_ioctl(fd
, SIOCGSTAMPNS
, &ts
));
5370 if (is_error(ret
)) {
5374 if (cmd
== (int)TARGET_SIOCGSTAMPNS_OLD
) {
5375 if (host_to_target_timespec(arg
, &ts
)) {
5376 return -TARGET_EFAULT
;
5379 if (host_to_target_timespec64(arg
, &ts
)) {
5380 return -TARGET_EFAULT
;
5388 static abi_long
do_ioctl_tiocgptpeer(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5389 int fd
, int cmd
, abi_long arg
)
5391 int flags
= target_to_host_bitmask(arg
, fcntl_flags_tbl
);
5392 return get_errno(safe_ioctl(fd
, ie
->host_cmd
, flags
));
5398 static void unlock_drm_version(struct drm_version
*host_ver
,
5399 struct target_drm_version
*target_ver
,
5402 unlock_user(host_ver
->name
, target_ver
->name
,
5403 copy
? host_ver
->name_len
: 0);
5404 unlock_user(host_ver
->date
, target_ver
->date
,
5405 copy
? host_ver
->date_len
: 0);
5406 unlock_user(host_ver
->desc
, target_ver
->desc
,
5407 copy
? host_ver
->desc_len
: 0);
5410 static inline abi_long
target_to_host_drmversion(struct drm_version
*host_ver
,
5411 struct target_drm_version
*target_ver
)
5413 memset(host_ver
, 0, sizeof(*host_ver
));
5415 __get_user(host_ver
->name_len
, &target_ver
->name_len
);
5416 if (host_ver
->name_len
) {
5417 host_ver
->name
= lock_user(VERIFY_WRITE
, target_ver
->name
,
5418 target_ver
->name_len
, 0);
5419 if (!host_ver
->name
) {
5424 __get_user(host_ver
->date_len
, &target_ver
->date_len
);
5425 if (host_ver
->date_len
) {
5426 host_ver
->date
= lock_user(VERIFY_WRITE
, target_ver
->date
,
5427 target_ver
->date_len
, 0);
5428 if (!host_ver
->date
) {
5433 __get_user(host_ver
->desc_len
, &target_ver
->desc_len
);
5434 if (host_ver
->desc_len
) {
5435 host_ver
->desc
= lock_user(VERIFY_WRITE
, target_ver
->desc
,
5436 target_ver
->desc_len
, 0);
5437 if (!host_ver
->desc
) {
5444 unlock_drm_version(host_ver
, target_ver
, false);
5448 static inline void host_to_target_drmversion(
5449 struct target_drm_version
*target_ver
,
5450 struct drm_version
*host_ver
)
5452 __put_user(host_ver
->version_major
, &target_ver
->version_major
);
5453 __put_user(host_ver
->version_minor
, &target_ver
->version_minor
);
5454 __put_user(host_ver
->version_patchlevel
, &target_ver
->version_patchlevel
);
5455 __put_user(host_ver
->name_len
, &target_ver
->name_len
);
5456 __put_user(host_ver
->date_len
, &target_ver
->date_len
);
5457 __put_user(host_ver
->desc_len
, &target_ver
->desc_len
);
5458 unlock_drm_version(host_ver
, target_ver
, true);
5461 static abi_long
do_ioctl_drm(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5462 int fd
, int cmd
, abi_long arg
)
5464 struct drm_version
*ver
;
5465 struct target_drm_version
*target_ver
;
5468 switch (ie
->host_cmd
) {
5469 case DRM_IOCTL_VERSION
:
5470 if (!lock_user_struct(VERIFY_WRITE
, target_ver
, arg
, 0)) {
5471 return -TARGET_EFAULT
;
5473 ver
= (struct drm_version
*)buf_temp
;
5474 ret
= target_to_host_drmversion(ver
, target_ver
);
5475 if (!is_error(ret
)) {
5476 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, ver
));
5477 if (is_error(ret
)) {
5478 unlock_drm_version(ver
, target_ver
, false);
5480 host_to_target_drmversion(target_ver
, ver
);
5483 unlock_user_struct(target_ver
, arg
, 0);
5486 return -TARGET_ENOSYS
;
5489 static abi_long
do_ioctl_drm_i915_getparam(const IOCTLEntry
*ie
,
5490 struct drm_i915_getparam
*gparam
,
5491 int fd
, abi_long arg
)
5495 struct target_drm_i915_getparam
*target_gparam
;
5497 if (!lock_user_struct(VERIFY_READ
, target_gparam
, arg
, 0)) {
5498 return -TARGET_EFAULT
;
5501 __get_user(gparam
->param
, &target_gparam
->param
);
5502 gparam
->value
= &value
;
5503 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, gparam
));
5504 put_user_s32(value
, target_gparam
->value
);
5506 unlock_user_struct(target_gparam
, arg
, 0);
5510 static abi_long
do_ioctl_drm_i915(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5511 int fd
, int cmd
, abi_long arg
)
5513 switch (ie
->host_cmd
) {
5514 case DRM_IOCTL_I915_GETPARAM
:
5515 return do_ioctl_drm_i915_getparam(ie
,
5516 (struct drm_i915_getparam
*)buf_temp
,
5519 return -TARGET_ENOSYS
;
5525 static abi_long
do_ioctl_TUNSETTXFILTER(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5526 int fd
, int cmd
, abi_long arg
)
5528 struct tun_filter
*filter
= (struct tun_filter
*)buf_temp
;
5529 struct tun_filter
*target_filter
;
5532 assert(ie
->access
== IOC_W
);
5534 target_filter
= lock_user(VERIFY_READ
, arg
, sizeof(*target_filter
), 1);
5535 if (!target_filter
) {
5536 return -TARGET_EFAULT
;
5538 filter
->flags
= tswap16(target_filter
->flags
);
5539 filter
->count
= tswap16(target_filter
->count
);
5540 unlock_user(target_filter
, arg
, 0);
5542 if (filter
->count
) {
5543 if (offsetof(struct tun_filter
, addr
) + filter
->count
* ETH_ALEN
>
5545 return -TARGET_EFAULT
;
5548 target_addr
= lock_user(VERIFY_READ
,
5549 arg
+ offsetof(struct tun_filter
, addr
),
5550 filter
->count
* ETH_ALEN
, 1);
5552 return -TARGET_EFAULT
;
5554 memcpy(filter
->addr
, target_addr
, filter
->count
* ETH_ALEN
);
5555 unlock_user(target_addr
, arg
+ offsetof(struct tun_filter
, addr
), 0);
5558 return get_errno(safe_ioctl(fd
, ie
->host_cmd
, filter
));
5561 IOCTLEntry ioctl_entries
[] = {
5562 #define IOCTL(cmd, access, ...) \
5563 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } },
5564 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \
5565 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } },
5566 #define IOCTL_IGNORE(cmd) \
5567 { TARGET_ ## cmd, 0, #cmd },
5572 /* ??? Implement proper locking for ioctls. */
5573 /* do_ioctl() Must return target values and target errnos. */
5574 static abi_long
do_ioctl(int fd
, int cmd
, abi_long arg
)
5576 const IOCTLEntry
*ie
;
5577 const argtype
*arg_type
;
5579 uint8_t buf_temp
[MAX_STRUCT_SIZE
];
5585 if (ie
->target_cmd
== 0) {
5587 LOG_UNIMP
, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd
);
5588 return -TARGET_ENOTTY
;
5590 if (ie
->target_cmd
== cmd
)
5594 arg_type
= ie
->arg_type
;
5596 return ie
->do_ioctl(ie
, buf_temp
, fd
, cmd
, arg
);
5597 } else if (!ie
->host_cmd
) {
5598 /* Some architectures define BSD ioctls in their headers
5599 that are not implemented in Linux. */
5600 return -TARGET_ENOTTY
;
5603 switch(arg_type
[0]) {
5606 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
));
5612 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, arg
));
5616 target_size
= thunk_type_size(arg_type
, 0);
5617 switch(ie
->access
) {
5619 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
5620 if (!is_error(ret
)) {
5621 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
5623 return -TARGET_EFAULT
;
5624 thunk_convert(argptr
, buf_temp
, arg_type
, THUNK_TARGET
);
5625 unlock_user(argptr
, arg
, target_size
);
5629 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5631 return -TARGET_EFAULT
;
5632 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
5633 unlock_user(argptr
, arg
, 0);
5634 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
5638 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5640 return -TARGET_EFAULT
;
5641 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
5642 unlock_user(argptr
, arg
, 0);
5643 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
5644 if (!is_error(ret
)) {
5645 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
5647 return -TARGET_EFAULT
;
5648 thunk_convert(argptr
, buf_temp
, arg_type
, THUNK_TARGET
);
5649 unlock_user(argptr
, arg
, target_size
);
5655 qemu_log_mask(LOG_UNIMP
,
5656 "Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5657 (long)cmd
, arg_type
[0]);
5658 ret
= -TARGET_ENOTTY
;
5664 static const bitmask_transtbl iflag_tbl
[] = {
5665 { TARGET_IGNBRK
, TARGET_IGNBRK
, IGNBRK
, IGNBRK
},
5666 { TARGET_BRKINT
, TARGET_BRKINT
, BRKINT
, BRKINT
},
5667 { TARGET_IGNPAR
, TARGET_IGNPAR
, IGNPAR
, IGNPAR
},
5668 { TARGET_PARMRK
, TARGET_PARMRK
, PARMRK
, PARMRK
},
5669 { TARGET_INPCK
, TARGET_INPCK
, INPCK
, INPCK
},
5670 { TARGET_ISTRIP
, TARGET_ISTRIP
, ISTRIP
, ISTRIP
},
5671 { TARGET_INLCR
, TARGET_INLCR
, INLCR
, INLCR
},
5672 { TARGET_IGNCR
, TARGET_IGNCR
, IGNCR
, IGNCR
},
5673 { TARGET_ICRNL
, TARGET_ICRNL
, ICRNL
, ICRNL
},
5674 { TARGET_IUCLC
, TARGET_IUCLC
, IUCLC
, IUCLC
},
5675 { TARGET_IXON
, TARGET_IXON
, IXON
, IXON
},
5676 { TARGET_IXANY
, TARGET_IXANY
, IXANY
, IXANY
},
5677 { TARGET_IXOFF
, TARGET_IXOFF
, IXOFF
, IXOFF
},
5678 { TARGET_IMAXBEL
, TARGET_IMAXBEL
, IMAXBEL
, IMAXBEL
},
5679 { TARGET_IUTF8
, TARGET_IUTF8
, IUTF8
, IUTF8
},
5682 static const bitmask_transtbl oflag_tbl
[] = {
5683 { TARGET_OPOST
, TARGET_OPOST
, OPOST
, OPOST
},
5684 { TARGET_OLCUC
, TARGET_OLCUC
, OLCUC
, OLCUC
},
5685 { TARGET_ONLCR
, TARGET_ONLCR
, ONLCR
, ONLCR
},
5686 { TARGET_OCRNL
, TARGET_OCRNL
, OCRNL
, OCRNL
},
5687 { TARGET_ONOCR
, TARGET_ONOCR
, ONOCR
, ONOCR
},
5688 { TARGET_ONLRET
, TARGET_ONLRET
, ONLRET
, ONLRET
},
5689 { TARGET_OFILL
, TARGET_OFILL
, OFILL
, OFILL
},
5690 { TARGET_OFDEL
, TARGET_OFDEL
, OFDEL
, OFDEL
},
5691 { TARGET_NLDLY
, TARGET_NL0
, NLDLY
, NL0
},
5692 { TARGET_NLDLY
, TARGET_NL1
, NLDLY
, NL1
},
5693 { TARGET_CRDLY
, TARGET_CR0
, CRDLY
, CR0
},
5694 { TARGET_CRDLY
, TARGET_CR1
, CRDLY
, CR1
},
5695 { TARGET_CRDLY
, TARGET_CR2
, CRDLY
, CR2
},
5696 { TARGET_CRDLY
, TARGET_CR3
, CRDLY
, CR3
},
5697 { TARGET_TABDLY
, TARGET_TAB0
, TABDLY
, TAB0
},
5698 { TARGET_TABDLY
, TARGET_TAB1
, TABDLY
, TAB1
},
5699 { TARGET_TABDLY
, TARGET_TAB2
, TABDLY
, TAB2
},
5700 { TARGET_TABDLY
, TARGET_TAB3
, TABDLY
, TAB3
},
5701 { TARGET_BSDLY
, TARGET_BS0
, BSDLY
, BS0
},
5702 { TARGET_BSDLY
, TARGET_BS1
, BSDLY
, BS1
},
5703 { TARGET_VTDLY
, TARGET_VT0
, VTDLY
, VT0
},
5704 { TARGET_VTDLY
, TARGET_VT1
, VTDLY
, VT1
},
5705 { TARGET_FFDLY
, TARGET_FF0
, FFDLY
, FF0
},
5706 { TARGET_FFDLY
, TARGET_FF1
, FFDLY
, FF1
},
5709 static const bitmask_transtbl cflag_tbl
[] = {
5710 { TARGET_CBAUD
, TARGET_B0
, CBAUD
, B0
},
5711 { TARGET_CBAUD
, TARGET_B50
, CBAUD
, B50
},
5712 { TARGET_CBAUD
, TARGET_B75
, CBAUD
, B75
},
5713 { TARGET_CBAUD
, TARGET_B110
, CBAUD
, B110
},
5714 { TARGET_CBAUD
, TARGET_B134
, CBAUD
, B134
},
5715 { TARGET_CBAUD
, TARGET_B150
, CBAUD
, B150
},
5716 { TARGET_CBAUD
, TARGET_B200
, CBAUD
, B200
},
5717 { TARGET_CBAUD
, TARGET_B300
, CBAUD
, B300
},
5718 { TARGET_CBAUD
, TARGET_B600
, CBAUD
, B600
},
5719 { TARGET_CBAUD
, TARGET_B1200
, CBAUD
, B1200
},
5720 { TARGET_CBAUD
, TARGET_B1800
, CBAUD
, B1800
},
5721 { TARGET_CBAUD
, TARGET_B2400
, CBAUD
, B2400
},
5722 { TARGET_CBAUD
, TARGET_B4800
, CBAUD
, B4800
},
5723 { TARGET_CBAUD
, TARGET_B9600
, CBAUD
, B9600
},
5724 { TARGET_CBAUD
, TARGET_B19200
, CBAUD
, B19200
},
5725 { TARGET_CBAUD
, TARGET_B38400
, CBAUD
, B38400
},
5726 { TARGET_CBAUD
, TARGET_B57600
, CBAUD
, B57600
},
5727 { TARGET_CBAUD
, TARGET_B115200
, CBAUD
, B115200
},
5728 { TARGET_CBAUD
, TARGET_B230400
, CBAUD
, B230400
},
5729 { TARGET_CBAUD
, TARGET_B460800
, CBAUD
, B460800
},
5730 { TARGET_CSIZE
, TARGET_CS5
, CSIZE
, CS5
},
5731 { TARGET_CSIZE
, TARGET_CS6
, CSIZE
, CS6
},
5732 { TARGET_CSIZE
, TARGET_CS7
, CSIZE
, CS7
},
5733 { TARGET_CSIZE
, TARGET_CS8
, CSIZE
, CS8
},
5734 { TARGET_CSTOPB
, TARGET_CSTOPB
, CSTOPB
, CSTOPB
},
5735 { TARGET_CREAD
, TARGET_CREAD
, CREAD
, CREAD
},
5736 { TARGET_PARENB
, TARGET_PARENB
, PARENB
, PARENB
},
5737 { TARGET_PARODD
, TARGET_PARODD
, PARODD
, PARODD
},
5738 { TARGET_HUPCL
, TARGET_HUPCL
, HUPCL
, HUPCL
},
5739 { TARGET_CLOCAL
, TARGET_CLOCAL
, CLOCAL
, CLOCAL
},
5740 { TARGET_CRTSCTS
, TARGET_CRTSCTS
, CRTSCTS
, CRTSCTS
},
5743 static const bitmask_transtbl lflag_tbl
[] = {
5744 { TARGET_ISIG
, TARGET_ISIG
, ISIG
, ISIG
},
5745 { TARGET_ICANON
, TARGET_ICANON
, ICANON
, ICANON
},
5746 { TARGET_XCASE
, TARGET_XCASE
, XCASE
, XCASE
},
5747 { TARGET_ECHO
, TARGET_ECHO
, ECHO
, ECHO
},
5748 { TARGET_ECHOE
, TARGET_ECHOE
, ECHOE
, ECHOE
},
5749 { TARGET_ECHOK
, TARGET_ECHOK
, ECHOK
, ECHOK
},
5750 { TARGET_ECHONL
, TARGET_ECHONL
, ECHONL
, ECHONL
},
5751 { TARGET_NOFLSH
, TARGET_NOFLSH
, NOFLSH
, NOFLSH
},
5752 { TARGET_TOSTOP
, TARGET_TOSTOP
, TOSTOP
, TOSTOP
},
5753 { TARGET_ECHOCTL
, TARGET_ECHOCTL
, ECHOCTL
, ECHOCTL
},
5754 { TARGET_ECHOPRT
, TARGET_ECHOPRT
, ECHOPRT
, ECHOPRT
},
5755 { TARGET_ECHOKE
, TARGET_ECHOKE
, ECHOKE
, ECHOKE
},
5756 { TARGET_FLUSHO
, TARGET_FLUSHO
, FLUSHO
, FLUSHO
},
5757 { TARGET_PENDIN
, TARGET_PENDIN
, PENDIN
, PENDIN
},
5758 { TARGET_IEXTEN
, TARGET_IEXTEN
, IEXTEN
, IEXTEN
},
5759 { TARGET_EXTPROC
, TARGET_EXTPROC
, EXTPROC
, EXTPROC
},
5762 static void target_to_host_termios (void *dst
, const void *src
)
5764 struct host_termios
*host
= dst
;
5765 const struct target_termios
*target
= src
;
5768 target_to_host_bitmask(tswap32(target
->c_iflag
), iflag_tbl
);
5770 target_to_host_bitmask(tswap32(target
->c_oflag
), oflag_tbl
);
5772 target_to_host_bitmask(tswap32(target
->c_cflag
), cflag_tbl
);
5774 target_to_host_bitmask(tswap32(target
->c_lflag
), lflag_tbl
);
5775 host
->c_line
= target
->c_line
;
5777 memset(host
->c_cc
, 0, sizeof(host
->c_cc
));
5778 host
->c_cc
[VINTR
] = target
->c_cc
[TARGET_VINTR
];
5779 host
->c_cc
[VQUIT
] = target
->c_cc
[TARGET_VQUIT
];
5780 host
->c_cc
[VERASE
] = target
->c_cc
[TARGET_VERASE
];
5781 host
->c_cc
[VKILL
] = target
->c_cc
[TARGET_VKILL
];
5782 host
->c_cc
[VEOF
] = target
->c_cc
[TARGET_VEOF
];
5783 host
->c_cc
[VTIME
] = target
->c_cc
[TARGET_VTIME
];
5784 host
->c_cc
[VMIN
] = target
->c_cc
[TARGET_VMIN
];
5785 host
->c_cc
[VSWTC
] = target
->c_cc
[TARGET_VSWTC
];
5786 host
->c_cc
[VSTART
] = target
->c_cc
[TARGET_VSTART
];
5787 host
->c_cc
[VSTOP
] = target
->c_cc
[TARGET_VSTOP
];
5788 host
->c_cc
[VSUSP
] = target
->c_cc
[TARGET_VSUSP
];
5789 host
->c_cc
[VEOL
] = target
->c_cc
[TARGET_VEOL
];
5790 host
->c_cc
[VREPRINT
] = target
->c_cc
[TARGET_VREPRINT
];
5791 host
->c_cc
[VDISCARD
] = target
->c_cc
[TARGET_VDISCARD
];
5792 host
->c_cc
[VWERASE
] = target
->c_cc
[TARGET_VWERASE
];
5793 host
->c_cc
[VLNEXT
] = target
->c_cc
[TARGET_VLNEXT
];
5794 host
->c_cc
[VEOL2
] = target
->c_cc
[TARGET_VEOL2
];
5797 static void host_to_target_termios (void *dst
, const void *src
)
5799 struct target_termios
*target
= dst
;
5800 const struct host_termios
*host
= src
;
5803 tswap32(host_to_target_bitmask(host
->c_iflag
, iflag_tbl
));
5805 tswap32(host_to_target_bitmask(host
->c_oflag
, oflag_tbl
));
5807 tswap32(host_to_target_bitmask(host
->c_cflag
, cflag_tbl
));
5809 tswap32(host_to_target_bitmask(host
->c_lflag
, lflag_tbl
));
5810 target
->c_line
= host
->c_line
;
5812 memset(target
->c_cc
, 0, sizeof(target
->c_cc
));
5813 target
->c_cc
[TARGET_VINTR
] = host
->c_cc
[VINTR
];
5814 target
->c_cc
[TARGET_VQUIT
] = host
->c_cc
[VQUIT
];
5815 target
->c_cc
[TARGET_VERASE
] = host
->c_cc
[VERASE
];
5816 target
->c_cc
[TARGET_VKILL
] = host
->c_cc
[VKILL
];
5817 target
->c_cc
[TARGET_VEOF
] = host
->c_cc
[VEOF
];
5818 target
->c_cc
[TARGET_VTIME
] = host
->c_cc
[VTIME
];
5819 target
->c_cc
[TARGET_VMIN
] = host
->c_cc
[VMIN
];
5820 target
->c_cc
[TARGET_VSWTC
] = host
->c_cc
[VSWTC
];
5821 target
->c_cc
[TARGET_VSTART
] = host
->c_cc
[VSTART
];
5822 target
->c_cc
[TARGET_VSTOP
] = host
->c_cc
[VSTOP
];
5823 target
->c_cc
[TARGET_VSUSP
] = host
->c_cc
[VSUSP
];
5824 target
->c_cc
[TARGET_VEOL
] = host
->c_cc
[VEOL
];
5825 target
->c_cc
[TARGET_VREPRINT
] = host
->c_cc
[VREPRINT
];
5826 target
->c_cc
[TARGET_VDISCARD
] = host
->c_cc
[VDISCARD
];
5827 target
->c_cc
[TARGET_VWERASE
] = host
->c_cc
[VWERASE
];
5828 target
->c_cc
[TARGET_VLNEXT
] = host
->c_cc
[VLNEXT
];
5829 target
->c_cc
[TARGET_VEOL2
] = host
->c_cc
[VEOL2
];
5832 static const StructEntry struct_termios_def
= {
5833 .convert
= { host_to_target_termios
, target_to_host_termios
},
5834 .size
= { sizeof(struct target_termios
), sizeof(struct host_termios
) },
5835 .align
= { __alignof__(struct target_termios
), __alignof__(struct host_termios
) },
5836 .print
= print_termios
,
5839 /* If the host does not provide these bits, they may be safely discarded. */
5843 #ifndef MAP_UNINITIALIZED
5844 #define MAP_UNINITIALIZED 0
5847 static const bitmask_transtbl mmap_flags_tbl
[] = {
5848 { TARGET_MAP_FIXED
, TARGET_MAP_FIXED
, MAP_FIXED
, MAP_FIXED
},
5849 { TARGET_MAP_ANONYMOUS
, TARGET_MAP_ANONYMOUS
,
5850 MAP_ANONYMOUS
, MAP_ANONYMOUS
},
5851 { TARGET_MAP_GROWSDOWN
, TARGET_MAP_GROWSDOWN
,
5852 MAP_GROWSDOWN
, MAP_GROWSDOWN
},
5853 { TARGET_MAP_DENYWRITE
, TARGET_MAP_DENYWRITE
,
5854 MAP_DENYWRITE
, MAP_DENYWRITE
},
5855 { TARGET_MAP_EXECUTABLE
, TARGET_MAP_EXECUTABLE
,
5856 MAP_EXECUTABLE
, MAP_EXECUTABLE
},
5857 { TARGET_MAP_LOCKED
, TARGET_MAP_LOCKED
, MAP_LOCKED
, MAP_LOCKED
},
5858 { TARGET_MAP_NORESERVE
, TARGET_MAP_NORESERVE
,
5859 MAP_NORESERVE
, MAP_NORESERVE
},
5860 { TARGET_MAP_HUGETLB
, TARGET_MAP_HUGETLB
, MAP_HUGETLB
, MAP_HUGETLB
},
5861 /* MAP_STACK had been ignored by the kernel for quite some time.
5862 Recognize it for the target insofar as we do not want to pass
5863 it through to the host. */
5864 { TARGET_MAP_STACK
, TARGET_MAP_STACK
, 0, 0 },
5865 { TARGET_MAP_NONBLOCK
, TARGET_MAP_NONBLOCK
, MAP_NONBLOCK
, MAP_NONBLOCK
},
5866 { TARGET_MAP_POPULATE
, TARGET_MAP_POPULATE
, MAP_POPULATE
, MAP_POPULATE
},
5867 { TARGET_MAP_FIXED_NOREPLACE
, TARGET_MAP_FIXED_NOREPLACE
,
5868 MAP_FIXED_NOREPLACE
, MAP_FIXED_NOREPLACE
},
5869 { TARGET_MAP_UNINITIALIZED
, TARGET_MAP_UNINITIALIZED
,
5870 MAP_UNINITIALIZED
, MAP_UNINITIALIZED
},
5874 * Arrange for legacy / undefined architecture specific flags to be
5875 * ignored by mmap handling code.
5877 #ifndef TARGET_MAP_32BIT
5878 #define TARGET_MAP_32BIT 0
5880 #ifndef TARGET_MAP_HUGE_2MB
5881 #define TARGET_MAP_HUGE_2MB 0
5883 #ifndef TARGET_MAP_HUGE_1GB
5884 #define TARGET_MAP_HUGE_1GB 0
5887 static abi_long
do_mmap(abi_ulong addr
, abi_ulong len
, int prot
,
5888 int target_flags
, int fd
, off_t offset
)
5891 * The historical set of flags that all mmap types implicitly support.
5894 TARGET_LEGACY_MAP_MASK
= TARGET_MAP_SHARED
5895 | TARGET_MAP_PRIVATE
5897 | TARGET_MAP_ANONYMOUS
5898 | TARGET_MAP_DENYWRITE
5899 | TARGET_MAP_EXECUTABLE
5900 | TARGET_MAP_UNINITIALIZED
5901 | TARGET_MAP_GROWSDOWN
5903 | TARGET_MAP_NORESERVE
5904 | TARGET_MAP_POPULATE
5905 | TARGET_MAP_NONBLOCK
5907 | TARGET_MAP_HUGETLB
5909 | TARGET_MAP_HUGE_2MB
5910 | TARGET_MAP_HUGE_1GB
5914 switch (target_flags
& TARGET_MAP_TYPE
) {
5915 case TARGET_MAP_PRIVATE
:
5916 host_flags
= MAP_PRIVATE
;
5918 case TARGET_MAP_SHARED
:
5919 host_flags
= MAP_SHARED
;
5921 case TARGET_MAP_SHARED_VALIDATE
:
5923 * MAP_SYNC is only supported for MAP_SHARED_VALIDATE, and is
5924 * therefore omitted from mmap_flags_tbl and TARGET_LEGACY_MAP_MASK.
5926 if (target_flags
& ~(TARGET_LEGACY_MAP_MASK
| TARGET_MAP_SYNC
)) {
5927 return -TARGET_EOPNOTSUPP
;
5929 host_flags
= MAP_SHARED_VALIDATE
;
5930 if (target_flags
& TARGET_MAP_SYNC
) {
5931 host_flags
|= MAP_SYNC
;
5935 return -TARGET_EINVAL
;
5937 host_flags
|= target_to_host_bitmask(target_flags
, mmap_flags_tbl
);
5939 return get_errno(target_mmap(addr
, len
, prot
, host_flags
, fd
, offset
));
5943 * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64)
5944 * TARGET_I386 is defined if TARGET_X86_64 is defined
5946 #if defined(TARGET_I386)
5948 /* NOTE: there is really one LDT for all the threads */
5949 static uint8_t *ldt_table
;
5951 static abi_long
read_ldt(abi_ulong ptr
, unsigned long bytecount
)
5958 size
= TARGET_LDT_ENTRIES
* TARGET_LDT_ENTRY_SIZE
;
5959 if (size
> bytecount
)
5961 p
= lock_user(VERIFY_WRITE
, ptr
, size
, 0);
5963 return -TARGET_EFAULT
;
5964 /* ??? Should this by byteswapped? */
5965 memcpy(p
, ldt_table
, size
);
5966 unlock_user(p
, ptr
, size
);
5970 /* XXX: add locking support */
5971 static abi_long
write_ldt(CPUX86State
*env
,
5972 abi_ulong ptr
, unsigned long bytecount
, int oldmode
)
5974 struct target_modify_ldt_ldt_s ldt_info
;
5975 struct target_modify_ldt_ldt_s
*target_ldt_info
;
5976 int seg_32bit
, contents
, read_exec_only
, limit_in_pages
;
5977 int seg_not_present
, useable
, lm
;
5978 uint32_t *lp
, entry_1
, entry_2
;
5980 if (bytecount
!= sizeof(ldt_info
))
5981 return -TARGET_EINVAL
;
5982 if (!lock_user_struct(VERIFY_READ
, target_ldt_info
, ptr
, 1))
5983 return -TARGET_EFAULT
;
5984 ldt_info
.entry_number
= tswap32(target_ldt_info
->entry_number
);
5985 ldt_info
.base_addr
= tswapal(target_ldt_info
->base_addr
);
5986 ldt_info
.limit
= tswap32(target_ldt_info
->limit
);
5987 ldt_info
.flags
= tswap32(target_ldt_info
->flags
);
5988 unlock_user_struct(target_ldt_info
, ptr
, 0);
5990 if (ldt_info
.entry_number
>= TARGET_LDT_ENTRIES
)
5991 return -TARGET_EINVAL
;
5992 seg_32bit
= ldt_info
.flags
& 1;
5993 contents
= (ldt_info
.flags
>> 1) & 3;
5994 read_exec_only
= (ldt_info
.flags
>> 3) & 1;
5995 limit_in_pages
= (ldt_info
.flags
>> 4) & 1;
5996 seg_not_present
= (ldt_info
.flags
>> 5) & 1;
5997 useable
= (ldt_info
.flags
>> 6) & 1;
6001 lm
= (ldt_info
.flags
>> 7) & 1;
6003 if (contents
== 3) {
6005 return -TARGET_EINVAL
;
6006 if (seg_not_present
== 0)
6007 return -TARGET_EINVAL
;
6009 /* allocate the LDT */
6011 env
->ldt
.base
= target_mmap(0,
6012 TARGET_LDT_ENTRIES
* TARGET_LDT_ENTRY_SIZE
,
6013 PROT_READ
|PROT_WRITE
,
6014 MAP_ANONYMOUS
|MAP_PRIVATE
, -1, 0);
6015 if (env
->ldt
.base
== -1)
6016 return -TARGET_ENOMEM
;
6017 memset(g2h_untagged(env
->ldt
.base
), 0,
6018 TARGET_LDT_ENTRIES
* TARGET_LDT_ENTRY_SIZE
);
6019 env
->ldt
.limit
= 0xffff;
6020 ldt_table
= g2h_untagged(env
->ldt
.base
);
6023 /* NOTE: same code as Linux kernel */
6024 /* Allow LDTs to be cleared by the user. */
6025 if (ldt_info
.base_addr
== 0 && ldt_info
.limit
== 0) {
6028 read_exec_only
== 1 &&
6030 limit_in_pages
== 0 &&
6031 seg_not_present
== 1 &&
6039 entry_1
= ((ldt_info
.base_addr
& 0x0000ffff) << 16) |
6040 (ldt_info
.limit
& 0x0ffff);
6041 entry_2
= (ldt_info
.base_addr
& 0xff000000) |
6042 ((ldt_info
.base_addr
& 0x00ff0000) >> 16) |
6043 (ldt_info
.limit
& 0xf0000) |
6044 ((read_exec_only
^ 1) << 9) |
6046 ((seg_not_present
^ 1) << 15) |
6048 (limit_in_pages
<< 23) |
6052 entry_2
|= (useable
<< 20);
6054 /* Install the new entry ... */
6056 lp
= (uint32_t *)(ldt_table
+ (ldt_info
.entry_number
<< 3));
6057 lp
[0] = tswap32(entry_1
);
6058 lp
[1] = tswap32(entry_2
);
6062 /* specific and weird i386 syscalls */
6063 static abi_long
do_modify_ldt(CPUX86State
*env
, int func
, abi_ulong ptr
,
6064 unsigned long bytecount
)
6070 ret
= read_ldt(ptr
, bytecount
);
6073 ret
= write_ldt(env
, ptr
, bytecount
, 1);
6076 ret
= write_ldt(env
, ptr
, bytecount
, 0);
6079 ret
= -TARGET_ENOSYS
;
6085 #if defined(TARGET_ABI32)
6086 abi_long
do_set_thread_area(CPUX86State
*env
, abi_ulong ptr
)
6088 uint64_t *gdt_table
= g2h_untagged(env
->gdt
.base
);
6089 struct target_modify_ldt_ldt_s ldt_info
;
6090 struct target_modify_ldt_ldt_s
*target_ldt_info
;
6091 int seg_32bit
, contents
, read_exec_only
, limit_in_pages
;
6092 int seg_not_present
, useable
, lm
;
6093 uint32_t *lp
, entry_1
, entry_2
;
6096 lock_user_struct(VERIFY_WRITE
, target_ldt_info
, ptr
, 1);
6097 if (!target_ldt_info
)
6098 return -TARGET_EFAULT
;
6099 ldt_info
.entry_number
= tswap32(target_ldt_info
->entry_number
);
6100 ldt_info
.base_addr
= tswapal(target_ldt_info
->base_addr
);
6101 ldt_info
.limit
= tswap32(target_ldt_info
->limit
);
6102 ldt_info
.flags
= tswap32(target_ldt_info
->flags
);
6103 if (ldt_info
.entry_number
== -1) {
6104 for (i
=TARGET_GDT_ENTRY_TLS_MIN
; i
<=TARGET_GDT_ENTRY_TLS_MAX
; i
++) {
6105 if (gdt_table
[i
] == 0) {
6106 ldt_info
.entry_number
= i
;
6107 target_ldt_info
->entry_number
= tswap32(i
);
6112 unlock_user_struct(target_ldt_info
, ptr
, 1);
6114 if (ldt_info
.entry_number
< TARGET_GDT_ENTRY_TLS_MIN
||
6115 ldt_info
.entry_number
> TARGET_GDT_ENTRY_TLS_MAX
)
6116 return -TARGET_EINVAL
;
6117 seg_32bit
= ldt_info
.flags
& 1;
6118 contents
= (ldt_info
.flags
>> 1) & 3;
6119 read_exec_only
= (ldt_info
.flags
>> 3) & 1;
6120 limit_in_pages
= (ldt_info
.flags
>> 4) & 1;
6121 seg_not_present
= (ldt_info
.flags
>> 5) & 1;
6122 useable
= (ldt_info
.flags
>> 6) & 1;
6126 lm
= (ldt_info
.flags
>> 7) & 1;
6129 if (contents
== 3) {
6130 if (seg_not_present
== 0)
6131 return -TARGET_EINVAL
;
6134 /* NOTE: same code as Linux kernel */
6135 /* Allow LDTs to be cleared by the user. */
6136 if (ldt_info
.base_addr
== 0 && ldt_info
.limit
== 0) {
6137 if ((contents
== 0 &&
6138 read_exec_only
== 1 &&
6140 limit_in_pages
== 0 &&
6141 seg_not_present
== 1 &&
6149 entry_1
= ((ldt_info
.base_addr
& 0x0000ffff) << 16) |
6150 (ldt_info
.limit
& 0x0ffff);
6151 entry_2
= (ldt_info
.base_addr
& 0xff000000) |
6152 ((ldt_info
.base_addr
& 0x00ff0000) >> 16) |
6153 (ldt_info
.limit
& 0xf0000) |
6154 ((read_exec_only
^ 1) << 9) |
6156 ((seg_not_present
^ 1) << 15) |
6158 (limit_in_pages
<< 23) |
6163 /* Install the new entry ... */
6165 lp
= (uint32_t *)(gdt_table
+ ldt_info
.entry_number
);
6166 lp
[0] = tswap32(entry_1
);
6167 lp
[1] = tswap32(entry_2
);
6171 static abi_long
do_get_thread_area(CPUX86State
*env
, abi_ulong ptr
)
6173 struct target_modify_ldt_ldt_s
*target_ldt_info
;
6174 uint64_t *gdt_table
= g2h_untagged(env
->gdt
.base
);
6175 uint32_t base_addr
, limit
, flags
;
6176 int seg_32bit
, contents
, read_exec_only
, limit_in_pages
, idx
;
6177 int seg_not_present
, useable
, lm
;
6178 uint32_t *lp
, entry_1
, entry_2
;
6180 lock_user_struct(VERIFY_WRITE
, target_ldt_info
, ptr
, 1);
6181 if (!target_ldt_info
)
6182 return -TARGET_EFAULT
;
6183 idx
= tswap32(target_ldt_info
->entry_number
);
6184 if (idx
< TARGET_GDT_ENTRY_TLS_MIN
||
6185 idx
> TARGET_GDT_ENTRY_TLS_MAX
) {
6186 unlock_user_struct(target_ldt_info
, ptr
, 1);
6187 return -TARGET_EINVAL
;
6189 lp
= (uint32_t *)(gdt_table
+ idx
);
6190 entry_1
= tswap32(lp
[0]);
6191 entry_2
= tswap32(lp
[1]);
6193 read_exec_only
= ((entry_2
>> 9) & 1) ^ 1;
6194 contents
= (entry_2
>> 10) & 3;
6195 seg_not_present
= ((entry_2
>> 15) & 1) ^ 1;
6196 seg_32bit
= (entry_2
>> 22) & 1;
6197 limit_in_pages
= (entry_2
>> 23) & 1;
6198 useable
= (entry_2
>> 20) & 1;
6202 lm
= (entry_2
>> 21) & 1;
6204 flags
= (seg_32bit
<< 0) | (contents
<< 1) |
6205 (read_exec_only
<< 3) | (limit_in_pages
<< 4) |
6206 (seg_not_present
<< 5) | (useable
<< 6) | (lm
<< 7);
6207 limit
= (entry_1
& 0xffff) | (entry_2
& 0xf0000);
6208 base_addr
= (entry_1
>> 16) |
6209 (entry_2
& 0xff000000) |
6210 ((entry_2
& 0xff) << 16);
6211 target_ldt_info
->base_addr
= tswapal(base_addr
);
6212 target_ldt_info
->limit
= tswap32(limit
);
6213 target_ldt_info
->flags
= tswap32(flags
);
6214 unlock_user_struct(target_ldt_info
, ptr
, 1);
6218 abi_long
do_arch_prctl(CPUX86State
*env
, int code
, abi_ulong addr
)
6220 return -TARGET_ENOSYS
;
6223 abi_long
do_arch_prctl(CPUX86State
*env
, int code
, abi_ulong addr
)
6230 case TARGET_ARCH_SET_GS
:
6231 case TARGET_ARCH_SET_FS
:
6232 if (code
== TARGET_ARCH_SET_GS
)
6236 cpu_x86_load_seg(env
, idx
, 0);
6237 env
->segs
[idx
].base
= addr
;
6239 case TARGET_ARCH_GET_GS
:
6240 case TARGET_ARCH_GET_FS
:
6241 if (code
== TARGET_ARCH_GET_GS
)
6245 val
= env
->segs
[idx
].base
;
6246 if (put_user(val
, addr
, abi_ulong
))
6247 ret
= -TARGET_EFAULT
;
6250 ret
= -TARGET_EINVAL
;
6255 #endif /* defined(TARGET_ABI32 */
6256 #endif /* defined(TARGET_I386) */
6259 * These constants are generic. Supply any that are missing from the host.
6262 # define PR_SET_NAME 15
6263 # define PR_GET_NAME 16
6265 #ifndef PR_SET_FP_MODE
6266 # define PR_SET_FP_MODE 45
6267 # define PR_GET_FP_MODE 46
6268 # define PR_FP_MODE_FR (1 << 0)
6269 # define PR_FP_MODE_FRE (1 << 1)
6271 #ifndef PR_SVE_SET_VL
6272 # define PR_SVE_SET_VL 50
6273 # define PR_SVE_GET_VL 51
6274 # define PR_SVE_VL_LEN_MASK 0xffff
6275 # define PR_SVE_VL_INHERIT (1 << 17)
6277 #ifndef PR_PAC_RESET_KEYS
6278 # define PR_PAC_RESET_KEYS 54
6279 # define PR_PAC_APIAKEY (1 << 0)
6280 # define PR_PAC_APIBKEY (1 << 1)
6281 # define PR_PAC_APDAKEY (1 << 2)
6282 # define PR_PAC_APDBKEY (1 << 3)
6283 # define PR_PAC_APGAKEY (1 << 4)
6285 #ifndef PR_SET_TAGGED_ADDR_CTRL
6286 # define PR_SET_TAGGED_ADDR_CTRL 55
6287 # define PR_GET_TAGGED_ADDR_CTRL 56
6288 # define PR_TAGGED_ADDR_ENABLE (1UL << 0)
6290 #ifndef PR_MTE_TCF_SHIFT
6291 # define PR_MTE_TCF_SHIFT 1
6292 # define PR_MTE_TCF_NONE (0UL << PR_MTE_TCF_SHIFT)
6293 # define PR_MTE_TCF_SYNC (1UL << PR_MTE_TCF_SHIFT)
6294 # define PR_MTE_TCF_ASYNC (2UL << PR_MTE_TCF_SHIFT)
6295 # define PR_MTE_TCF_MASK (3UL << PR_MTE_TCF_SHIFT)
6296 # define PR_MTE_TAG_SHIFT 3
6297 # define PR_MTE_TAG_MASK (0xffffUL << PR_MTE_TAG_SHIFT)
6299 #ifndef PR_SET_IO_FLUSHER
6300 # define PR_SET_IO_FLUSHER 57
6301 # define PR_GET_IO_FLUSHER 58
6303 #ifndef PR_SET_SYSCALL_USER_DISPATCH
6304 # define PR_SET_SYSCALL_USER_DISPATCH 59
6306 #ifndef PR_SME_SET_VL
6307 # define PR_SME_SET_VL 63
6308 # define PR_SME_GET_VL 64
6309 # define PR_SME_VL_LEN_MASK 0xffff
6310 # define PR_SME_VL_INHERIT (1 << 17)
6313 #include "target_prctl.h"
6315 static abi_long
do_prctl_inval0(CPUArchState
*env
)
6317 return -TARGET_EINVAL
;
6320 static abi_long
do_prctl_inval1(CPUArchState
*env
, abi_long arg2
)
6322 return -TARGET_EINVAL
;
6325 #ifndef do_prctl_get_fp_mode
6326 #define do_prctl_get_fp_mode do_prctl_inval0
6328 #ifndef do_prctl_set_fp_mode
6329 #define do_prctl_set_fp_mode do_prctl_inval1
6331 #ifndef do_prctl_sve_get_vl
6332 #define do_prctl_sve_get_vl do_prctl_inval0
6334 #ifndef do_prctl_sve_set_vl
6335 #define do_prctl_sve_set_vl do_prctl_inval1
6337 #ifndef do_prctl_reset_keys
6338 #define do_prctl_reset_keys do_prctl_inval1
6340 #ifndef do_prctl_set_tagged_addr_ctrl
6341 #define do_prctl_set_tagged_addr_ctrl do_prctl_inval1
6343 #ifndef do_prctl_get_tagged_addr_ctrl
6344 #define do_prctl_get_tagged_addr_ctrl do_prctl_inval0
6346 #ifndef do_prctl_get_unalign
6347 #define do_prctl_get_unalign do_prctl_inval1
6349 #ifndef do_prctl_set_unalign
6350 #define do_prctl_set_unalign do_prctl_inval1
6352 #ifndef do_prctl_sme_get_vl
6353 #define do_prctl_sme_get_vl do_prctl_inval0
6355 #ifndef do_prctl_sme_set_vl
6356 #define do_prctl_sme_set_vl do_prctl_inval1
6359 static abi_long
do_prctl(CPUArchState
*env
, abi_long option
, abi_long arg2
,
6360 abi_long arg3
, abi_long arg4
, abi_long arg5
)
6365 case PR_GET_PDEATHSIG
:
6368 ret
= get_errno(prctl(PR_GET_PDEATHSIG
, &deathsig
,
6370 if (!is_error(ret
) &&
6371 put_user_s32(host_to_target_signal(deathsig
), arg2
)) {
6372 return -TARGET_EFAULT
;
6376 case PR_SET_PDEATHSIG
:
6377 return get_errno(prctl(PR_SET_PDEATHSIG
, target_to_host_signal(arg2
),
6381 void *name
= lock_user(VERIFY_WRITE
, arg2
, 16, 1);
6383 return -TARGET_EFAULT
;
6385 ret
= get_errno(prctl(PR_GET_NAME
, (uintptr_t)name
,
6387 unlock_user(name
, arg2
, 16);
6392 void *name
= lock_user(VERIFY_READ
, arg2
, 16, 1);
6394 return -TARGET_EFAULT
;
6396 ret
= get_errno(prctl(PR_SET_NAME
, (uintptr_t)name
,
6398 unlock_user(name
, arg2
, 0);
6401 case PR_GET_FP_MODE
:
6402 return do_prctl_get_fp_mode(env
);
6403 case PR_SET_FP_MODE
:
6404 return do_prctl_set_fp_mode(env
, arg2
);
6406 return do_prctl_sve_get_vl(env
);
6408 return do_prctl_sve_set_vl(env
, arg2
);
6410 return do_prctl_sme_get_vl(env
);
6412 return do_prctl_sme_set_vl(env
, arg2
);
6413 case PR_PAC_RESET_KEYS
:
6414 if (arg3
|| arg4
|| arg5
) {
6415 return -TARGET_EINVAL
;
6417 return do_prctl_reset_keys(env
, arg2
);
6418 case PR_SET_TAGGED_ADDR_CTRL
:
6419 if (arg3
|| arg4
|| arg5
) {
6420 return -TARGET_EINVAL
;
6422 return do_prctl_set_tagged_addr_ctrl(env
, arg2
);
6423 case PR_GET_TAGGED_ADDR_CTRL
:
6424 if (arg2
|| arg3
|| arg4
|| arg5
) {
6425 return -TARGET_EINVAL
;
6427 return do_prctl_get_tagged_addr_ctrl(env
);
6429 case PR_GET_UNALIGN
:
6430 return do_prctl_get_unalign(env
, arg2
);
6431 case PR_SET_UNALIGN
:
6432 return do_prctl_set_unalign(env
, arg2
);
6434 case PR_CAP_AMBIENT
:
6435 case PR_CAPBSET_READ
:
6436 case PR_CAPBSET_DROP
:
6437 case PR_GET_DUMPABLE
:
6438 case PR_SET_DUMPABLE
:
6439 case PR_GET_KEEPCAPS
:
6440 case PR_SET_KEEPCAPS
:
6441 case PR_GET_SECUREBITS
:
6442 case PR_SET_SECUREBITS
:
6445 case PR_GET_TIMERSLACK
:
6446 case PR_SET_TIMERSLACK
:
6448 case PR_MCE_KILL_GET
:
6449 case PR_GET_NO_NEW_PRIVS
:
6450 case PR_SET_NO_NEW_PRIVS
:
6451 case PR_GET_IO_FLUSHER
:
6452 case PR_SET_IO_FLUSHER
:
6453 case PR_SET_CHILD_SUBREAPER
:
6454 case PR_GET_SPECULATION_CTRL
:
6455 case PR_SET_SPECULATION_CTRL
:
6456 /* Some prctl options have no pointer arguments and we can pass on. */
6457 return get_errno(prctl(option
, arg2
, arg3
, arg4
, arg5
));
6459 case PR_GET_CHILD_SUBREAPER
:
6462 ret
= get_errno(prctl(PR_GET_CHILD_SUBREAPER
, &val
,
6464 if (!is_error(ret
) && put_user_s32(val
, arg2
)) {
6465 return -TARGET_EFAULT
;
6470 case PR_GET_TID_ADDRESS
:
6472 TaskState
*ts
= env_cpu(env
)->opaque
;
6473 return put_user_ual(ts
->child_tidptr
, arg2
);
6478 /* Was used for SPE on PowerPC. */
6479 return -TARGET_EINVAL
;
6486 case PR_GET_SECCOMP
:
6487 case PR_SET_SECCOMP
:
6488 case PR_SET_SYSCALL_USER_DISPATCH
:
6489 case PR_GET_THP_DISABLE
:
6490 case PR_SET_THP_DISABLE
:
6493 /* Disable to prevent the target disabling stuff we need. */
6494 return -TARGET_EINVAL
;
6497 qemu_log_mask(LOG_UNIMP
, "Unsupported prctl: " TARGET_ABI_FMT_ld
"\n",
6499 return -TARGET_EINVAL
;
6503 #define NEW_STACK_SIZE 0x40000
6506 static pthread_mutex_t clone_lock
= PTHREAD_MUTEX_INITIALIZER
;
6509 pthread_mutex_t mutex
;
6510 pthread_cond_t cond
;
6513 abi_ulong child_tidptr
;
6514 abi_ulong parent_tidptr
;
6518 static void *clone_func(void *arg
)
6520 new_thread_info
*info
= arg
;
6525 rcu_register_thread();
6526 tcg_register_thread();
6530 ts
= get_task_state(cpu
);
6531 info
->tid
= sys_gettid();
6533 if (info
->child_tidptr
)
6534 put_user_u32(info
->tid
, info
->child_tidptr
);
6535 if (info
->parent_tidptr
)
6536 put_user_u32(info
->tid
, info
->parent_tidptr
);
6537 qemu_guest_random_seed_thread_part2(cpu
->random_seed
);
6538 /* Enable signals. */
6539 sigprocmask(SIG_SETMASK
, &info
->sigmask
, NULL
);
6540 /* Signal to the parent that we're ready. */
6541 pthread_mutex_lock(&info
->mutex
);
6542 pthread_cond_broadcast(&info
->cond
);
6543 pthread_mutex_unlock(&info
->mutex
);
6544 /* Wait until the parent has finished initializing the tls state. */
6545 pthread_mutex_lock(&clone_lock
);
6546 pthread_mutex_unlock(&clone_lock
);
6552 /* do_fork() Must return host values and target errnos (unlike most
6553 do_*() functions). */
6554 static int do_fork(CPUArchState
*env
, unsigned int flags
, abi_ulong newsp
,
6555 abi_ulong parent_tidptr
, target_ulong newtls
,
6556 abi_ulong child_tidptr
)
6558 CPUState
*cpu
= env_cpu(env
);
6562 CPUArchState
*new_env
;
6565 flags
&= ~CLONE_IGNORED_FLAGS
;
6567 /* Emulate vfork() with fork() */
6568 if (flags
& CLONE_VFORK
)
6569 flags
&= ~(CLONE_VFORK
| CLONE_VM
);
6571 if (flags
& CLONE_VM
) {
6572 TaskState
*parent_ts
= get_task_state(cpu
);
6573 new_thread_info info
;
6574 pthread_attr_t attr
;
6576 if (((flags
& CLONE_THREAD_FLAGS
) != CLONE_THREAD_FLAGS
) ||
6577 (flags
& CLONE_INVALID_THREAD_FLAGS
)) {
6578 return -TARGET_EINVAL
;
6581 ts
= g_new0(TaskState
, 1);
6582 init_task_state(ts
);
6584 /* Grab a mutex so that thread setup appears atomic. */
6585 pthread_mutex_lock(&clone_lock
);
6588 * If this is our first additional thread, we need to ensure we
6589 * generate code for parallel execution and flush old translations.
6590 * Do this now so that the copy gets CF_PARALLEL too.
6592 if (!(cpu
->tcg_cflags
& CF_PARALLEL
)) {
6593 cpu
->tcg_cflags
|= CF_PARALLEL
;
6597 /* we create a new CPU instance. */
6598 new_env
= cpu_copy(env
);
6599 /* Init regs that differ from the parent. */
6600 cpu_clone_regs_child(new_env
, newsp
, flags
);
6601 cpu_clone_regs_parent(env
, flags
);
6602 new_cpu
= env_cpu(new_env
);
6603 new_cpu
->opaque
= ts
;
6604 ts
->bprm
= parent_ts
->bprm
;
6605 ts
->info
= parent_ts
->info
;
6606 ts
->signal_mask
= parent_ts
->signal_mask
;
6608 if (flags
& CLONE_CHILD_CLEARTID
) {
6609 ts
->child_tidptr
= child_tidptr
;
6612 if (flags
& CLONE_SETTLS
) {
6613 cpu_set_tls (new_env
, newtls
);
6616 memset(&info
, 0, sizeof(info
));
6617 pthread_mutex_init(&info
.mutex
, NULL
);
6618 pthread_mutex_lock(&info
.mutex
);
6619 pthread_cond_init(&info
.cond
, NULL
);
6621 if (flags
& CLONE_CHILD_SETTID
) {
6622 info
.child_tidptr
= child_tidptr
;
6624 if (flags
& CLONE_PARENT_SETTID
) {
6625 info
.parent_tidptr
= parent_tidptr
;
6628 ret
= pthread_attr_init(&attr
);
6629 ret
= pthread_attr_setstacksize(&attr
, NEW_STACK_SIZE
);
6630 ret
= pthread_attr_setdetachstate(&attr
, PTHREAD_CREATE_DETACHED
);
6631 /* It is not safe to deliver signals until the child has finished
6632 initializing, so temporarily block all signals. */
6633 sigfillset(&sigmask
);
6634 sigprocmask(SIG_BLOCK
, &sigmask
, &info
.sigmask
);
6635 cpu
->random_seed
= qemu_guest_random_seed_thread_part1();
6637 ret
= pthread_create(&info
.thread
, &attr
, clone_func
, &info
);
6638 /* TODO: Free new CPU state if thread creation failed. */
6640 sigprocmask(SIG_SETMASK
, &info
.sigmask
, NULL
);
6641 pthread_attr_destroy(&attr
);
6643 /* Wait for the child to initialize. */
6644 pthread_cond_wait(&info
.cond
, &info
.mutex
);
6649 pthread_mutex_unlock(&info
.mutex
);
6650 pthread_cond_destroy(&info
.cond
);
6651 pthread_mutex_destroy(&info
.mutex
);
6652 pthread_mutex_unlock(&clone_lock
);
6654 /* if no CLONE_VM, we consider it is a fork */
6655 if (flags
& CLONE_INVALID_FORK_FLAGS
) {
6656 return -TARGET_EINVAL
;
6659 /* We can't support custom termination signals */
6660 if ((flags
& CSIGNAL
) != TARGET_SIGCHLD
) {
6661 return -TARGET_EINVAL
;
6664 #if !defined(__NR_pidfd_open) || !defined(TARGET_NR_pidfd_open)
6665 if (flags
& CLONE_PIDFD
) {
6666 return -TARGET_EINVAL
;
6670 /* Can not allow CLONE_PIDFD with CLONE_PARENT_SETTID */
6671 if ((flags
& CLONE_PIDFD
) && (flags
& CLONE_PARENT_SETTID
)) {
6672 return -TARGET_EINVAL
;
6675 if (block_signals()) {
6676 return -QEMU_ERESTARTSYS
;
6682 /* Child Process. */
6683 cpu_clone_regs_child(env
, newsp
, flags
);
6685 /* There is a race condition here. The parent process could
6686 theoretically read the TID in the child process before the child
6687 tid is set. This would require using either ptrace
6688 (not implemented) or having *_tidptr to point at a shared memory
6689 mapping. We can't repeat the spinlock hack used above because
6690 the child process gets its own copy of the lock. */
6691 if (flags
& CLONE_CHILD_SETTID
)
6692 put_user_u32(sys_gettid(), child_tidptr
);
6693 if (flags
& CLONE_PARENT_SETTID
)
6694 put_user_u32(sys_gettid(), parent_tidptr
);
6695 ts
= get_task_state(cpu
);
6696 if (flags
& CLONE_SETTLS
)
6697 cpu_set_tls (env
, newtls
);
6698 if (flags
& CLONE_CHILD_CLEARTID
)
6699 ts
->child_tidptr
= child_tidptr
;
6701 cpu_clone_regs_parent(env
, flags
);
6702 if (flags
& CLONE_PIDFD
) {
6704 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
6705 int pid_child
= ret
;
6706 pid_fd
= pidfd_open(pid_child
, 0);
6708 fcntl(pid_fd
, F_SETFD
, fcntl(pid_fd
, F_GETFL
)
6714 put_user_u32(pid_fd
, parent_tidptr
);
6718 g_assert(!cpu_in_exclusive_context(cpu
));
6723 /* warning : doesn't handle linux specific flags... */
6724 static int target_to_host_fcntl_cmd(int cmd
)
6729 case TARGET_F_DUPFD
:
6730 case TARGET_F_GETFD
:
6731 case TARGET_F_SETFD
:
6732 case TARGET_F_GETFL
:
6733 case TARGET_F_SETFL
:
6734 case TARGET_F_OFD_GETLK
:
6735 case TARGET_F_OFD_SETLK
:
6736 case TARGET_F_OFD_SETLKW
:
6739 case TARGET_F_GETLK
:
6742 case TARGET_F_SETLK
:
6745 case TARGET_F_SETLKW
:
6748 case TARGET_F_GETOWN
:
6751 case TARGET_F_SETOWN
:
6754 case TARGET_F_GETSIG
:
6757 case TARGET_F_SETSIG
:
6760 #if TARGET_ABI_BITS == 32
6761 case TARGET_F_GETLK64
:
6764 case TARGET_F_SETLK64
:
6767 case TARGET_F_SETLKW64
:
6771 case TARGET_F_SETLEASE
:
6774 case TARGET_F_GETLEASE
:
6777 #ifdef F_DUPFD_CLOEXEC
6778 case TARGET_F_DUPFD_CLOEXEC
:
6779 ret
= F_DUPFD_CLOEXEC
;
6782 case TARGET_F_NOTIFY
:
6786 case TARGET_F_GETOWN_EX
:
6791 case TARGET_F_SETOWN_EX
:
6796 case TARGET_F_SETPIPE_SZ
:
6799 case TARGET_F_GETPIPE_SZ
:
6804 case TARGET_F_ADD_SEALS
:
6807 case TARGET_F_GET_SEALS
:
6812 ret
= -TARGET_EINVAL
;
6816 #if defined(__powerpc64__)
6817 /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and
6818 * is not supported by kernel. The glibc fcntl call actually adjusts
6819 * them to 5, 6 and 7 before making the syscall(). Since we make the
6820 * syscall directly, adjust to what is supported by the kernel.
6822 if (ret
>= F_GETLK64
&& ret
<= F_SETLKW64
) {
6823 ret
-= F_GETLK64
- 5;
6830 #define FLOCK_TRANSTBL \
6832 TRANSTBL_CONVERT(F_RDLCK); \
6833 TRANSTBL_CONVERT(F_WRLCK); \
6834 TRANSTBL_CONVERT(F_UNLCK); \
6837 static int target_to_host_flock(int type
)
6839 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a
6841 #undef TRANSTBL_CONVERT
6842 return -TARGET_EINVAL
;
6845 static int host_to_target_flock(int type
)
6847 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a
6849 #undef TRANSTBL_CONVERT
6850 /* if we don't know how to convert the value coming
6851 * from the host we copy to the target field as-is
6856 static inline abi_long
copy_from_user_flock(struct flock64
*fl
,
6857 abi_ulong target_flock_addr
)
6859 struct target_flock
*target_fl
;
6862 if (!lock_user_struct(VERIFY_READ
, target_fl
, target_flock_addr
, 1)) {
6863 return -TARGET_EFAULT
;
6866 __get_user(l_type
, &target_fl
->l_type
);
6867 l_type
= target_to_host_flock(l_type
);
6871 fl
->l_type
= l_type
;
6872 __get_user(fl
->l_whence
, &target_fl
->l_whence
);
6873 __get_user(fl
->l_start
, &target_fl
->l_start
);
6874 __get_user(fl
->l_len
, &target_fl
->l_len
);
6875 __get_user(fl
->l_pid
, &target_fl
->l_pid
);
6876 unlock_user_struct(target_fl
, target_flock_addr
, 0);
6880 static inline abi_long
copy_to_user_flock(abi_ulong target_flock_addr
,
6881 const struct flock64
*fl
)
6883 struct target_flock
*target_fl
;
6886 if (!lock_user_struct(VERIFY_WRITE
, target_fl
, target_flock_addr
, 0)) {
6887 return -TARGET_EFAULT
;
6890 l_type
= host_to_target_flock(fl
->l_type
);
6891 __put_user(l_type
, &target_fl
->l_type
);
6892 __put_user(fl
->l_whence
, &target_fl
->l_whence
);
6893 __put_user(fl
->l_start
, &target_fl
->l_start
);
6894 __put_user(fl
->l_len
, &target_fl
->l_len
);
6895 __put_user(fl
->l_pid
, &target_fl
->l_pid
);
6896 unlock_user_struct(target_fl
, target_flock_addr
, 1);
6900 typedef abi_long
from_flock64_fn(struct flock64
*fl
, abi_ulong target_addr
);
6901 typedef abi_long
to_flock64_fn(abi_ulong target_addr
, const struct flock64
*fl
);
6903 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
6904 struct target_oabi_flock64
{
6912 static inline abi_long
copy_from_user_oabi_flock64(struct flock64
*fl
,
6913 abi_ulong target_flock_addr
)
6915 struct target_oabi_flock64
*target_fl
;
6918 if (!lock_user_struct(VERIFY_READ
, target_fl
, target_flock_addr
, 1)) {
6919 return -TARGET_EFAULT
;
6922 __get_user(l_type
, &target_fl
->l_type
);
6923 l_type
= target_to_host_flock(l_type
);
6927 fl
->l_type
= l_type
;
6928 __get_user(fl
->l_whence
, &target_fl
->l_whence
);
6929 __get_user(fl
->l_start
, &target_fl
->l_start
);
6930 __get_user(fl
->l_len
, &target_fl
->l_len
);
6931 __get_user(fl
->l_pid
, &target_fl
->l_pid
);
6932 unlock_user_struct(target_fl
, target_flock_addr
, 0);
6936 static inline abi_long
copy_to_user_oabi_flock64(abi_ulong target_flock_addr
,
6937 const struct flock64
*fl
)
6939 struct target_oabi_flock64
*target_fl
;
6942 if (!lock_user_struct(VERIFY_WRITE
, target_fl
, target_flock_addr
, 0)) {
6943 return -TARGET_EFAULT
;
6946 l_type
= host_to_target_flock(fl
->l_type
);
6947 __put_user(l_type
, &target_fl
->l_type
);
6948 __put_user(fl
->l_whence
, &target_fl
->l_whence
);
6949 __put_user(fl
->l_start
, &target_fl
->l_start
);
6950 __put_user(fl
->l_len
, &target_fl
->l_len
);
6951 __put_user(fl
->l_pid
, &target_fl
->l_pid
);
6952 unlock_user_struct(target_fl
, target_flock_addr
, 1);
6957 static inline abi_long
copy_from_user_flock64(struct flock64
*fl
,
6958 abi_ulong target_flock_addr
)
6960 struct target_flock64
*target_fl
;
6963 if (!lock_user_struct(VERIFY_READ
, target_fl
, target_flock_addr
, 1)) {
6964 return -TARGET_EFAULT
;
6967 __get_user(l_type
, &target_fl
->l_type
);
6968 l_type
= target_to_host_flock(l_type
);
6972 fl
->l_type
= l_type
;
6973 __get_user(fl
->l_whence
, &target_fl
->l_whence
);
6974 __get_user(fl
->l_start
, &target_fl
->l_start
);
6975 __get_user(fl
->l_len
, &target_fl
->l_len
);
6976 __get_user(fl
->l_pid
, &target_fl
->l_pid
);
6977 unlock_user_struct(target_fl
, target_flock_addr
, 0);
6981 static inline abi_long
copy_to_user_flock64(abi_ulong target_flock_addr
,
6982 const struct flock64
*fl
)
6984 struct target_flock64
*target_fl
;
6987 if (!lock_user_struct(VERIFY_WRITE
, target_fl
, target_flock_addr
, 0)) {
6988 return -TARGET_EFAULT
;
6991 l_type
= host_to_target_flock(fl
->l_type
);
6992 __put_user(l_type
, &target_fl
->l_type
);
6993 __put_user(fl
->l_whence
, &target_fl
->l_whence
);
6994 __put_user(fl
->l_start
, &target_fl
->l_start
);
6995 __put_user(fl
->l_len
, &target_fl
->l_len
);
6996 __put_user(fl
->l_pid
, &target_fl
->l_pid
);
6997 unlock_user_struct(target_fl
, target_flock_addr
, 1);
7001 static abi_long
do_fcntl(int fd
, int cmd
, abi_ulong arg
)
7003 struct flock64 fl64
;
7005 struct f_owner_ex fox
;
7006 struct target_f_owner_ex
*target_fox
;
7009 int host_cmd
= target_to_host_fcntl_cmd(cmd
);
7011 if (host_cmd
== -TARGET_EINVAL
)
7015 case TARGET_F_GETLK
:
7016 ret
= copy_from_user_flock(&fl64
, arg
);
7020 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fl64
));
7022 ret
= copy_to_user_flock(arg
, &fl64
);
7026 case TARGET_F_SETLK
:
7027 case TARGET_F_SETLKW
:
7028 ret
= copy_from_user_flock(&fl64
, arg
);
7032 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fl64
));
7035 case TARGET_F_GETLK64
:
7036 case TARGET_F_OFD_GETLK
:
7037 ret
= copy_from_user_flock64(&fl64
, arg
);
7041 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fl64
));
7043 ret
= copy_to_user_flock64(arg
, &fl64
);
7046 case TARGET_F_SETLK64
:
7047 case TARGET_F_SETLKW64
:
7048 case TARGET_F_OFD_SETLK
:
7049 case TARGET_F_OFD_SETLKW
:
7050 ret
= copy_from_user_flock64(&fl64
, arg
);
7054 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fl64
));
7057 case TARGET_F_GETFL
:
7058 ret
= get_errno(safe_fcntl(fd
, host_cmd
, arg
));
7060 ret
= host_to_target_bitmask(ret
, fcntl_flags_tbl
);
7061 /* tell 32-bit guests it uses largefile on 64-bit hosts: */
7062 if (O_LARGEFILE
== 0 && HOST_LONG_BITS
== 64) {
7063 ret
|= TARGET_O_LARGEFILE
;
7068 case TARGET_F_SETFL
:
7069 ret
= get_errno(safe_fcntl(fd
, host_cmd
,
7070 target_to_host_bitmask(arg
,
7075 case TARGET_F_GETOWN_EX
:
7076 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fox
));
7078 if (!lock_user_struct(VERIFY_WRITE
, target_fox
, arg
, 0))
7079 return -TARGET_EFAULT
;
7080 target_fox
->type
= tswap32(fox
.type
);
7081 target_fox
->pid
= tswap32(fox
.pid
);
7082 unlock_user_struct(target_fox
, arg
, 1);
7088 case TARGET_F_SETOWN_EX
:
7089 if (!lock_user_struct(VERIFY_READ
, target_fox
, arg
, 1))
7090 return -TARGET_EFAULT
;
7091 fox
.type
= tswap32(target_fox
->type
);
7092 fox
.pid
= tswap32(target_fox
->pid
);
7093 unlock_user_struct(target_fox
, arg
, 0);
7094 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fox
));
7098 case TARGET_F_SETSIG
:
7099 ret
= get_errno(safe_fcntl(fd
, host_cmd
, target_to_host_signal(arg
)));
7102 case TARGET_F_GETSIG
:
7103 ret
= host_to_target_signal(get_errno(safe_fcntl(fd
, host_cmd
, arg
)));
7106 case TARGET_F_SETOWN
:
7107 case TARGET_F_GETOWN
:
7108 case TARGET_F_SETLEASE
:
7109 case TARGET_F_GETLEASE
:
7110 case TARGET_F_SETPIPE_SZ
:
7111 case TARGET_F_GETPIPE_SZ
:
7112 case TARGET_F_ADD_SEALS
:
7113 case TARGET_F_GET_SEALS
:
7114 ret
= get_errno(safe_fcntl(fd
, host_cmd
, arg
));
7118 ret
= get_errno(safe_fcntl(fd
, cmd
, arg
));
7126 static inline int high2lowuid(int uid
)
7134 static inline int high2lowgid(int gid
)
7142 static inline int low2highuid(int uid
)
7144 if ((int16_t)uid
== -1)
7150 static inline int low2highgid(int gid
)
7152 if ((int16_t)gid
== -1)
7157 static inline int tswapid(int id
)
7162 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
7164 #else /* !USE_UID16 */
7165 static inline int high2lowuid(int uid
)
7169 static inline int high2lowgid(int gid
)
7173 static inline int low2highuid(int uid
)
7177 static inline int low2highgid(int gid
)
7181 static inline int tswapid(int id
)
7186 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
7188 #endif /* USE_UID16 */
7190 /* We must do direct syscalls for setting UID/GID, because we want to
7191 * implement the Linux system call semantics of "change only for this thread",
7192 * not the libc/POSIX semantics of "change for all threads in process".
7193 * (See http://ewontfix.com/17/ for more details.)
7194 * We use the 32-bit version of the syscalls if present; if it is not
7195 * then either the host architecture supports 32-bit UIDs natively with
7196 * the standard syscall, or the 16-bit UID is the best we can do.
7198 #ifdef __NR_setuid32
7199 #define __NR_sys_setuid __NR_setuid32
7201 #define __NR_sys_setuid __NR_setuid
7203 #ifdef __NR_setgid32
7204 #define __NR_sys_setgid __NR_setgid32
7206 #define __NR_sys_setgid __NR_setgid
7208 #ifdef __NR_setresuid32
7209 #define __NR_sys_setresuid __NR_setresuid32
7211 #define __NR_sys_setresuid __NR_setresuid
7213 #ifdef __NR_setresgid32
7214 #define __NR_sys_setresgid __NR_setresgid32
7216 #define __NR_sys_setresgid __NR_setresgid
7219 _syscall1(int, sys_setuid
, uid_t
, uid
)
7220 _syscall1(int, sys_setgid
, gid_t
, gid
)
7221 _syscall3(int, sys_setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
7222 _syscall3(int, sys_setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
7224 void syscall_init(void)
7227 const argtype
*arg_type
;
7230 thunk_init(STRUCT_MAX
);
7232 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
7233 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
7234 #include "syscall_types.h"
7236 #undef STRUCT_SPECIAL
7238 /* we patch the ioctl size if necessary. We rely on the fact that
7239 no ioctl has all the bits at '1' in the size field */
7241 while (ie
->target_cmd
!= 0) {
7242 if (((ie
->target_cmd
>> TARGET_IOC_SIZESHIFT
) & TARGET_IOC_SIZEMASK
) ==
7243 TARGET_IOC_SIZEMASK
) {
7244 arg_type
= ie
->arg_type
;
7245 if (arg_type
[0] != TYPE_PTR
) {
7246 fprintf(stderr
, "cannot patch size for ioctl 0x%x\n",
7251 size
= thunk_type_size(arg_type
, 0);
7252 ie
->target_cmd
= (ie
->target_cmd
&
7253 ~(TARGET_IOC_SIZEMASK
<< TARGET_IOC_SIZESHIFT
)) |
7254 (size
<< TARGET_IOC_SIZESHIFT
);
7257 /* automatic consistency check if same arch */
7258 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
7259 (defined(__x86_64__) && defined(TARGET_X86_64))
7260 if (unlikely(ie
->target_cmd
!= ie
->host_cmd
)) {
7261 fprintf(stderr
, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
7262 ie
->name
, ie
->target_cmd
, ie
->host_cmd
);
7269 #ifdef TARGET_NR_truncate64
7270 static inline abi_long
target_truncate64(CPUArchState
*cpu_env
, const char *arg1
,
7275 if (regpairs_aligned(cpu_env
, TARGET_NR_truncate64
)) {
7279 return get_errno(truncate64(arg1
, target_offset64(arg2
, arg3
)));
7283 #ifdef TARGET_NR_ftruncate64
7284 static inline abi_long
target_ftruncate64(CPUArchState
*cpu_env
, abi_long arg1
,
7289 if (regpairs_aligned(cpu_env
, TARGET_NR_ftruncate64
)) {
7293 return get_errno(ftruncate64(arg1
, target_offset64(arg2
, arg3
)));
7297 #if defined(TARGET_NR_timer_settime) || \
7298 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
7299 static inline abi_long
target_to_host_itimerspec(struct itimerspec
*host_its
,
7300 abi_ulong target_addr
)
7302 if (target_to_host_timespec(&host_its
->it_interval
, target_addr
+
7303 offsetof(struct target_itimerspec
,
7305 target_to_host_timespec(&host_its
->it_value
, target_addr
+
7306 offsetof(struct target_itimerspec
,
7308 return -TARGET_EFAULT
;
7315 #if defined(TARGET_NR_timer_settime64) || \
7316 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD))
7317 static inline abi_long
target_to_host_itimerspec64(struct itimerspec
*host_its
,
7318 abi_ulong target_addr
)
7320 if (target_to_host_timespec64(&host_its
->it_interval
, target_addr
+
7321 offsetof(struct target__kernel_itimerspec
,
7323 target_to_host_timespec64(&host_its
->it_value
, target_addr
+
7324 offsetof(struct target__kernel_itimerspec
,
7326 return -TARGET_EFAULT
;
7333 #if ((defined(TARGET_NR_timerfd_gettime) || \
7334 defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \
7335 defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime)
7336 static inline abi_long
host_to_target_itimerspec(abi_ulong target_addr
,
7337 struct itimerspec
*host_its
)
7339 if (host_to_target_timespec(target_addr
+ offsetof(struct target_itimerspec
,
7341 &host_its
->it_interval
) ||
7342 host_to_target_timespec(target_addr
+ offsetof(struct target_itimerspec
,
7344 &host_its
->it_value
)) {
7345 return -TARGET_EFAULT
;
7351 #if ((defined(TARGET_NR_timerfd_gettime64) || \
7352 defined(TARGET_NR_timerfd_settime64)) && defined(CONFIG_TIMERFD)) || \
7353 defined(TARGET_NR_timer_gettime64) || defined(TARGET_NR_timer_settime64)
7354 static inline abi_long
host_to_target_itimerspec64(abi_ulong target_addr
,
7355 struct itimerspec
*host_its
)
7357 if (host_to_target_timespec64(target_addr
+
7358 offsetof(struct target__kernel_itimerspec
,
7360 &host_its
->it_interval
) ||
7361 host_to_target_timespec64(target_addr
+
7362 offsetof(struct target__kernel_itimerspec
,
7364 &host_its
->it_value
)) {
7365 return -TARGET_EFAULT
;
7371 #if defined(TARGET_NR_adjtimex) || \
7372 (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME))
7373 static inline abi_long
target_to_host_timex(struct timex
*host_tx
,
7374 abi_long target_addr
)
7376 struct target_timex
*target_tx
;
7378 if (!lock_user_struct(VERIFY_READ
, target_tx
, target_addr
, 1)) {
7379 return -TARGET_EFAULT
;
7382 __get_user(host_tx
->modes
, &target_tx
->modes
);
7383 __get_user(host_tx
->offset
, &target_tx
->offset
);
7384 __get_user(host_tx
->freq
, &target_tx
->freq
);
7385 __get_user(host_tx
->maxerror
, &target_tx
->maxerror
);
7386 __get_user(host_tx
->esterror
, &target_tx
->esterror
);
7387 __get_user(host_tx
->status
, &target_tx
->status
);
7388 __get_user(host_tx
->constant
, &target_tx
->constant
);
7389 __get_user(host_tx
->precision
, &target_tx
->precision
);
7390 __get_user(host_tx
->tolerance
, &target_tx
->tolerance
);
7391 __get_user(host_tx
->time
.tv_sec
, &target_tx
->time
.tv_sec
);
7392 __get_user(host_tx
->time
.tv_usec
, &target_tx
->time
.tv_usec
);
7393 __get_user(host_tx
->tick
, &target_tx
->tick
);
7394 __get_user(host_tx
->ppsfreq
, &target_tx
->ppsfreq
);
7395 __get_user(host_tx
->jitter
, &target_tx
->jitter
);
7396 __get_user(host_tx
->shift
, &target_tx
->shift
);
7397 __get_user(host_tx
->stabil
, &target_tx
->stabil
);
7398 __get_user(host_tx
->jitcnt
, &target_tx
->jitcnt
);
7399 __get_user(host_tx
->calcnt
, &target_tx
->calcnt
);
7400 __get_user(host_tx
->errcnt
, &target_tx
->errcnt
);
7401 __get_user(host_tx
->stbcnt
, &target_tx
->stbcnt
);
7402 __get_user(host_tx
->tai
, &target_tx
->tai
);
7404 unlock_user_struct(target_tx
, target_addr
, 0);
7408 static inline abi_long
host_to_target_timex(abi_long target_addr
,
7409 struct timex
*host_tx
)
7411 struct target_timex
*target_tx
;
7413 if (!lock_user_struct(VERIFY_WRITE
, target_tx
, target_addr
, 0)) {
7414 return -TARGET_EFAULT
;
7417 __put_user(host_tx
->modes
, &target_tx
->modes
);
7418 __put_user(host_tx
->offset
, &target_tx
->offset
);
7419 __put_user(host_tx
->freq
, &target_tx
->freq
);
7420 __put_user(host_tx
->maxerror
, &target_tx
->maxerror
);
7421 __put_user(host_tx
->esterror
, &target_tx
->esterror
);
7422 __put_user(host_tx
->status
, &target_tx
->status
);
7423 __put_user(host_tx
->constant
, &target_tx
->constant
);
7424 __put_user(host_tx
->precision
, &target_tx
->precision
);
7425 __put_user(host_tx
->tolerance
, &target_tx
->tolerance
);
7426 __put_user(host_tx
->time
.tv_sec
, &target_tx
->time
.tv_sec
);
7427 __put_user(host_tx
->time
.tv_usec
, &target_tx
->time
.tv_usec
);
7428 __put_user(host_tx
->tick
, &target_tx
->tick
);
7429 __put_user(host_tx
->ppsfreq
, &target_tx
->ppsfreq
);
7430 __put_user(host_tx
->jitter
, &target_tx
->jitter
);
7431 __put_user(host_tx
->shift
, &target_tx
->shift
);
7432 __put_user(host_tx
->stabil
, &target_tx
->stabil
);
7433 __put_user(host_tx
->jitcnt
, &target_tx
->jitcnt
);
7434 __put_user(host_tx
->calcnt
, &target_tx
->calcnt
);
7435 __put_user(host_tx
->errcnt
, &target_tx
->errcnt
);
7436 __put_user(host_tx
->stbcnt
, &target_tx
->stbcnt
);
7437 __put_user(host_tx
->tai
, &target_tx
->tai
);
7439 unlock_user_struct(target_tx
, target_addr
, 1);
7445 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
7446 static inline abi_long
target_to_host_timex64(struct timex
*host_tx
,
7447 abi_long target_addr
)
7449 struct target__kernel_timex
*target_tx
;
7451 if (copy_from_user_timeval64(&host_tx
->time
, target_addr
+
7452 offsetof(struct target__kernel_timex
,
7454 return -TARGET_EFAULT
;
7457 if (!lock_user_struct(VERIFY_READ
, target_tx
, target_addr
, 1)) {
7458 return -TARGET_EFAULT
;
7461 __get_user(host_tx
->modes
, &target_tx
->modes
);
7462 __get_user(host_tx
->offset
, &target_tx
->offset
);
7463 __get_user(host_tx
->freq
, &target_tx
->freq
);
7464 __get_user(host_tx
->maxerror
, &target_tx
->maxerror
);
7465 __get_user(host_tx
->esterror
, &target_tx
->esterror
);
7466 __get_user(host_tx
->status
, &target_tx
->status
);
7467 __get_user(host_tx
->constant
, &target_tx
->constant
);
7468 __get_user(host_tx
->precision
, &target_tx
->precision
);
7469 __get_user(host_tx
->tolerance
, &target_tx
->tolerance
);
7470 __get_user(host_tx
->tick
, &target_tx
->tick
);
7471 __get_user(host_tx
->ppsfreq
, &target_tx
->ppsfreq
);
7472 __get_user(host_tx
->jitter
, &target_tx
->jitter
);
7473 __get_user(host_tx
->shift
, &target_tx
->shift
);
7474 __get_user(host_tx
->stabil
, &target_tx
->stabil
);
7475 __get_user(host_tx
->jitcnt
, &target_tx
->jitcnt
);
7476 __get_user(host_tx
->calcnt
, &target_tx
->calcnt
);
7477 __get_user(host_tx
->errcnt
, &target_tx
->errcnt
);
7478 __get_user(host_tx
->stbcnt
, &target_tx
->stbcnt
);
7479 __get_user(host_tx
->tai
, &target_tx
->tai
);
7481 unlock_user_struct(target_tx
, target_addr
, 0);
7485 static inline abi_long
host_to_target_timex64(abi_long target_addr
,
7486 struct timex
*host_tx
)
7488 struct target__kernel_timex
*target_tx
;
7490 if (copy_to_user_timeval64(target_addr
+
7491 offsetof(struct target__kernel_timex
, time
),
7493 return -TARGET_EFAULT
;
7496 if (!lock_user_struct(VERIFY_WRITE
, target_tx
, target_addr
, 0)) {
7497 return -TARGET_EFAULT
;
7500 __put_user(host_tx
->modes
, &target_tx
->modes
);
7501 __put_user(host_tx
->offset
, &target_tx
->offset
);
7502 __put_user(host_tx
->freq
, &target_tx
->freq
);
7503 __put_user(host_tx
->maxerror
, &target_tx
->maxerror
);
7504 __put_user(host_tx
->esterror
, &target_tx
->esterror
);
7505 __put_user(host_tx
->status
, &target_tx
->status
);
7506 __put_user(host_tx
->constant
, &target_tx
->constant
);
7507 __put_user(host_tx
->precision
, &target_tx
->precision
);
7508 __put_user(host_tx
->tolerance
, &target_tx
->tolerance
);
7509 __put_user(host_tx
->tick
, &target_tx
->tick
);
7510 __put_user(host_tx
->ppsfreq
, &target_tx
->ppsfreq
);
7511 __put_user(host_tx
->jitter
, &target_tx
->jitter
);
7512 __put_user(host_tx
->shift
, &target_tx
->shift
);
7513 __put_user(host_tx
->stabil
, &target_tx
->stabil
);
7514 __put_user(host_tx
->jitcnt
, &target_tx
->jitcnt
);
7515 __put_user(host_tx
->calcnt
, &target_tx
->calcnt
);
7516 __put_user(host_tx
->errcnt
, &target_tx
->errcnt
);
7517 __put_user(host_tx
->stbcnt
, &target_tx
->stbcnt
);
7518 __put_user(host_tx
->tai
, &target_tx
->tai
);
7520 unlock_user_struct(target_tx
, target_addr
, 1);
7525 #ifndef HAVE_SIGEV_NOTIFY_THREAD_ID
7526 #define sigev_notify_thread_id _sigev_un._tid
7529 static inline abi_long
target_to_host_sigevent(struct sigevent
*host_sevp
,
7530 abi_ulong target_addr
)
7532 struct target_sigevent
*target_sevp
;
7534 if (!lock_user_struct(VERIFY_READ
, target_sevp
, target_addr
, 1)) {
7535 return -TARGET_EFAULT
;
7538 /* This union is awkward on 64 bit systems because it has a 32 bit
7539 * integer and a pointer in it; we follow the conversion approach
7540 * used for handling sigval types in signal.c so the guest should get
7541 * the correct value back even if we did a 64 bit byteswap and it's
7542 * using the 32 bit integer.
7544 host_sevp
->sigev_value
.sival_ptr
=
7545 (void *)(uintptr_t)tswapal(target_sevp
->sigev_value
.sival_ptr
);
7546 host_sevp
->sigev_signo
=
7547 target_to_host_signal(tswap32(target_sevp
->sigev_signo
));
7548 host_sevp
->sigev_notify
= tswap32(target_sevp
->sigev_notify
);
7549 host_sevp
->sigev_notify_thread_id
= tswap32(target_sevp
->_sigev_un
._tid
);
7551 unlock_user_struct(target_sevp
, target_addr
, 1);
7555 #if defined(TARGET_NR_mlockall)
7556 static inline int target_to_host_mlockall_arg(int arg
)
7560 if (arg
& TARGET_MCL_CURRENT
) {
7561 result
|= MCL_CURRENT
;
7563 if (arg
& TARGET_MCL_FUTURE
) {
7564 result
|= MCL_FUTURE
;
7567 if (arg
& TARGET_MCL_ONFAULT
) {
7568 result
|= MCL_ONFAULT
;
7576 static inline int target_to_host_msync_arg(abi_long arg
)
7578 return ((arg
& TARGET_MS_ASYNC
) ? MS_ASYNC
: 0) |
7579 ((arg
& TARGET_MS_INVALIDATE
) ? MS_INVALIDATE
: 0) |
7580 ((arg
& TARGET_MS_SYNC
) ? MS_SYNC
: 0) |
7581 (arg
& ~(TARGET_MS_ASYNC
| TARGET_MS_INVALIDATE
| TARGET_MS_SYNC
));
7584 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) || \
7585 defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) || \
7586 defined(TARGET_NR_newfstatat))
7587 static inline abi_long
host_to_target_stat64(CPUArchState
*cpu_env
,
7588 abi_ulong target_addr
,
7589 struct stat
*host_st
)
7591 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
7592 if (cpu_env
->eabi
) {
7593 struct target_eabi_stat64
*target_st
;
7595 if (!lock_user_struct(VERIFY_WRITE
, target_st
, target_addr
, 0))
7596 return -TARGET_EFAULT
;
7597 memset(target_st
, 0, sizeof(struct target_eabi_stat64
));
7598 __put_user(host_st
->st_dev
, &target_st
->st_dev
);
7599 __put_user(host_st
->st_ino
, &target_st
->st_ino
);
7600 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7601 __put_user(host_st
->st_ino
, &target_st
->__st_ino
);
7603 __put_user(host_st
->st_mode
, &target_st
->st_mode
);
7604 __put_user(host_st
->st_nlink
, &target_st
->st_nlink
);
7605 __put_user(host_st
->st_uid
, &target_st
->st_uid
);
7606 __put_user(host_st
->st_gid
, &target_st
->st_gid
);
7607 __put_user(host_st
->st_rdev
, &target_st
->st_rdev
);
7608 __put_user(host_st
->st_size
, &target_st
->st_size
);
7609 __put_user(host_st
->st_blksize
, &target_st
->st_blksize
);
7610 __put_user(host_st
->st_blocks
, &target_st
->st_blocks
);
7611 __put_user(host_st
->st_atime
, &target_st
->target_st_atime
);
7612 __put_user(host_st
->st_mtime
, &target_st
->target_st_mtime
);
7613 __put_user(host_st
->st_ctime
, &target_st
->target_st_ctime
);
7614 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7615 __put_user(host_st
->st_atim
.tv_nsec
, &target_st
->target_st_atime_nsec
);
7616 __put_user(host_st
->st_mtim
.tv_nsec
, &target_st
->target_st_mtime_nsec
);
7617 __put_user(host_st
->st_ctim
.tv_nsec
, &target_st
->target_st_ctime_nsec
);
7619 unlock_user_struct(target_st
, target_addr
, 1);
7623 #if defined(TARGET_HAS_STRUCT_STAT64)
7624 struct target_stat64
*target_st
;
7626 struct target_stat
*target_st
;
7629 if (!lock_user_struct(VERIFY_WRITE
, target_st
, target_addr
, 0))
7630 return -TARGET_EFAULT
;
7631 memset(target_st
, 0, sizeof(*target_st
));
7632 __put_user(host_st
->st_dev
, &target_st
->st_dev
);
7633 __put_user(host_st
->st_ino
, &target_st
->st_ino
);
7634 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7635 __put_user(host_st
->st_ino
, &target_st
->__st_ino
);
7637 __put_user(host_st
->st_mode
, &target_st
->st_mode
);
7638 __put_user(host_st
->st_nlink
, &target_st
->st_nlink
);
7639 __put_user(host_st
->st_uid
, &target_st
->st_uid
);
7640 __put_user(host_st
->st_gid
, &target_st
->st_gid
);
7641 __put_user(host_st
->st_rdev
, &target_st
->st_rdev
);
7642 /* XXX: better use of kernel struct */
7643 __put_user(host_st
->st_size
, &target_st
->st_size
);
7644 __put_user(host_st
->st_blksize
, &target_st
->st_blksize
);
7645 __put_user(host_st
->st_blocks
, &target_st
->st_blocks
);
7646 __put_user(host_st
->st_atime
, &target_st
->target_st_atime
);
7647 __put_user(host_st
->st_mtime
, &target_st
->target_st_mtime
);
7648 __put_user(host_st
->st_ctime
, &target_st
->target_st_ctime
);
7649 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7650 __put_user(host_st
->st_atim
.tv_nsec
, &target_st
->target_st_atime_nsec
);
7651 __put_user(host_st
->st_mtim
.tv_nsec
, &target_st
->target_st_mtime_nsec
);
7652 __put_user(host_st
->st_ctim
.tv_nsec
, &target_st
->target_st_ctime_nsec
);
7654 unlock_user_struct(target_st
, target_addr
, 1);
7661 #if defined(TARGET_NR_statx) && defined(__NR_statx)
7662 static inline abi_long
host_to_target_statx(struct target_statx
*host_stx
,
7663 abi_ulong target_addr
)
7665 struct target_statx
*target_stx
;
7667 if (!lock_user_struct(VERIFY_WRITE
, target_stx
, target_addr
, 0)) {
7668 return -TARGET_EFAULT
;
7670 memset(target_stx
, 0, sizeof(*target_stx
));
7672 __put_user(host_stx
->stx_mask
, &target_stx
->stx_mask
);
7673 __put_user(host_stx
->stx_blksize
, &target_stx
->stx_blksize
);
7674 __put_user(host_stx
->stx_attributes
, &target_stx
->stx_attributes
);
7675 __put_user(host_stx
->stx_nlink
, &target_stx
->stx_nlink
);
7676 __put_user(host_stx
->stx_uid
, &target_stx
->stx_uid
);
7677 __put_user(host_stx
->stx_gid
, &target_stx
->stx_gid
);
7678 __put_user(host_stx
->stx_mode
, &target_stx
->stx_mode
);
7679 __put_user(host_stx
->stx_ino
, &target_stx
->stx_ino
);
7680 __put_user(host_stx
->stx_size
, &target_stx
->stx_size
);
7681 __put_user(host_stx
->stx_blocks
, &target_stx
->stx_blocks
);
7682 __put_user(host_stx
->stx_attributes_mask
, &target_stx
->stx_attributes_mask
);
7683 __put_user(host_stx
->stx_atime
.tv_sec
, &target_stx
->stx_atime
.tv_sec
);
7684 __put_user(host_stx
->stx_atime
.tv_nsec
, &target_stx
->stx_atime
.tv_nsec
);
7685 __put_user(host_stx
->stx_btime
.tv_sec
, &target_stx
->stx_btime
.tv_sec
);
7686 __put_user(host_stx
->stx_btime
.tv_nsec
, &target_stx
->stx_btime
.tv_nsec
);
7687 __put_user(host_stx
->stx_ctime
.tv_sec
, &target_stx
->stx_ctime
.tv_sec
);
7688 __put_user(host_stx
->stx_ctime
.tv_nsec
, &target_stx
->stx_ctime
.tv_nsec
);
7689 __put_user(host_stx
->stx_mtime
.tv_sec
, &target_stx
->stx_mtime
.tv_sec
);
7690 __put_user(host_stx
->stx_mtime
.tv_nsec
, &target_stx
->stx_mtime
.tv_nsec
);
7691 __put_user(host_stx
->stx_rdev_major
, &target_stx
->stx_rdev_major
);
7692 __put_user(host_stx
->stx_rdev_minor
, &target_stx
->stx_rdev_minor
);
7693 __put_user(host_stx
->stx_dev_major
, &target_stx
->stx_dev_major
);
7694 __put_user(host_stx
->stx_dev_minor
, &target_stx
->stx_dev_minor
);
7696 unlock_user_struct(target_stx
, target_addr
, 1);
7702 static int do_sys_futex(int *uaddr
, int op
, int val
,
7703 const struct timespec
*timeout
, int *uaddr2
,
7706 #if HOST_LONG_BITS == 64
7707 #if defined(__NR_futex)
7708 /* always a 64-bit time_t, it doesn't define _time64 version */
7709 return sys_futex(uaddr
, op
, val
, timeout
, uaddr2
, val3
);
7712 #else /* HOST_LONG_BITS == 64 */
7713 #if defined(__NR_futex_time64)
7714 if (sizeof(timeout
->tv_sec
) == 8) {
7715 /* _time64 function on 32bit arch */
7716 return sys_futex_time64(uaddr
, op
, val
, timeout
, uaddr2
, val3
);
7719 #if defined(__NR_futex)
7720 /* old function on 32bit arch */
7721 return sys_futex(uaddr
, op
, val
, timeout
, uaddr2
, val3
);
7723 #endif /* HOST_LONG_BITS == 64 */
7724 g_assert_not_reached();
7727 static int do_safe_futex(int *uaddr
, int op
, int val
,
7728 const struct timespec
*timeout
, int *uaddr2
,
7731 #if HOST_LONG_BITS == 64
7732 #if defined(__NR_futex)
7733 /* always a 64-bit time_t, it doesn't define _time64 version */
7734 return get_errno(safe_futex(uaddr
, op
, val
, timeout
, uaddr2
, val3
));
7736 #else /* HOST_LONG_BITS == 64 */
7737 #if defined(__NR_futex_time64)
7738 if (sizeof(timeout
->tv_sec
) == 8) {
7739 /* _time64 function on 32bit arch */
7740 return get_errno(safe_futex_time64(uaddr
, op
, val
, timeout
, uaddr2
,
7744 #if defined(__NR_futex)
7745 /* old function on 32bit arch */
7746 return get_errno(safe_futex(uaddr
, op
, val
, timeout
, uaddr2
, val3
));
7748 #endif /* HOST_LONG_BITS == 64 */
7749 return -TARGET_ENOSYS
;
7752 /* ??? Using host futex calls even when target atomic operations
7753 are not really atomic probably breaks things. However implementing
7754 futexes locally would make futexes shared between multiple processes
7755 tricky. However they're probably useless because guest atomic
7756 operations won't work either. */
7757 #if defined(TARGET_NR_futex) || defined(TARGET_NR_futex_time64)
7758 static int do_futex(CPUState
*cpu
, bool time64
, target_ulong uaddr
,
7759 int op
, int val
, target_ulong timeout
,
7760 target_ulong uaddr2
, int val3
)
7762 struct timespec ts
, *pts
= NULL
;
7763 void *haddr2
= NULL
;
7766 /* We assume FUTEX_* constants are the same on both host and target. */
7767 #ifdef FUTEX_CMD_MASK
7768 base_op
= op
& FUTEX_CMD_MASK
;
7774 case FUTEX_WAIT_BITSET
:
7777 case FUTEX_WAIT_REQUEUE_PI
:
7779 haddr2
= g2h(cpu
, uaddr2
);
7782 case FUTEX_LOCK_PI2
:
7785 case FUTEX_WAKE_BITSET
:
7786 case FUTEX_TRYLOCK_PI
:
7787 case FUTEX_UNLOCK_PI
:
7791 val
= target_to_host_signal(val
);
7794 case FUTEX_CMP_REQUEUE
:
7795 case FUTEX_CMP_REQUEUE_PI
:
7796 val3
= tswap32(val3
);
7801 * For these, the 4th argument is not TIMEOUT, but VAL2.
7802 * But the prototype of do_safe_futex takes a pointer, so
7803 * insert casts to satisfy the compiler. We do not need
7804 * to tswap VAL2 since it's not compared to guest memory.
7806 pts
= (struct timespec
*)(uintptr_t)timeout
;
7808 haddr2
= g2h(cpu
, uaddr2
);
7811 return -TARGET_ENOSYS
;
7816 ? target_to_host_timespec64(pts
, timeout
)
7817 : target_to_host_timespec(pts
, timeout
)) {
7818 return -TARGET_EFAULT
;
7821 return do_safe_futex(g2h(cpu
, uaddr
), op
, val
, pts
, haddr2
, val3
);
7825 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7826 static abi_long
do_name_to_handle_at(abi_long dirfd
, abi_long pathname
,
7827 abi_long handle
, abi_long mount_id
,
7830 struct file_handle
*target_fh
;
7831 struct file_handle
*fh
;
7835 unsigned int size
, total_size
;
7837 if (get_user_s32(size
, handle
)) {
7838 return -TARGET_EFAULT
;
7841 name
= lock_user_string(pathname
);
7843 return -TARGET_EFAULT
;
7846 total_size
= sizeof(struct file_handle
) + size
;
7847 target_fh
= lock_user(VERIFY_WRITE
, handle
, total_size
, 0);
7849 unlock_user(name
, pathname
, 0);
7850 return -TARGET_EFAULT
;
7853 fh
= g_malloc0(total_size
);
7854 fh
->handle_bytes
= size
;
7856 ret
= get_errno(name_to_handle_at(dirfd
, path(name
), fh
, &mid
, flags
));
7857 unlock_user(name
, pathname
, 0);
7859 /* man name_to_handle_at(2):
7860 * Other than the use of the handle_bytes field, the caller should treat
7861 * the file_handle structure as an opaque data type
7864 memcpy(target_fh
, fh
, total_size
);
7865 target_fh
->handle_bytes
= tswap32(fh
->handle_bytes
);
7866 target_fh
->handle_type
= tswap32(fh
->handle_type
);
7868 unlock_user(target_fh
, handle
, total_size
);
7870 if (put_user_s32(mid
, mount_id
)) {
7871 return -TARGET_EFAULT
;
7879 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7880 static abi_long
do_open_by_handle_at(abi_long mount_fd
, abi_long handle
,
7883 struct file_handle
*target_fh
;
7884 struct file_handle
*fh
;
7885 unsigned int size
, total_size
;
7888 if (get_user_s32(size
, handle
)) {
7889 return -TARGET_EFAULT
;
7892 total_size
= sizeof(struct file_handle
) + size
;
7893 target_fh
= lock_user(VERIFY_READ
, handle
, total_size
, 1);
7895 return -TARGET_EFAULT
;
7898 fh
= g_memdup(target_fh
, total_size
);
7899 fh
->handle_bytes
= size
;
7900 fh
->handle_type
= tswap32(target_fh
->handle_type
);
7902 ret
= get_errno(open_by_handle_at(mount_fd
, fh
,
7903 target_to_host_bitmask(flags
, fcntl_flags_tbl
)));
7907 unlock_user(target_fh
, handle
, total_size
);
7913 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
7915 static abi_long
do_signalfd4(int fd
, abi_long mask
, int flags
)
7918 target_sigset_t
*target_mask
;
7922 if (flags
& ~(TARGET_O_NONBLOCK_MASK
| TARGET_O_CLOEXEC
)) {
7923 return -TARGET_EINVAL
;
7925 if (!lock_user_struct(VERIFY_READ
, target_mask
, mask
, 1)) {
7926 return -TARGET_EFAULT
;
7929 target_to_host_sigset(&host_mask
, target_mask
);
7931 host_flags
= target_to_host_bitmask(flags
, fcntl_flags_tbl
);
7933 ret
= get_errno(signalfd(fd
, &host_mask
, host_flags
));
7935 fd_trans_register(ret
, &target_signalfd_trans
);
7938 unlock_user_struct(target_mask
, mask
, 0);
7944 /* Map host to target signal numbers for the wait family of syscalls.
7945 Assume all other status bits are the same. */
7946 int host_to_target_waitstatus(int status
)
7948 if (WIFSIGNALED(status
)) {
7949 return host_to_target_signal(WTERMSIG(status
)) | (status
& ~0x7f);
7951 if (WIFSTOPPED(status
)) {
7952 return (host_to_target_signal(WSTOPSIG(status
)) << 8)
7958 static int open_self_cmdline(CPUArchState
*cpu_env
, int fd
)
7960 CPUState
*cpu
= env_cpu(cpu_env
);
7961 struct linux_binprm
*bprm
= get_task_state(cpu
)->bprm
;
7964 for (i
= 0; i
< bprm
->argc
; i
++) {
7965 size_t len
= strlen(bprm
->argv
[i
]) + 1;
7967 if (write(fd
, bprm
->argv
[i
], len
) != len
) {
7975 struct open_self_maps_data
{
7977 IntervalTreeRoot
*host_maps
;
7983 * Subroutine to output one line of /proc/self/maps,
7984 * or one region of /proc/self/smaps.
7988 # define test_stack(S, E, L) (E == L)
7990 # define test_stack(S, E, L) (S == L)
7993 static void open_self_maps_4(const struct open_self_maps_data
*d
,
7994 const MapInfo
*mi
, abi_ptr start
,
7995 abi_ptr end
, unsigned flags
)
7997 const struct image_info
*info
= d
->ts
->info
;
7998 const char *path
= mi
->path
;
8003 if (test_stack(start
, end
, info
->stack_limit
)) {
8005 } else if (start
== info
->brk
) {
8007 } else if (start
== info
->vdso
) {
8009 #ifdef TARGET_X86_64
8010 } else if (start
== TARGET_VSYSCALL_PAGE
) {
8011 path
= "[vsyscall]";
8015 /* Except null device (MAP_ANON), adjust offset for this fragment. */
8016 offset
= mi
->offset
;
8018 uintptr_t hstart
= (uintptr_t)g2h_untagged(start
);
8019 offset
+= hstart
- mi
->itree
.start
;
8022 count
= dprintf(fd
, TARGET_ABI_FMT_ptr
"-" TARGET_ABI_FMT_ptr
8023 " %c%c%c%c %08" PRIx64
" %02x:%02x %"PRId64
,
8025 (flags
& PAGE_READ
) ? 'r' : '-',
8026 (flags
& PAGE_WRITE_ORG
) ? 'w' : '-',
8027 (flags
& PAGE_EXEC
) ? 'x' : '-',
8028 mi
->is_priv
? 'p' : 's',
8029 offset
, major(mi
->dev
), minor(mi
->dev
),
8030 (uint64_t)mi
->inode
);
8032 dprintf(fd
, "%*s%s\n", 73 - count
, "", path
);
8038 unsigned long size
= end
- start
;
8039 unsigned long page_size_kb
= TARGET_PAGE_SIZE
>> 10;
8040 unsigned long size_kb
= size
>> 10;
8042 dprintf(fd
, "Size: %lu kB\n"
8043 "KernelPageSize: %lu kB\n"
8044 "MMUPageSize: %lu kB\n"
8048 "Shared_Clean: 0 kB\n"
8049 "Shared_Dirty: 0 kB\n"
8050 "Private_Clean: 0 kB\n"
8051 "Private_Dirty: 0 kB\n"
8052 "Referenced: 0 kB\n"
8053 "Anonymous: %lu kB\n"
8055 "AnonHugePages: 0 kB\n"
8056 "ShmemPmdMapped: 0 kB\n"
8057 "FilePmdMapped: 0 kB\n"
8058 "Shared_Hugetlb: 0 kB\n"
8059 "Private_Hugetlb: 0 kB\n"
8064 "VmFlags:%s%s%s%s%s%s%s%s\n",
8065 size_kb
, page_size_kb
, page_size_kb
,
8066 (flags
& PAGE_ANON
? size_kb
: 0),
8067 (flags
& PAGE_READ
) ? " rd" : "",
8068 (flags
& PAGE_WRITE_ORG
) ? " wr" : "",
8069 (flags
& PAGE_EXEC
) ? " ex" : "",
8070 mi
->is_priv
? "" : " sh",
8071 (flags
& PAGE_READ
) ? " mr" : "",
8072 (flags
& PAGE_WRITE_ORG
) ? " mw" : "",
8073 (flags
& PAGE_EXEC
) ? " me" : "",
8074 mi
->is_priv
? "" : " ms");
8079 * Callback for walk_memory_regions, when read_self_maps() fails.
8080 * Proceed without the benefit of host /proc/self/maps cross-check.
8082 static int open_self_maps_3(void *opaque
, target_ulong guest_start
,
8083 target_ulong guest_end
, unsigned long flags
)
8085 static const MapInfo mi
= { .is_priv
= true };
8087 open_self_maps_4(opaque
, &mi
, guest_start
, guest_end
, flags
);
8092 * Callback for walk_memory_regions, when read_self_maps() succeeds.
8094 static int open_self_maps_2(void *opaque
, target_ulong guest_start
,
8095 target_ulong guest_end
, unsigned long flags
)
8097 const struct open_self_maps_data
*d
= opaque
;
8098 uintptr_t host_start
= (uintptr_t)g2h_untagged(guest_start
);
8099 uintptr_t host_last
= (uintptr_t)g2h_untagged(guest_end
- 1);
8101 #ifdef TARGET_X86_64
8103 * Because of the extremely high position of the page within the guest
8104 * virtual address space, this is not backed by host memory at all.
8105 * Therefore the loop below would fail. This is the only instance
8106 * of not having host backing memory.
8108 if (guest_start
== TARGET_VSYSCALL_PAGE
) {
8109 return open_self_maps_3(opaque
, guest_start
, guest_end
, flags
);
8114 IntervalTreeNode
*n
=
8115 interval_tree_iter_first(d
->host_maps
, host_start
, host_start
);
8116 MapInfo
*mi
= container_of(n
, MapInfo
, itree
);
8117 uintptr_t this_hlast
= MIN(host_last
, n
->last
);
8118 target_ulong this_gend
= h2g(this_hlast
) + 1;
8120 open_self_maps_4(d
, mi
, guest_start
, this_gend
, flags
);
8122 if (this_hlast
== host_last
) {
8125 host_start
= this_hlast
+ 1;
8126 guest_start
= h2g(host_start
);
8130 static int open_self_maps_1(CPUArchState
*env
, int fd
, bool smaps
)
8132 struct open_self_maps_data d
= {
8133 .ts
= env_cpu(env
)->opaque
,
8134 .host_maps
= read_self_maps(),
8140 walk_memory_regions(&d
, open_self_maps_2
);
8141 free_self_maps(d
.host_maps
);
8143 walk_memory_regions(&d
, open_self_maps_3
);
8148 static int open_self_maps(CPUArchState
*cpu_env
, int fd
)
8150 return open_self_maps_1(cpu_env
, fd
, false);
8153 static int open_self_smaps(CPUArchState
*cpu_env
, int fd
)
8155 return open_self_maps_1(cpu_env
, fd
, true);
8158 static int open_self_stat(CPUArchState
*cpu_env
, int fd
)
8160 CPUState
*cpu
= env_cpu(cpu_env
);
8161 TaskState
*ts
= get_task_state(cpu
);
8162 g_autoptr(GString
) buf
= g_string_new(NULL
);
8165 for (i
= 0; i
< 44; i
++) {
8168 g_string_printf(buf
, FMT_pid
" ", getpid());
8169 } else if (i
== 1) {
8171 gchar
*bin
= g_strrstr(ts
->bprm
->argv
[0], "/");
8172 bin
= bin
? bin
+ 1 : ts
->bprm
->argv
[0];
8173 g_string_printf(buf
, "(%.15s) ", bin
);
8174 } else if (i
== 2) {
8176 g_string_assign(buf
, "R "); /* we are running right now */
8177 } else if (i
== 3) {
8179 g_string_printf(buf
, FMT_pid
" ", getppid());
8180 } else if (i
== 21) {
8182 g_string_printf(buf
, "%" PRIu64
" ", ts
->start_boottime
);
8183 } else if (i
== 27) {
8185 g_string_printf(buf
, TARGET_ABI_FMT_ld
" ", ts
->info
->start_stack
);
8187 /* for the rest, there is MasterCard */
8188 g_string_printf(buf
, "0%c", i
== 43 ? '\n' : ' ');
8191 if (write(fd
, buf
->str
, buf
->len
) != buf
->len
) {
8199 static int open_self_auxv(CPUArchState
*cpu_env
, int fd
)
8201 CPUState
*cpu
= env_cpu(cpu_env
);
8202 TaskState
*ts
= get_task_state(cpu
);
8203 abi_ulong auxv
= ts
->info
->saved_auxv
;
8204 abi_ulong len
= ts
->info
->auxv_len
;
8208 * Auxiliary vector is stored in target process stack.
8209 * read in whole auxv vector and copy it to file
8211 ptr
= lock_user(VERIFY_READ
, auxv
, len
, 0);
8215 r
= write(fd
, ptr
, len
);
8222 lseek(fd
, 0, SEEK_SET
);
8223 unlock_user(ptr
, auxv
, len
);
8229 static int is_proc_myself(const char *filename
, const char *entry
)
8231 if (!strncmp(filename
, "/proc/", strlen("/proc/"))) {
8232 filename
+= strlen("/proc/");
8233 if (!strncmp(filename
, "self/", strlen("self/"))) {
8234 filename
+= strlen("self/");
8235 } else if (*filename
>= '1' && *filename
<= '9') {
8237 snprintf(myself
, sizeof(myself
), "%d/", getpid());
8238 if (!strncmp(filename
, myself
, strlen(myself
))) {
8239 filename
+= strlen(myself
);
8246 if (!strcmp(filename
, entry
)) {
8253 static void excp_dump_file(FILE *logfile
, CPUArchState
*env
,
8254 const char *fmt
, int code
)
8257 CPUState
*cs
= env_cpu(env
);
8259 fprintf(logfile
, fmt
, code
);
8260 fprintf(logfile
, "Failing executable: %s\n", exec_path
);
8261 cpu_dump_state(cs
, logfile
, 0);
8262 open_self_maps(env
, fileno(logfile
));
8266 void target_exception_dump(CPUArchState
*env
, const char *fmt
, int code
)
8268 /* dump to console */
8269 excp_dump_file(stderr
, env
, fmt
, code
);
8271 /* dump to log file */
8272 if (qemu_log_separate()) {
8273 FILE *logfile
= qemu_log_trylock();
8275 excp_dump_file(logfile
, env
, fmt
, code
);
8276 qemu_log_unlock(logfile
);
8280 #include "target_proc.h"
8282 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN || \
8283 defined(HAVE_ARCH_PROC_CPUINFO) || \
8284 defined(HAVE_ARCH_PROC_HARDWARE)
8285 static int is_proc(const char *filename
, const char *entry
)
8287 return strcmp(filename
, entry
) == 0;
8291 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8292 static int open_net_route(CPUArchState
*cpu_env
, int fd
)
8299 fp
= fopen("/proc/net/route", "r");
8306 read
= getline(&line
, &len
, fp
);
8307 dprintf(fd
, "%s", line
);
8311 while ((read
= getline(&line
, &len
, fp
)) != -1) {
8313 uint32_t dest
, gw
, mask
;
8314 unsigned int flags
, refcnt
, use
, metric
, mtu
, window
, irtt
;
8317 fields
= sscanf(line
,
8318 "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8319 iface
, &dest
, &gw
, &flags
, &refcnt
, &use
, &metric
,
8320 &mask
, &mtu
, &window
, &irtt
);
8324 dprintf(fd
, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8325 iface
, tswap32(dest
), tswap32(gw
), flags
, refcnt
, use
,
8326 metric
, tswap32(mask
), mtu
, window
, irtt
);
8336 int do_guest_openat(CPUArchState
*cpu_env
, int dirfd
, const char *fname
,
8337 int flags
, mode_t mode
, bool safe
)
8339 g_autofree
char *proc_name
= NULL
;
8340 const char *pathname
;
8342 const char *filename
;
8343 int (*fill
)(CPUArchState
*cpu_env
, int fd
);
8344 int (*cmp
)(const char *s1
, const char *s2
);
8346 const struct fake_open
*fake_open
;
8347 static const struct fake_open fakes
[] = {
8348 { "maps", open_self_maps
, is_proc_myself
},
8349 { "smaps", open_self_smaps
, is_proc_myself
},
8350 { "stat", open_self_stat
, is_proc_myself
},
8351 { "auxv", open_self_auxv
, is_proc_myself
},
8352 { "cmdline", open_self_cmdline
, is_proc_myself
},
8353 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8354 { "/proc/net/route", open_net_route
, is_proc
},
8356 #if defined(HAVE_ARCH_PROC_CPUINFO)
8357 { "/proc/cpuinfo", open_cpuinfo
, is_proc
},
8359 #if defined(HAVE_ARCH_PROC_HARDWARE)
8360 { "/proc/hardware", open_hardware
, is_proc
},
8362 { NULL
, NULL
, NULL
}
8365 /* if this is a file from /proc/ filesystem, expand full name */
8366 proc_name
= realpath(fname
, NULL
);
8367 if (proc_name
&& strncmp(proc_name
, "/proc/", 6) == 0) {
8368 pathname
= proc_name
;
8373 if (is_proc_myself(pathname
, "exe")) {
8375 return safe_openat(dirfd
, exec_path
, flags
, mode
);
8377 return openat(dirfd
, exec_path
, flags
, mode
);
8381 for (fake_open
= fakes
; fake_open
->filename
; fake_open
++) {
8382 if (fake_open
->cmp(pathname
, fake_open
->filename
)) {
8387 if (fake_open
->filename
) {
8389 char filename
[PATH_MAX
];
8392 fd
= memfd_create("qemu-open", 0);
8394 if (errno
!= ENOSYS
) {
8397 /* create temporary file to map stat to */
8398 tmpdir
= getenv("TMPDIR");
8401 snprintf(filename
, sizeof(filename
), "%s/qemu-open.XXXXXX", tmpdir
);
8402 fd
= mkstemp(filename
);
8409 if ((r
= fake_open
->fill(cpu_env
, fd
))) {
8415 lseek(fd
, 0, SEEK_SET
);
8421 return safe_openat(dirfd
, path(pathname
), flags
, mode
);
8423 return openat(dirfd
, path(pathname
), flags
, mode
);
8427 ssize_t
do_guest_readlink(const char *pathname
, char *buf
, size_t bufsiz
)
8431 if (!pathname
|| !buf
) {
8437 /* Short circuit this for the magic exe check. */
8442 if (is_proc_myself((const char *)pathname
, "exe")) {
8444 * Don't worry about sign mismatch as earlier mapping
8445 * logic would have thrown a bad address error.
8447 ret
= MIN(strlen(exec_path
), bufsiz
);
8448 /* We cannot NUL terminate the string. */
8449 memcpy(buf
, exec_path
, ret
);
8451 ret
= readlink(path(pathname
), buf
, bufsiz
);
8457 static int do_execv(CPUArchState
*cpu_env
, int dirfd
,
8458 abi_long pathname
, abi_long guest_argp
,
8459 abi_long guest_envp
, int flags
, bool is_execveat
)
8462 char **argp
, **envp
;
8471 for (gp
= guest_argp
; gp
; gp
+= sizeof(abi_ulong
)) {
8472 if (get_user_ual(addr
, gp
)) {
8473 return -TARGET_EFAULT
;
8481 for (gp
= guest_envp
; gp
; gp
+= sizeof(abi_ulong
)) {
8482 if (get_user_ual(addr
, gp
)) {
8483 return -TARGET_EFAULT
;
8491 argp
= g_new0(char *, argc
+ 1);
8492 envp
= g_new0(char *, envc
+ 1);
8494 for (gp
= guest_argp
, q
= argp
; gp
; gp
+= sizeof(abi_ulong
), q
++) {
8495 if (get_user_ual(addr
, gp
)) {
8501 *q
= lock_user_string(addr
);
8508 for (gp
= guest_envp
, q
= envp
; gp
; gp
+= sizeof(abi_ulong
), q
++) {
8509 if (get_user_ual(addr
, gp
)) {
8515 *q
= lock_user_string(addr
);
8523 * Although execve() is not an interruptible syscall it is
8524 * a special case where we must use the safe_syscall wrapper:
8525 * if we allow a signal to happen before we make the host
8526 * syscall then we will 'lose' it, because at the point of
8527 * execve the process leaves QEMU's control. So we use the
8528 * safe syscall wrapper to ensure that we either take the
8529 * signal as a guest signal, or else it does not happen
8530 * before the execve completes and makes it the other
8531 * program's problem.
8533 p
= lock_user_string(pathname
);
8538 const char *exe
= p
;
8539 if (is_proc_myself(p
, "exe")) {
8543 ? safe_execveat(dirfd
, exe
, argp
, envp
, flags
)
8544 : safe_execve(exe
, argp
, envp
);
8545 ret
= get_errno(ret
);
8547 unlock_user(p
, pathname
, 0);
8552 ret
= -TARGET_EFAULT
;
8555 for (gp
= guest_argp
, q
= argp
; *q
; gp
+= sizeof(abi_ulong
), q
++) {
8556 if (get_user_ual(addr
, gp
) || !addr
) {
8559 unlock_user(*q
, addr
, 0);
8561 for (gp
= guest_envp
, q
= envp
; *q
; gp
+= sizeof(abi_ulong
), q
++) {
8562 if (get_user_ual(addr
, gp
) || !addr
) {
8565 unlock_user(*q
, addr
, 0);
8573 #define TIMER_MAGIC 0x0caf0000
8574 #define TIMER_MAGIC_MASK 0xffff0000
8576 /* Convert QEMU provided timer ID back to internal 16bit index format */
8577 static target_timer_t
get_timer_id(abi_long arg
)
8579 target_timer_t timerid
= arg
;
8581 if ((timerid
& TIMER_MAGIC_MASK
) != TIMER_MAGIC
) {
8582 return -TARGET_EINVAL
;
8587 if (timerid
>= ARRAY_SIZE(g_posix_timers
)) {
8588 return -TARGET_EINVAL
;
8594 static int target_to_host_cpu_mask(unsigned long *host_mask
,
8596 abi_ulong target_addr
,
8599 unsigned target_bits
= sizeof(abi_ulong
) * 8;
8600 unsigned host_bits
= sizeof(*host_mask
) * 8;
8601 abi_ulong
*target_mask
;
8604 assert(host_size
>= target_size
);
8606 target_mask
= lock_user(VERIFY_READ
, target_addr
, target_size
, 1);
8608 return -TARGET_EFAULT
;
8610 memset(host_mask
, 0, host_size
);
8612 for (i
= 0 ; i
< target_size
/ sizeof(abi_ulong
); i
++) {
8613 unsigned bit
= i
* target_bits
;
8616 __get_user(val
, &target_mask
[i
]);
8617 for (j
= 0; j
< target_bits
; j
++, bit
++) {
8618 if (val
& (1UL << j
)) {
8619 host_mask
[bit
/ host_bits
] |= 1UL << (bit
% host_bits
);
8624 unlock_user(target_mask
, target_addr
, 0);
8628 static int host_to_target_cpu_mask(const unsigned long *host_mask
,
8630 abi_ulong target_addr
,
8633 unsigned target_bits
= sizeof(abi_ulong
) * 8;
8634 unsigned host_bits
= sizeof(*host_mask
) * 8;
8635 abi_ulong
*target_mask
;
8638 assert(host_size
>= target_size
);
8640 target_mask
= lock_user(VERIFY_WRITE
, target_addr
, target_size
, 0);
8642 return -TARGET_EFAULT
;
8645 for (i
= 0 ; i
< target_size
/ sizeof(abi_ulong
); i
++) {
8646 unsigned bit
= i
* target_bits
;
8649 for (j
= 0; j
< target_bits
; j
++, bit
++) {
8650 if (host_mask
[bit
/ host_bits
] & (1UL << (bit
% host_bits
))) {
8654 __put_user(val
, &target_mask
[i
]);
8657 unlock_user(target_mask
, target_addr
, target_size
);
8661 #ifdef TARGET_NR_getdents
8662 static int do_getdents(abi_long dirfd
, abi_long arg2
, abi_long count
)
8664 g_autofree
void *hdirp
= NULL
;
8666 int hlen
, hoff
, toff
;
8667 int hreclen
, treclen
;
8668 off64_t prev_diroff
= 0;
8670 hdirp
= g_try_malloc(count
);
8672 return -TARGET_ENOMEM
;
8675 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8676 hlen
= sys_getdents(dirfd
, hdirp
, count
);
8678 hlen
= sys_getdents64(dirfd
, hdirp
, count
);
8681 hlen
= get_errno(hlen
);
8682 if (is_error(hlen
)) {
8686 tdirp
= lock_user(VERIFY_WRITE
, arg2
, count
, 0);
8688 return -TARGET_EFAULT
;
8691 for (hoff
= toff
= 0; hoff
< hlen
; hoff
+= hreclen
, toff
+= treclen
) {
8692 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8693 struct linux_dirent
*hde
= hdirp
+ hoff
;
8695 struct linux_dirent64
*hde
= hdirp
+ hoff
;
8697 struct target_dirent
*tde
= tdirp
+ toff
;
8701 namelen
= strlen(hde
->d_name
);
8702 hreclen
= hde
->d_reclen
;
8703 treclen
= offsetof(struct target_dirent
, d_name
) + namelen
+ 2;
8704 treclen
= QEMU_ALIGN_UP(treclen
, __alignof(struct target_dirent
));
8706 if (toff
+ treclen
> count
) {
8708 * If the host struct is smaller than the target struct, or
8709 * requires less alignment and thus packs into less space,
8710 * then the host can return more entries than we can pass
8714 toff
= -TARGET_EINVAL
; /* result buffer is too small */
8718 * Return what we have, resetting the file pointer to the
8719 * location of the first record not returned.
8721 lseek64(dirfd
, prev_diroff
, SEEK_SET
);
8725 prev_diroff
= hde
->d_off
;
8726 tde
->d_ino
= tswapal(hde
->d_ino
);
8727 tde
->d_off
= tswapal(hde
->d_off
);
8728 tde
->d_reclen
= tswap16(treclen
);
8729 memcpy(tde
->d_name
, hde
->d_name
, namelen
+ 1);
8732 * The getdents type is in what was formerly a padding byte at the
8733 * end of the structure.
8735 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8736 type
= *((uint8_t *)hde
+ hreclen
- 1);
8740 *((uint8_t *)tde
+ treclen
- 1) = type
;
8743 unlock_user(tdirp
, arg2
, toff
);
8746 #endif /* TARGET_NR_getdents */
8748 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
8749 static int do_getdents64(abi_long dirfd
, abi_long arg2
, abi_long count
)
8751 g_autofree
void *hdirp
= NULL
;
8753 int hlen
, hoff
, toff
;
8754 int hreclen
, treclen
;
8755 off64_t prev_diroff
= 0;
8757 hdirp
= g_try_malloc(count
);
8759 return -TARGET_ENOMEM
;
8762 hlen
= get_errno(sys_getdents64(dirfd
, hdirp
, count
));
8763 if (is_error(hlen
)) {
8767 tdirp
= lock_user(VERIFY_WRITE
, arg2
, count
, 0);
8769 return -TARGET_EFAULT
;
8772 for (hoff
= toff
= 0; hoff
< hlen
; hoff
+= hreclen
, toff
+= treclen
) {
8773 struct linux_dirent64
*hde
= hdirp
+ hoff
;
8774 struct target_dirent64
*tde
= tdirp
+ toff
;
8777 namelen
= strlen(hde
->d_name
) + 1;
8778 hreclen
= hde
->d_reclen
;
8779 treclen
= offsetof(struct target_dirent64
, d_name
) + namelen
;
8780 treclen
= QEMU_ALIGN_UP(treclen
, __alignof(struct target_dirent64
));
8782 if (toff
+ treclen
> count
) {
8784 * If the host struct is smaller than the target struct, or
8785 * requires less alignment and thus packs into less space,
8786 * then the host can return more entries than we can pass
8790 toff
= -TARGET_EINVAL
; /* result buffer is too small */
8794 * Return what we have, resetting the file pointer to the
8795 * location of the first record not returned.
8797 lseek64(dirfd
, prev_diroff
, SEEK_SET
);
8801 prev_diroff
= hde
->d_off
;
8802 tde
->d_ino
= tswap64(hde
->d_ino
);
8803 tde
->d_off
= tswap64(hde
->d_off
);
8804 tde
->d_reclen
= tswap16(treclen
);
8805 tde
->d_type
= hde
->d_type
;
8806 memcpy(tde
->d_name
, hde
->d_name
, namelen
);
8809 unlock_user(tdirp
, arg2
, toff
);
8812 #endif /* TARGET_NR_getdents64 */
8814 #if defined(TARGET_NR_riscv_hwprobe)
8816 #define RISCV_HWPROBE_KEY_MVENDORID 0
8817 #define RISCV_HWPROBE_KEY_MARCHID 1
8818 #define RISCV_HWPROBE_KEY_MIMPID 2
8820 #define RISCV_HWPROBE_KEY_BASE_BEHAVIOR 3
8821 #define RISCV_HWPROBE_BASE_BEHAVIOR_IMA (1 << 0)
8823 #define RISCV_HWPROBE_KEY_IMA_EXT_0 4
8824 #define RISCV_HWPROBE_IMA_FD (1 << 0)
8825 #define RISCV_HWPROBE_IMA_C (1 << 1)
8826 #define RISCV_HWPROBE_IMA_V (1 << 2)
8827 #define RISCV_HWPROBE_EXT_ZBA (1 << 3)
8828 #define RISCV_HWPROBE_EXT_ZBB (1 << 4)
8829 #define RISCV_HWPROBE_EXT_ZBS (1 << 5)
8830 #define RISCV_HWPROBE_EXT_ZICBOZ (1 << 6)
8831 #define RISCV_HWPROBE_EXT_ZBC (1 << 7)
8832 #define RISCV_HWPROBE_EXT_ZBKB (1 << 8)
8833 #define RISCV_HWPROBE_EXT_ZBKC (1 << 9)
8834 #define RISCV_HWPROBE_EXT_ZBKX (1 << 10)
8835 #define RISCV_HWPROBE_EXT_ZKND (1 << 11)
8836 #define RISCV_HWPROBE_EXT_ZKNE (1 << 12)
8837 #define RISCV_HWPROBE_EXT_ZKNH (1 << 13)
8838 #define RISCV_HWPROBE_EXT_ZKSED (1 << 14)
8839 #define RISCV_HWPROBE_EXT_ZKSH (1 << 15)
8840 #define RISCV_HWPROBE_EXT_ZKT (1 << 16)
8841 #define RISCV_HWPROBE_EXT_ZVBB (1 << 17)
8842 #define RISCV_HWPROBE_EXT_ZVBC (1 << 18)
8843 #define RISCV_HWPROBE_EXT_ZVKB (1 << 19)
8844 #define RISCV_HWPROBE_EXT_ZVKG (1 << 20)
8845 #define RISCV_HWPROBE_EXT_ZVKNED (1 << 21)
8846 #define RISCV_HWPROBE_EXT_ZVKNHA (1 << 22)
8847 #define RISCV_HWPROBE_EXT_ZVKNHB (1 << 23)
8848 #define RISCV_HWPROBE_EXT_ZVKSED (1 << 24)
8849 #define RISCV_HWPROBE_EXT_ZVKSH (1 << 25)
8850 #define RISCV_HWPROBE_EXT_ZVKT (1 << 26)
8851 #define RISCV_HWPROBE_EXT_ZFH (1 << 27)
8852 #define RISCV_HWPROBE_EXT_ZFHMIN (1 << 28)
8853 #define RISCV_HWPROBE_EXT_ZIHINTNTL (1 << 29)
8854 #define RISCV_HWPROBE_EXT_ZVFH (1 << 30)
8855 #define RISCV_HWPROBE_EXT_ZVFHMIN (1 << 31)
8856 #define RISCV_HWPROBE_EXT_ZFA (1ULL << 32)
8857 #define RISCV_HWPROBE_EXT_ZTSO (1ULL << 33)
8858 #define RISCV_HWPROBE_EXT_ZACAS (1ULL << 34)
8859 #define RISCV_HWPROBE_EXT_ZICOND (1ULL << 35)
8861 #define RISCV_HWPROBE_KEY_CPUPERF_0 5
8862 #define RISCV_HWPROBE_MISALIGNED_UNKNOWN (0 << 0)
8863 #define RISCV_HWPROBE_MISALIGNED_EMULATED (1 << 0)
8864 #define RISCV_HWPROBE_MISALIGNED_SLOW (2 << 0)
8865 #define RISCV_HWPROBE_MISALIGNED_FAST (3 << 0)
8866 #define RISCV_HWPROBE_MISALIGNED_UNSUPPORTED (4 << 0)
8867 #define RISCV_HWPROBE_MISALIGNED_MASK (7 << 0)
8869 #define RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE 6
8871 struct riscv_hwprobe
{
8876 static void risc_hwprobe_fill_pairs(CPURISCVState
*env
,
8877 struct riscv_hwprobe
*pair
,
8880 const RISCVCPUConfig
*cfg
= riscv_cpu_cfg(env
);
8882 for (; pair_count
> 0; pair_count
--, pair
++) {
8885 __put_user(0, &pair
->value
);
8886 __get_user(key
, &pair
->key
);
8888 case RISCV_HWPROBE_KEY_MVENDORID
:
8889 __put_user(cfg
->mvendorid
, &pair
->value
);
8891 case RISCV_HWPROBE_KEY_MARCHID
:
8892 __put_user(cfg
->marchid
, &pair
->value
);
8894 case RISCV_HWPROBE_KEY_MIMPID
:
8895 __put_user(cfg
->mimpid
, &pair
->value
);
8897 case RISCV_HWPROBE_KEY_BASE_BEHAVIOR
:
8898 value
= riscv_has_ext(env
, RVI
) &&
8899 riscv_has_ext(env
, RVM
) &&
8900 riscv_has_ext(env
, RVA
) ?
8901 RISCV_HWPROBE_BASE_BEHAVIOR_IMA
: 0;
8902 __put_user(value
, &pair
->value
);
8904 case RISCV_HWPROBE_KEY_IMA_EXT_0
:
8905 value
= riscv_has_ext(env
, RVF
) &&
8906 riscv_has_ext(env
, RVD
) ?
8907 RISCV_HWPROBE_IMA_FD
: 0;
8908 value
|= riscv_has_ext(env
, RVC
) ?
8909 RISCV_HWPROBE_IMA_C
: 0;
8910 value
|= riscv_has_ext(env
, RVV
) ?
8911 RISCV_HWPROBE_IMA_V
: 0;
8912 value
|= cfg
->ext_zba
?
8913 RISCV_HWPROBE_EXT_ZBA
: 0;
8914 value
|= cfg
->ext_zbb
?
8915 RISCV_HWPROBE_EXT_ZBB
: 0;
8916 value
|= cfg
->ext_zbs
?
8917 RISCV_HWPROBE_EXT_ZBS
: 0;
8918 value
|= cfg
->ext_zicboz
?
8919 RISCV_HWPROBE_EXT_ZICBOZ
: 0;
8920 value
|= cfg
->ext_zbc
?
8921 RISCV_HWPROBE_EXT_ZBC
: 0;
8922 value
|= cfg
->ext_zbkb
?
8923 RISCV_HWPROBE_EXT_ZBKB
: 0;
8924 value
|= cfg
->ext_zbkc
?
8925 RISCV_HWPROBE_EXT_ZBKC
: 0;
8926 value
|= cfg
->ext_zbkx
?
8927 RISCV_HWPROBE_EXT_ZBKX
: 0;
8928 value
|= cfg
->ext_zknd
?
8929 RISCV_HWPROBE_EXT_ZKND
: 0;
8930 value
|= cfg
->ext_zkne
?
8931 RISCV_HWPROBE_EXT_ZKNE
: 0;
8932 value
|= cfg
->ext_zknh
?
8933 RISCV_HWPROBE_EXT_ZKNH
: 0;
8934 value
|= cfg
->ext_zksed
?
8935 RISCV_HWPROBE_EXT_ZKSED
: 0;
8936 value
|= cfg
->ext_zksh
?
8937 RISCV_HWPROBE_EXT_ZKSH
: 0;
8938 value
|= cfg
->ext_zkt
?
8939 RISCV_HWPROBE_EXT_ZKT
: 0;
8940 value
|= cfg
->ext_zvbb
?
8941 RISCV_HWPROBE_EXT_ZVBB
: 0;
8942 value
|= cfg
->ext_zvbc
?
8943 RISCV_HWPROBE_EXT_ZVBC
: 0;
8944 value
|= cfg
->ext_zvkb
?
8945 RISCV_HWPROBE_EXT_ZVKB
: 0;
8946 value
|= cfg
->ext_zvkg
?
8947 RISCV_HWPROBE_EXT_ZVKG
: 0;
8948 value
|= cfg
->ext_zvkned
?
8949 RISCV_HWPROBE_EXT_ZVKNED
: 0;
8950 value
|= cfg
->ext_zvknha
?
8951 RISCV_HWPROBE_EXT_ZVKNHA
: 0;
8952 value
|= cfg
->ext_zvknhb
?
8953 RISCV_HWPROBE_EXT_ZVKNHB
: 0;
8954 value
|= cfg
->ext_zvksed
?
8955 RISCV_HWPROBE_EXT_ZVKSED
: 0;
8956 value
|= cfg
->ext_zvksh
?
8957 RISCV_HWPROBE_EXT_ZVKSH
: 0;
8958 value
|= cfg
->ext_zvkt
?
8959 RISCV_HWPROBE_EXT_ZVKT
: 0;
8960 value
|= cfg
->ext_zfh
?
8961 RISCV_HWPROBE_EXT_ZFH
: 0;
8962 value
|= cfg
->ext_zfhmin
?
8963 RISCV_HWPROBE_EXT_ZFHMIN
: 0;
8964 value
|= cfg
->ext_zihintntl
?
8965 RISCV_HWPROBE_EXT_ZIHINTNTL
: 0;
8966 value
|= cfg
->ext_zvfh
?
8967 RISCV_HWPROBE_EXT_ZVFH
: 0;
8968 value
|= cfg
->ext_zvfhmin
?
8969 RISCV_HWPROBE_EXT_ZVFHMIN
: 0;
8970 value
|= cfg
->ext_zfa
?
8971 RISCV_HWPROBE_EXT_ZFA
: 0;
8972 value
|= cfg
->ext_ztso
?
8973 RISCV_HWPROBE_EXT_ZTSO
: 0;
8974 value
|= cfg
->ext_zacas
?
8975 RISCV_HWPROBE_EXT_ZACAS
: 0;
8976 value
|= cfg
->ext_zicond
?
8977 RISCV_HWPROBE_EXT_ZICOND
: 0;
8978 __put_user(value
, &pair
->value
);
8980 case RISCV_HWPROBE_KEY_CPUPERF_0
:
8981 __put_user(RISCV_HWPROBE_MISALIGNED_FAST
, &pair
->value
);
8983 case RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE
:
8984 value
= cfg
->ext_zicboz
? cfg
->cboz_blocksize
: 0;
8985 __put_user(value
, &pair
->value
);
8988 __put_user(-1, &pair
->key
);
8994 static int cpu_set_valid(abi_long arg3
, abi_long arg4
)
8997 size_t host_mask_size
, target_mask_size
;
8998 unsigned long *host_mask
;
9001 * cpu_set_t represent CPU masks as bit masks of type unsigned long *.
9002 * arg3 contains the cpu count.
9004 tmp
= (8 * sizeof(abi_ulong
));
9005 target_mask_size
= ((arg3
+ tmp
- 1) / tmp
) * sizeof(abi_ulong
);
9006 host_mask_size
= (target_mask_size
+ (sizeof(*host_mask
) - 1)) &
9007 ~(sizeof(*host_mask
) - 1);
9009 host_mask
= alloca(host_mask_size
);
9011 ret
= target_to_host_cpu_mask(host_mask
, host_mask_size
,
9012 arg4
, target_mask_size
);
9017 for (i
= 0 ; i
< host_mask_size
/ sizeof(*host_mask
); i
++) {
9018 if (host_mask
[i
] != 0) {
9022 return -TARGET_EINVAL
;
9025 static abi_long
do_riscv_hwprobe(CPUArchState
*cpu_env
, abi_long arg1
,
9026 abi_long arg2
, abi_long arg3
,
9027 abi_long arg4
, abi_long arg5
)
9030 struct riscv_hwprobe
*host_pairs
;
9032 /* flags must be 0 */
9034 return -TARGET_EINVAL
;
9039 ret
= cpu_set_valid(arg3
, arg4
);
9043 } else if (arg4
!= 0) {
9044 return -TARGET_EINVAL
;
9052 host_pairs
= lock_user(VERIFY_WRITE
, arg1
,
9053 sizeof(*host_pairs
) * (size_t)arg2
, 0);
9054 if (host_pairs
== NULL
) {
9055 return -TARGET_EFAULT
;
9057 risc_hwprobe_fill_pairs(cpu_env
, host_pairs
, arg2
);
9058 unlock_user(host_pairs
, arg1
, sizeof(*host_pairs
) * (size_t)arg2
);
9061 #endif /* TARGET_NR_riscv_hwprobe */
9063 #if defined(TARGET_NR_pivot_root) && defined(__NR_pivot_root)
9064 _syscall2(int, pivot_root
, const char *, new_root
, const char *, put_old
)
9067 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
9068 #define __NR_sys_open_tree __NR_open_tree
9069 _syscall3(int, sys_open_tree
, int, __dfd
, const char *, __filename
,
9070 unsigned int, __flags
)
9073 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
9074 #define __NR_sys_move_mount __NR_move_mount
9075 _syscall5(int, sys_move_mount
, int, __from_dfd
, const char *, __from_pathname
,
9076 int, __to_dfd
, const char *, __to_pathname
, unsigned int, flag
)
9079 /* This is an internal helper for do_syscall so that it is easier
9080 * to have a single return point, so that actions, such as logging
9081 * of syscall results, can be performed.
9082 * All errnos that do_syscall() returns must be -TARGET_<errcode>.
9084 static abi_long
do_syscall1(CPUArchState
*cpu_env
, int num
, abi_long arg1
,
9085 abi_long arg2
, abi_long arg3
, abi_long arg4
,
9086 abi_long arg5
, abi_long arg6
, abi_long arg7
,
9089 CPUState
*cpu
= env_cpu(cpu_env
);
9091 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \
9092 || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \
9093 || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \
9094 || defined(TARGET_NR_statx)
9097 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \
9098 || defined(TARGET_NR_fstatfs)
9104 case TARGET_NR_exit
:
9105 /* In old applications this may be used to implement _exit(2).
9106 However in threaded applications it is used for thread termination,
9107 and _exit_group is used for application termination.
9108 Do thread termination if we have more then one thread. */
9110 if (block_signals()) {
9111 return -QEMU_ERESTARTSYS
;
9114 pthread_mutex_lock(&clone_lock
);
9116 if (CPU_NEXT(first_cpu
)) {
9117 TaskState
*ts
= get_task_state(cpu
);
9119 if (ts
->child_tidptr
) {
9120 put_user_u32(0, ts
->child_tidptr
);
9121 do_sys_futex(g2h(cpu
, ts
->child_tidptr
),
9122 FUTEX_WAKE
, INT_MAX
, NULL
, NULL
, 0);
9125 object_unparent(OBJECT(cpu
));
9126 object_unref(OBJECT(cpu
));
9128 * At this point the CPU should be unrealized and removed
9129 * from cpu lists. We can clean-up the rest of the thread
9130 * data without the lock held.
9133 pthread_mutex_unlock(&clone_lock
);
9137 rcu_unregister_thread();
9141 pthread_mutex_unlock(&clone_lock
);
9142 preexit_cleanup(cpu_env
, arg1
);
9144 return 0; /* avoid warning */
9145 case TARGET_NR_read
:
9146 if (arg2
== 0 && arg3
== 0) {
9147 return get_errno(safe_read(arg1
, 0, 0));
9149 if (!(p
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0)))
9150 return -TARGET_EFAULT
;
9151 ret
= get_errno(safe_read(arg1
, p
, arg3
));
9153 fd_trans_host_to_target_data(arg1
)) {
9154 ret
= fd_trans_host_to_target_data(arg1
)(p
, ret
);
9156 unlock_user(p
, arg2
, ret
);
9159 case TARGET_NR_write
:
9160 if (arg2
== 0 && arg3
== 0) {
9161 return get_errno(safe_write(arg1
, 0, 0));
9163 if (!(p
= lock_user(VERIFY_READ
, arg2
, arg3
, 1)))
9164 return -TARGET_EFAULT
;
9165 if (fd_trans_target_to_host_data(arg1
)) {
9166 void *copy
= g_malloc(arg3
);
9167 memcpy(copy
, p
, arg3
);
9168 ret
= fd_trans_target_to_host_data(arg1
)(copy
, arg3
);
9170 ret
= get_errno(safe_write(arg1
, copy
, ret
));
9174 ret
= get_errno(safe_write(arg1
, p
, arg3
));
9176 unlock_user(p
, arg2
, 0);
9179 #ifdef TARGET_NR_open
9180 case TARGET_NR_open
:
9181 if (!(p
= lock_user_string(arg1
)))
9182 return -TARGET_EFAULT
;
9183 ret
= get_errno(do_guest_openat(cpu_env
, AT_FDCWD
, p
,
9184 target_to_host_bitmask(arg2
, fcntl_flags_tbl
),
9186 fd_trans_unregister(ret
);
9187 unlock_user(p
, arg1
, 0);
9190 case TARGET_NR_openat
:
9191 if (!(p
= lock_user_string(arg2
)))
9192 return -TARGET_EFAULT
;
9193 ret
= get_errno(do_guest_openat(cpu_env
, arg1
, p
,
9194 target_to_host_bitmask(arg3
, fcntl_flags_tbl
),
9196 fd_trans_unregister(ret
);
9197 unlock_user(p
, arg2
, 0);
9199 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9200 case TARGET_NR_name_to_handle_at
:
9201 ret
= do_name_to_handle_at(arg1
, arg2
, arg3
, arg4
, arg5
);
9204 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9205 case TARGET_NR_open_by_handle_at
:
9206 ret
= do_open_by_handle_at(arg1
, arg2
, arg3
);
9207 fd_trans_unregister(ret
);
9210 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
9211 case TARGET_NR_pidfd_open
:
9212 return get_errno(pidfd_open(arg1
, arg2
));
9214 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
9215 case TARGET_NR_pidfd_send_signal
:
9217 siginfo_t uinfo
, *puinfo
;
9220 p
= lock_user(VERIFY_READ
, arg3
, sizeof(target_siginfo_t
), 1);
9222 return -TARGET_EFAULT
;
9224 target_to_host_siginfo(&uinfo
, p
);
9225 unlock_user(p
, arg3
, 0);
9230 ret
= get_errno(pidfd_send_signal(arg1
, target_to_host_signal(arg2
),
9235 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
9236 case TARGET_NR_pidfd_getfd
:
9237 return get_errno(pidfd_getfd(arg1
, arg2
, arg3
));
9239 case TARGET_NR_close
:
9240 fd_trans_unregister(arg1
);
9241 return get_errno(close(arg1
));
9242 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
9243 case TARGET_NR_close_range
:
9244 ret
= get_errno(sys_close_range(arg1
, arg2
, arg3
));
9245 if (ret
== 0 && !(arg3
& CLOSE_RANGE_CLOEXEC
)) {
9247 maxfd
= MIN(arg2
, target_fd_max
);
9248 for (fd
= arg1
; fd
< maxfd
; fd
++) {
9249 fd_trans_unregister(fd
);
9256 return do_brk(arg1
);
9257 #ifdef TARGET_NR_fork
9258 case TARGET_NR_fork
:
9259 return get_errno(do_fork(cpu_env
, TARGET_SIGCHLD
, 0, 0, 0, 0));
9261 #ifdef TARGET_NR_waitpid
9262 case TARGET_NR_waitpid
:
9265 ret
= get_errno(safe_wait4(arg1
, &status
, arg3
, 0));
9266 if (!is_error(ret
) && arg2
&& ret
9267 && put_user_s32(host_to_target_waitstatus(status
), arg2
))
9268 return -TARGET_EFAULT
;
9272 #ifdef TARGET_NR_waitid
9273 case TARGET_NR_waitid
:
9277 ret
= get_errno(safe_waitid(arg1
, arg2
, &info
, arg4
, NULL
));
9278 if (!is_error(ret
) && arg3
&& info
.si_pid
!= 0) {
9279 if (!(p
= lock_user(VERIFY_WRITE
, arg3
, sizeof(target_siginfo_t
), 0)))
9280 return -TARGET_EFAULT
;
9281 host_to_target_siginfo(p
, &info
);
9282 unlock_user(p
, arg3
, sizeof(target_siginfo_t
));
9287 #ifdef TARGET_NR_creat /* not on alpha */
9288 case TARGET_NR_creat
:
9289 if (!(p
= lock_user_string(arg1
)))
9290 return -TARGET_EFAULT
;
9291 ret
= get_errno(creat(p
, arg2
));
9292 fd_trans_unregister(ret
);
9293 unlock_user(p
, arg1
, 0);
9296 #ifdef TARGET_NR_link
9297 case TARGET_NR_link
:
9300 p
= lock_user_string(arg1
);
9301 p2
= lock_user_string(arg2
);
9303 ret
= -TARGET_EFAULT
;
9305 ret
= get_errno(link(p
, p2
));
9306 unlock_user(p2
, arg2
, 0);
9307 unlock_user(p
, arg1
, 0);
9311 #if defined(TARGET_NR_linkat)
9312 case TARGET_NR_linkat
:
9316 return -TARGET_EFAULT
;
9317 p
= lock_user_string(arg2
);
9318 p2
= lock_user_string(arg4
);
9320 ret
= -TARGET_EFAULT
;
9322 ret
= get_errno(linkat(arg1
, p
, arg3
, p2
, arg5
));
9323 unlock_user(p
, arg2
, 0);
9324 unlock_user(p2
, arg4
, 0);
9328 #ifdef TARGET_NR_unlink
9329 case TARGET_NR_unlink
:
9330 if (!(p
= lock_user_string(arg1
)))
9331 return -TARGET_EFAULT
;
9332 ret
= get_errno(unlink(p
));
9333 unlock_user(p
, arg1
, 0);
9336 #if defined(TARGET_NR_unlinkat)
9337 case TARGET_NR_unlinkat
:
9338 if (!(p
= lock_user_string(arg2
)))
9339 return -TARGET_EFAULT
;
9340 ret
= get_errno(unlinkat(arg1
, p
, arg3
));
9341 unlock_user(p
, arg2
, 0);
9344 case TARGET_NR_execveat
:
9345 return do_execv(cpu_env
, arg1
, arg2
, arg3
, arg4
, arg5
, true);
9346 case TARGET_NR_execve
:
9347 return do_execv(cpu_env
, AT_FDCWD
, arg1
, arg2
, arg3
, 0, false);
9348 case TARGET_NR_chdir
:
9349 if (!(p
= lock_user_string(arg1
)))
9350 return -TARGET_EFAULT
;
9351 ret
= get_errno(chdir(p
));
9352 unlock_user(p
, arg1
, 0);
9354 #ifdef TARGET_NR_time
9355 case TARGET_NR_time
:
9358 ret
= get_errno(time(&host_time
));
9361 && put_user_sal(host_time
, arg1
))
9362 return -TARGET_EFAULT
;
9366 #ifdef TARGET_NR_mknod
9367 case TARGET_NR_mknod
:
9368 if (!(p
= lock_user_string(arg1
)))
9369 return -TARGET_EFAULT
;
9370 ret
= get_errno(mknod(p
, arg2
, arg3
));
9371 unlock_user(p
, arg1
, 0);
9374 #if defined(TARGET_NR_mknodat)
9375 case TARGET_NR_mknodat
:
9376 if (!(p
= lock_user_string(arg2
)))
9377 return -TARGET_EFAULT
;
9378 ret
= get_errno(mknodat(arg1
, p
, arg3
, arg4
));
9379 unlock_user(p
, arg2
, 0);
9382 #ifdef TARGET_NR_chmod
9383 case TARGET_NR_chmod
:
9384 if (!(p
= lock_user_string(arg1
)))
9385 return -TARGET_EFAULT
;
9386 ret
= get_errno(chmod(p
, arg2
));
9387 unlock_user(p
, arg1
, 0);
9390 #ifdef TARGET_NR_lseek
9391 case TARGET_NR_lseek
:
9392 return get_errno(lseek(arg1
, arg2
, arg3
));
9394 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
9395 /* Alpha specific */
9396 case TARGET_NR_getxpid
:
9397 cpu_env
->ir
[IR_A4
] = getppid();
9398 return get_errno(getpid());
9400 #ifdef TARGET_NR_getpid
9401 case TARGET_NR_getpid
:
9402 return get_errno(getpid());
9404 case TARGET_NR_mount
:
9406 /* need to look at the data field */
9410 p
= lock_user_string(arg1
);
9412 return -TARGET_EFAULT
;
9418 p2
= lock_user_string(arg2
);
9421 unlock_user(p
, arg1
, 0);
9423 return -TARGET_EFAULT
;
9427 p3
= lock_user_string(arg3
);
9430 unlock_user(p
, arg1
, 0);
9432 unlock_user(p2
, arg2
, 0);
9433 return -TARGET_EFAULT
;
9439 /* FIXME - arg5 should be locked, but it isn't clear how to
9440 * do that since it's not guaranteed to be a NULL-terminated
9444 ret
= mount(p
, p2
, p3
, (unsigned long)arg4
, NULL
);
9446 ret
= mount(p
, p2
, p3
, (unsigned long)arg4
, g2h(cpu
, arg5
));
9448 ret
= get_errno(ret
);
9451 unlock_user(p
, arg1
, 0);
9453 unlock_user(p2
, arg2
, 0);
9455 unlock_user(p3
, arg3
, 0);
9459 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount)
9460 #if defined(TARGET_NR_umount)
9461 case TARGET_NR_umount
:
9463 #if defined(TARGET_NR_oldumount)
9464 case TARGET_NR_oldumount
:
9466 if (!(p
= lock_user_string(arg1
)))
9467 return -TARGET_EFAULT
;
9468 ret
= get_errno(umount(p
));
9469 unlock_user(p
, arg1
, 0);
9472 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
9473 case TARGET_NR_move_mount
:
9477 if (!arg2
|| !arg4
) {
9478 return -TARGET_EFAULT
;
9481 p2
= lock_user_string(arg2
);
9483 return -TARGET_EFAULT
;
9486 p4
= lock_user_string(arg4
);
9488 unlock_user(p2
, arg2
, 0);
9489 return -TARGET_EFAULT
;
9491 ret
= get_errno(sys_move_mount(arg1
, p2
, arg3
, p4
, arg5
));
9493 unlock_user(p2
, arg2
, 0);
9494 unlock_user(p4
, arg4
, 0);
9499 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
9500 case TARGET_NR_open_tree
:
9506 return -TARGET_EFAULT
;
9509 p2
= lock_user_string(arg2
);
9511 return -TARGET_EFAULT
;
9514 host_flags
= arg3
& ~TARGET_O_CLOEXEC
;
9515 if (arg3
& TARGET_O_CLOEXEC
) {
9516 host_flags
|= O_CLOEXEC
;
9519 ret
= get_errno(sys_open_tree(arg1
, p2
, host_flags
));
9521 unlock_user(p2
, arg2
, 0);
9526 #ifdef TARGET_NR_stime /* not on alpha */
9527 case TARGET_NR_stime
:
9531 if (get_user_sal(ts
.tv_sec
, arg1
)) {
9532 return -TARGET_EFAULT
;
9534 return get_errno(clock_settime(CLOCK_REALTIME
, &ts
));
9537 #ifdef TARGET_NR_alarm /* not on alpha */
9538 case TARGET_NR_alarm
:
9541 #ifdef TARGET_NR_pause /* not on alpha */
9542 case TARGET_NR_pause
:
9543 if (!block_signals()) {
9544 sigsuspend(&get_task_state(cpu
)->signal_mask
);
9546 return -TARGET_EINTR
;
9548 #ifdef TARGET_NR_utime
9549 case TARGET_NR_utime
:
9551 struct utimbuf tbuf
, *host_tbuf
;
9552 struct target_utimbuf
*target_tbuf
;
9554 if (!lock_user_struct(VERIFY_READ
, target_tbuf
, arg2
, 1))
9555 return -TARGET_EFAULT
;
9556 tbuf
.actime
= tswapal(target_tbuf
->actime
);
9557 tbuf
.modtime
= tswapal(target_tbuf
->modtime
);
9558 unlock_user_struct(target_tbuf
, arg2
, 0);
9563 if (!(p
= lock_user_string(arg1
)))
9564 return -TARGET_EFAULT
;
9565 ret
= get_errno(utime(p
, host_tbuf
));
9566 unlock_user(p
, arg1
, 0);
9570 #ifdef TARGET_NR_utimes
9571 case TARGET_NR_utimes
:
9573 struct timeval
*tvp
, tv
[2];
9575 if (copy_from_user_timeval(&tv
[0], arg2
)
9576 || copy_from_user_timeval(&tv
[1],
9577 arg2
+ sizeof(struct target_timeval
)))
9578 return -TARGET_EFAULT
;
9583 if (!(p
= lock_user_string(arg1
)))
9584 return -TARGET_EFAULT
;
9585 ret
= get_errno(utimes(p
, tvp
));
9586 unlock_user(p
, arg1
, 0);
9590 #if defined(TARGET_NR_futimesat)
9591 case TARGET_NR_futimesat
:
9593 struct timeval
*tvp
, tv
[2];
9595 if (copy_from_user_timeval(&tv
[0], arg3
)
9596 || copy_from_user_timeval(&tv
[1],
9597 arg3
+ sizeof(struct target_timeval
)))
9598 return -TARGET_EFAULT
;
9603 if (!(p
= lock_user_string(arg2
))) {
9604 return -TARGET_EFAULT
;
9606 ret
= get_errno(futimesat(arg1
, path(p
), tvp
));
9607 unlock_user(p
, arg2
, 0);
9611 #ifdef TARGET_NR_access
9612 case TARGET_NR_access
:
9613 if (!(p
= lock_user_string(arg1
))) {
9614 return -TARGET_EFAULT
;
9616 ret
= get_errno(access(path(p
), arg2
));
9617 unlock_user(p
, arg1
, 0);
9620 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
9621 case TARGET_NR_faccessat
:
9622 if (!(p
= lock_user_string(arg2
))) {
9623 return -TARGET_EFAULT
;
9625 ret
= get_errno(faccessat(arg1
, p
, arg3
, 0));
9626 unlock_user(p
, arg2
, 0);
9629 #if defined(TARGET_NR_faccessat2)
9630 case TARGET_NR_faccessat2
:
9631 if (!(p
= lock_user_string(arg2
))) {
9632 return -TARGET_EFAULT
;
9634 ret
= get_errno(faccessat(arg1
, p
, arg3
, arg4
));
9635 unlock_user(p
, arg2
, 0);
9638 #ifdef TARGET_NR_nice /* not on alpha */
9639 case TARGET_NR_nice
:
9640 return get_errno(nice(arg1
));
9642 case TARGET_NR_sync
:
9645 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
9646 case TARGET_NR_syncfs
:
9647 return get_errno(syncfs(arg1
));
9649 case TARGET_NR_kill
:
9650 return get_errno(safe_kill(arg1
, target_to_host_signal(arg2
)));
9651 #ifdef TARGET_NR_rename
9652 case TARGET_NR_rename
:
9655 p
= lock_user_string(arg1
);
9656 p2
= lock_user_string(arg2
);
9658 ret
= -TARGET_EFAULT
;
9660 ret
= get_errno(rename(p
, p2
));
9661 unlock_user(p2
, arg2
, 0);
9662 unlock_user(p
, arg1
, 0);
9666 #if defined(TARGET_NR_renameat)
9667 case TARGET_NR_renameat
:
9670 p
= lock_user_string(arg2
);
9671 p2
= lock_user_string(arg4
);
9673 ret
= -TARGET_EFAULT
;
9675 ret
= get_errno(renameat(arg1
, p
, arg3
, p2
));
9676 unlock_user(p2
, arg4
, 0);
9677 unlock_user(p
, arg2
, 0);
9681 #if defined(TARGET_NR_renameat2)
9682 case TARGET_NR_renameat2
:
9685 p
= lock_user_string(arg2
);
9686 p2
= lock_user_string(arg4
);
9688 ret
= -TARGET_EFAULT
;
9690 ret
= get_errno(sys_renameat2(arg1
, p
, arg3
, p2
, arg5
));
9692 unlock_user(p2
, arg4
, 0);
9693 unlock_user(p
, arg2
, 0);
9697 #ifdef TARGET_NR_mkdir
9698 case TARGET_NR_mkdir
:
9699 if (!(p
= lock_user_string(arg1
)))
9700 return -TARGET_EFAULT
;
9701 ret
= get_errno(mkdir(p
, arg2
));
9702 unlock_user(p
, arg1
, 0);
9705 #if defined(TARGET_NR_mkdirat)
9706 case TARGET_NR_mkdirat
:
9707 if (!(p
= lock_user_string(arg2
)))
9708 return -TARGET_EFAULT
;
9709 ret
= get_errno(mkdirat(arg1
, p
, arg3
));
9710 unlock_user(p
, arg2
, 0);
9713 #ifdef TARGET_NR_rmdir
9714 case TARGET_NR_rmdir
:
9715 if (!(p
= lock_user_string(arg1
)))
9716 return -TARGET_EFAULT
;
9717 ret
= get_errno(rmdir(p
));
9718 unlock_user(p
, arg1
, 0);
9722 ret
= get_errno(dup(arg1
));
9724 fd_trans_dup(arg1
, ret
);
9727 #ifdef TARGET_NR_pipe
9728 case TARGET_NR_pipe
:
9729 return do_pipe(cpu_env
, arg1
, 0, 0);
9731 #ifdef TARGET_NR_pipe2
9732 case TARGET_NR_pipe2
:
9733 return do_pipe(cpu_env
, arg1
,
9734 target_to_host_bitmask(arg2
, fcntl_flags_tbl
), 1);
9736 case TARGET_NR_times
:
9738 struct target_tms
*tmsp
;
9740 ret
= get_errno(times(&tms
));
9742 tmsp
= lock_user(VERIFY_WRITE
, arg1
, sizeof(struct target_tms
), 0);
9744 return -TARGET_EFAULT
;
9745 tmsp
->tms_utime
= tswapal(host_to_target_clock_t(tms
.tms_utime
));
9746 tmsp
->tms_stime
= tswapal(host_to_target_clock_t(tms
.tms_stime
));
9747 tmsp
->tms_cutime
= tswapal(host_to_target_clock_t(tms
.tms_cutime
));
9748 tmsp
->tms_cstime
= tswapal(host_to_target_clock_t(tms
.tms_cstime
));
9751 ret
= host_to_target_clock_t(ret
);
9754 case TARGET_NR_acct
:
9756 ret
= get_errno(acct(NULL
));
9758 if (!(p
= lock_user_string(arg1
))) {
9759 return -TARGET_EFAULT
;
9761 ret
= get_errno(acct(path(p
)));
9762 unlock_user(p
, arg1
, 0);
9765 #ifdef TARGET_NR_umount2
9766 case TARGET_NR_umount2
:
9767 if (!(p
= lock_user_string(arg1
)))
9768 return -TARGET_EFAULT
;
9769 ret
= get_errno(umount2(p
, arg2
));
9770 unlock_user(p
, arg1
, 0);
9773 case TARGET_NR_ioctl
:
9774 return do_ioctl(arg1
, arg2
, arg3
);
9775 #ifdef TARGET_NR_fcntl
9776 case TARGET_NR_fcntl
:
9777 return do_fcntl(arg1
, arg2
, arg3
);
9779 case TARGET_NR_setpgid
:
9780 return get_errno(setpgid(arg1
, arg2
));
9781 case TARGET_NR_umask
:
9782 return get_errno(umask(arg1
));
9783 case TARGET_NR_chroot
:
9784 if (!(p
= lock_user_string(arg1
)))
9785 return -TARGET_EFAULT
;
9786 ret
= get_errno(chroot(p
));
9787 unlock_user(p
, arg1
, 0);
9789 #ifdef TARGET_NR_dup2
9790 case TARGET_NR_dup2
:
9791 ret
= get_errno(dup2(arg1
, arg2
));
9793 fd_trans_dup(arg1
, arg2
);
9797 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
9798 case TARGET_NR_dup3
:
9802 if ((arg3
& ~TARGET_O_CLOEXEC
) != 0) {
9805 host_flags
= target_to_host_bitmask(arg3
, fcntl_flags_tbl
);
9806 ret
= get_errno(dup3(arg1
, arg2
, host_flags
));
9808 fd_trans_dup(arg1
, arg2
);
9813 #ifdef TARGET_NR_getppid /* not on alpha */
9814 case TARGET_NR_getppid
:
9815 return get_errno(getppid());
9817 #ifdef TARGET_NR_getpgrp
9818 case TARGET_NR_getpgrp
:
9819 return get_errno(getpgrp());
9821 case TARGET_NR_setsid
:
9822 return get_errno(setsid());
9823 #ifdef TARGET_NR_sigaction
9824 case TARGET_NR_sigaction
:
9826 #if defined(TARGET_MIPS)
9827 struct target_sigaction act
, oact
, *pact
, *old_act
;
9830 if (!lock_user_struct(VERIFY_READ
, old_act
, arg2
, 1))
9831 return -TARGET_EFAULT
;
9832 act
._sa_handler
= old_act
->_sa_handler
;
9833 target_siginitset(&act
.sa_mask
, old_act
->sa_mask
.sig
[0]);
9834 act
.sa_flags
= old_act
->sa_flags
;
9835 unlock_user_struct(old_act
, arg2
, 0);
9841 ret
= get_errno(do_sigaction(arg1
, pact
, &oact
, 0));
9843 if (!is_error(ret
) && arg3
) {
9844 if (!lock_user_struct(VERIFY_WRITE
, old_act
, arg3
, 0))
9845 return -TARGET_EFAULT
;
9846 old_act
->_sa_handler
= oact
._sa_handler
;
9847 old_act
->sa_flags
= oact
.sa_flags
;
9848 old_act
->sa_mask
.sig
[0] = oact
.sa_mask
.sig
[0];
9849 old_act
->sa_mask
.sig
[1] = 0;
9850 old_act
->sa_mask
.sig
[2] = 0;
9851 old_act
->sa_mask
.sig
[3] = 0;
9852 unlock_user_struct(old_act
, arg3
, 1);
9855 struct target_old_sigaction
*old_act
;
9856 struct target_sigaction act
, oact
, *pact
;
9858 if (!lock_user_struct(VERIFY_READ
, old_act
, arg2
, 1))
9859 return -TARGET_EFAULT
;
9860 act
._sa_handler
= old_act
->_sa_handler
;
9861 target_siginitset(&act
.sa_mask
, old_act
->sa_mask
);
9862 act
.sa_flags
= old_act
->sa_flags
;
9863 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9864 act
.sa_restorer
= old_act
->sa_restorer
;
9866 unlock_user_struct(old_act
, arg2
, 0);
9871 ret
= get_errno(do_sigaction(arg1
, pact
, &oact
, 0));
9872 if (!is_error(ret
) && arg3
) {
9873 if (!lock_user_struct(VERIFY_WRITE
, old_act
, arg3
, 0))
9874 return -TARGET_EFAULT
;
9875 old_act
->_sa_handler
= oact
._sa_handler
;
9876 old_act
->sa_mask
= oact
.sa_mask
.sig
[0];
9877 old_act
->sa_flags
= oact
.sa_flags
;
9878 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9879 old_act
->sa_restorer
= oact
.sa_restorer
;
9881 unlock_user_struct(old_act
, arg3
, 1);
9887 case TARGET_NR_rt_sigaction
:
9890 * For Alpha and SPARC this is a 5 argument syscall, with
9891 * a 'restorer' parameter which must be copied into the
9892 * sa_restorer field of the sigaction struct.
9893 * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
9894 * and arg5 is the sigsetsize.
9896 #if defined(TARGET_ALPHA)
9897 target_ulong sigsetsize
= arg4
;
9898 target_ulong restorer
= arg5
;
9899 #elif defined(TARGET_SPARC)
9900 target_ulong restorer
= arg4
;
9901 target_ulong sigsetsize
= arg5
;
9903 target_ulong sigsetsize
= arg4
;
9904 target_ulong restorer
= 0;
9906 struct target_sigaction
*act
= NULL
;
9907 struct target_sigaction
*oact
= NULL
;
9909 if (sigsetsize
!= sizeof(target_sigset_t
)) {
9910 return -TARGET_EINVAL
;
9912 if (arg2
&& !lock_user_struct(VERIFY_READ
, act
, arg2
, 1)) {
9913 return -TARGET_EFAULT
;
9915 if (arg3
&& !lock_user_struct(VERIFY_WRITE
, oact
, arg3
, 0)) {
9916 ret
= -TARGET_EFAULT
;
9918 ret
= get_errno(do_sigaction(arg1
, act
, oact
, restorer
));
9920 unlock_user_struct(oact
, arg3
, 1);
9924 unlock_user_struct(act
, arg2
, 0);
9928 #ifdef TARGET_NR_sgetmask /* not on alpha */
9929 case TARGET_NR_sgetmask
:
9932 abi_ulong target_set
;
9933 ret
= do_sigprocmask(0, NULL
, &cur_set
);
9935 host_to_target_old_sigset(&target_set
, &cur_set
);
9941 #ifdef TARGET_NR_ssetmask /* not on alpha */
9942 case TARGET_NR_ssetmask
:
9945 abi_ulong target_set
= arg1
;
9946 target_to_host_old_sigset(&set
, &target_set
);
9947 ret
= do_sigprocmask(SIG_SETMASK
, &set
, &oset
);
9949 host_to_target_old_sigset(&target_set
, &oset
);
9955 #ifdef TARGET_NR_sigprocmask
9956 case TARGET_NR_sigprocmask
:
9958 #if defined(TARGET_ALPHA)
9959 sigset_t set
, oldset
;
9964 case TARGET_SIG_BLOCK
:
9967 case TARGET_SIG_UNBLOCK
:
9970 case TARGET_SIG_SETMASK
:
9974 return -TARGET_EINVAL
;
9977 target_to_host_old_sigset(&set
, &mask
);
9979 ret
= do_sigprocmask(how
, &set
, &oldset
);
9980 if (!is_error(ret
)) {
9981 host_to_target_old_sigset(&mask
, &oldset
);
9983 cpu_env
->ir
[IR_V0
] = 0; /* force no error */
9986 sigset_t set
, oldset
, *set_ptr
;
9990 p
= lock_user(VERIFY_READ
, arg2
, sizeof(target_sigset_t
), 1);
9992 return -TARGET_EFAULT
;
9994 target_to_host_old_sigset(&set
, p
);
9995 unlock_user(p
, arg2
, 0);
9998 case TARGET_SIG_BLOCK
:
10001 case TARGET_SIG_UNBLOCK
:
10004 case TARGET_SIG_SETMASK
:
10008 return -TARGET_EINVAL
;
10014 ret
= do_sigprocmask(how
, set_ptr
, &oldset
);
10015 if (!is_error(ret
) && arg3
) {
10016 if (!(p
= lock_user(VERIFY_WRITE
, arg3
, sizeof(target_sigset_t
), 0)))
10017 return -TARGET_EFAULT
;
10018 host_to_target_old_sigset(p
, &oldset
);
10019 unlock_user(p
, arg3
, sizeof(target_sigset_t
));
10025 case TARGET_NR_rt_sigprocmask
:
10028 sigset_t set
, oldset
, *set_ptr
;
10030 if (arg4
!= sizeof(target_sigset_t
)) {
10031 return -TARGET_EINVAL
;
10035 p
= lock_user(VERIFY_READ
, arg2
, sizeof(target_sigset_t
), 1);
10037 return -TARGET_EFAULT
;
10039 target_to_host_sigset(&set
, p
);
10040 unlock_user(p
, arg2
, 0);
10043 case TARGET_SIG_BLOCK
:
10046 case TARGET_SIG_UNBLOCK
:
10049 case TARGET_SIG_SETMASK
:
10053 return -TARGET_EINVAL
;
10059 ret
= do_sigprocmask(how
, set_ptr
, &oldset
);
10060 if (!is_error(ret
) && arg3
) {
10061 if (!(p
= lock_user(VERIFY_WRITE
, arg3
, sizeof(target_sigset_t
), 0)))
10062 return -TARGET_EFAULT
;
10063 host_to_target_sigset(p
, &oldset
);
10064 unlock_user(p
, arg3
, sizeof(target_sigset_t
));
10068 #ifdef TARGET_NR_sigpending
10069 case TARGET_NR_sigpending
:
10072 ret
= get_errno(sigpending(&set
));
10073 if (!is_error(ret
)) {
10074 if (!(p
= lock_user(VERIFY_WRITE
, arg1
, sizeof(target_sigset_t
), 0)))
10075 return -TARGET_EFAULT
;
10076 host_to_target_old_sigset(p
, &set
);
10077 unlock_user(p
, arg1
, sizeof(target_sigset_t
));
10082 case TARGET_NR_rt_sigpending
:
10086 /* Yes, this check is >, not != like most. We follow the kernel's
10087 * logic and it does it like this because it implements
10088 * NR_sigpending through the same code path, and in that case
10089 * the old_sigset_t is smaller in size.
10091 if (arg2
> sizeof(target_sigset_t
)) {
10092 return -TARGET_EINVAL
;
10095 ret
= get_errno(sigpending(&set
));
10096 if (!is_error(ret
)) {
10097 if (!(p
= lock_user(VERIFY_WRITE
, arg1
, sizeof(target_sigset_t
), 0)))
10098 return -TARGET_EFAULT
;
10099 host_to_target_sigset(p
, &set
);
10100 unlock_user(p
, arg1
, sizeof(target_sigset_t
));
10104 #ifdef TARGET_NR_sigsuspend
10105 case TARGET_NR_sigsuspend
:
10109 #if defined(TARGET_ALPHA)
10110 TaskState
*ts
= get_task_state(cpu
);
10111 /* target_to_host_old_sigset will bswap back */
10112 abi_ulong mask
= tswapal(arg1
);
10113 set
= &ts
->sigsuspend_mask
;
10114 target_to_host_old_sigset(set
, &mask
);
10116 ret
= process_sigsuspend_mask(&set
, arg1
, sizeof(target_sigset_t
));
10121 ret
= get_errno(safe_rt_sigsuspend(set
, SIGSET_T_SIZE
));
10122 finish_sigsuspend_mask(ret
);
10126 case TARGET_NR_rt_sigsuspend
:
10130 ret
= process_sigsuspend_mask(&set
, arg1
, arg2
);
10134 ret
= get_errno(safe_rt_sigsuspend(set
, SIGSET_T_SIZE
));
10135 finish_sigsuspend_mask(ret
);
10138 #ifdef TARGET_NR_rt_sigtimedwait
10139 case TARGET_NR_rt_sigtimedwait
:
10142 struct timespec uts
, *puts
;
10145 if (arg4
!= sizeof(target_sigset_t
)) {
10146 return -TARGET_EINVAL
;
10149 if (!(p
= lock_user(VERIFY_READ
, arg1
, sizeof(target_sigset_t
), 1)))
10150 return -TARGET_EFAULT
;
10151 target_to_host_sigset(&set
, p
);
10152 unlock_user(p
, arg1
, 0);
10155 if (target_to_host_timespec(puts
, arg3
)) {
10156 return -TARGET_EFAULT
;
10161 ret
= get_errno(safe_rt_sigtimedwait(&set
, &uinfo
, puts
,
10163 if (!is_error(ret
)) {
10165 p
= lock_user(VERIFY_WRITE
, arg2
, sizeof(target_siginfo_t
),
10168 return -TARGET_EFAULT
;
10170 host_to_target_siginfo(p
, &uinfo
);
10171 unlock_user(p
, arg2
, sizeof(target_siginfo_t
));
10173 ret
= host_to_target_signal(ret
);
10178 #ifdef TARGET_NR_rt_sigtimedwait_time64
10179 case TARGET_NR_rt_sigtimedwait_time64
:
10182 struct timespec uts
, *puts
;
10185 if (arg4
!= sizeof(target_sigset_t
)) {
10186 return -TARGET_EINVAL
;
10189 p
= lock_user(VERIFY_READ
, arg1
, sizeof(target_sigset_t
), 1);
10191 return -TARGET_EFAULT
;
10193 target_to_host_sigset(&set
, p
);
10194 unlock_user(p
, arg1
, 0);
10197 if (target_to_host_timespec64(puts
, arg3
)) {
10198 return -TARGET_EFAULT
;
10203 ret
= get_errno(safe_rt_sigtimedwait(&set
, &uinfo
, puts
,
10205 if (!is_error(ret
)) {
10207 p
= lock_user(VERIFY_WRITE
, arg2
,
10208 sizeof(target_siginfo_t
), 0);
10210 return -TARGET_EFAULT
;
10212 host_to_target_siginfo(p
, &uinfo
);
10213 unlock_user(p
, arg2
, sizeof(target_siginfo_t
));
10215 ret
= host_to_target_signal(ret
);
10220 case TARGET_NR_rt_sigqueueinfo
:
10224 p
= lock_user(VERIFY_READ
, arg3
, sizeof(target_siginfo_t
), 1);
10226 return -TARGET_EFAULT
;
10228 target_to_host_siginfo(&uinfo
, p
);
10229 unlock_user(p
, arg3
, 0);
10230 ret
= get_errno(sys_rt_sigqueueinfo(arg1
, target_to_host_signal(arg2
), &uinfo
));
10233 case TARGET_NR_rt_tgsigqueueinfo
:
10237 p
= lock_user(VERIFY_READ
, arg4
, sizeof(target_siginfo_t
), 1);
10239 return -TARGET_EFAULT
;
10241 target_to_host_siginfo(&uinfo
, p
);
10242 unlock_user(p
, arg4
, 0);
10243 ret
= get_errno(sys_rt_tgsigqueueinfo(arg1
, arg2
, target_to_host_signal(arg3
), &uinfo
));
10246 #ifdef TARGET_NR_sigreturn
10247 case TARGET_NR_sigreturn
:
10248 if (block_signals()) {
10249 return -QEMU_ERESTARTSYS
;
10251 return do_sigreturn(cpu_env
);
10253 case TARGET_NR_rt_sigreturn
:
10254 if (block_signals()) {
10255 return -QEMU_ERESTARTSYS
;
10257 return do_rt_sigreturn(cpu_env
);
10258 case TARGET_NR_sethostname
:
10259 if (!(p
= lock_user_string(arg1
)))
10260 return -TARGET_EFAULT
;
10261 ret
= get_errno(sethostname(p
, arg2
));
10262 unlock_user(p
, arg1
, 0);
10264 #ifdef TARGET_NR_setrlimit
10265 case TARGET_NR_setrlimit
:
10267 int resource
= target_to_host_resource(arg1
);
10268 struct target_rlimit
*target_rlim
;
10269 struct rlimit rlim
;
10270 if (!lock_user_struct(VERIFY_READ
, target_rlim
, arg2
, 1))
10271 return -TARGET_EFAULT
;
10272 rlim
.rlim_cur
= target_to_host_rlim(target_rlim
->rlim_cur
);
10273 rlim
.rlim_max
= target_to_host_rlim(target_rlim
->rlim_max
);
10274 unlock_user_struct(target_rlim
, arg2
, 0);
10276 * If we just passed through resource limit settings for memory then
10277 * they would also apply to QEMU's own allocations, and QEMU will
10278 * crash or hang or die if its allocations fail. Ideally we would
10279 * track the guest allocations in QEMU and apply the limits ourselves.
10280 * For now, just tell the guest the call succeeded but don't actually
10283 if (resource
!= RLIMIT_AS
&&
10284 resource
!= RLIMIT_DATA
&&
10285 resource
!= RLIMIT_STACK
) {
10286 return get_errno(setrlimit(resource
, &rlim
));
10292 #ifdef TARGET_NR_getrlimit
10293 case TARGET_NR_getrlimit
:
10295 int resource
= target_to_host_resource(arg1
);
10296 struct target_rlimit
*target_rlim
;
10297 struct rlimit rlim
;
10299 ret
= get_errno(getrlimit(resource
, &rlim
));
10300 if (!is_error(ret
)) {
10301 if (!lock_user_struct(VERIFY_WRITE
, target_rlim
, arg2
, 0))
10302 return -TARGET_EFAULT
;
10303 target_rlim
->rlim_cur
= host_to_target_rlim(rlim
.rlim_cur
);
10304 target_rlim
->rlim_max
= host_to_target_rlim(rlim
.rlim_max
);
10305 unlock_user_struct(target_rlim
, arg2
, 1);
10310 case TARGET_NR_getrusage
:
10312 struct rusage rusage
;
10313 ret
= get_errno(getrusage(arg1
, &rusage
));
10314 if (!is_error(ret
)) {
10315 ret
= host_to_target_rusage(arg2
, &rusage
);
10319 #if defined(TARGET_NR_gettimeofday)
10320 case TARGET_NR_gettimeofday
:
10323 struct timezone tz
;
10325 ret
= get_errno(gettimeofday(&tv
, &tz
));
10326 if (!is_error(ret
)) {
10327 if (arg1
&& copy_to_user_timeval(arg1
, &tv
)) {
10328 return -TARGET_EFAULT
;
10330 if (arg2
&& copy_to_user_timezone(arg2
, &tz
)) {
10331 return -TARGET_EFAULT
;
10337 #if defined(TARGET_NR_settimeofday)
10338 case TARGET_NR_settimeofday
:
10340 struct timeval tv
, *ptv
= NULL
;
10341 struct timezone tz
, *ptz
= NULL
;
10344 if (copy_from_user_timeval(&tv
, arg1
)) {
10345 return -TARGET_EFAULT
;
10351 if (copy_from_user_timezone(&tz
, arg2
)) {
10352 return -TARGET_EFAULT
;
10357 return get_errno(settimeofday(ptv
, ptz
));
10360 #if defined(TARGET_NR_select)
10361 case TARGET_NR_select
:
10362 #if defined(TARGET_WANT_NI_OLD_SELECT)
10363 /* some architectures used to have old_select here
10364 * but now ENOSYS it.
10366 ret
= -TARGET_ENOSYS
;
10367 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
10368 ret
= do_old_select(arg1
);
10370 ret
= do_select(arg1
, arg2
, arg3
, arg4
, arg5
);
10374 #ifdef TARGET_NR_pselect6
10375 case TARGET_NR_pselect6
:
10376 return do_pselect6(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
, false);
10378 #ifdef TARGET_NR_pselect6_time64
10379 case TARGET_NR_pselect6_time64
:
10380 return do_pselect6(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
, true);
10382 #ifdef TARGET_NR_symlink
10383 case TARGET_NR_symlink
:
10386 p
= lock_user_string(arg1
);
10387 p2
= lock_user_string(arg2
);
10389 ret
= -TARGET_EFAULT
;
10391 ret
= get_errno(symlink(p
, p2
));
10392 unlock_user(p2
, arg2
, 0);
10393 unlock_user(p
, arg1
, 0);
10397 #if defined(TARGET_NR_symlinkat)
10398 case TARGET_NR_symlinkat
:
10401 p
= lock_user_string(arg1
);
10402 p2
= lock_user_string(arg3
);
10404 ret
= -TARGET_EFAULT
;
10406 ret
= get_errno(symlinkat(p
, arg2
, p2
));
10407 unlock_user(p2
, arg3
, 0);
10408 unlock_user(p
, arg1
, 0);
10412 #ifdef TARGET_NR_readlink
10413 case TARGET_NR_readlink
:
10416 p
= lock_user_string(arg1
);
10417 p2
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
10418 ret
= get_errno(do_guest_readlink(p
, p2
, arg3
));
10419 unlock_user(p2
, arg2
, ret
);
10420 unlock_user(p
, arg1
, 0);
10424 #if defined(TARGET_NR_readlinkat)
10425 case TARGET_NR_readlinkat
:
10428 p
= lock_user_string(arg2
);
10429 p2
= lock_user(VERIFY_WRITE
, arg3
, arg4
, 0);
10431 ret
= -TARGET_EFAULT
;
10432 } else if (!arg4
) {
10433 /* Short circuit this for the magic exe check. */
10434 ret
= -TARGET_EINVAL
;
10435 } else if (is_proc_myself((const char *)p
, "exe")) {
10437 * Don't worry about sign mismatch as earlier mapping
10438 * logic would have thrown a bad address error.
10440 ret
= MIN(strlen(exec_path
), arg4
);
10441 /* We cannot NUL terminate the string. */
10442 memcpy(p2
, exec_path
, ret
);
10444 ret
= get_errno(readlinkat(arg1
, path(p
), p2
, arg4
));
10446 unlock_user(p2
, arg3
, ret
);
10447 unlock_user(p
, arg2
, 0);
10451 #ifdef TARGET_NR_swapon
10452 case TARGET_NR_swapon
:
10453 if (!(p
= lock_user_string(arg1
)))
10454 return -TARGET_EFAULT
;
10455 ret
= get_errno(swapon(p
, arg2
));
10456 unlock_user(p
, arg1
, 0);
10459 case TARGET_NR_reboot
:
10460 if (arg3
== LINUX_REBOOT_CMD_RESTART2
) {
10461 /* arg4 must be ignored in all other cases */
10462 p
= lock_user_string(arg4
);
10464 return -TARGET_EFAULT
;
10466 ret
= get_errno(reboot(arg1
, arg2
, arg3
, p
));
10467 unlock_user(p
, arg4
, 0);
10469 ret
= get_errno(reboot(arg1
, arg2
, arg3
, NULL
));
10472 #ifdef TARGET_NR_mmap
10473 case TARGET_NR_mmap
:
10474 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
10475 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
10476 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
10477 || defined(TARGET_S390X)
10480 abi_ulong v1
, v2
, v3
, v4
, v5
, v6
;
10481 if (!(v
= lock_user(VERIFY_READ
, arg1
, 6 * sizeof(abi_ulong
), 1)))
10482 return -TARGET_EFAULT
;
10483 v1
= tswapal(v
[0]);
10484 v2
= tswapal(v
[1]);
10485 v3
= tswapal(v
[2]);
10486 v4
= tswapal(v
[3]);
10487 v5
= tswapal(v
[4]);
10488 v6
= tswapal(v
[5]);
10489 unlock_user(v
, arg1
, 0);
10490 return do_mmap(v1
, v2
, v3
, v4
, v5
, v6
);
10493 /* mmap pointers are always untagged */
10494 return do_mmap(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
10497 #ifdef TARGET_NR_mmap2
10498 case TARGET_NR_mmap2
:
10500 #define MMAP_SHIFT 12
10502 return do_mmap(arg1
, arg2
, arg3
, arg4
, arg5
,
10503 (off_t
)(abi_ulong
)arg6
<< MMAP_SHIFT
);
10505 case TARGET_NR_munmap
:
10506 arg1
= cpu_untagged_addr(cpu
, arg1
);
10507 return get_errno(target_munmap(arg1
, arg2
));
10508 case TARGET_NR_mprotect
:
10509 arg1
= cpu_untagged_addr(cpu
, arg1
);
10511 TaskState
*ts
= get_task_state(cpu
);
10512 /* Special hack to detect libc making the stack executable. */
10513 if ((arg3
& PROT_GROWSDOWN
)
10514 && arg1
>= ts
->info
->stack_limit
10515 && arg1
<= ts
->info
->start_stack
) {
10516 arg3
&= ~PROT_GROWSDOWN
;
10517 arg2
= arg2
+ arg1
- ts
->info
->stack_limit
;
10518 arg1
= ts
->info
->stack_limit
;
10521 return get_errno(target_mprotect(arg1
, arg2
, arg3
));
10522 #ifdef TARGET_NR_mremap
10523 case TARGET_NR_mremap
:
10524 arg1
= cpu_untagged_addr(cpu
, arg1
);
10525 /* mremap new_addr (arg5) is always untagged */
10526 return get_errno(target_mremap(arg1
, arg2
, arg3
, arg4
, arg5
));
10528 /* ??? msync/mlock/munlock are broken for softmmu. */
10529 #ifdef TARGET_NR_msync
10530 case TARGET_NR_msync
:
10531 return get_errno(msync(g2h(cpu
, arg1
), arg2
,
10532 target_to_host_msync_arg(arg3
)));
10534 #ifdef TARGET_NR_mlock
10535 case TARGET_NR_mlock
:
10536 return get_errno(mlock(g2h(cpu
, arg1
), arg2
));
10538 #ifdef TARGET_NR_munlock
10539 case TARGET_NR_munlock
:
10540 return get_errno(munlock(g2h(cpu
, arg1
), arg2
));
10542 #ifdef TARGET_NR_mlockall
10543 case TARGET_NR_mlockall
:
10544 return get_errno(mlockall(target_to_host_mlockall_arg(arg1
)));
10546 #ifdef TARGET_NR_munlockall
10547 case TARGET_NR_munlockall
:
10548 return get_errno(munlockall());
10550 #ifdef TARGET_NR_truncate
10551 case TARGET_NR_truncate
:
10552 if (!(p
= lock_user_string(arg1
)))
10553 return -TARGET_EFAULT
;
10554 ret
= get_errno(truncate(p
, arg2
));
10555 unlock_user(p
, arg1
, 0);
10558 #ifdef TARGET_NR_ftruncate
10559 case TARGET_NR_ftruncate
:
10560 return get_errno(ftruncate(arg1
, arg2
));
10562 case TARGET_NR_fchmod
:
10563 return get_errno(fchmod(arg1
, arg2
));
10564 #if defined(TARGET_NR_fchmodat)
10565 case TARGET_NR_fchmodat
:
10566 if (!(p
= lock_user_string(arg2
)))
10567 return -TARGET_EFAULT
;
10568 ret
= get_errno(fchmodat(arg1
, p
, arg3
, 0));
10569 unlock_user(p
, arg2
, 0);
10572 case TARGET_NR_getpriority
:
10573 /* Note that negative values are valid for getpriority, so we must
10574 differentiate based on errno settings. */
10576 ret
= getpriority(arg1
, arg2
);
10577 if (ret
== -1 && errno
!= 0) {
10578 return -host_to_target_errno(errno
);
10580 #ifdef TARGET_ALPHA
10581 /* Return value is the unbiased priority. Signal no error. */
10582 cpu_env
->ir
[IR_V0
] = 0;
10584 /* Return value is a biased priority to avoid negative numbers. */
10588 case TARGET_NR_setpriority
:
10589 return get_errno(setpriority(arg1
, arg2
, arg3
));
10590 #ifdef TARGET_NR_statfs
10591 case TARGET_NR_statfs
:
10592 if (!(p
= lock_user_string(arg1
))) {
10593 return -TARGET_EFAULT
;
10595 ret
= get_errno(statfs(path(p
), &stfs
));
10596 unlock_user(p
, arg1
, 0);
10598 if (!is_error(ret
)) {
10599 struct target_statfs
*target_stfs
;
10601 if (!lock_user_struct(VERIFY_WRITE
, target_stfs
, arg2
, 0))
10602 return -TARGET_EFAULT
;
10603 __put_user(stfs
.f_type
, &target_stfs
->f_type
);
10604 __put_user(stfs
.f_bsize
, &target_stfs
->f_bsize
);
10605 __put_user(stfs
.f_blocks
, &target_stfs
->f_blocks
);
10606 __put_user(stfs
.f_bfree
, &target_stfs
->f_bfree
);
10607 __put_user(stfs
.f_bavail
, &target_stfs
->f_bavail
);
10608 __put_user(stfs
.f_files
, &target_stfs
->f_files
);
10609 __put_user(stfs
.f_ffree
, &target_stfs
->f_ffree
);
10610 __put_user(stfs
.f_fsid
.__val
[0], &target_stfs
->f_fsid
.val
[0]);
10611 __put_user(stfs
.f_fsid
.__val
[1], &target_stfs
->f_fsid
.val
[1]);
10612 __put_user(stfs
.f_namelen
, &target_stfs
->f_namelen
);
10613 __put_user(stfs
.f_frsize
, &target_stfs
->f_frsize
);
10614 #ifdef _STATFS_F_FLAGS
10615 __put_user(stfs
.f_flags
, &target_stfs
->f_flags
);
10617 __put_user(0, &target_stfs
->f_flags
);
10619 memset(target_stfs
->f_spare
, 0, sizeof(target_stfs
->f_spare
));
10620 unlock_user_struct(target_stfs
, arg2
, 1);
10624 #ifdef TARGET_NR_fstatfs
10625 case TARGET_NR_fstatfs
:
10626 ret
= get_errno(fstatfs(arg1
, &stfs
));
10627 goto convert_statfs
;
10629 #ifdef TARGET_NR_statfs64
10630 case TARGET_NR_statfs64
:
10631 if (!(p
= lock_user_string(arg1
))) {
10632 return -TARGET_EFAULT
;
10634 ret
= get_errno(statfs(path(p
), &stfs
));
10635 unlock_user(p
, arg1
, 0);
10637 if (!is_error(ret
)) {
10638 struct target_statfs64
*target_stfs
;
10640 if (!lock_user_struct(VERIFY_WRITE
, target_stfs
, arg3
, 0))
10641 return -TARGET_EFAULT
;
10642 __put_user(stfs
.f_type
, &target_stfs
->f_type
);
10643 __put_user(stfs
.f_bsize
, &target_stfs
->f_bsize
);
10644 __put_user(stfs
.f_blocks
, &target_stfs
->f_blocks
);
10645 __put_user(stfs
.f_bfree
, &target_stfs
->f_bfree
);
10646 __put_user(stfs
.f_bavail
, &target_stfs
->f_bavail
);
10647 __put_user(stfs
.f_files
, &target_stfs
->f_files
);
10648 __put_user(stfs
.f_ffree
, &target_stfs
->f_ffree
);
10649 __put_user(stfs
.f_fsid
.__val
[0], &target_stfs
->f_fsid
.val
[0]);
10650 __put_user(stfs
.f_fsid
.__val
[1], &target_stfs
->f_fsid
.val
[1]);
10651 __put_user(stfs
.f_namelen
, &target_stfs
->f_namelen
);
10652 __put_user(stfs
.f_frsize
, &target_stfs
->f_frsize
);
10653 #ifdef _STATFS_F_FLAGS
10654 __put_user(stfs
.f_flags
, &target_stfs
->f_flags
);
10656 __put_user(0, &target_stfs
->f_flags
);
10658 memset(target_stfs
->f_spare
, 0, sizeof(target_stfs
->f_spare
));
10659 unlock_user_struct(target_stfs
, arg3
, 1);
10662 case TARGET_NR_fstatfs64
:
10663 ret
= get_errno(fstatfs(arg1
, &stfs
));
10664 goto convert_statfs64
;
10666 #ifdef TARGET_NR_socketcall
10667 case TARGET_NR_socketcall
:
10668 return do_socketcall(arg1
, arg2
);
10670 #ifdef TARGET_NR_accept
10671 case TARGET_NR_accept
:
10672 return do_accept4(arg1
, arg2
, arg3
, 0);
10674 #ifdef TARGET_NR_accept4
10675 case TARGET_NR_accept4
:
10676 return do_accept4(arg1
, arg2
, arg3
, arg4
);
10678 #ifdef TARGET_NR_bind
10679 case TARGET_NR_bind
:
10680 return do_bind(arg1
, arg2
, arg3
);
10682 #ifdef TARGET_NR_connect
10683 case TARGET_NR_connect
:
10684 return do_connect(arg1
, arg2
, arg3
);
10686 #ifdef TARGET_NR_getpeername
10687 case TARGET_NR_getpeername
:
10688 return do_getpeername(arg1
, arg2
, arg3
);
10690 #ifdef TARGET_NR_getsockname
10691 case TARGET_NR_getsockname
:
10692 return do_getsockname(arg1
, arg2
, arg3
);
10694 #ifdef TARGET_NR_getsockopt
10695 case TARGET_NR_getsockopt
:
10696 return do_getsockopt(arg1
, arg2
, arg3
, arg4
, arg5
);
10698 #ifdef TARGET_NR_listen
10699 case TARGET_NR_listen
:
10700 return get_errno(listen(arg1
, arg2
));
10702 #ifdef TARGET_NR_recv
10703 case TARGET_NR_recv
:
10704 return do_recvfrom(arg1
, arg2
, arg3
, arg4
, 0, 0);
10706 #ifdef TARGET_NR_recvfrom
10707 case TARGET_NR_recvfrom
:
10708 return do_recvfrom(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
10710 #ifdef TARGET_NR_recvmsg
10711 case TARGET_NR_recvmsg
:
10712 return do_sendrecvmsg(arg1
, arg2
, arg3
, 0);
10714 #ifdef TARGET_NR_send
10715 case TARGET_NR_send
:
10716 return do_sendto(arg1
, arg2
, arg3
, arg4
, 0, 0);
10718 #ifdef TARGET_NR_sendmsg
10719 case TARGET_NR_sendmsg
:
10720 return do_sendrecvmsg(arg1
, arg2
, arg3
, 1);
10722 #ifdef TARGET_NR_sendmmsg
10723 case TARGET_NR_sendmmsg
:
10724 return do_sendrecvmmsg(arg1
, arg2
, arg3
, arg4
, 1);
10726 #ifdef TARGET_NR_recvmmsg
10727 case TARGET_NR_recvmmsg
:
10728 return do_sendrecvmmsg(arg1
, arg2
, arg3
, arg4
, 0);
10730 #ifdef TARGET_NR_sendto
10731 case TARGET_NR_sendto
:
10732 return do_sendto(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
10734 #ifdef TARGET_NR_shutdown
10735 case TARGET_NR_shutdown
:
10736 return get_errno(shutdown(arg1
, arg2
));
10738 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
10739 case TARGET_NR_getrandom
:
10740 p
= lock_user(VERIFY_WRITE
, arg1
, arg2
, 0);
10742 return -TARGET_EFAULT
;
10744 ret
= get_errno(getrandom(p
, arg2
, arg3
));
10745 unlock_user(p
, arg1
, ret
);
10748 #ifdef TARGET_NR_socket
10749 case TARGET_NR_socket
:
10750 return do_socket(arg1
, arg2
, arg3
);
10752 #ifdef TARGET_NR_socketpair
10753 case TARGET_NR_socketpair
:
10754 return do_socketpair(arg1
, arg2
, arg3
, arg4
);
10756 #ifdef TARGET_NR_setsockopt
10757 case TARGET_NR_setsockopt
:
10758 return do_setsockopt(arg1
, arg2
, arg3
, arg4
, (socklen_t
) arg5
);
10760 #if defined(TARGET_NR_syslog)
10761 case TARGET_NR_syslog
:
10766 case TARGET_SYSLOG_ACTION_CLOSE
: /* Close log */
10767 case TARGET_SYSLOG_ACTION_OPEN
: /* Open log */
10768 case TARGET_SYSLOG_ACTION_CLEAR
: /* Clear ring buffer */
10769 case TARGET_SYSLOG_ACTION_CONSOLE_OFF
: /* Disable logging */
10770 case TARGET_SYSLOG_ACTION_CONSOLE_ON
: /* Enable logging */
10771 case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL
: /* Set messages level */
10772 case TARGET_SYSLOG_ACTION_SIZE_UNREAD
: /* Number of chars */
10773 case TARGET_SYSLOG_ACTION_SIZE_BUFFER
: /* Size of the buffer */
10774 return get_errno(sys_syslog((int)arg1
, NULL
, (int)arg3
));
10775 case TARGET_SYSLOG_ACTION_READ
: /* Read from log */
10776 case TARGET_SYSLOG_ACTION_READ_CLEAR
: /* Read/clear msgs */
10777 case TARGET_SYSLOG_ACTION_READ_ALL
: /* Read last messages */
10780 return -TARGET_EINVAL
;
10785 p
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
10787 return -TARGET_EFAULT
;
10789 ret
= get_errno(sys_syslog((int)arg1
, p
, (int)arg3
));
10790 unlock_user(p
, arg2
, arg3
);
10794 return -TARGET_EINVAL
;
10799 case TARGET_NR_setitimer
:
10801 struct itimerval value
, ovalue
, *pvalue
;
10805 if (copy_from_user_timeval(&pvalue
->it_interval
, arg2
)
10806 || copy_from_user_timeval(&pvalue
->it_value
,
10807 arg2
+ sizeof(struct target_timeval
)))
10808 return -TARGET_EFAULT
;
10812 ret
= get_errno(setitimer(arg1
, pvalue
, &ovalue
));
10813 if (!is_error(ret
) && arg3
) {
10814 if (copy_to_user_timeval(arg3
,
10815 &ovalue
.it_interval
)
10816 || copy_to_user_timeval(arg3
+ sizeof(struct target_timeval
),
10818 return -TARGET_EFAULT
;
10822 case TARGET_NR_getitimer
:
10824 struct itimerval value
;
10826 ret
= get_errno(getitimer(arg1
, &value
));
10827 if (!is_error(ret
) && arg2
) {
10828 if (copy_to_user_timeval(arg2
,
10829 &value
.it_interval
)
10830 || copy_to_user_timeval(arg2
+ sizeof(struct target_timeval
),
10832 return -TARGET_EFAULT
;
10836 #ifdef TARGET_NR_stat
10837 case TARGET_NR_stat
:
10838 if (!(p
= lock_user_string(arg1
))) {
10839 return -TARGET_EFAULT
;
10841 ret
= get_errno(stat(path(p
), &st
));
10842 unlock_user(p
, arg1
, 0);
10845 #ifdef TARGET_NR_lstat
10846 case TARGET_NR_lstat
:
10847 if (!(p
= lock_user_string(arg1
))) {
10848 return -TARGET_EFAULT
;
10850 ret
= get_errno(lstat(path(p
), &st
));
10851 unlock_user(p
, arg1
, 0);
10854 #ifdef TARGET_NR_fstat
10855 case TARGET_NR_fstat
:
10857 ret
= get_errno(fstat(arg1
, &st
));
10858 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
10861 if (!is_error(ret
)) {
10862 struct target_stat
*target_st
;
10864 if (!lock_user_struct(VERIFY_WRITE
, target_st
, arg2
, 0))
10865 return -TARGET_EFAULT
;
10866 memset(target_st
, 0, sizeof(*target_st
));
10867 __put_user(st
.st_dev
, &target_st
->st_dev
);
10868 __put_user(st
.st_ino
, &target_st
->st_ino
);
10869 __put_user(st
.st_mode
, &target_st
->st_mode
);
10870 __put_user(st
.st_uid
, &target_st
->st_uid
);
10871 __put_user(st
.st_gid
, &target_st
->st_gid
);
10872 __put_user(st
.st_nlink
, &target_st
->st_nlink
);
10873 __put_user(st
.st_rdev
, &target_st
->st_rdev
);
10874 __put_user(st
.st_size
, &target_st
->st_size
);
10875 __put_user(st
.st_blksize
, &target_st
->st_blksize
);
10876 __put_user(st
.st_blocks
, &target_st
->st_blocks
);
10877 __put_user(st
.st_atime
, &target_st
->target_st_atime
);
10878 __put_user(st
.st_mtime
, &target_st
->target_st_mtime
);
10879 __put_user(st
.st_ctime
, &target_st
->target_st_ctime
);
10880 #if defined(HAVE_STRUCT_STAT_ST_ATIM) && defined(TARGET_STAT_HAVE_NSEC)
10881 __put_user(st
.st_atim
.tv_nsec
,
10882 &target_st
->target_st_atime_nsec
);
10883 __put_user(st
.st_mtim
.tv_nsec
,
10884 &target_st
->target_st_mtime_nsec
);
10885 __put_user(st
.st_ctim
.tv_nsec
,
10886 &target_st
->target_st_ctime_nsec
);
10888 unlock_user_struct(target_st
, arg2
, 1);
10893 case TARGET_NR_vhangup
:
10894 return get_errno(vhangup());
10895 #ifdef TARGET_NR_syscall
10896 case TARGET_NR_syscall
:
10897 return do_syscall(cpu_env
, arg1
& 0xffff, arg2
, arg3
, arg4
, arg5
,
10898 arg6
, arg7
, arg8
, 0);
10900 #if defined(TARGET_NR_wait4)
10901 case TARGET_NR_wait4
:
10904 abi_long status_ptr
= arg2
;
10905 struct rusage rusage
, *rusage_ptr
;
10906 abi_ulong target_rusage
= arg4
;
10907 abi_long rusage_err
;
10909 rusage_ptr
= &rusage
;
10912 ret
= get_errno(safe_wait4(arg1
, &status
, arg3
, rusage_ptr
));
10913 if (!is_error(ret
)) {
10914 if (status_ptr
&& ret
) {
10915 status
= host_to_target_waitstatus(status
);
10916 if (put_user_s32(status
, status_ptr
))
10917 return -TARGET_EFAULT
;
10919 if (target_rusage
) {
10920 rusage_err
= host_to_target_rusage(target_rusage
, &rusage
);
10929 #ifdef TARGET_NR_swapoff
10930 case TARGET_NR_swapoff
:
10931 if (!(p
= lock_user_string(arg1
)))
10932 return -TARGET_EFAULT
;
10933 ret
= get_errno(swapoff(p
));
10934 unlock_user(p
, arg1
, 0);
10937 case TARGET_NR_sysinfo
:
10939 struct target_sysinfo
*target_value
;
10940 struct sysinfo value
;
10941 ret
= get_errno(sysinfo(&value
));
10942 if (!is_error(ret
) && arg1
)
10944 if (!lock_user_struct(VERIFY_WRITE
, target_value
, arg1
, 0))
10945 return -TARGET_EFAULT
;
10946 __put_user(value
.uptime
, &target_value
->uptime
);
10947 __put_user(value
.loads
[0], &target_value
->loads
[0]);
10948 __put_user(value
.loads
[1], &target_value
->loads
[1]);
10949 __put_user(value
.loads
[2], &target_value
->loads
[2]);
10950 __put_user(value
.totalram
, &target_value
->totalram
);
10951 __put_user(value
.freeram
, &target_value
->freeram
);
10952 __put_user(value
.sharedram
, &target_value
->sharedram
);
10953 __put_user(value
.bufferram
, &target_value
->bufferram
);
10954 __put_user(value
.totalswap
, &target_value
->totalswap
);
10955 __put_user(value
.freeswap
, &target_value
->freeswap
);
10956 __put_user(value
.procs
, &target_value
->procs
);
10957 __put_user(value
.totalhigh
, &target_value
->totalhigh
);
10958 __put_user(value
.freehigh
, &target_value
->freehigh
);
10959 __put_user(value
.mem_unit
, &target_value
->mem_unit
);
10960 unlock_user_struct(target_value
, arg1
, 1);
10964 #ifdef TARGET_NR_ipc
10965 case TARGET_NR_ipc
:
10966 return do_ipc(cpu_env
, arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
10968 #ifdef TARGET_NR_semget
10969 case TARGET_NR_semget
:
10970 return get_errno(semget(arg1
, arg2
, arg3
));
10972 #ifdef TARGET_NR_semop
10973 case TARGET_NR_semop
:
10974 return do_semtimedop(arg1
, arg2
, arg3
, 0, false);
10976 #ifdef TARGET_NR_semtimedop
10977 case TARGET_NR_semtimedop
:
10978 return do_semtimedop(arg1
, arg2
, arg3
, arg4
, false);
10980 #ifdef TARGET_NR_semtimedop_time64
10981 case TARGET_NR_semtimedop_time64
:
10982 return do_semtimedop(arg1
, arg2
, arg3
, arg4
, true);
10984 #ifdef TARGET_NR_semctl
10985 case TARGET_NR_semctl
:
10986 return do_semctl(arg1
, arg2
, arg3
, arg4
);
10988 #ifdef TARGET_NR_msgctl
10989 case TARGET_NR_msgctl
:
10990 return do_msgctl(arg1
, arg2
, arg3
);
10992 #ifdef TARGET_NR_msgget
10993 case TARGET_NR_msgget
:
10994 return get_errno(msgget(arg1
, arg2
));
10996 #ifdef TARGET_NR_msgrcv
10997 case TARGET_NR_msgrcv
:
10998 return do_msgrcv(arg1
, arg2
, arg3
, arg4
, arg5
);
11000 #ifdef TARGET_NR_msgsnd
11001 case TARGET_NR_msgsnd
:
11002 return do_msgsnd(arg1
, arg2
, arg3
, arg4
);
11004 #ifdef TARGET_NR_shmget
11005 case TARGET_NR_shmget
:
11006 return get_errno(shmget(arg1
, arg2
, arg3
));
11008 #ifdef TARGET_NR_shmctl
11009 case TARGET_NR_shmctl
:
11010 return do_shmctl(arg1
, arg2
, arg3
);
11012 #ifdef TARGET_NR_shmat
11013 case TARGET_NR_shmat
:
11014 return target_shmat(cpu_env
, arg1
, arg2
, arg3
);
11016 #ifdef TARGET_NR_shmdt
11017 case TARGET_NR_shmdt
:
11018 return target_shmdt(arg1
);
11020 case TARGET_NR_fsync
:
11021 return get_errno(fsync(arg1
));
11022 case TARGET_NR_clone
:
11023 /* Linux manages to have three different orderings for its
11024 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
11025 * match the kernel's CONFIG_CLONE_* settings.
11026 * Microblaze is further special in that it uses a sixth
11027 * implicit argument to clone for the TLS pointer.
11029 #if defined(TARGET_MICROBLAZE)
11030 ret
= get_errno(do_fork(cpu_env
, arg1
, arg2
, arg4
, arg6
, arg5
));
11031 #elif defined(TARGET_CLONE_BACKWARDS)
11032 ret
= get_errno(do_fork(cpu_env
, arg1
, arg2
, arg3
, arg4
, arg5
));
11033 #elif defined(TARGET_CLONE_BACKWARDS2)
11034 ret
= get_errno(do_fork(cpu_env
, arg2
, arg1
, arg3
, arg5
, arg4
));
11036 ret
= get_errno(do_fork(cpu_env
, arg1
, arg2
, arg3
, arg5
, arg4
));
11039 #ifdef __NR_exit_group
11040 /* new thread calls */
11041 case TARGET_NR_exit_group
:
11042 preexit_cleanup(cpu_env
, arg1
);
11043 return get_errno(exit_group(arg1
));
11045 case TARGET_NR_setdomainname
:
11046 if (!(p
= lock_user_string(arg1
)))
11047 return -TARGET_EFAULT
;
11048 ret
= get_errno(setdomainname(p
, arg2
));
11049 unlock_user(p
, arg1
, 0);
11051 case TARGET_NR_uname
:
11052 /* no need to transcode because we use the linux syscall */
11054 struct new_utsname
* buf
;
11056 if (!lock_user_struct(VERIFY_WRITE
, buf
, arg1
, 0))
11057 return -TARGET_EFAULT
;
11058 ret
= get_errno(sys_uname(buf
));
11059 if (!is_error(ret
)) {
11060 /* Overwrite the native machine name with whatever is being
11062 g_strlcpy(buf
->machine
, cpu_to_uname_machine(cpu_env
),
11063 sizeof(buf
->machine
));
11064 /* Allow the user to override the reported release. */
11065 if (qemu_uname_release
&& *qemu_uname_release
) {
11066 g_strlcpy(buf
->release
, qemu_uname_release
,
11067 sizeof(buf
->release
));
11070 unlock_user_struct(buf
, arg1
, 1);
11074 case TARGET_NR_modify_ldt
:
11075 return do_modify_ldt(cpu_env
, arg1
, arg2
, arg3
);
11076 #if !defined(TARGET_X86_64)
11077 case TARGET_NR_vm86
:
11078 return do_vm86(cpu_env
, arg1
, arg2
);
11081 #if defined(TARGET_NR_adjtimex)
11082 case TARGET_NR_adjtimex
:
11084 struct timex host_buf
;
11086 if (target_to_host_timex(&host_buf
, arg1
) != 0) {
11087 return -TARGET_EFAULT
;
11089 ret
= get_errno(adjtimex(&host_buf
));
11090 if (!is_error(ret
)) {
11091 if (host_to_target_timex(arg1
, &host_buf
) != 0) {
11092 return -TARGET_EFAULT
;
11098 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
11099 case TARGET_NR_clock_adjtime
:
11103 if (target_to_host_timex(&htx
, arg2
) != 0) {
11104 return -TARGET_EFAULT
;
11106 ret
= get_errno(clock_adjtime(arg1
, &htx
));
11107 if (!is_error(ret
) && host_to_target_timex(arg2
, &htx
)) {
11108 return -TARGET_EFAULT
;
11113 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
11114 case TARGET_NR_clock_adjtime64
:
11118 if (target_to_host_timex64(&htx
, arg2
) != 0) {
11119 return -TARGET_EFAULT
;
11121 ret
= get_errno(clock_adjtime(arg1
, &htx
));
11122 if (!is_error(ret
) && host_to_target_timex64(arg2
, &htx
)) {
11123 return -TARGET_EFAULT
;
11128 case TARGET_NR_getpgid
:
11129 return get_errno(getpgid(arg1
));
11130 case TARGET_NR_fchdir
:
11131 return get_errno(fchdir(arg1
));
11132 case TARGET_NR_personality
:
11133 return get_errno(personality(arg1
));
11134 #ifdef TARGET_NR__llseek /* Not on alpha */
11135 case TARGET_NR__llseek
:
11138 #if !defined(__NR_llseek)
11139 res
= lseek(arg1
, ((uint64_t)arg2
<< 32) | (abi_ulong
)arg3
, arg5
);
11141 ret
= get_errno(res
);
11146 ret
= get_errno(_llseek(arg1
, arg2
, arg3
, &res
, arg5
));
11148 if ((ret
== 0) && put_user_s64(res
, arg4
)) {
11149 return -TARGET_EFAULT
;
11154 #ifdef TARGET_NR_getdents
11155 case TARGET_NR_getdents
:
11156 return do_getdents(arg1
, arg2
, arg3
);
11157 #endif /* TARGET_NR_getdents */
11158 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
11159 case TARGET_NR_getdents64
:
11160 return do_getdents64(arg1
, arg2
, arg3
);
11161 #endif /* TARGET_NR_getdents64 */
11162 #if defined(TARGET_NR__newselect)
11163 case TARGET_NR__newselect
:
11164 return do_select(arg1
, arg2
, arg3
, arg4
, arg5
);
11166 #ifdef TARGET_NR_poll
11167 case TARGET_NR_poll
:
11168 return do_ppoll(arg1
, arg2
, arg3
, arg4
, arg5
, false, false);
11170 #ifdef TARGET_NR_ppoll
11171 case TARGET_NR_ppoll
:
11172 return do_ppoll(arg1
, arg2
, arg3
, arg4
, arg5
, true, false);
11174 #ifdef TARGET_NR_ppoll_time64
11175 case TARGET_NR_ppoll_time64
:
11176 return do_ppoll(arg1
, arg2
, arg3
, arg4
, arg5
, true, true);
11178 case TARGET_NR_flock
:
11179 /* NOTE: the flock constant seems to be the same for every
11181 return get_errno(safe_flock(arg1
, arg2
));
11182 case TARGET_NR_readv
:
11184 struct iovec
*vec
= lock_iovec(VERIFY_WRITE
, arg2
, arg3
, 0);
11186 ret
= get_errno(safe_readv(arg1
, vec
, arg3
));
11187 unlock_iovec(vec
, arg2
, arg3
, 1);
11189 ret
= -host_to_target_errno(errno
);
11193 case TARGET_NR_writev
:
11195 struct iovec
*vec
= lock_iovec(VERIFY_READ
, arg2
, arg3
, 1);
11197 ret
= get_errno(safe_writev(arg1
, vec
, arg3
));
11198 unlock_iovec(vec
, arg2
, arg3
, 0);
11200 ret
= -host_to_target_errno(errno
);
11204 #if defined(TARGET_NR_preadv)
11205 case TARGET_NR_preadv
:
11207 struct iovec
*vec
= lock_iovec(VERIFY_WRITE
, arg2
, arg3
, 0);
11209 unsigned long low
, high
;
11211 target_to_host_low_high(arg4
, arg5
, &low
, &high
);
11212 ret
= get_errno(safe_preadv(arg1
, vec
, arg3
, low
, high
));
11213 unlock_iovec(vec
, arg2
, arg3
, 1);
11215 ret
= -host_to_target_errno(errno
);
11220 #if defined(TARGET_NR_pwritev)
11221 case TARGET_NR_pwritev
:
11223 struct iovec
*vec
= lock_iovec(VERIFY_READ
, arg2
, arg3
, 1);
11225 unsigned long low
, high
;
11227 target_to_host_low_high(arg4
, arg5
, &low
, &high
);
11228 ret
= get_errno(safe_pwritev(arg1
, vec
, arg3
, low
, high
));
11229 unlock_iovec(vec
, arg2
, arg3
, 0);
11231 ret
= -host_to_target_errno(errno
);
11236 case TARGET_NR_getsid
:
11237 return get_errno(getsid(arg1
));
11238 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
11239 case TARGET_NR_fdatasync
:
11240 return get_errno(fdatasync(arg1
));
11242 case TARGET_NR_sched_getaffinity
:
11244 unsigned int mask_size
;
11245 unsigned long *mask
;
11248 * sched_getaffinity needs multiples of ulong, so need to take
11249 * care of mismatches between target ulong and host ulong sizes.
11251 if (arg2
& (sizeof(abi_ulong
) - 1)) {
11252 return -TARGET_EINVAL
;
11254 mask_size
= (arg2
+ (sizeof(*mask
) - 1)) & ~(sizeof(*mask
) - 1);
11256 mask
= alloca(mask_size
);
11257 memset(mask
, 0, mask_size
);
11258 ret
= get_errno(sys_sched_getaffinity(arg1
, mask_size
, mask
));
11260 if (!is_error(ret
)) {
11262 /* More data returned than the caller's buffer will fit.
11263 * This only happens if sizeof(abi_long) < sizeof(long)
11264 * and the caller passed us a buffer holding an odd number
11265 * of abi_longs. If the host kernel is actually using the
11266 * extra 4 bytes then fail EINVAL; otherwise we can just
11267 * ignore them and only copy the interesting part.
11269 int numcpus
= sysconf(_SC_NPROCESSORS_CONF
);
11270 if (numcpus
> arg2
* 8) {
11271 return -TARGET_EINVAL
;
11276 if (host_to_target_cpu_mask(mask
, mask_size
, arg3
, ret
)) {
11277 return -TARGET_EFAULT
;
11282 case TARGET_NR_sched_setaffinity
:
11284 unsigned int mask_size
;
11285 unsigned long *mask
;
11288 * sched_setaffinity needs multiples of ulong, so need to take
11289 * care of mismatches between target ulong and host ulong sizes.
11291 if (arg2
& (sizeof(abi_ulong
) - 1)) {
11292 return -TARGET_EINVAL
;
11294 mask_size
= (arg2
+ (sizeof(*mask
) - 1)) & ~(sizeof(*mask
) - 1);
11295 mask
= alloca(mask_size
);
11297 ret
= target_to_host_cpu_mask(mask
, mask_size
, arg3
, arg2
);
11302 return get_errno(sys_sched_setaffinity(arg1
, mask_size
, mask
));
11304 case TARGET_NR_getcpu
:
11306 unsigned cpuid
, node
;
11307 ret
= get_errno(sys_getcpu(arg1
? &cpuid
: NULL
,
11308 arg2
? &node
: NULL
,
11310 if (is_error(ret
)) {
11313 if (arg1
&& put_user_u32(cpuid
, arg1
)) {
11314 return -TARGET_EFAULT
;
11316 if (arg2
&& put_user_u32(node
, arg2
)) {
11317 return -TARGET_EFAULT
;
11321 case TARGET_NR_sched_setparam
:
11323 struct target_sched_param
*target_schp
;
11324 struct sched_param schp
;
11327 return -TARGET_EINVAL
;
11329 if (!lock_user_struct(VERIFY_READ
, target_schp
, arg2
, 1)) {
11330 return -TARGET_EFAULT
;
11332 schp
.sched_priority
= tswap32(target_schp
->sched_priority
);
11333 unlock_user_struct(target_schp
, arg2
, 0);
11334 return get_errno(sys_sched_setparam(arg1
, &schp
));
11336 case TARGET_NR_sched_getparam
:
11338 struct target_sched_param
*target_schp
;
11339 struct sched_param schp
;
11342 return -TARGET_EINVAL
;
11344 ret
= get_errno(sys_sched_getparam(arg1
, &schp
));
11345 if (!is_error(ret
)) {
11346 if (!lock_user_struct(VERIFY_WRITE
, target_schp
, arg2
, 0)) {
11347 return -TARGET_EFAULT
;
11349 target_schp
->sched_priority
= tswap32(schp
.sched_priority
);
11350 unlock_user_struct(target_schp
, arg2
, 1);
11354 case TARGET_NR_sched_setscheduler
:
11356 struct target_sched_param
*target_schp
;
11357 struct sched_param schp
;
11359 return -TARGET_EINVAL
;
11361 if (!lock_user_struct(VERIFY_READ
, target_schp
, arg3
, 1)) {
11362 return -TARGET_EFAULT
;
11364 schp
.sched_priority
= tswap32(target_schp
->sched_priority
);
11365 unlock_user_struct(target_schp
, arg3
, 0);
11366 return get_errno(sys_sched_setscheduler(arg1
, arg2
, &schp
));
11368 case TARGET_NR_sched_getscheduler
:
11369 return get_errno(sys_sched_getscheduler(arg1
));
11370 case TARGET_NR_sched_getattr
:
11372 struct target_sched_attr
*target_scha
;
11373 struct sched_attr scha
;
11375 return -TARGET_EINVAL
;
11377 if (arg3
> sizeof(scha
)) {
11378 arg3
= sizeof(scha
);
11380 ret
= get_errno(sys_sched_getattr(arg1
, &scha
, arg3
, arg4
));
11381 if (!is_error(ret
)) {
11382 target_scha
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
11383 if (!target_scha
) {
11384 return -TARGET_EFAULT
;
11386 target_scha
->size
= tswap32(scha
.size
);
11387 target_scha
->sched_policy
= tswap32(scha
.sched_policy
);
11388 target_scha
->sched_flags
= tswap64(scha
.sched_flags
);
11389 target_scha
->sched_nice
= tswap32(scha
.sched_nice
);
11390 target_scha
->sched_priority
= tswap32(scha
.sched_priority
);
11391 target_scha
->sched_runtime
= tswap64(scha
.sched_runtime
);
11392 target_scha
->sched_deadline
= tswap64(scha
.sched_deadline
);
11393 target_scha
->sched_period
= tswap64(scha
.sched_period
);
11394 if (scha
.size
> offsetof(struct sched_attr
, sched_util_min
)) {
11395 target_scha
->sched_util_min
= tswap32(scha
.sched_util_min
);
11396 target_scha
->sched_util_max
= tswap32(scha
.sched_util_max
);
11398 unlock_user(target_scha
, arg2
, arg3
);
11402 case TARGET_NR_sched_setattr
:
11404 struct target_sched_attr
*target_scha
;
11405 struct sched_attr scha
;
11409 return -TARGET_EINVAL
;
11411 if (get_user_u32(size
, arg2
)) {
11412 return -TARGET_EFAULT
;
11415 size
= offsetof(struct target_sched_attr
, sched_util_min
);
11417 if (size
< offsetof(struct target_sched_attr
, sched_util_min
)) {
11418 if (put_user_u32(sizeof(struct target_sched_attr
), arg2
)) {
11419 return -TARGET_EFAULT
;
11421 return -TARGET_E2BIG
;
11424 zeroed
= check_zeroed_user(arg2
, sizeof(struct target_sched_attr
), size
);
11427 } else if (zeroed
== 0) {
11428 if (put_user_u32(sizeof(struct target_sched_attr
), arg2
)) {
11429 return -TARGET_EFAULT
;
11431 return -TARGET_E2BIG
;
11433 if (size
> sizeof(struct target_sched_attr
)) {
11434 size
= sizeof(struct target_sched_attr
);
11437 target_scha
= lock_user(VERIFY_READ
, arg2
, size
, 1);
11438 if (!target_scha
) {
11439 return -TARGET_EFAULT
;
11442 scha
.sched_policy
= tswap32(target_scha
->sched_policy
);
11443 scha
.sched_flags
= tswap64(target_scha
->sched_flags
);
11444 scha
.sched_nice
= tswap32(target_scha
->sched_nice
);
11445 scha
.sched_priority
= tswap32(target_scha
->sched_priority
);
11446 scha
.sched_runtime
= tswap64(target_scha
->sched_runtime
);
11447 scha
.sched_deadline
= tswap64(target_scha
->sched_deadline
);
11448 scha
.sched_period
= tswap64(target_scha
->sched_period
);
11449 if (size
> offsetof(struct target_sched_attr
, sched_util_min
)) {
11450 scha
.sched_util_min
= tswap32(target_scha
->sched_util_min
);
11451 scha
.sched_util_max
= tswap32(target_scha
->sched_util_max
);
11453 unlock_user(target_scha
, arg2
, 0);
11454 return get_errno(sys_sched_setattr(arg1
, &scha
, arg3
));
11456 case TARGET_NR_sched_yield
:
11457 return get_errno(sched_yield());
11458 case TARGET_NR_sched_get_priority_max
:
11459 return get_errno(sched_get_priority_max(arg1
));
11460 case TARGET_NR_sched_get_priority_min
:
11461 return get_errno(sched_get_priority_min(arg1
));
11462 #ifdef TARGET_NR_sched_rr_get_interval
11463 case TARGET_NR_sched_rr_get_interval
:
11465 struct timespec ts
;
11466 ret
= get_errno(sched_rr_get_interval(arg1
, &ts
));
11467 if (!is_error(ret
)) {
11468 ret
= host_to_target_timespec(arg2
, &ts
);
11473 #ifdef TARGET_NR_sched_rr_get_interval_time64
11474 case TARGET_NR_sched_rr_get_interval_time64
:
11476 struct timespec ts
;
11477 ret
= get_errno(sched_rr_get_interval(arg1
, &ts
));
11478 if (!is_error(ret
)) {
11479 ret
= host_to_target_timespec64(arg2
, &ts
);
11484 #if defined(TARGET_NR_nanosleep)
11485 case TARGET_NR_nanosleep
:
11487 struct timespec req
, rem
;
11488 target_to_host_timespec(&req
, arg1
);
11489 ret
= get_errno(safe_nanosleep(&req
, &rem
));
11490 if (is_error(ret
) && arg2
) {
11491 host_to_target_timespec(arg2
, &rem
);
11496 case TARGET_NR_prctl
:
11497 return do_prctl(cpu_env
, arg1
, arg2
, arg3
, arg4
, arg5
);
11499 #ifdef TARGET_NR_arch_prctl
11500 case TARGET_NR_arch_prctl
:
11501 return do_arch_prctl(cpu_env
, arg1
, arg2
);
11503 #ifdef TARGET_NR_pread64
11504 case TARGET_NR_pread64
:
11505 if (regpairs_aligned(cpu_env
, num
)) {
11509 if (arg2
== 0 && arg3
== 0) {
11510 /* Special-case NULL buffer and zero length, which should succeed */
11513 p
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
11515 return -TARGET_EFAULT
;
11518 ret
= get_errno(pread64(arg1
, p
, arg3
, target_offset64(arg4
, arg5
)));
11519 unlock_user(p
, arg2
, ret
);
11521 case TARGET_NR_pwrite64
:
11522 if (regpairs_aligned(cpu_env
, num
)) {
11526 if (arg2
== 0 && arg3
== 0) {
11527 /* Special-case NULL buffer and zero length, which should succeed */
11530 p
= lock_user(VERIFY_READ
, arg2
, arg3
, 1);
11532 return -TARGET_EFAULT
;
11535 ret
= get_errno(pwrite64(arg1
, p
, arg3
, target_offset64(arg4
, arg5
)));
11536 unlock_user(p
, arg2
, 0);
11539 case TARGET_NR_getcwd
:
11540 if (!(p
= lock_user(VERIFY_WRITE
, arg1
, arg2
, 0)))
11541 return -TARGET_EFAULT
;
11542 ret
= get_errno(sys_getcwd1(p
, arg2
));
11543 unlock_user(p
, arg1
, ret
);
11545 case TARGET_NR_capget
:
11546 case TARGET_NR_capset
:
11548 struct target_user_cap_header
*target_header
;
11549 struct target_user_cap_data
*target_data
= NULL
;
11550 struct __user_cap_header_struct header
;
11551 struct __user_cap_data_struct data
[2];
11552 struct __user_cap_data_struct
*dataptr
= NULL
;
11553 int i
, target_datalen
;
11554 int data_items
= 1;
11556 if (!lock_user_struct(VERIFY_WRITE
, target_header
, arg1
, 1)) {
11557 return -TARGET_EFAULT
;
11559 header
.version
= tswap32(target_header
->version
);
11560 header
.pid
= tswap32(target_header
->pid
);
11562 if (header
.version
!= _LINUX_CAPABILITY_VERSION
) {
11563 /* Version 2 and up takes pointer to two user_data structs */
11567 target_datalen
= sizeof(*target_data
) * data_items
;
11570 if (num
== TARGET_NR_capget
) {
11571 target_data
= lock_user(VERIFY_WRITE
, arg2
, target_datalen
, 0);
11573 target_data
= lock_user(VERIFY_READ
, arg2
, target_datalen
, 1);
11575 if (!target_data
) {
11576 unlock_user_struct(target_header
, arg1
, 0);
11577 return -TARGET_EFAULT
;
11580 if (num
== TARGET_NR_capset
) {
11581 for (i
= 0; i
< data_items
; i
++) {
11582 data
[i
].effective
= tswap32(target_data
[i
].effective
);
11583 data
[i
].permitted
= tswap32(target_data
[i
].permitted
);
11584 data
[i
].inheritable
= tswap32(target_data
[i
].inheritable
);
11591 if (num
== TARGET_NR_capget
) {
11592 ret
= get_errno(capget(&header
, dataptr
));
11594 ret
= get_errno(capset(&header
, dataptr
));
11597 /* The kernel always updates version for both capget and capset */
11598 target_header
->version
= tswap32(header
.version
);
11599 unlock_user_struct(target_header
, arg1
, 1);
11602 if (num
== TARGET_NR_capget
) {
11603 for (i
= 0; i
< data_items
; i
++) {
11604 target_data
[i
].effective
= tswap32(data
[i
].effective
);
11605 target_data
[i
].permitted
= tswap32(data
[i
].permitted
);
11606 target_data
[i
].inheritable
= tswap32(data
[i
].inheritable
);
11608 unlock_user(target_data
, arg2
, target_datalen
);
11610 unlock_user(target_data
, arg2
, 0);
11615 case TARGET_NR_sigaltstack
:
11616 return do_sigaltstack(arg1
, arg2
, cpu_env
);
11618 #ifdef CONFIG_SENDFILE
11619 #ifdef TARGET_NR_sendfile
11620 case TARGET_NR_sendfile
:
11622 off_t
*offp
= NULL
;
11625 ret
= get_user_sal(off
, arg3
);
11626 if (is_error(ret
)) {
11631 ret
= get_errno(sendfile(arg1
, arg2
, offp
, arg4
));
11632 if (!is_error(ret
) && arg3
) {
11633 abi_long ret2
= put_user_sal(off
, arg3
);
11634 if (is_error(ret2
)) {
11641 #ifdef TARGET_NR_sendfile64
11642 case TARGET_NR_sendfile64
:
11644 off_t
*offp
= NULL
;
11647 ret
= get_user_s64(off
, arg3
);
11648 if (is_error(ret
)) {
11653 ret
= get_errno(sendfile(arg1
, arg2
, offp
, arg4
));
11654 if (!is_error(ret
) && arg3
) {
11655 abi_long ret2
= put_user_s64(off
, arg3
);
11656 if (is_error(ret2
)) {
11664 #ifdef TARGET_NR_vfork
11665 case TARGET_NR_vfork
:
11666 return get_errno(do_fork(cpu_env
,
11667 CLONE_VFORK
| CLONE_VM
| TARGET_SIGCHLD
,
11670 #ifdef TARGET_NR_ugetrlimit
11671 case TARGET_NR_ugetrlimit
:
11673 struct rlimit rlim
;
11674 int resource
= target_to_host_resource(arg1
);
11675 ret
= get_errno(getrlimit(resource
, &rlim
));
11676 if (!is_error(ret
)) {
11677 struct target_rlimit
*target_rlim
;
11678 if (!lock_user_struct(VERIFY_WRITE
, target_rlim
, arg2
, 0))
11679 return -TARGET_EFAULT
;
11680 target_rlim
->rlim_cur
= host_to_target_rlim(rlim
.rlim_cur
);
11681 target_rlim
->rlim_max
= host_to_target_rlim(rlim
.rlim_max
);
11682 unlock_user_struct(target_rlim
, arg2
, 1);
11687 #ifdef TARGET_NR_truncate64
11688 case TARGET_NR_truncate64
:
11689 if (!(p
= lock_user_string(arg1
)))
11690 return -TARGET_EFAULT
;
11691 ret
= target_truncate64(cpu_env
, p
, arg2
, arg3
, arg4
);
11692 unlock_user(p
, arg1
, 0);
11695 #ifdef TARGET_NR_ftruncate64
11696 case TARGET_NR_ftruncate64
:
11697 return target_ftruncate64(cpu_env
, arg1
, arg2
, arg3
, arg4
);
11699 #ifdef TARGET_NR_stat64
11700 case TARGET_NR_stat64
:
11701 if (!(p
= lock_user_string(arg1
))) {
11702 return -TARGET_EFAULT
;
11704 ret
= get_errno(stat(path(p
), &st
));
11705 unlock_user(p
, arg1
, 0);
11706 if (!is_error(ret
))
11707 ret
= host_to_target_stat64(cpu_env
, arg2
, &st
);
11710 #ifdef TARGET_NR_lstat64
11711 case TARGET_NR_lstat64
:
11712 if (!(p
= lock_user_string(arg1
))) {
11713 return -TARGET_EFAULT
;
11715 ret
= get_errno(lstat(path(p
), &st
));
11716 unlock_user(p
, arg1
, 0);
11717 if (!is_error(ret
))
11718 ret
= host_to_target_stat64(cpu_env
, arg2
, &st
);
11721 #ifdef TARGET_NR_fstat64
11722 case TARGET_NR_fstat64
:
11723 ret
= get_errno(fstat(arg1
, &st
));
11724 if (!is_error(ret
))
11725 ret
= host_to_target_stat64(cpu_env
, arg2
, &st
);
11728 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
11729 #ifdef TARGET_NR_fstatat64
11730 case TARGET_NR_fstatat64
:
11732 #ifdef TARGET_NR_newfstatat
11733 case TARGET_NR_newfstatat
:
11735 if (!(p
= lock_user_string(arg2
))) {
11736 return -TARGET_EFAULT
;
11738 ret
= get_errno(fstatat(arg1
, path(p
), &st
, arg4
));
11739 unlock_user(p
, arg2
, 0);
11740 if (!is_error(ret
))
11741 ret
= host_to_target_stat64(cpu_env
, arg3
, &st
);
11744 #if defined(TARGET_NR_statx)
11745 case TARGET_NR_statx
:
11747 struct target_statx
*target_stx
;
11751 p
= lock_user_string(arg2
);
11753 return -TARGET_EFAULT
;
11755 #if defined(__NR_statx)
11758 * It is assumed that struct statx is architecture independent.
11760 struct target_statx host_stx
;
11763 ret
= get_errno(sys_statx(dirfd
, p
, flags
, mask
, &host_stx
));
11764 if (!is_error(ret
)) {
11765 if (host_to_target_statx(&host_stx
, arg5
) != 0) {
11766 unlock_user(p
, arg2
, 0);
11767 return -TARGET_EFAULT
;
11771 if (ret
!= -TARGET_ENOSYS
) {
11772 unlock_user(p
, arg2
, 0);
11777 ret
= get_errno(fstatat(dirfd
, path(p
), &st
, flags
));
11778 unlock_user(p
, arg2
, 0);
11780 if (!is_error(ret
)) {
11781 if (!lock_user_struct(VERIFY_WRITE
, target_stx
, arg5
, 0)) {
11782 return -TARGET_EFAULT
;
11784 memset(target_stx
, 0, sizeof(*target_stx
));
11785 __put_user(major(st
.st_dev
), &target_stx
->stx_dev_major
);
11786 __put_user(minor(st
.st_dev
), &target_stx
->stx_dev_minor
);
11787 __put_user(st
.st_ino
, &target_stx
->stx_ino
);
11788 __put_user(st
.st_mode
, &target_stx
->stx_mode
);
11789 __put_user(st
.st_uid
, &target_stx
->stx_uid
);
11790 __put_user(st
.st_gid
, &target_stx
->stx_gid
);
11791 __put_user(st
.st_nlink
, &target_stx
->stx_nlink
);
11792 __put_user(major(st
.st_rdev
), &target_stx
->stx_rdev_major
);
11793 __put_user(minor(st
.st_rdev
), &target_stx
->stx_rdev_minor
);
11794 __put_user(st
.st_size
, &target_stx
->stx_size
);
11795 __put_user(st
.st_blksize
, &target_stx
->stx_blksize
);
11796 __put_user(st
.st_blocks
, &target_stx
->stx_blocks
);
11797 __put_user(st
.st_atime
, &target_stx
->stx_atime
.tv_sec
);
11798 __put_user(st
.st_mtime
, &target_stx
->stx_mtime
.tv_sec
);
11799 __put_user(st
.st_ctime
, &target_stx
->stx_ctime
.tv_sec
);
11800 unlock_user_struct(target_stx
, arg5
, 1);
11805 #ifdef TARGET_NR_lchown
11806 case TARGET_NR_lchown
:
11807 if (!(p
= lock_user_string(arg1
)))
11808 return -TARGET_EFAULT
;
11809 ret
= get_errno(lchown(p
, low2highuid(arg2
), low2highgid(arg3
)));
11810 unlock_user(p
, arg1
, 0);
11813 #ifdef TARGET_NR_getuid
11814 case TARGET_NR_getuid
:
11815 return get_errno(high2lowuid(getuid()));
11817 #ifdef TARGET_NR_getgid
11818 case TARGET_NR_getgid
:
11819 return get_errno(high2lowgid(getgid()));
11821 #ifdef TARGET_NR_geteuid
11822 case TARGET_NR_geteuid
:
11823 return get_errno(high2lowuid(geteuid()));
11825 #ifdef TARGET_NR_getegid
11826 case TARGET_NR_getegid
:
11827 return get_errno(high2lowgid(getegid()));
11829 case TARGET_NR_setreuid
:
11830 return get_errno(setreuid(low2highuid(arg1
), low2highuid(arg2
)));
11831 case TARGET_NR_setregid
:
11832 return get_errno(setregid(low2highgid(arg1
), low2highgid(arg2
)));
11833 case TARGET_NR_getgroups
:
11834 { /* the same code as for TARGET_NR_getgroups32 */
11835 int gidsetsize
= arg1
;
11836 target_id
*target_grouplist
;
11837 g_autofree gid_t
*grouplist
= NULL
;
11840 if (gidsetsize
> NGROUPS_MAX
|| gidsetsize
< 0) {
11841 return -TARGET_EINVAL
;
11843 if (gidsetsize
> 0) {
11844 grouplist
= g_try_new(gid_t
, gidsetsize
);
11846 return -TARGET_ENOMEM
;
11849 ret
= get_errno(getgroups(gidsetsize
, grouplist
));
11850 if (!is_error(ret
) && gidsetsize
> 0) {
11851 target_grouplist
= lock_user(VERIFY_WRITE
, arg2
,
11852 gidsetsize
* sizeof(target_id
), 0);
11853 if (!target_grouplist
) {
11854 return -TARGET_EFAULT
;
11856 for (i
= 0; i
< ret
; i
++) {
11857 target_grouplist
[i
] = tswapid(high2lowgid(grouplist
[i
]));
11859 unlock_user(target_grouplist
, arg2
,
11860 gidsetsize
* sizeof(target_id
));
11864 case TARGET_NR_setgroups
:
11865 { /* the same code as for TARGET_NR_setgroups32 */
11866 int gidsetsize
= arg1
;
11867 target_id
*target_grouplist
;
11868 g_autofree gid_t
*grouplist
= NULL
;
11871 if (gidsetsize
> NGROUPS_MAX
|| gidsetsize
< 0) {
11872 return -TARGET_EINVAL
;
11874 if (gidsetsize
> 0) {
11875 grouplist
= g_try_new(gid_t
, gidsetsize
);
11877 return -TARGET_ENOMEM
;
11879 target_grouplist
= lock_user(VERIFY_READ
, arg2
,
11880 gidsetsize
* sizeof(target_id
), 1);
11881 if (!target_grouplist
) {
11882 return -TARGET_EFAULT
;
11884 for (i
= 0; i
< gidsetsize
; i
++) {
11885 grouplist
[i
] = low2highgid(tswapid(target_grouplist
[i
]));
11887 unlock_user(target_grouplist
, arg2
,
11888 gidsetsize
* sizeof(target_id
));
11890 return get_errno(setgroups(gidsetsize
, grouplist
));
11892 case TARGET_NR_fchown
:
11893 return get_errno(fchown(arg1
, low2highuid(arg2
), low2highgid(arg3
)));
11894 #if defined(TARGET_NR_fchownat)
11895 case TARGET_NR_fchownat
:
11896 if (!(p
= lock_user_string(arg2
)))
11897 return -TARGET_EFAULT
;
11898 ret
= get_errno(fchownat(arg1
, p
, low2highuid(arg3
),
11899 low2highgid(arg4
), arg5
));
11900 unlock_user(p
, arg2
, 0);
11903 #ifdef TARGET_NR_setresuid
11904 case TARGET_NR_setresuid
:
11905 return get_errno(sys_setresuid(low2highuid(arg1
),
11907 low2highuid(arg3
)));
11909 #ifdef TARGET_NR_getresuid
11910 case TARGET_NR_getresuid
:
11912 uid_t ruid
, euid
, suid
;
11913 ret
= get_errno(getresuid(&ruid
, &euid
, &suid
));
11914 if (!is_error(ret
)) {
11915 if (put_user_id(high2lowuid(ruid
), arg1
)
11916 || put_user_id(high2lowuid(euid
), arg2
)
11917 || put_user_id(high2lowuid(suid
), arg3
))
11918 return -TARGET_EFAULT
;
11923 #ifdef TARGET_NR_getresgid
11924 case TARGET_NR_setresgid
:
11925 return get_errno(sys_setresgid(low2highgid(arg1
),
11927 low2highgid(arg3
)));
11929 #ifdef TARGET_NR_getresgid
11930 case TARGET_NR_getresgid
:
11932 gid_t rgid
, egid
, sgid
;
11933 ret
= get_errno(getresgid(&rgid
, &egid
, &sgid
));
11934 if (!is_error(ret
)) {
11935 if (put_user_id(high2lowgid(rgid
), arg1
)
11936 || put_user_id(high2lowgid(egid
), arg2
)
11937 || put_user_id(high2lowgid(sgid
), arg3
))
11938 return -TARGET_EFAULT
;
11943 #ifdef TARGET_NR_chown
11944 case TARGET_NR_chown
:
11945 if (!(p
= lock_user_string(arg1
)))
11946 return -TARGET_EFAULT
;
11947 ret
= get_errno(chown(p
, low2highuid(arg2
), low2highgid(arg3
)));
11948 unlock_user(p
, arg1
, 0);
11951 case TARGET_NR_setuid
:
11952 return get_errno(sys_setuid(low2highuid(arg1
)));
11953 case TARGET_NR_setgid
:
11954 return get_errno(sys_setgid(low2highgid(arg1
)));
11955 case TARGET_NR_setfsuid
:
11956 return get_errno(setfsuid(arg1
));
11957 case TARGET_NR_setfsgid
:
11958 return get_errno(setfsgid(arg1
));
11960 #ifdef TARGET_NR_lchown32
11961 case TARGET_NR_lchown32
:
11962 if (!(p
= lock_user_string(arg1
)))
11963 return -TARGET_EFAULT
;
11964 ret
= get_errno(lchown(p
, arg2
, arg3
));
11965 unlock_user(p
, arg1
, 0);
11968 #ifdef TARGET_NR_getuid32
11969 case TARGET_NR_getuid32
:
11970 return get_errno(getuid());
11973 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
11974 /* Alpha specific */
11975 case TARGET_NR_getxuid
:
11979 cpu_env
->ir
[IR_A4
]=euid
;
11981 return get_errno(getuid());
11983 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
11984 /* Alpha specific */
11985 case TARGET_NR_getxgid
:
11989 cpu_env
->ir
[IR_A4
]=egid
;
11991 return get_errno(getgid());
11993 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
11994 /* Alpha specific */
11995 case TARGET_NR_osf_getsysinfo
:
11996 ret
= -TARGET_EOPNOTSUPP
;
11998 case TARGET_GSI_IEEE_FP_CONTROL
:
12000 uint64_t fpcr
= cpu_alpha_load_fpcr(cpu_env
);
12001 uint64_t swcr
= cpu_env
->swcr
;
12003 swcr
&= ~SWCR_STATUS_MASK
;
12004 swcr
|= (fpcr
>> 35) & SWCR_STATUS_MASK
;
12006 if (put_user_u64 (swcr
, arg2
))
12007 return -TARGET_EFAULT
;
12012 /* case GSI_IEEE_STATE_AT_SIGNAL:
12013 -- Not implemented in linux kernel.
12015 -- Retrieves current unaligned access state; not much used.
12016 case GSI_PROC_TYPE:
12017 -- Retrieves implver information; surely not used.
12018 case GSI_GET_HWRPB:
12019 -- Grabs a copy of the HWRPB; surely not used.
12024 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
12025 /* Alpha specific */
12026 case TARGET_NR_osf_setsysinfo
:
12027 ret
= -TARGET_EOPNOTSUPP
;
12029 case TARGET_SSI_IEEE_FP_CONTROL
:
12031 uint64_t swcr
, fpcr
;
12033 if (get_user_u64 (swcr
, arg2
)) {
12034 return -TARGET_EFAULT
;
12038 * The kernel calls swcr_update_status to update the
12039 * status bits from the fpcr at every point that it
12040 * could be queried. Therefore, we store the status
12041 * bits only in FPCR.
12043 cpu_env
->swcr
= swcr
& (SWCR_TRAP_ENABLE_MASK
| SWCR_MAP_MASK
);
12045 fpcr
= cpu_alpha_load_fpcr(cpu_env
);
12046 fpcr
&= ((uint64_t)FPCR_DYN_MASK
<< 32);
12047 fpcr
|= alpha_ieee_swcr_to_fpcr(swcr
);
12048 cpu_alpha_store_fpcr(cpu_env
, fpcr
);
12053 case TARGET_SSI_IEEE_RAISE_EXCEPTION
:
12055 uint64_t exc
, fpcr
, fex
;
12057 if (get_user_u64(exc
, arg2
)) {
12058 return -TARGET_EFAULT
;
12060 exc
&= SWCR_STATUS_MASK
;
12061 fpcr
= cpu_alpha_load_fpcr(cpu_env
);
12063 /* Old exceptions are not signaled. */
12064 fex
= alpha_ieee_fpcr_to_swcr(fpcr
);
12066 fex
>>= SWCR_STATUS_TO_EXCSUM_SHIFT
;
12067 fex
&= (cpu_env
)->swcr
;
12069 /* Update the hardware fpcr. */
12070 fpcr
|= alpha_ieee_swcr_to_fpcr(exc
);
12071 cpu_alpha_store_fpcr(cpu_env
, fpcr
);
12074 int si_code
= TARGET_FPE_FLTUNK
;
12075 target_siginfo_t info
;
12077 if (fex
& SWCR_TRAP_ENABLE_DNO
) {
12078 si_code
= TARGET_FPE_FLTUND
;
12080 if (fex
& SWCR_TRAP_ENABLE_INE
) {
12081 si_code
= TARGET_FPE_FLTRES
;
12083 if (fex
& SWCR_TRAP_ENABLE_UNF
) {
12084 si_code
= TARGET_FPE_FLTUND
;
12086 if (fex
& SWCR_TRAP_ENABLE_OVF
) {
12087 si_code
= TARGET_FPE_FLTOVF
;
12089 if (fex
& SWCR_TRAP_ENABLE_DZE
) {
12090 si_code
= TARGET_FPE_FLTDIV
;
12092 if (fex
& SWCR_TRAP_ENABLE_INV
) {
12093 si_code
= TARGET_FPE_FLTINV
;
12096 info
.si_signo
= SIGFPE
;
12098 info
.si_code
= si_code
;
12099 info
._sifields
._sigfault
._addr
= (cpu_env
)->pc
;
12100 queue_signal(cpu_env
, info
.si_signo
,
12101 QEMU_SI_FAULT
, &info
);
12107 /* case SSI_NVPAIRS:
12108 -- Used with SSIN_UACPROC to enable unaligned accesses.
12109 case SSI_IEEE_STATE_AT_SIGNAL:
12110 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
12111 -- Not implemented in linux kernel
12116 #ifdef TARGET_NR_osf_sigprocmask
12117 /* Alpha specific. */
12118 case TARGET_NR_osf_sigprocmask
:
12122 sigset_t set
, oldset
;
12125 case TARGET_SIG_BLOCK
:
12128 case TARGET_SIG_UNBLOCK
:
12131 case TARGET_SIG_SETMASK
:
12135 return -TARGET_EINVAL
;
12138 target_to_host_old_sigset(&set
, &mask
);
12139 ret
= do_sigprocmask(how
, &set
, &oldset
);
12141 host_to_target_old_sigset(&mask
, &oldset
);
12148 #ifdef TARGET_NR_getgid32
12149 case TARGET_NR_getgid32
:
12150 return get_errno(getgid());
12152 #ifdef TARGET_NR_geteuid32
12153 case TARGET_NR_geteuid32
:
12154 return get_errno(geteuid());
12156 #ifdef TARGET_NR_getegid32
12157 case TARGET_NR_getegid32
:
12158 return get_errno(getegid());
12160 #ifdef TARGET_NR_setreuid32
12161 case TARGET_NR_setreuid32
:
12162 return get_errno(setreuid(arg1
, arg2
));
12164 #ifdef TARGET_NR_setregid32
12165 case TARGET_NR_setregid32
:
12166 return get_errno(setregid(arg1
, arg2
));
12168 #ifdef TARGET_NR_getgroups32
12169 case TARGET_NR_getgroups32
:
12170 { /* the same code as for TARGET_NR_getgroups */
12171 int gidsetsize
= arg1
;
12172 uint32_t *target_grouplist
;
12173 g_autofree gid_t
*grouplist
= NULL
;
12176 if (gidsetsize
> NGROUPS_MAX
|| gidsetsize
< 0) {
12177 return -TARGET_EINVAL
;
12179 if (gidsetsize
> 0) {
12180 grouplist
= g_try_new(gid_t
, gidsetsize
);
12182 return -TARGET_ENOMEM
;
12185 ret
= get_errno(getgroups(gidsetsize
, grouplist
));
12186 if (!is_error(ret
) && gidsetsize
> 0) {
12187 target_grouplist
= lock_user(VERIFY_WRITE
, arg2
,
12188 gidsetsize
* 4, 0);
12189 if (!target_grouplist
) {
12190 return -TARGET_EFAULT
;
12192 for (i
= 0; i
< ret
; i
++) {
12193 target_grouplist
[i
] = tswap32(grouplist
[i
]);
12195 unlock_user(target_grouplist
, arg2
, gidsetsize
* 4);
12200 #ifdef TARGET_NR_setgroups32
12201 case TARGET_NR_setgroups32
:
12202 { /* the same code as for TARGET_NR_setgroups */
12203 int gidsetsize
= arg1
;
12204 uint32_t *target_grouplist
;
12205 g_autofree gid_t
*grouplist
= NULL
;
12208 if (gidsetsize
> NGROUPS_MAX
|| gidsetsize
< 0) {
12209 return -TARGET_EINVAL
;
12211 if (gidsetsize
> 0) {
12212 grouplist
= g_try_new(gid_t
, gidsetsize
);
12214 return -TARGET_ENOMEM
;
12216 target_grouplist
= lock_user(VERIFY_READ
, arg2
,
12217 gidsetsize
* 4, 1);
12218 if (!target_grouplist
) {
12219 return -TARGET_EFAULT
;
12221 for (i
= 0; i
< gidsetsize
; i
++) {
12222 grouplist
[i
] = tswap32(target_grouplist
[i
]);
12224 unlock_user(target_grouplist
, arg2
, 0);
12226 return get_errno(setgroups(gidsetsize
, grouplist
));
12229 #ifdef TARGET_NR_fchown32
12230 case TARGET_NR_fchown32
:
12231 return get_errno(fchown(arg1
, arg2
, arg3
));
12233 #ifdef TARGET_NR_setresuid32
12234 case TARGET_NR_setresuid32
:
12235 return get_errno(sys_setresuid(arg1
, arg2
, arg3
));
12237 #ifdef TARGET_NR_getresuid32
12238 case TARGET_NR_getresuid32
:
12240 uid_t ruid
, euid
, suid
;
12241 ret
= get_errno(getresuid(&ruid
, &euid
, &suid
));
12242 if (!is_error(ret
)) {
12243 if (put_user_u32(ruid
, arg1
)
12244 || put_user_u32(euid
, arg2
)
12245 || put_user_u32(suid
, arg3
))
12246 return -TARGET_EFAULT
;
12251 #ifdef TARGET_NR_setresgid32
12252 case TARGET_NR_setresgid32
:
12253 return get_errno(sys_setresgid(arg1
, arg2
, arg3
));
12255 #ifdef TARGET_NR_getresgid32
12256 case TARGET_NR_getresgid32
:
12258 gid_t rgid
, egid
, sgid
;
12259 ret
= get_errno(getresgid(&rgid
, &egid
, &sgid
));
12260 if (!is_error(ret
)) {
12261 if (put_user_u32(rgid
, arg1
)
12262 || put_user_u32(egid
, arg2
)
12263 || put_user_u32(sgid
, arg3
))
12264 return -TARGET_EFAULT
;
12269 #ifdef TARGET_NR_chown32
12270 case TARGET_NR_chown32
:
12271 if (!(p
= lock_user_string(arg1
)))
12272 return -TARGET_EFAULT
;
12273 ret
= get_errno(chown(p
, arg2
, arg3
));
12274 unlock_user(p
, arg1
, 0);
12277 #ifdef TARGET_NR_setuid32
12278 case TARGET_NR_setuid32
:
12279 return get_errno(sys_setuid(arg1
));
12281 #ifdef TARGET_NR_setgid32
12282 case TARGET_NR_setgid32
:
12283 return get_errno(sys_setgid(arg1
));
12285 #ifdef TARGET_NR_setfsuid32
12286 case TARGET_NR_setfsuid32
:
12287 return get_errno(setfsuid(arg1
));
12289 #ifdef TARGET_NR_setfsgid32
12290 case TARGET_NR_setfsgid32
:
12291 return get_errno(setfsgid(arg1
));
12293 #ifdef TARGET_NR_mincore
12294 case TARGET_NR_mincore
:
12296 void *a
= lock_user(VERIFY_NONE
, arg1
, arg2
, 0);
12298 return -TARGET_ENOMEM
;
12300 p
= lock_user_string(arg3
);
12302 ret
= -TARGET_EFAULT
;
12304 ret
= get_errno(mincore(a
, arg2
, p
));
12305 unlock_user(p
, arg3
, ret
);
12307 unlock_user(a
, arg1
, 0);
12311 #ifdef TARGET_NR_arm_fadvise64_64
12312 case TARGET_NR_arm_fadvise64_64
:
12313 /* arm_fadvise64_64 looks like fadvise64_64 but
12314 * with different argument order: fd, advice, offset, len
12315 * rather than the usual fd, offset, len, advice.
12316 * Note that offset and len are both 64-bit so appear as
12317 * pairs of 32-bit registers.
12319 ret
= posix_fadvise(arg1
, target_offset64(arg3
, arg4
),
12320 target_offset64(arg5
, arg6
), arg2
);
12321 return -host_to_target_errno(ret
);
12324 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12326 #ifdef TARGET_NR_fadvise64_64
12327 case TARGET_NR_fadvise64_64
:
12328 #if defined(TARGET_PPC) || defined(TARGET_XTENSA)
12329 /* 6 args: fd, advice, offset (high, low), len (high, low) */
12337 /* 6 args: fd, offset (high, low), len (high, low), advice */
12338 if (regpairs_aligned(cpu_env
, num
)) {
12339 /* offset is in (3,4), len in (5,6) and advice in 7 */
12347 ret
= posix_fadvise(arg1
, target_offset64(arg2
, arg3
),
12348 target_offset64(arg4
, arg5
), arg6
);
12349 return -host_to_target_errno(ret
);
12352 #ifdef TARGET_NR_fadvise64
12353 case TARGET_NR_fadvise64
:
12354 /* 5 args: fd, offset (high, low), len, advice */
12355 if (regpairs_aligned(cpu_env
, num
)) {
12356 /* offset is in (3,4), len in 5 and advice in 6 */
12362 ret
= posix_fadvise(arg1
, target_offset64(arg2
, arg3
), arg4
, arg5
);
12363 return -host_to_target_errno(ret
);
12366 #else /* not a 32-bit ABI */
12367 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
12368 #ifdef TARGET_NR_fadvise64_64
12369 case TARGET_NR_fadvise64_64
:
12371 #ifdef TARGET_NR_fadvise64
12372 case TARGET_NR_fadvise64
:
12374 #ifdef TARGET_S390X
12376 case 4: arg4
= POSIX_FADV_NOREUSE
+ 1; break; /* make sure it's an invalid value */
12377 case 5: arg4
= POSIX_FADV_NOREUSE
+ 2; break; /* ditto */
12378 case 6: arg4
= POSIX_FADV_DONTNEED
; break;
12379 case 7: arg4
= POSIX_FADV_NOREUSE
; break;
12383 return -host_to_target_errno(posix_fadvise(arg1
, arg2
, arg3
, arg4
));
12385 #endif /* end of 64-bit ABI fadvise handling */
12387 #ifdef TARGET_NR_madvise
12388 case TARGET_NR_madvise
:
12389 return target_madvise(arg1
, arg2
, arg3
);
12391 #ifdef TARGET_NR_fcntl64
12392 case TARGET_NR_fcntl64
:
12396 from_flock64_fn
*copyfrom
= copy_from_user_flock64
;
12397 to_flock64_fn
*copyto
= copy_to_user_flock64
;
12400 if (!cpu_env
->eabi
) {
12401 copyfrom
= copy_from_user_oabi_flock64
;
12402 copyto
= copy_to_user_oabi_flock64
;
12406 cmd
= target_to_host_fcntl_cmd(arg2
);
12407 if (cmd
== -TARGET_EINVAL
) {
12412 case TARGET_F_GETLK64
:
12413 ret
= copyfrom(&fl
, arg3
);
12417 ret
= get_errno(safe_fcntl(arg1
, cmd
, &fl
));
12419 ret
= copyto(arg3
, &fl
);
12423 case TARGET_F_SETLK64
:
12424 case TARGET_F_SETLKW64
:
12425 ret
= copyfrom(&fl
, arg3
);
12429 ret
= get_errno(safe_fcntl(arg1
, cmd
, &fl
));
12432 ret
= do_fcntl(arg1
, arg2
, arg3
);
12438 #ifdef TARGET_NR_cacheflush
12439 case TARGET_NR_cacheflush
:
12440 /* self-modifying code is handled automatically, so nothing needed */
12443 #ifdef TARGET_NR_getpagesize
12444 case TARGET_NR_getpagesize
:
12445 return TARGET_PAGE_SIZE
;
12447 case TARGET_NR_gettid
:
12448 return get_errno(sys_gettid());
12449 #ifdef TARGET_NR_readahead
12450 case TARGET_NR_readahead
:
12451 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12452 if (regpairs_aligned(cpu_env
, num
)) {
12457 ret
= get_errno(readahead(arg1
, target_offset64(arg2
, arg3
) , arg4
));
12459 ret
= get_errno(readahead(arg1
, arg2
, arg3
));
12464 #ifdef TARGET_NR_setxattr
12465 case TARGET_NR_listxattr
:
12466 case TARGET_NR_llistxattr
:
12470 b
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
12472 return -TARGET_EFAULT
;
12475 p
= lock_user_string(arg1
);
12477 if (num
== TARGET_NR_listxattr
) {
12478 ret
= get_errno(listxattr(p
, b
, arg3
));
12480 ret
= get_errno(llistxattr(p
, b
, arg3
));
12483 ret
= -TARGET_EFAULT
;
12485 unlock_user(p
, arg1
, 0);
12486 unlock_user(b
, arg2
, arg3
);
12489 case TARGET_NR_flistxattr
:
12493 b
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
12495 return -TARGET_EFAULT
;
12498 ret
= get_errno(flistxattr(arg1
, b
, arg3
));
12499 unlock_user(b
, arg2
, arg3
);
12502 case TARGET_NR_setxattr
:
12503 case TARGET_NR_lsetxattr
:
12507 v
= lock_user(VERIFY_READ
, arg3
, arg4
, 1);
12509 return -TARGET_EFAULT
;
12512 p
= lock_user_string(arg1
);
12513 n
= lock_user_string(arg2
);
12515 if (num
== TARGET_NR_setxattr
) {
12516 ret
= get_errno(setxattr(p
, n
, v
, arg4
, arg5
));
12518 ret
= get_errno(lsetxattr(p
, n
, v
, arg4
, arg5
));
12521 ret
= -TARGET_EFAULT
;
12523 unlock_user(p
, arg1
, 0);
12524 unlock_user(n
, arg2
, 0);
12525 unlock_user(v
, arg3
, 0);
12528 case TARGET_NR_fsetxattr
:
12532 v
= lock_user(VERIFY_READ
, arg3
, arg4
, 1);
12534 return -TARGET_EFAULT
;
12537 n
= lock_user_string(arg2
);
12539 ret
= get_errno(fsetxattr(arg1
, n
, v
, arg4
, arg5
));
12541 ret
= -TARGET_EFAULT
;
12543 unlock_user(n
, arg2
, 0);
12544 unlock_user(v
, arg3
, 0);
12547 case TARGET_NR_getxattr
:
12548 case TARGET_NR_lgetxattr
:
12552 v
= lock_user(VERIFY_WRITE
, arg3
, arg4
, 0);
12554 return -TARGET_EFAULT
;
12557 p
= lock_user_string(arg1
);
12558 n
= lock_user_string(arg2
);
12560 if (num
== TARGET_NR_getxattr
) {
12561 ret
= get_errno(getxattr(p
, n
, v
, arg4
));
12563 ret
= get_errno(lgetxattr(p
, n
, v
, arg4
));
12566 ret
= -TARGET_EFAULT
;
12568 unlock_user(p
, arg1
, 0);
12569 unlock_user(n
, arg2
, 0);
12570 unlock_user(v
, arg3
, arg4
);
12573 case TARGET_NR_fgetxattr
:
12577 v
= lock_user(VERIFY_WRITE
, arg3
, arg4
, 0);
12579 return -TARGET_EFAULT
;
12582 n
= lock_user_string(arg2
);
12584 ret
= get_errno(fgetxattr(arg1
, n
, v
, arg4
));
12586 ret
= -TARGET_EFAULT
;
12588 unlock_user(n
, arg2
, 0);
12589 unlock_user(v
, arg3
, arg4
);
12592 case TARGET_NR_removexattr
:
12593 case TARGET_NR_lremovexattr
:
12596 p
= lock_user_string(arg1
);
12597 n
= lock_user_string(arg2
);
12599 if (num
== TARGET_NR_removexattr
) {
12600 ret
= get_errno(removexattr(p
, n
));
12602 ret
= get_errno(lremovexattr(p
, n
));
12605 ret
= -TARGET_EFAULT
;
12607 unlock_user(p
, arg1
, 0);
12608 unlock_user(n
, arg2
, 0);
12611 case TARGET_NR_fremovexattr
:
12614 n
= lock_user_string(arg2
);
12616 ret
= get_errno(fremovexattr(arg1
, n
));
12618 ret
= -TARGET_EFAULT
;
12620 unlock_user(n
, arg2
, 0);
12624 #endif /* CONFIG_ATTR */
12625 #ifdef TARGET_NR_set_thread_area
12626 case TARGET_NR_set_thread_area
:
12627 #if defined(TARGET_MIPS)
12628 cpu_env
->active_tc
.CP0_UserLocal
= arg1
;
12630 #elif defined(TARGET_CRIS)
12632 ret
= -TARGET_EINVAL
;
12634 cpu_env
->pregs
[PR_PID
] = arg1
;
12638 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
12639 return do_set_thread_area(cpu_env
, arg1
);
12640 #elif defined(TARGET_M68K)
12642 TaskState
*ts
= get_task_state(cpu
);
12643 ts
->tp_value
= arg1
;
12647 return -TARGET_ENOSYS
;
12650 #ifdef TARGET_NR_get_thread_area
12651 case TARGET_NR_get_thread_area
:
12652 #if defined(TARGET_I386) && defined(TARGET_ABI32)
12653 return do_get_thread_area(cpu_env
, arg1
);
12654 #elif defined(TARGET_M68K)
12656 TaskState
*ts
= get_task_state(cpu
);
12657 return ts
->tp_value
;
12660 return -TARGET_ENOSYS
;
12663 #ifdef TARGET_NR_getdomainname
12664 case TARGET_NR_getdomainname
:
12665 return -TARGET_ENOSYS
;
12668 #ifdef TARGET_NR_clock_settime
12669 case TARGET_NR_clock_settime
:
12671 struct timespec ts
;
12673 ret
= target_to_host_timespec(&ts
, arg2
);
12674 if (!is_error(ret
)) {
12675 ret
= get_errno(clock_settime(arg1
, &ts
));
12680 #ifdef TARGET_NR_clock_settime64
12681 case TARGET_NR_clock_settime64
:
12683 struct timespec ts
;
12685 ret
= target_to_host_timespec64(&ts
, arg2
);
12686 if (!is_error(ret
)) {
12687 ret
= get_errno(clock_settime(arg1
, &ts
));
12692 #ifdef TARGET_NR_clock_gettime
12693 case TARGET_NR_clock_gettime
:
12695 struct timespec ts
;
12696 ret
= get_errno(clock_gettime(arg1
, &ts
));
12697 if (!is_error(ret
)) {
12698 ret
= host_to_target_timespec(arg2
, &ts
);
12703 #ifdef TARGET_NR_clock_gettime64
12704 case TARGET_NR_clock_gettime64
:
12706 struct timespec ts
;
12707 ret
= get_errno(clock_gettime(arg1
, &ts
));
12708 if (!is_error(ret
)) {
12709 ret
= host_to_target_timespec64(arg2
, &ts
);
12714 #ifdef TARGET_NR_clock_getres
12715 case TARGET_NR_clock_getres
:
12717 struct timespec ts
;
12718 ret
= get_errno(clock_getres(arg1
, &ts
));
12719 if (!is_error(ret
)) {
12720 host_to_target_timespec(arg2
, &ts
);
12725 #ifdef TARGET_NR_clock_getres_time64
12726 case TARGET_NR_clock_getres_time64
:
12728 struct timespec ts
;
12729 ret
= get_errno(clock_getres(arg1
, &ts
));
12730 if (!is_error(ret
)) {
12731 host_to_target_timespec64(arg2
, &ts
);
12736 #ifdef TARGET_NR_clock_nanosleep
12737 case TARGET_NR_clock_nanosleep
:
12739 struct timespec ts
;
12740 if (target_to_host_timespec(&ts
, arg3
)) {
12741 return -TARGET_EFAULT
;
12743 ret
= get_errno(safe_clock_nanosleep(arg1
, arg2
,
12744 &ts
, arg4
? &ts
: NULL
));
12746 * if the call is interrupted by a signal handler, it fails
12747 * with error -TARGET_EINTR and if arg4 is not NULL and arg2 is not
12748 * TIMER_ABSTIME, it returns the remaining unslept time in arg4.
12750 if (ret
== -TARGET_EINTR
&& arg4
&& arg2
!= TIMER_ABSTIME
&&
12751 host_to_target_timespec(arg4
, &ts
)) {
12752 return -TARGET_EFAULT
;
12758 #ifdef TARGET_NR_clock_nanosleep_time64
12759 case TARGET_NR_clock_nanosleep_time64
:
12761 struct timespec ts
;
12763 if (target_to_host_timespec64(&ts
, arg3
)) {
12764 return -TARGET_EFAULT
;
12767 ret
= get_errno(safe_clock_nanosleep(arg1
, arg2
,
12768 &ts
, arg4
? &ts
: NULL
));
12770 if (ret
== -TARGET_EINTR
&& arg4
&& arg2
!= TIMER_ABSTIME
&&
12771 host_to_target_timespec64(arg4
, &ts
)) {
12772 return -TARGET_EFAULT
;
12778 #if defined(TARGET_NR_set_tid_address)
12779 case TARGET_NR_set_tid_address
:
12781 TaskState
*ts
= get_task_state(cpu
);
12782 ts
->child_tidptr
= arg1
;
12783 /* do not call host set_tid_address() syscall, instead return tid() */
12784 return get_errno(sys_gettid());
12788 case TARGET_NR_tkill
:
12789 return get_errno(safe_tkill((int)arg1
, target_to_host_signal(arg2
)));
12791 case TARGET_NR_tgkill
:
12792 return get_errno(safe_tgkill((int)arg1
, (int)arg2
,
12793 target_to_host_signal(arg3
)));
12795 #ifdef TARGET_NR_set_robust_list
12796 case TARGET_NR_set_robust_list
:
12797 case TARGET_NR_get_robust_list
:
12798 /* The ABI for supporting robust futexes has userspace pass
12799 * the kernel a pointer to a linked list which is updated by
12800 * userspace after the syscall; the list is walked by the kernel
12801 * when the thread exits. Since the linked list in QEMU guest
12802 * memory isn't a valid linked list for the host and we have
12803 * no way to reliably intercept the thread-death event, we can't
12804 * support these. Silently return ENOSYS so that guest userspace
12805 * falls back to a non-robust futex implementation (which should
12806 * be OK except in the corner case of the guest crashing while
12807 * holding a mutex that is shared with another process via
12810 return -TARGET_ENOSYS
;
12813 #if defined(TARGET_NR_utimensat)
12814 case TARGET_NR_utimensat
:
12816 struct timespec
*tsp
, ts
[2];
12820 if (target_to_host_timespec(ts
, arg3
)) {
12821 return -TARGET_EFAULT
;
12823 if (target_to_host_timespec(ts
+ 1, arg3
+
12824 sizeof(struct target_timespec
))) {
12825 return -TARGET_EFAULT
;
12830 ret
= get_errno(sys_utimensat(arg1
, NULL
, tsp
, arg4
));
12832 if (!(p
= lock_user_string(arg2
))) {
12833 return -TARGET_EFAULT
;
12835 ret
= get_errno(sys_utimensat(arg1
, path(p
), tsp
, arg4
));
12836 unlock_user(p
, arg2
, 0);
12841 #ifdef TARGET_NR_utimensat_time64
12842 case TARGET_NR_utimensat_time64
:
12844 struct timespec
*tsp
, ts
[2];
12848 if (target_to_host_timespec64(ts
, arg3
)) {
12849 return -TARGET_EFAULT
;
12851 if (target_to_host_timespec64(ts
+ 1, arg3
+
12852 sizeof(struct target__kernel_timespec
))) {
12853 return -TARGET_EFAULT
;
12858 ret
= get_errno(sys_utimensat(arg1
, NULL
, tsp
, arg4
));
12860 p
= lock_user_string(arg2
);
12862 return -TARGET_EFAULT
;
12864 ret
= get_errno(sys_utimensat(arg1
, path(p
), tsp
, arg4
));
12865 unlock_user(p
, arg2
, 0);
12870 #ifdef TARGET_NR_futex
12871 case TARGET_NR_futex
:
12872 return do_futex(cpu
, false, arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
12874 #ifdef TARGET_NR_futex_time64
12875 case TARGET_NR_futex_time64
:
12876 return do_futex(cpu
, true, arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
12878 #ifdef CONFIG_INOTIFY
12879 #if defined(TARGET_NR_inotify_init)
12880 case TARGET_NR_inotify_init
:
12881 ret
= get_errno(inotify_init());
12883 fd_trans_register(ret
, &target_inotify_trans
);
12887 #if defined(TARGET_NR_inotify_init1) && defined(CONFIG_INOTIFY1)
12888 case TARGET_NR_inotify_init1
:
12889 ret
= get_errno(inotify_init1(target_to_host_bitmask(arg1
,
12890 fcntl_flags_tbl
)));
12892 fd_trans_register(ret
, &target_inotify_trans
);
12896 #if defined(TARGET_NR_inotify_add_watch)
12897 case TARGET_NR_inotify_add_watch
:
12898 p
= lock_user_string(arg2
);
12899 ret
= get_errno(inotify_add_watch(arg1
, path(p
), arg3
));
12900 unlock_user(p
, arg2
, 0);
12903 #if defined(TARGET_NR_inotify_rm_watch)
12904 case TARGET_NR_inotify_rm_watch
:
12905 return get_errno(inotify_rm_watch(arg1
, arg2
));
12909 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
12910 case TARGET_NR_mq_open
:
12912 struct mq_attr posix_mq_attr
;
12913 struct mq_attr
*pposix_mq_attr
;
12916 host_flags
= target_to_host_bitmask(arg2
, fcntl_flags_tbl
);
12917 pposix_mq_attr
= NULL
;
12919 if (copy_from_user_mq_attr(&posix_mq_attr
, arg4
) != 0) {
12920 return -TARGET_EFAULT
;
12922 pposix_mq_attr
= &posix_mq_attr
;
12924 p
= lock_user_string(arg1
- 1);
12926 return -TARGET_EFAULT
;
12928 ret
= get_errno(mq_open(p
, host_flags
, arg3
, pposix_mq_attr
));
12929 unlock_user (p
, arg1
, 0);
12933 case TARGET_NR_mq_unlink
:
12934 p
= lock_user_string(arg1
- 1);
12936 return -TARGET_EFAULT
;
12938 ret
= get_errno(mq_unlink(p
));
12939 unlock_user (p
, arg1
, 0);
12942 #ifdef TARGET_NR_mq_timedsend
12943 case TARGET_NR_mq_timedsend
:
12945 struct timespec ts
;
12947 p
= lock_user (VERIFY_READ
, arg2
, arg3
, 1);
12949 if (target_to_host_timespec(&ts
, arg5
)) {
12950 return -TARGET_EFAULT
;
12952 ret
= get_errno(safe_mq_timedsend(arg1
, p
, arg3
, arg4
, &ts
));
12953 if (!is_error(ret
) && host_to_target_timespec(arg5
, &ts
)) {
12954 return -TARGET_EFAULT
;
12957 ret
= get_errno(safe_mq_timedsend(arg1
, p
, arg3
, arg4
, NULL
));
12959 unlock_user (p
, arg2
, arg3
);
12963 #ifdef TARGET_NR_mq_timedsend_time64
12964 case TARGET_NR_mq_timedsend_time64
:
12966 struct timespec ts
;
12968 p
= lock_user(VERIFY_READ
, arg2
, arg3
, 1);
12970 if (target_to_host_timespec64(&ts
, arg5
)) {
12971 return -TARGET_EFAULT
;
12973 ret
= get_errno(safe_mq_timedsend(arg1
, p
, arg3
, arg4
, &ts
));
12974 if (!is_error(ret
) && host_to_target_timespec64(arg5
, &ts
)) {
12975 return -TARGET_EFAULT
;
12978 ret
= get_errno(safe_mq_timedsend(arg1
, p
, arg3
, arg4
, NULL
));
12980 unlock_user(p
, arg2
, arg3
);
12985 #ifdef TARGET_NR_mq_timedreceive
12986 case TARGET_NR_mq_timedreceive
:
12988 struct timespec ts
;
12991 p
= lock_user (VERIFY_READ
, arg2
, arg3
, 1);
12993 if (target_to_host_timespec(&ts
, arg5
)) {
12994 return -TARGET_EFAULT
;
12996 ret
= get_errno(safe_mq_timedreceive(arg1
, p
, arg3
,
12998 if (!is_error(ret
) && host_to_target_timespec(arg5
, &ts
)) {
12999 return -TARGET_EFAULT
;
13002 ret
= get_errno(safe_mq_timedreceive(arg1
, p
, arg3
,
13005 unlock_user (p
, arg2
, arg3
);
13007 put_user_u32(prio
, arg4
);
13011 #ifdef TARGET_NR_mq_timedreceive_time64
13012 case TARGET_NR_mq_timedreceive_time64
:
13014 struct timespec ts
;
13017 p
= lock_user(VERIFY_READ
, arg2
, arg3
, 1);
13019 if (target_to_host_timespec64(&ts
, arg5
)) {
13020 return -TARGET_EFAULT
;
13022 ret
= get_errno(safe_mq_timedreceive(arg1
, p
, arg3
,
13024 if (!is_error(ret
) && host_to_target_timespec64(arg5
, &ts
)) {
13025 return -TARGET_EFAULT
;
13028 ret
= get_errno(safe_mq_timedreceive(arg1
, p
, arg3
,
13031 unlock_user(p
, arg2
, arg3
);
13033 put_user_u32(prio
, arg4
);
13039 /* Not implemented for now... */
13040 /* case TARGET_NR_mq_notify: */
13043 case TARGET_NR_mq_getsetattr
:
13045 struct mq_attr posix_mq_attr_in
, posix_mq_attr_out
;
13048 copy_from_user_mq_attr(&posix_mq_attr_in
, arg2
);
13049 ret
= get_errno(mq_setattr(arg1
, &posix_mq_attr_in
,
13050 &posix_mq_attr_out
));
13051 } else if (arg3
!= 0) {
13052 ret
= get_errno(mq_getattr(arg1
, &posix_mq_attr_out
));
13054 if (ret
== 0 && arg3
!= 0) {
13055 copy_to_user_mq_attr(arg3
, &posix_mq_attr_out
);
13061 #ifdef CONFIG_SPLICE
13062 #ifdef TARGET_NR_tee
13063 case TARGET_NR_tee
:
13065 ret
= get_errno(tee(arg1
,arg2
,arg3
,arg4
));
13069 #ifdef TARGET_NR_splice
13070 case TARGET_NR_splice
:
13072 loff_t loff_in
, loff_out
;
13073 loff_t
*ploff_in
= NULL
, *ploff_out
= NULL
;
13075 if (get_user_u64(loff_in
, arg2
)) {
13076 return -TARGET_EFAULT
;
13078 ploff_in
= &loff_in
;
13081 if (get_user_u64(loff_out
, arg4
)) {
13082 return -TARGET_EFAULT
;
13084 ploff_out
= &loff_out
;
13086 ret
= get_errno(splice(arg1
, ploff_in
, arg3
, ploff_out
, arg5
, arg6
));
13088 if (put_user_u64(loff_in
, arg2
)) {
13089 return -TARGET_EFAULT
;
13093 if (put_user_u64(loff_out
, arg4
)) {
13094 return -TARGET_EFAULT
;
13100 #ifdef TARGET_NR_vmsplice
13101 case TARGET_NR_vmsplice
:
13103 struct iovec
*vec
= lock_iovec(VERIFY_READ
, arg2
, arg3
, 1);
13105 ret
= get_errno(vmsplice(arg1
, vec
, arg3
, arg4
));
13106 unlock_iovec(vec
, arg2
, arg3
, 0);
13108 ret
= -host_to_target_errno(errno
);
13113 #endif /* CONFIG_SPLICE */
13114 #ifdef CONFIG_EVENTFD
13115 #if defined(TARGET_NR_eventfd)
13116 case TARGET_NR_eventfd
:
13117 ret
= get_errno(eventfd(arg1
, 0));
13119 fd_trans_register(ret
, &target_eventfd_trans
);
13123 #if defined(TARGET_NR_eventfd2)
13124 case TARGET_NR_eventfd2
:
13126 int host_flags
= arg2
& (~(TARGET_O_NONBLOCK_MASK
| TARGET_O_CLOEXEC
));
13127 if (arg2
& TARGET_O_NONBLOCK
) {
13128 host_flags
|= O_NONBLOCK
;
13130 if (arg2
& TARGET_O_CLOEXEC
) {
13131 host_flags
|= O_CLOEXEC
;
13133 ret
= get_errno(eventfd(arg1
, host_flags
));
13135 fd_trans_register(ret
, &target_eventfd_trans
);
13140 #endif /* CONFIG_EVENTFD */
13141 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
13142 case TARGET_NR_fallocate
:
13143 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13144 ret
= get_errno(fallocate(arg1
, arg2
, target_offset64(arg3
, arg4
),
13145 target_offset64(arg5
, arg6
)));
13147 ret
= get_errno(fallocate(arg1
, arg2
, arg3
, arg4
));
13151 #if defined(CONFIG_SYNC_FILE_RANGE)
13152 #if defined(TARGET_NR_sync_file_range)
13153 case TARGET_NR_sync_file_range
:
13154 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13155 #if defined(TARGET_MIPS)
13156 ret
= get_errno(sync_file_range(arg1
, target_offset64(arg3
, arg4
),
13157 target_offset64(arg5
, arg6
), arg7
));
13159 ret
= get_errno(sync_file_range(arg1
, target_offset64(arg2
, arg3
),
13160 target_offset64(arg4
, arg5
), arg6
));
13161 #endif /* !TARGET_MIPS */
13163 ret
= get_errno(sync_file_range(arg1
, arg2
, arg3
, arg4
));
13167 #if defined(TARGET_NR_sync_file_range2) || \
13168 defined(TARGET_NR_arm_sync_file_range)
13169 #if defined(TARGET_NR_sync_file_range2)
13170 case TARGET_NR_sync_file_range2
:
13172 #if defined(TARGET_NR_arm_sync_file_range)
13173 case TARGET_NR_arm_sync_file_range
:
13175 /* This is like sync_file_range but the arguments are reordered */
13176 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13177 ret
= get_errno(sync_file_range(arg1
, target_offset64(arg3
, arg4
),
13178 target_offset64(arg5
, arg6
), arg2
));
13180 ret
= get_errno(sync_file_range(arg1
, arg3
, arg4
, arg2
));
13185 #if defined(TARGET_NR_signalfd4)
13186 case TARGET_NR_signalfd4
:
13187 return do_signalfd4(arg1
, arg2
, arg4
);
13189 #if defined(TARGET_NR_signalfd)
13190 case TARGET_NR_signalfd
:
13191 return do_signalfd4(arg1
, arg2
, 0);
13193 #if defined(CONFIG_EPOLL)
13194 #if defined(TARGET_NR_epoll_create)
13195 case TARGET_NR_epoll_create
:
13196 return get_errno(epoll_create(arg1
));
13198 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
13199 case TARGET_NR_epoll_create1
:
13200 return get_errno(epoll_create1(target_to_host_bitmask(arg1
, fcntl_flags_tbl
)));
13202 #if defined(TARGET_NR_epoll_ctl)
13203 case TARGET_NR_epoll_ctl
:
13205 struct epoll_event ep
;
13206 struct epoll_event
*epp
= 0;
13208 if (arg2
!= EPOLL_CTL_DEL
) {
13209 struct target_epoll_event
*target_ep
;
13210 if (!lock_user_struct(VERIFY_READ
, target_ep
, arg4
, 1)) {
13211 return -TARGET_EFAULT
;
13213 ep
.events
= tswap32(target_ep
->events
);
13215 * The epoll_data_t union is just opaque data to the kernel,
13216 * so we transfer all 64 bits across and need not worry what
13217 * actual data type it is.
13219 ep
.data
.u64
= tswap64(target_ep
->data
.u64
);
13220 unlock_user_struct(target_ep
, arg4
, 0);
13223 * before kernel 2.6.9, EPOLL_CTL_DEL operation required a
13224 * non-null pointer, even though this argument is ignored.
13229 return get_errno(epoll_ctl(arg1
, arg2
, arg3
, epp
));
13233 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
13234 #if defined(TARGET_NR_epoll_wait)
13235 case TARGET_NR_epoll_wait
:
13237 #if defined(TARGET_NR_epoll_pwait)
13238 case TARGET_NR_epoll_pwait
:
13241 struct target_epoll_event
*target_ep
;
13242 struct epoll_event
*ep
;
13244 int maxevents
= arg3
;
13245 int timeout
= arg4
;
13247 if (maxevents
<= 0 || maxevents
> TARGET_EP_MAX_EVENTS
) {
13248 return -TARGET_EINVAL
;
13251 target_ep
= lock_user(VERIFY_WRITE
, arg2
,
13252 maxevents
* sizeof(struct target_epoll_event
), 1);
13254 return -TARGET_EFAULT
;
13257 ep
= g_try_new(struct epoll_event
, maxevents
);
13259 unlock_user(target_ep
, arg2
, 0);
13260 return -TARGET_ENOMEM
;
13264 #if defined(TARGET_NR_epoll_pwait)
13265 case TARGET_NR_epoll_pwait
:
13267 sigset_t
*set
= NULL
;
13270 ret
= process_sigsuspend_mask(&set
, arg5
, arg6
);
13276 ret
= get_errno(safe_epoll_pwait(epfd
, ep
, maxevents
, timeout
,
13277 set
, SIGSET_T_SIZE
));
13280 finish_sigsuspend_mask(ret
);
13285 #if defined(TARGET_NR_epoll_wait)
13286 case TARGET_NR_epoll_wait
:
13287 ret
= get_errno(safe_epoll_pwait(epfd
, ep
, maxevents
, timeout
,
13292 ret
= -TARGET_ENOSYS
;
13294 if (!is_error(ret
)) {
13296 for (i
= 0; i
< ret
; i
++) {
13297 target_ep
[i
].events
= tswap32(ep
[i
].events
);
13298 target_ep
[i
].data
.u64
= tswap64(ep
[i
].data
.u64
);
13300 unlock_user(target_ep
, arg2
,
13301 ret
* sizeof(struct target_epoll_event
));
13303 unlock_user(target_ep
, arg2
, 0);
13310 #ifdef TARGET_NR_prlimit64
13311 case TARGET_NR_prlimit64
:
13313 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
13314 struct target_rlimit64
*target_rnew
, *target_rold
;
13315 struct host_rlimit64 rnew
, rold
, *rnewp
= 0;
13316 int resource
= target_to_host_resource(arg2
);
13318 if (arg3
&& (resource
!= RLIMIT_AS
&&
13319 resource
!= RLIMIT_DATA
&&
13320 resource
!= RLIMIT_STACK
)) {
13321 if (!lock_user_struct(VERIFY_READ
, target_rnew
, arg3
, 1)) {
13322 return -TARGET_EFAULT
;
13324 __get_user(rnew
.rlim_cur
, &target_rnew
->rlim_cur
);
13325 __get_user(rnew
.rlim_max
, &target_rnew
->rlim_max
);
13326 unlock_user_struct(target_rnew
, arg3
, 0);
13330 ret
= get_errno(sys_prlimit64(arg1
, resource
, rnewp
, arg4
? &rold
: 0));
13331 if (!is_error(ret
) && arg4
) {
13332 if (!lock_user_struct(VERIFY_WRITE
, target_rold
, arg4
, 1)) {
13333 return -TARGET_EFAULT
;
13335 __put_user(rold
.rlim_cur
, &target_rold
->rlim_cur
);
13336 __put_user(rold
.rlim_max
, &target_rold
->rlim_max
);
13337 unlock_user_struct(target_rold
, arg4
, 1);
13342 #ifdef TARGET_NR_gethostname
13343 case TARGET_NR_gethostname
:
13345 char *name
= lock_user(VERIFY_WRITE
, arg1
, arg2
, 0);
13347 ret
= get_errno(gethostname(name
, arg2
));
13348 unlock_user(name
, arg1
, arg2
);
13350 ret
= -TARGET_EFAULT
;
13355 #ifdef TARGET_NR_atomic_cmpxchg_32
13356 case TARGET_NR_atomic_cmpxchg_32
:
13358 /* should use start_exclusive from main.c */
13359 abi_ulong mem_value
;
13360 if (get_user_u32(mem_value
, arg6
)) {
13361 target_siginfo_t info
;
13362 info
.si_signo
= SIGSEGV
;
13364 info
.si_code
= TARGET_SEGV_MAPERR
;
13365 info
._sifields
._sigfault
._addr
= arg6
;
13366 queue_signal(cpu_env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
13370 if (mem_value
== arg2
)
13371 put_user_u32(arg1
, arg6
);
13375 #ifdef TARGET_NR_atomic_barrier
13376 case TARGET_NR_atomic_barrier
:
13377 /* Like the kernel implementation and the
13378 qemu arm barrier, no-op this? */
13382 #ifdef TARGET_NR_timer_create
13383 case TARGET_NR_timer_create
:
13385 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
13387 struct sigevent host_sevp
= { {0}, }, *phost_sevp
= NULL
;
13390 int timer_index
= next_free_host_timer();
13392 if (timer_index
< 0) {
13393 ret
= -TARGET_EAGAIN
;
13395 timer_t
*phtimer
= g_posix_timers
+ timer_index
;
13398 phost_sevp
= &host_sevp
;
13399 ret
= target_to_host_sigevent(phost_sevp
, arg2
);
13401 free_host_timer_slot(timer_index
);
13406 ret
= get_errno(timer_create(clkid
, phost_sevp
, phtimer
));
13408 free_host_timer_slot(timer_index
);
13410 if (put_user(TIMER_MAGIC
| timer_index
, arg3
, target_timer_t
)) {
13411 timer_delete(*phtimer
);
13412 free_host_timer_slot(timer_index
);
13413 return -TARGET_EFAULT
;
13421 #ifdef TARGET_NR_timer_settime
13422 case TARGET_NR_timer_settime
:
13424 /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
13425 * struct itimerspec * old_value */
13426 target_timer_t timerid
= get_timer_id(arg1
);
13430 } else if (arg3
== 0) {
13431 ret
= -TARGET_EINVAL
;
13433 timer_t htimer
= g_posix_timers
[timerid
];
13434 struct itimerspec hspec_new
= {{0},}, hspec_old
= {{0},};
13436 if (target_to_host_itimerspec(&hspec_new
, arg3
)) {
13437 return -TARGET_EFAULT
;
13440 timer_settime(htimer
, arg2
, &hspec_new
, &hspec_old
));
13441 if (arg4
&& host_to_target_itimerspec(arg4
, &hspec_old
)) {
13442 return -TARGET_EFAULT
;
13449 #ifdef TARGET_NR_timer_settime64
13450 case TARGET_NR_timer_settime64
:
13452 target_timer_t timerid
= get_timer_id(arg1
);
13456 } else if (arg3
== 0) {
13457 ret
= -TARGET_EINVAL
;
13459 timer_t htimer
= g_posix_timers
[timerid
];
13460 struct itimerspec hspec_new
= {{0},}, hspec_old
= {{0},};
13462 if (target_to_host_itimerspec64(&hspec_new
, arg3
)) {
13463 return -TARGET_EFAULT
;
13466 timer_settime(htimer
, arg2
, &hspec_new
, &hspec_old
));
13467 if (arg4
&& host_to_target_itimerspec64(arg4
, &hspec_old
)) {
13468 return -TARGET_EFAULT
;
13475 #ifdef TARGET_NR_timer_gettime
13476 case TARGET_NR_timer_gettime
:
13478 /* args: timer_t timerid, struct itimerspec *curr_value */
13479 target_timer_t timerid
= get_timer_id(arg1
);
13483 } else if (!arg2
) {
13484 ret
= -TARGET_EFAULT
;
13486 timer_t htimer
= g_posix_timers
[timerid
];
13487 struct itimerspec hspec
;
13488 ret
= get_errno(timer_gettime(htimer
, &hspec
));
13490 if (host_to_target_itimerspec(arg2
, &hspec
)) {
13491 ret
= -TARGET_EFAULT
;
13498 #ifdef TARGET_NR_timer_gettime64
13499 case TARGET_NR_timer_gettime64
:
13501 /* args: timer_t timerid, struct itimerspec64 *curr_value */
13502 target_timer_t timerid
= get_timer_id(arg1
);
13506 } else if (!arg2
) {
13507 ret
= -TARGET_EFAULT
;
13509 timer_t htimer
= g_posix_timers
[timerid
];
13510 struct itimerspec hspec
;
13511 ret
= get_errno(timer_gettime(htimer
, &hspec
));
13513 if (host_to_target_itimerspec64(arg2
, &hspec
)) {
13514 ret
= -TARGET_EFAULT
;
13521 #ifdef TARGET_NR_timer_getoverrun
13522 case TARGET_NR_timer_getoverrun
:
13524 /* args: timer_t timerid */
13525 target_timer_t timerid
= get_timer_id(arg1
);
13530 timer_t htimer
= g_posix_timers
[timerid
];
13531 ret
= get_errno(timer_getoverrun(htimer
));
13537 #ifdef TARGET_NR_timer_delete
13538 case TARGET_NR_timer_delete
:
13540 /* args: timer_t timerid */
13541 target_timer_t timerid
= get_timer_id(arg1
);
13546 timer_t htimer
= g_posix_timers
[timerid
];
13547 ret
= get_errno(timer_delete(htimer
));
13548 free_host_timer_slot(timerid
);
13554 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
13555 case TARGET_NR_timerfd_create
:
13556 ret
= get_errno(timerfd_create(arg1
,
13557 target_to_host_bitmask(arg2
, fcntl_flags_tbl
)));
13559 fd_trans_register(ret
, &target_timerfd_trans
);
13564 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
13565 case TARGET_NR_timerfd_gettime
:
13567 struct itimerspec its_curr
;
13569 ret
= get_errno(timerfd_gettime(arg1
, &its_curr
));
13571 if (arg2
&& host_to_target_itimerspec(arg2
, &its_curr
)) {
13572 return -TARGET_EFAULT
;
13578 #if defined(TARGET_NR_timerfd_gettime64) && defined(CONFIG_TIMERFD)
13579 case TARGET_NR_timerfd_gettime64
:
13581 struct itimerspec its_curr
;
13583 ret
= get_errno(timerfd_gettime(arg1
, &its_curr
));
13585 if (arg2
&& host_to_target_itimerspec64(arg2
, &its_curr
)) {
13586 return -TARGET_EFAULT
;
13592 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
13593 case TARGET_NR_timerfd_settime
:
13595 struct itimerspec its_new
, its_old
, *p_new
;
13598 if (target_to_host_itimerspec(&its_new
, arg3
)) {
13599 return -TARGET_EFAULT
;
13606 ret
= get_errno(timerfd_settime(arg1
, arg2
, p_new
, &its_old
));
13608 if (arg4
&& host_to_target_itimerspec(arg4
, &its_old
)) {
13609 return -TARGET_EFAULT
;
13615 #if defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)
13616 case TARGET_NR_timerfd_settime64
:
13618 struct itimerspec its_new
, its_old
, *p_new
;
13621 if (target_to_host_itimerspec64(&its_new
, arg3
)) {
13622 return -TARGET_EFAULT
;
13629 ret
= get_errno(timerfd_settime(arg1
, arg2
, p_new
, &its_old
));
13631 if (arg4
&& host_to_target_itimerspec64(arg4
, &its_old
)) {
13632 return -TARGET_EFAULT
;
13638 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
13639 case TARGET_NR_ioprio_get
:
13640 return get_errno(ioprio_get(arg1
, arg2
));
13643 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
13644 case TARGET_NR_ioprio_set
:
13645 return get_errno(ioprio_set(arg1
, arg2
, arg3
));
13648 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
13649 case TARGET_NR_setns
:
13650 return get_errno(setns(arg1
, arg2
));
13652 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
13653 case TARGET_NR_unshare
:
13654 return get_errno(unshare(arg1
));
13656 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
13657 case TARGET_NR_kcmp
:
13658 return get_errno(kcmp(arg1
, arg2
, arg3
, arg4
, arg5
));
13660 #ifdef TARGET_NR_swapcontext
13661 case TARGET_NR_swapcontext
:
13662 /* PowerPC specific. */
13663 return do_swapcontext(cpu_env
, arg1
, arg2
, arg3
);
13665 #ifdef TARGET_NR_memfd_create
13666 case TARGET_NR_memfd_create
:
13667 p
= lock_user_string(arg1
);
13669 return -TARGET_EFAULT
;
13671 ret
= get_errno(memfd_create(p
, arg2
));
13672 fd_trans_unregister(ret
);
13673 unlock_user(p
, arg1
, 0);
13676 #if defined TARGET_NR_membarrier && defined __NR_membarrier
13677 case TARGET_NR_membarrier
:
13678 return get_errno(membarrier(arg1
, arg2
));
13681 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
13682 case TARGET_NR_copy_file_range
:
13684 loff_t inoff
, outoff
;
13685 loff_t
*pinoff
= NULL
, *poutoff
= NULL
;
13688 if (get_user_u64(inoff
, arg2
)) {
13689 return -TARGET_EFAULT
;
13694 if (get_user_u64(outoff
, arg4
)) {
13695 return -TARGET_EFAULT
;
13699 /* Do not sign-extend the count parameter. */
13700 ret
= get_errno(safe_copy_file_range(arg1
, pinoff
, arg3
, poutoff
,
13701 (abi_ulong
)arg5
, arg6
));
13702 if (!is_error(ret
) && ret
> 0) {
13704 if (put_user_u64(inoff
, arg2
)) {
13705 return -TARGET_EFAULT
;
13709 if (put_user_u64(outoff
, arg4
)) {
13710 return -TARGET_EFAULT
;
13718 #if defined(TARGET_NR_pivot_root)
13719 case TARGET_NR_pivot_root
:
13722 p
= lock_user_string(arg1
); /* new_root */
13723 p2
= lock_user_string(arg2
); /* put_old */
13725 ret
= -TARGET_EFAULT
;
13727 ret
= get_errno(pivot_root(p
, p2
));
13729 unlock_user(p2
, arg2
, 0);
13730 unlock_user(p
, arg1
, 0);
13735 #if defined(TARGET_NR_riscv_hwprobe)
13736 case TARGET_NR_riscv_hwprobe
:
13737 return do_riscv_hwprobe(cpu_env
, arg1
, arg2
, arg3
, arg4
, arg5
);
13741 qemu_log_mask(LOG_UNIMP
, "Unsupported syscall: %d\n", num
);
13742 return -TARGET_ENOSYS
;
13747 abi_long
do_syscall(CPUArchState
*cpu_env
, int num
, abi_long arg1
,
13748 abi_long arg2
, abi_long arg3
, abi_long arg4
,
13749 abi_long arg5
, abi_long arg6
, abi_long arg7
,
13752 CPUState
*cpu
= env_cpu(cpu_env
);
13755 #ifdef DEBUG_ERESTARTSYS
13756 /* Debug-only code for exercising the syscall-restart code paths
13757 * in the per-architecture cpu main loops: restart every syscall
13758 * the guest makes once before letting it through.
13764 return -QEMU_ERESTARTSYS
;
13769 record_syscall_start(cpu
, num
, arg1
,
13770 arg2
, arg3
, arg4
, arg5
, arg6
, arg7
, arg8
);
13772 if (unlikely(qemu_loglevel_mask(LOG_STRACE
))) {
13773 print_syscall(cpu_env
, num
, arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
13776 ret
= do_syscall1(cpu_env
, num
, arg1
, arg2
, arg3
, arg4
,
13777 arg5
, arg6
, arg7
, arg8
);
13779 if (unlikely(qemu_loglevel_mask(LOG_STRACE
))) {
13780 print_syscall_ret(cpu_env
, num
, ret
, arg1
, arg2
,
13781 arg3
, arg4
, arg5
, arg6
);
13784 record_syscall_return(cpu
, num
, ret
);