migration/rdma: Drop qemu_rdma_search_ram_block() error handling
[qemu/armbru.git] / migration / rdma.c
blobb412dad5424854b736119d343313df70ff32c46f
1 /*
2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
5 * Copyright Red Hat, Inc. 2015-2016
7 * Authors:
8 * Michael R. Hines <mrhines@us.ibm.com>
9 * Jiuxing Liu <jl@us.ibm.com>
10 * Daniel P. Berrange <berrange@redhat.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or
13 * later. See the COPYING file in the top-level directory.
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
20 #include "exec/target_page.h"
21 #include "rdma.h"
22 #include "migration.h"
23 #include "migration-stats.h"
24 #include "qemu-file.h"
25 #include "ram.h"
26 #include "qemu/error-report.h"
27 #include "qemu/main-loop.h"
28 #include "qemu/module.h"
29 #include "qemu/rcu.h"
30 #include "qemu/sockets.h"
31 #include "qemu/bitmap.h"
32 #include "qemu/coroutine.h"
33 #include "exec/memory.h"
34 #include <sys/socket.h>
35 #include <netdb.h>
36 #include <arpa/inet.h>
37 #include <rdma/rdma_cma.h>
38 #include "trace.h"
39 #include "qom/object.h"
40 #include "options.h"
41 #include <poll.h>
44 * Print and error on both the Monitor and the Log file.
46 #define ERROR(errp, fmt, ...) \
47 do { \
48 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
49 if (errp && (*(errp) == NULL)) { \
50 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
51 } \
52 } while (0)
54 #define RDMA_RESOLVE_TIMEOUT_MS 10000
56 /* Do not merge data if larger than this. */
57 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
58 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
60 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
63 * This is only for non-live state being migrated.
64 * Instead of RDMA_WRITE messages, we use RDMA_SEND
65 * messages for that state, which requires a different
66 * delivery design than main memory.
68 #define RDMA_SEND_INCREMENT 32768
71 * Maximum size infiniband SEND message
73 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
74 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
76 #define RDMA_CONTROL_VERSION_CURRENT 1
78 * Capabilities for negotiation.
80 #define RDMA_CAPABILITY_PIN_ALL 0x01
83 * Add the other flags above to this list of known capabilities
84 * as they are introduced.
86 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
88 #define CHECK_ERROR_STATE() \
89 do { \
90 if (rdma->error_state) { \
91 if (!rdma->error_reported) { \
92 error_report("RDMA is in an error state waiting migration" \
93 " to abort!"); \
94 rdma->error_reported = 1; \
95 } \
96 return rdma->error_state; \
97 } \
98 } while (0)
101 * A work request ID is 64-bits and we split up these bits
102 * into 3 parts:
104 * bits 0-15 : type of control message, 2^16
105 * bits 16-29: ram block index, 2^14
106 * bits 30-63: ram block chunk number, 2^34
108 * The last two bit ranges are only used for RDMA writes,
109 * in order to track their completion and potentially
110 * also track unregistration status of the message.
112 #define RDMA_WRID_TYPE_SHIFT 0UL
113 #define RDMA_WRID_BLOCK_SHIFT 16UL
114 #define RDMA_WRID_CHUNK_SHIFT 30UL
116 #define RDMA_WRID_TYPE_MASK \
117 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
119 #define RDMA_WRID_BLOCK_MASK \
120 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
122 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
125 * RDMA migration protocol:
126 * 1. RDMA Writes (data messages, i.e. RAM)
127 * 2. IB Send/Recv (control channel messages)
129 enum {
130 RDMA_WRID_NONE = 0,
131 RDMA_WRID_RDMA_WRITE = 1,
132 RDMA_WRID_SEND_CONTROL = 2000,
133 RDMA_WRID_RECV_CONTROL = 4000,
137 * Work request IDs for IB SEND messages only (not RDMA writes).
138 * This is used by the migration protocol to transmit
139 * control messages (such as device state and registration commands)
141 * We could use more WRs, but we have enough for now.
143 enum {
144 RDMA_WRID_READY = 0,
145 RDMA_WRID_DATA,
146 RDMA_WRID_CONTROL,
147 RDMA_WRID_MAX,
151 * SEND/RECV IB Control Messages.
153 enum {
154 RDMA_CONTROL_NONE = 0,
155 RDMA_CONTROL_ERROR,
156 RDMA_CONTROL_READY, /* ready to receive */
157 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */
158 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */
159 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */
160 RDMA_CONTROL_COMPRESS, /* page contains repeat values */
161 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */
162 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */
163 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */
164 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */
165 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
170 * Memory and MR structures used to represent an IB Send/Recv work request.
171 * This is *not* used for RDMA writes, only IB Send/Recv.
173 typedef struct {
174 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
175 struct ibv_mr *control_mr; /* registration metadata */
176 size_t control_len; /* length of the message */
177 uint8_t *control_curr; /* start of unconsumed bytes */
178 } RDMAWorkRequestData;
181 * Negotiate RDMA capabilities during connection-setup time.
183 typedef struct {
184 uint32_t version;
185 uint32_t flags;
186 } RDMACapabilities;
188 static void caps_to_network(RDMACapabilities *cap)
190 cap->version = htonl(cap->version);
191 cap->flags = htonl(cap->flags);
194 static void network_to_caps(RDMACapabilities *cap)
196 cap->version = ntohl(cap->version);
197 cap->flags = ntohl(cap->flags);
201 * Representation of a RAMBlock from an RDMA perspective.
202 * This is not transmitted, only local.
203 * This and subsequent structures cannot be linked lists
204 * because we're using a single IB message to transmit
205 * the information. It's small anyway, so a list is overkill.
207 typedef struct RDMALocalBlock {
208 char *block_name;
209 uint8_t *local_host_addr; /* local virtual address */
210 uint64_t remote_host_addr; /* remote virtual address */
211 uint64_t offset;
212 uint64_t length;
213 struct ibv_mr **pmr; /* MRs for chunk-level registration */
214 struct ibv_mr *mr; /* MR for non-chunk-level registration */
215 uint32_t *remote_keys; /* rkeys for chunk-level registration */
216 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */
217 int index; /* which block are we */
218 unsigned int src_index; /* (Only used on dest) */
219 bool is_ram_block;
220 int nb_chunks;
221 unsigned long *transit_bitmap;
222 unsigned long *unregister_bitmap;
223 } RDMALocalBlock;
226 * Also represents a RAMblock, but only on the dest.
227 * This gets transmitted by the dest during connection-time
228 * to the source VM and then is used to populate the
229 * corresponding RDMALocalBlock with
230 * the information needed to perform the actual RDMA.
232 typedef struct QEMU_PACKED RDMADestBlock {
233 uint64_t remote_host_addr;
234 uint64_t offset;
235 uint64_t length;
236 uint32_t remote_rkey;
237 uint32_t padding;
238 } RDMADestBlock;
240 static const char *control_desc(unsigned int rdma_control)
242 static const char *strs[] = {
243 [RDMA_CONTROL_NONE] = "NONE",
244 [RDMA_CONTROL_ERROR] = "ERROR",
245 [RDMA_CONTROL_READY] = "READY",
246 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
247 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
248 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
249 [RDMA_CONTROL_COMPRESS] = "COMPRESS",
250 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
251 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
252 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
253 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
254 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
257 if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
258 return "??BAD CONTROL VALUE??";
261 return strs[rdma_control];
264 static uint64_t htonll(uint64_t v)
266 union { uint32_t lv[2]; uint64_t llv; } u;
267 u.lv[0] = htonl(v >> 32);
268 u.lv[1] = htonl(v & 0xFFFFFFFFULL);
269 return u.llv;
272 static uint64_t ntohll(uint64_t v)
274 union { uint32_t lv[2]; uint64_t llv; } u;
275 u.llv = v;
276 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
279 static void dest_block_to_network(RDMADestBlock *db)
281 db->remote_host_addr = htonll(db->remote_host_addr);
282 db->offset = htonll(db->offset);
283 db->length = htonll(db->length);
284 db->remote_rkey = htonl(db->remote_rkey);
287 static void network_to_dest_block(RDMADestBlock *db)
289 db->remote_host_addr = ntohll(db->remote_host_addr);
290 db->offset = ntohll(db->offset);
291 db->length = ntohll(db->length);
292 db->remote_rkey = ntohl(db->remote_rkey);
296 * Virtual address of the above structures used for transmitting
297 * the RAMBlock descriptions at connection-time.
298 * This structure is *not* transmitted.
300 typedef struct RDMALocalBlocks {
301 int nb_blocks;
302 bool init; /* main memory init complete */
303 RDMALocalBlock *block;
304 } RDMALocalBlocks;
307 * Main data structure for RDMA state.
308 * While there is only one copy of this structure being allocated right now,
309 * this is the place where one would start if you wanted to consider
310 * having more than one RDMA connection open at the same time.
312 typedef struct RDMAContext {
313 char *host;
314 int port;
315 char *host_port;
317 RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
320 * This is used by *_exchange_send() to figure out whether or not
321 * the initial "READY" message has already been received or not.
322 * This is because other functions may potentially poll() and detect
323 * the READY message before send() does, in which case we need to
324 * know if it completed.
326 int control_ready_expected;
328 /* number of outstanding writes */
329 int nb_sent;
331 /* store info about current buffer so that we can
332 merge it with future sends */
333 uint64_t current_addr;
334 uint64_t current_length;
335 /* index of ram block the current buffer belongs to */
336 int current_index;
337 /* index of the chunk in the current ram block */
338 int current_chunk;
340 bool pin_all;
343 * infiniband-specific variables for opening the device
344 * and maintaining connection state and so forth.
346 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
347 * cm_id->verbs, cm_id->channel, and cm_id->qp.
349 struct rdma_cm_id *cm_id; /* connection manager ID */
350 struct rdma_cm_id *listen_id;
351 bool connected;
353 struct ibv_context *verbs;
354 struct rdma_event_channel *channel;
355 struct ibv_qp *qp; /* queue pair */
356 struct ibv_comp_channel *recv_comp_channel; /* recv completion channel */
357 struct ibv_comp_channel *send_comp_channel; /* send completion channel */
358 struct ibv_pd *pd; /* protection domain */
359 struct ibv_cq *recv_cq; /* recvieve completion queue */
360 struct ibv_cq *send_cq; /* send completion queue */
363 * If a previous write failed (perhaps because of a failed
364 * memory registration, then do not attempt any future work
365 * and remember the error state.
367 int error_state;
368 int error_reported;
369 int received_error;
372 * Description of ram blocks used throughout the code.
374 RDMALocalBlocks local_ram_blocks;
375 RDMADestBlock *dest_blocks;
377 /* Index of the next RAMBlock received during block registration */
378 unsigned int next_src_index;
381 * Migration on *destination* started.
382 * Then use coroutine yield function.
383 * Source runs in a thread, so we don't care.
385 int migration_started_on_destination;
387 int total_registrations;
388 int total_writes;
390 int unregister_current, unregister_next;
391 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
393 GHashTable *blockmap;
395 /* the RDMAContext for return path */
396 struct RDMAContext *return_path;
397 bool is_return_path;
398 } RDMAContext;
400 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
401 OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA, QIO_CHANNEL_RDMA)
405 struct QIOChannelRDMA {
406 QIOChannel parent;
407 RDMAContext *rdmain;
408 RDMAContext *rdmaout;
409 QEMUFile *file;
410 bool blocking; /* XXX we don't actually honour this yet */
414 * Main structure for IB Send/Recv control messages.
415 * This gets prepended at the beginning of every Send/Recv.
417 typedef struct QEMU_PACKED {
418 uint32_t len; /* Total length of data portion */
419 uint32_t type; /* which control command to perform */
420 uint32_t repeat; /* number of commands in data portion of same type */
421 uint32_t padding;
422 } RDMAControlHeader;
424 static void control_to_network(RDMAControlHeader *control)
426 control->type = htonl(control->type);
427 control->len = htonl(control->len);
428 control->repeat = htonl(control->repeat);
431 static void network_to_control(RDMAControlHeader *control)
433 control->type = ntohl(control->type);
434 control->len = ntohl(control->len);
435 control->repeat = ntohl(control->repeat);
439 * Register a single Chunk.
440 * Information sent by the source VM to inform the dest
441 * to register an single chunk of memory before we can perform
442 * the actual RDMA operation.
444 typedef struct QEMU_PACKED {
445 union QEMU_PACKED {
446 uint64_t current_addr; /* offset into the ram_addr_t space */
447 uint64_t chunk; /* chunk to lookup if unregistering */
448 } key;
449 uint32_t current_index; /* which ramblock the chunk belongs to */
450 uint32_t padding;
451 uint64_t chunks; /* how many sequential chunks to register */
452 } RDMARegister;
454 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
456 RDMALocalBlock *local_block;
457 local_block = &rdma->local_ram_blocks.block[reg->current_index];
459 if (local_block->is_ram_block) {
461 * current_addr as passed in is an address in the local ram_addr_t
462 * space, we need to translate this for the destination
464 reg->key.current_addr -= local_block->offset;
465 reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
467 reg->key.current_addr = htonll(reg->key.current_addr);
468 reg->current_index = htonl(reg->current_index);
469 reg->chunks = htonll(reg->chunks);
472 static void network_to_register(RDMARegister *reg)
474 reg->key.current_addr = ntohll(reg->key.current_addr);
475 reg->current_index = ntohl(reg->current_index);
476 reg->chunks = ntohll(reg->chunks);
479 typedef struct QEMU_PACKED {
480 uint32_t value; /* if zero, we will madvise() */
481 uint32_t block_idx; /* which ram block index */
482 uint64_t offset; /* Address in remote ram_addr_t space */
483 uint64_t length; /* length of the chunk */
484 } RDMACompress;
486 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
488 comp->value = htonl(comp->value);
490 * comp->offset as passed in is an address in the local ram_addr_t
491 * space, we need to translate this for the destination
493 comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
494 comp->offset += rdma->dest_blocks[comp->block_idx].offset;
495 comp->block_idx = htonl(comp->block_idx);
496 comp->offset = htonll(comp->offset);
497 comp->length = htonll(comp->length);
500 static void network_to_compress(RDMACompress *comp)
502 comp->value = ntohl(comp->value);
503 comp->block_idx = ntohl(comp->block_idx);
504 comp->offset = ntohll(comp->offset);
505 comp->length = ntohll(comp->length);
509 * The result of the dest's memory registration produces an "rkey"
510 * which the source VM must reference in order to perform
511 * the RDMA operation.
513 typedef struct QEMU_PACKED {
514 uint32_t rkey;
515 uint32_t padding;
516 uint64_t host_addr;
517 } RDMARegisterResult;
519 static void result_to_network(RDMARegisterResult *result)
521 result->rkey = htonl(result->rkey);
522 result->host_addr = htonll(result->host_addr);
525 static void network_to_result(RDMARegisterResult *result)
527 result->rkey = ntohl(result->rkey);
528 result->host_addr = ntohll(result->host_addr);
531 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
532 uint8_t *data, RDMAControlHeader *resp,
533 int *resp_idx,
534 int (*callback)(RDMAContext *rdma));
536 static inline uint64_t ram_chunk_index(const uint8_t *start,
537 const uint8_t *host)
539 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
542 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
543 uint64_t i)
545 return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
546 (i << RDMA_REG_CHUNK_SHIFT));
549 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
550 uint64_t i)
552 uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
553 (1UL << RDMA_REG_CHUNK_SHIFT);
555 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
556 result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
559 return result;
562 static void rdma_add_block(RDMAContext *rdma, const char *block_name,
563 void *host_addr,
564 ram_addr_t block_offset, uint64_t length)
566 RDMALocalBlocks *local = &rdma->local_ram_blocks;
567 RDMALocalBlock *block;
568 RDMALocalBlock *old = local->block;
570 local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
572 if (local->nb_blocks) {
573 int x;
575 if (rdma->blockmap) {
576 for (x = 0; x < local->nb_blocks; x++) {
577 g_hash_table_remove(rdma->blockmap,
578 (void *)(uintptr_t)old[x].offset);
579 g_hash_table_insert(rdma->blockmap,
580 (void *)(uintptr_t)old[x].offset,
581 &local->block[x]);
584 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
585 g_free(old);
588 block = &local->block[local->nb_blocks];
590 block->block_name = g_strdup(block_name);
591 block->local_host_addr = host_addr;
592 block->offset = block_offset;
593 block->length = length;
594 block->index = local->nb_blocks;
595 block->src_index = ~0U; /* Filled in by the receipt of the block list */
596 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
597 block->transit_bitmap = bitmap_new(block->nb_chunks);
598 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
599 block->unregister_bitmap = bitmap_new(block->nb_chunks);
600 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
601 block->remote_keys = g_new0(uint32_t, block->nb_chunks);
603 block->is_ram_block = local->init ? false : true;
605 if (rdma->blockmap) {
606 g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
609 trace_rdma_add_block(block_name, local->nb_blocks,
610 (uintptr_t) block->local_host_addr,
611 block->offset, block->length,
612 (uintptr_t) (block->local_host_addr + block->length),
613 BITS_TO_LONGS(block->nb_chunks) *
614 sizeof(unsigned long) * 8,
615 block->nb_chunks);
617 local->nb_blocks++;
621 * Memory regions need to be registered with the device and queue pairs setup
622 * in advanced before the migration starts. This tells us where the RAM blocks
623 * are so that we can register them individually.
625 static int qemu_rdma_init_one_block(RAMBlock *rb, void *opaque)
627 const char *block_name = qemu_ram_get_idstr(rb);
628 void *host_addr = qemu_ram_get_host_addr(rb);
629 ram_addr_t block_offset = qemu_ram_get_offset(rb);
630 ram_addr_t length = qemu_ram_get_used_length(rb);
631 rdma_add_block(opaque, block_name, host_addr, block_offset, length);
632 return 0;
636 * Identify the RAMBlocks and their quantity. They will be references to
637 * identify chunk boundaries inside each RAMBlock and also be referenced
638 * during dynamic page registration.
640 static void qemu_rdma_init_ram_blocks(RDMAContext *rdma)
642 RDMALocalBlocks *local = &rdma->local_ram_blocks;
643 int ret;
645 assert(rdma->blockmap == NULL);
646 memset(local, 0, sizeof *local);
647 ret = foreach_not_ignored_block(qemu_rdma_init_one_block, rdma);
648 assert(!ret);
649 trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
650 rdma->dest_blocks = g_new0(RDMADestBlock,
651 rdma->local_ram_blocks.nb_blocks);
652 local->init = true;
656 * Note: If used outside of cleanup, the caller must ensure that the destination
657 * block structures are also updated
659 static void rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
661 RDMALocalBlocks *local = &rdma->local_ram_blocks;
662 RDMALocalBlock *old = local->block;
663 int x;
665 if (rdma->blockmap) {
666 g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
668 if (block->pmr) {
669 int j;
671 for (j = 0; j < block->nb_chunks; j++) {
672 if (!block->pmr[j]) {
673 continue;
675 ibv_dereg_mr(block->pmr[j]);
676 rdma->total_registrations--;
678 g_free(block->pmr);
679 block->pmr = NULL;
682 if (block->mr) {
683 ibv_dereg_mr(block->mr);
684 rdma->total_registrations--;
685 block->mr = NULL;
688 g_free(block->transit_bitmap);
689 block->transit_bitmap = NULL;
691 g_free(block->unregister_bitmap);
692 block->unregister_bitmap = NULL;
694 g_free(block->remote_keys);
695 block->remote_keys = NULL;
697 g_free(block->block_name);
698 block->block_name = NULL;
700 if (rdma->blockmap) {
701 for (x = 0; x < local->nb_blocks; x++) {
702 g_hash_table_remove(rdma->blockmap,
703 (void *)(uintptr_t)old[x].offset);
707 if (local->nb_blocks > 1) {
709 local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
711 if (block->index) {
712 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
715 if (block->index < (local->nb_blocks - 1)) {
716 memcpy(local->block + block->index, old + (block->index + 1),
717 sizeof(RDMALocalBlock) *
718 (local->nb_blocks - (block->index + 1)));
719 for (x = block->index; x < local->nb_blocks - 1; x++) {
720 local->block[x].index--;
723 } else {
724 assert(block == local->block);
725 local->block = NULL;
728 trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
729 block->offset, block->length,
730 (uintptr_t)(block->local_host_addr + block->length),
731 BITS_TO_LONGS(block->nb_chunks) *
732 sizeof(unsigned long) * 8, block->nb_chunks);
734 g_free(old);
736 local->nb_blocks--;
738 if (local->nb_blocks && rdma->blockmap) {
739 for (x = 0; x < local->nb_blocks; x++) {
740 g_hash_table_insert(rdma->blockmap,
741 (void *)(uintptr_t)local->block[x].offset,
742 &local->block[x]);
748 * Put in the log file which RDMA device was opened and the details
749 * associated with that device.
751 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
753 struct ibv_port_attr port;
755 if (ibv_query_port(verbs, 1, &port)) {
756 error_report("Failed to query port information");
757 return;
760 printf("%s RDMA Device opened: kernel name %s "
761 "uverbs device name %s, "
762 "infiniband_verbs class device path %s, "
763 "infiniband class device path %s, "
764 "transport: (%d) %s\n",
765 who,
766 verbs->device->name,
767 verbs->device->dev_name,
768 verbs->device->dev_path,
769 verbs->device->ibdev_path,
770 port.link_layer,
771 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
772 ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
773 ? "Ethernet" : "Unknown"));
777 * Put in the log file the RDMA gid addressing information,
778 * useful for folks who have trouble understanding the
779 * RDMA device hierarchy in the kernel.
781 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
783 char sgid[33];
784 char dgid[33];
785 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
786 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
787 trace_qemu_rdma_dump_gid(who, sgid, dgid);
791 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
792 * We will try the next addrinfo struct, and fail if there are
793 * no other valid addresses to bind against.
795 * If user is listening on '[::]', then we will not have a opened a device
796 * yet and have no way of verifying if the device is RoCE or not.
798 * In this case, the source VM will throw an error for ALL types of
799 * connections (both IPv4 and IPv6) if the destination machine does not have
800 * a regular infiniband network available for use.
802 * The only way to guarantee that an error is thrown for broken kernels is
803 * for the management software to choose a *specific* interface at bind time
804 * and validate what time of hardware it is.
806 * Unfortunately, this puts the user in a fix:
808 * If the source VM connects with an IPv4 address without knowing that the
809 * destination has bound to '[::]' the migration will unconditionally fail
810 * unless the management software is explicitly listening on the IPv4
811 * address while using a RoCE-based device.
813 * If the source VM connects with an IPv6 address, then we're OK because we can
814 * throw an error on the source (and similarly on the destination).
816 * But in mixed environments, this will be broken for a while until it is fixed
817 * inside linux.
819 * We do provide a *tiny* bit of help in this function: We can list all of the
820 * devices in the system and check to see if all the devices are RoCE or
821 * Infiniband.
823 * If we detect that we have a *pure* RoCE environment, then we can safely
824 * thrown an error even if the management software has specified '[::]' as the
825 * bind address.
827 * However, if there is are multiple hetergeneous devices, then we cannot make
828 * this assumption and the user just has to be sure they know what they are
829 * doing.
831 * Patches are being reviewed on linux-rdma.
833 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
835 /* This bug only exists in linux, to our knowledge. */
836 #ifdef CONFIG_LINUX
837 struct ibv_port_attr port_attr;
840 * Verbs are only NULL if management has bound to '[::]'.
842 * Let's iterate through all the devices and see if there any pure IB
843 * devices (non-ethernet).
845 * If not, then we can safely proceed with the migration.
846 * Otherwise, there are no guarantees until the bug is fixed in linux.
848 if (!verbs) {
849 int num_devices, x;
850 struct ibv_device **dev_list = ibv_get_device_list(&num_devices);
851 bool roce_found = false;
852 bool ib_found = false;
854 for (x = 0; x < num_devices; x++) {
855 verbs = ibv_open_device(dev_list[x]);
856 if (!verbs) {
857 if (errno == EPERM) {
858 continue;
859 } else {
860 return -EINVAL;
864 if (ibv_query_port(verbs, 1, &port_attr)) {
865 ibv_close_device(verbs);
866 ERROR(errp, "Could not query initial IB port");
867 return -EINVAL;
870 if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
871 ib_found = true;
872 } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
873 roce_found = true;
876 ibv_close_device(verbs);
880 if (roce_found) {
881 if (ib_found) {
882 fprintf(stderr, "WARN: migrations may fail:"
883 " IPv6 over RoCE / iWARP in linux"
884 " is broken. But since you appear to have a"
885 " mixed RoCE / IB environment, be sure to only"
886 " migrate over the IB fabric until the kernel "
887 " fixes the bug.\n");
888 } else {
889 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
890 " and your management software has specified '[::]'"
891 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
892 return -ENONET;
896 return 0;
900 * If we have a verbs context, that means that some other than '[::]' was
901 * used by the management software for binding. In which case we can
902 * actually warn the user about a potentially broken kernel.
905 /* IB ports start with 1, not 0 */
906 if (ibv_query_port(verbs, 1, &port_attr)) {
907 ERROR(errp, "Could not query initial IB port");
908 return -EINVAL;
911 if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
912 ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
913 "(but patches on linux-rdma in progress)");
914 return -ENONET;
917 #endif
919 return 0;
923 * Figure out which RDMA device corresponds to the requested IP hostname
924 * Also create the initial connection manager identifiers for opening
925 * the connection.
927 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
929 int ret;
930 struct rdma_addrinfo *res;
931 char port_str[16];
932 struct rdma_cm_event *cm_event;
933 char ip[40] = "unknown";
934 struct rdma_addrinfo *e;
936 if (rdma->host == NULL || !strcmp(rdma->host, "")) {
937 ERROR(errp, "RDMA hostname has not been set");
938 return -EINVAL;
941 /* create CM channel */
942 rdma->channel = rdma_create_event_channel();
943 if (!rdma->channel) {
944 ERROR(errp, "could not create CM channel");
945 return -EINVAL;
948 /* create CM id */
949 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
950 if (ret) {
951 ERROR(errp, "could not create channel id");
952 goto err_resolve_create_id;
955 snprintf(port_str, 16, "%d", rdma->port);
956 port_str[15] = '\0';
958 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
959 if (ret < 0) {
960 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
961 goto err_resolve_get_addr;
964 for (e = res; e != NULL; e = e->ai_next) {
965 inet_ntop(e->ai_family,
966 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
967 trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
969 ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
970 RDMA_RESOLVE_TIMEOUT_MS);
971 if (!ret) {
972 if (e->ai_family == AF_INET6) {
973 ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs, errp);
974 if (ret) {
975 continue;
978 goto route;
982 rdma_freeaddrinfo(res);
983 ERROR(errp, "could not resolve address %s", rdma->host);
984 goto err_resolve_get_addr;
986 route:
987 rdma_freeaddrinfo(res);
988 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
990 ret = rdma_get_cm_event(rdma->channel, &cm_event);
991 if (ret) {
992 ERROR(errp, "could not perform event_addr_resolved");
993 goto err_resolve_get_addr;
996 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
997 ERROR(errp, "result not equal to event_addr_resolved %s",
998 rdma_event_str(cm_event->event));
999 error_report("rdma_resolve_addr");
1000 rdma_ack_cm_event(cm_event);
1001 ret = -EINVAL;
1002 goto err_resolve_get_addr;
1004 rdma_ack_cm_event(cm_event);
1006 /* resolve route */
1007 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
1008 if (ret) {
1009 ERROR(errp, "could not resolve rdma route");
1010 goto err_resolve_get_addr;
1013 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1014 if (ret) {
1015 ERROR(errp, "could not perform event_route_resolved");
1016 goto err_resolve_get_addr;
1018 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1019 ERROR(errp, "result not equal to event_route_resolved: %s",
1020 rdma_event_str(cm_event->event));
1021 rdma_ack_cm_event(cm_event);
1022 ret = -EINVAL;
1023 goto err_resolve_get_addr;
1025 rdma_ack_cm_event(cm_event);
1026 rdma->verbs = rdma->cm_id->verbs;
1027 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1028 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1029 return 0;
1031 err_resolve_get_addr:
1032 rdma_destroy_id(rdma->cm_id);
1033 rdma->cm_id = NULL;
1034 err_resolve_create_id:
1035 rdma_destroy_event_channel(rdma->channel);
1036 rdma->channel = NULL;
1037 return ret;
1041 * Create protection domain and completion queues
1043 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1045 /* allocate pd */
1046 rdma->pd = ibv_alloc_pd(rdma->verbs);
1047 if (!rdma->pd) {
1048 error_report("failed to allocate protection domain");
1049 return -1;
1052 /* create receive completion channel */
1053 rdma->recv_comp_channel = ibv_create_comp_channel(rdma->verbs);
1054 if (!rdma->recv_comp_channel) {
1055 error_report("failed to allocate receive completion channel");
1056 goto err_alloc_pd_cq;
1060 * Completion queue can be filled by read work requests.
1062 rdma->recv_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1063 NULL, rdma->recv_comp_channel, 0);
1064 if (!rdma->recv_cq) {
1065 error_report("failed to allocate receive completion queue");
1066 goto err_alloc_pd_cq;
1069 /* create send completion channel */
1070 rdma->send_comp_channel = ibv_create_comp_channel(rdma->verbs);
1071 if (!rdma->send_comp_channel) {
1072 error_report("failed to allocate send completion channel");
1073 goto err_alloc_pd_cq;
1076 rdma->send_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1077 NULL, rdma->send_comp_channel, 0);
1078 if (!rdma->send_cq) {
1079 error_report("failed to allocate send completion queue");
1080 goto err_alloc_pd_cq;
1083 return 0;
1085 err_alloc_pd_cq:
1086 if (rdma->pd) {
1087 ibv_dealloc_pd(rdma->pd);
1089 if (rdma->recv_comp_channel) {
1090 ibv_destroy_comp_channel(rdma->recv_comp_channel);
1092 if (rdma->send_comp_channel) {
1093 ibv_destroy_comp_channel(rdma->send_comp_channel);
1095 if (rdma->recv_cq) {
1096 ibv_destroy_cq(rdma->recv_cq);
1097 rdma->recv_cq = NULL;
1099 rdma->pd = NULL;
1100 rdma->recv_comp_channel = NULL;
1101 rdma->send_comp_channel = NULL;
1102 return -1;
1107 * Create queue pairs.
1109 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1111 struct ibv_qp_init_attr attr = { 0 };
1112 int ret;
1114 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1115 attr.cap.max_recv_wr = 3;
1116 attr.cap.max_send_sge = 1;
1117 attr.cap.max_recv_sge = 1;
1118 attr.send_cq = rdma->send_cq;
1119 attr.recv_cq = rdma->recv_cq;
1120 attr.qp_type = IBV_QPT_RC;
1122 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1123 if (ret) {
1124 return -1;
1127 rdma->qp = rdma->cm_id->qp;
1128 return 0;
1131 /* Check whether On-Demand Paging is supported by RDAM device */
1132 static bool rdma_support_odp(struct ibv_context *dev)
1134 struct ibv_device_attr_ex attr = {0};
1135 int ret = ibv_query_device_ex(dev, NULL, &attr);
1136 if (ret) {
1137 return false;
1140 if (attr.odp_caps.general_caps & IBV_ODP_SUPPORT) {
1141 return true;
1144 return false;
1148 * ibv_advise_mr to avoid RNR NAK error as far as possible.
1149 * The responder mr registering with ODP will sent RNR NAK back to
1150 * the requester in the face of the page fault.
1152 static void qemu_rdma_advise_prefetch_mr(struct ibv_pd *pd, uint64_t addr,
1153 uint32_t len, uint32_t lkey,
1154 const char *name, bool wr)
1156 #ifdef HAVE_IBV_ADVISE_MR
1157 int ret;
1158 int advice = wr ? IBV_ADVISE_MR_ADVICE_PREFETCH_WRITE :
1159 IBV_ADVISE_MR_ADVICE_PREFETCH;
1160 struct ibv_sge sg_list = {.lkey = lkey, .addr = addr, .length = len};
1162 ret = ibv_advise_mr(pd, advice,
1163 IBV_ADVISE_MR_FLAG_FLUSH, &sg_list, 1);
1164 /* ignore the error */
1165 if (ret) {
1166 trace_qemu_rdma_advise_mr(name, len, addr, strerror(errno));
1167 } else {
1168 trace_qemu_rdma_advise_mr(name, len, addr, "successed");
1170 #endif
1173 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1175 int i;
1176 RDMALocalBlocks *local = &rdma->local_ram_blocks;
1178 for (i = 0; i < local->nb_blocks; i++) {
1179 int access = IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE;
1181 local->block[i].mr =
1182 ibv_reg_mr(rdma->pd,
1183 local->block[i].local_host_addr,
1184 local->block[i].length, access
1187 if (!local->block[i].mr &&
1188 errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1189 access |= IBV_ACCESS_ON_DEMAND;
1190 /* register ODP mr */
1191 local->block[i].mr =
1192 ibv_reg_mr(rdma->pd,
1193 local->block[i].local_host_addr,
1194 local->block[i].length, access);
1195 trace_qemu_rdma_register_odp_mr(local->block[i].block_name);
1197 if (local->block[i].mr) {
1198 qemu_rdma_advise_prefetch_mr(rdma->pd,
1199 (uintptr_t)local->block[i].local_host_addr,
1200 local->block[i].length,
1201 local->block[i].mr->lkey,
1202 local->block[i].block_name,
1203 true);
1207 if (!local->block[i].mr) {
1208 perror("Failed to register local dest ram block!");
1209 break;
1211 rdma->total_registrations++;
1214 if (i >= local->nb_blocks) {
1215 return 0;
1218 for (i--; i >= 0; i--) {
1219 ibv_dereg_mr(local->block[i].mr);
1220 local->block[i].mr = NULL;
1221 rdma->total_registrations--;
1224 return -1;
1229 * Find the ram block that corresponds to the page requested to be
1230 * transmitted by QEMU.
1232 * Once the block is found, also identify which 'chunk' within that
1233 * block that the page belongs to.
1235 static void qemu_rdma_search_ram_block(RDMAContext *rdma,
1236 uintptr_t block_offset,
1237 uint64_t offset,
1238 uint64_t length,
1239 uint64_t *block_index,
1240 uint64_t *chunk_index)
1242 uint64_t current_addr = block_offset + offset;
1243 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1244 (void *) block_offset);
1245 assert(block);
1246 assert(current_addr >= block->offset);
1247 assert((current_addr + length) <= (block->offset + block->length));
1249 *block_index = block->index;
1250 *chunk_index = ram_chunk_index(block->local_host_addr,
1251 block->local_host_addr + (current_addr - block->offset));
1255 * Register a chunk with IB. If the chunk was already registered
1256 * previously, then skip.
1258 * Also return the keys associated with the registration needed
1259 * to perform the actual RDMA operation.
1261 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1262 RDMALocalBlock *block, uintptr_t host_addr,
1263 uint32_t *lkey, uint32_t *rkey, int chunk,
1264 uint8_t *chunk_start, uint8_t *chunk_end)
1266 if (block->mr) {
1267 if (lkey) {
1268 *lkey = block->mr->lkey;
1270 if (rkey) {
1271 *rkey = block->mr->rkey;
1273 return 0;
1276 /* allocate memory to store chunk MRs */
1277 if (!block->pmr) {
1278 block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1282 * If 'rkey', then we're the destination, so grant access to the source.
1284 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1286 if (!block->pmr[chunk]) {
1287 uint64_t len = chunk_end - chunk_start;
1288 int access = rkey ? IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE :
1291 trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1293 block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1294 if (!block->pmr[chunk] &&
1295 errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1296 access |= IBV_ACCESS_ON_DEMAND;
1297 /* register ODP mr */
1298 block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1299 trace_qemu_rdma_register_odp_mr(block->block_name);
1301 if (block->pmr[chunk]) {
1302 qemu_rdma_advise_prefetch_mr(rdma->pd, (uintptr_t)chunk_start,
1303 len, block->pmr[chunk]->lkey,
1304 block->block_name, rkey);
1309 if (!block->pmr[chunk]) {
1310 perror("Failed to register chunk!");
1311 fprintf(stderr, "Chunk details: block: %d chunk index %d"
1312 " start %" PRIuPTR " end %" PRIuPTR
1313 " host %" PRIuPTR
1314 " local %" PRIuPTR " registrations: %d\n",
1315 block->index, chunk, (uintptr_t)chunk_start,
1316 (uintptr_t)chunk_end, host_addr,
1317 (uintptr_t)block->local_host_addr,
1318 rdma->total_registrations);
1319 return -1;
1321 rdma->total_registrations++;
1323 if (lkey) {
1324 *lkey = block->pmr[chunk]->lkey;
1326 if (rkey) {
1327 *rkey = block->pmr[chunk]->rkey;
1329 return 0;
1333 * Register (at connection time) the memory used for control
1334 * channel messages.
1336 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1338 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1339 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1340 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1341 if (rdma->wr_data[idx].control_mr) {
1342 rdma->total_registrations++;
1343 return 0;
1345 error_report("qemu_rdma_reg_control failed");
1346 return -1;
1350 * Perform a non-optimized memory unregistration after every transfer
1351 * for demonstration purposes, only if pin-all is not requested.
1353 * Potential optimizations:
1354 * 1. Start a new thread to run this function continuously
1355 - for bit clearing
1356 - and for receipt of unregister messages
1357 * 2. Use an LRU.
1358 * 3. Use workload hints.
1360 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1362 while (rdma->unregistrations[rdma->unregister_current]) {
1363 int ret;
1364 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1365 uint64_t chunk =
1366 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1367 uint64_t index =
1368 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1369 RDMALocalBlock *block =
1370 &(rdma->local_ram_blocks.block[index]);
1371 RDMARegister reg = { .current_index = index };
1372 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1374 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1375 .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1376 .repeat = 1,
1379 trace_qemu_rdma_unregister_waiting_proc(chunk,
1380 rdma->unregister_current);
1382 rdma->unregistrations[rdma->unregister_current] = 0;
1383 rdma->unregister_current++;
1385 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1386 rdma->unregister_current = 0;
1391 * Unregistration is speculative (because migration is single-threaded
1392 * and we cannot break the protocol's inifinband message ordering).
1393 * Thus, if the memory is currently being used for transmission,
1394 * then abort the attempt to unregister and try again
1395 * later the next time a completion is received for this memory.
1397 clear_bit(chunk, block->unregister_bitmap);
1399 if (test_bit(chunk, block->transit_bitmap)) {
1400 trace_qemu_rdma_unregister_waiting_inflight(chunk);
1401 continue;
1404 trace_qemu_rdma_unregister_waiting_send(chunk);
1406 ret = ibv_dereg_mr(block->pmr[chunk]);
1407 block->pmr[chunk] = NULL;
1408 block->remote_keys[chunk] = 0;
1410 if (ret != 0) {
1411 perror("unregistration chunk failed");
1412 return -ret;
1414 rdma->total_registrations--;
1416 reg.key.chunk = chunk;
1417 register_to_network(rdma, &reg);
1418 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1419 &resp, NULL, NULL);
1420 if (ret < 0) {
1421 return ret;
1424 trace_qemu_rdma_unregister_waiting_complete(chunk);
1427 return 0;
1430 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1431 uint64_t chunk)
1433 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1435 result |= (index << RDMA_WRID_BLOCK_SHIFT);
1436 result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1438 return result;
1442 * Consult the connection manager to see a work request
1443 * (of any kind) has completed.
1444 * Return the work request ID that completed.
1446 static int qemu_rdma_poll(RDMAContext *rdma, struct ibv_cq *cq,
1447 uint64_t *wr_id_out, uint32_t *byte_len)
1449 int ret;
1450 struct ibv_wc wc;
1451 uint64_t wr_id;
1453 ret = ibv_poll_cq(cq, 1, &wc);
1455 if (!ret) {
1456 *wr_id_out = RDMA_WRID_NONE;
1457 return 0;
1460 if (ret < 0) {
1461 error_report("ibv_poll_cq return %d", ret);
1462 return ret;
1465 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1467 if (wc.status != IBV_WC_SUCCESS) {
1468 fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1469 wc.status, ibv_wc_status_str(wc.status));
1470 fprintf(stderr, "ibv_poll_cq wrid=%" PRIu64 "!\n", wr_id);
1472 return -1;
1475 if (rdma->control_ready_expected &&
1476 (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1477 trace_qemu_rdma_poll_recv(wr_id - RDMA_WRID_RECV_CONTROL, wr_id,
1478 rdma->nb_sent);
1479 rdma->control_ready_expected = 0;
1482 if (wr_id == RDMA_WRID_RDMA_WRITE) {
1483 uint64_t chunk =
1484 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1485 uint64_t index =
1486 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1487 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1489 trace_qemu_rdma_poll_write(wr_id, rdma->nb_sent,
1490 index, chunk, block->local_host_addr,
1491 (void *)(uintptr_t)block->remote_host_addr);
1493 clear_bit(chunk, block->transit_bitmap);
1495 if (rdma->nb_sent > 0) {
1496 rdma->nb_sent--;
1498 } else {
1499 trace_qemu_rdma_poll_other(wr_id, rdma->nb_sent);
1502 *wr_id_out = wc.wr_id;
1503 if (byte_len) {
1504 *byte_len = wc.byte_len;
1507 return 0;
1510 /* Wait for activity on the completion channel.
1511 * Returns 0 on success, none-0 on error.
1513 static int qemu_rdma_wait_comp_channel(RDMAContext *rdma,
1514 struct ibv_comp_channel *comp_channel)
1516 struct rdma_cm_event *cm_event;
1517 int ret = -1;
1520 * Coroutine doesn't start until migration_fd_process_incoming()
1521 * so don't yield unless we know we're running inside of a coroutine.
1523 if (rdma->migration_started_on_destination &&
1524 migration_incoming_get_current()->state == MIGRATION_STATUS_ACTIVE) {
1525 yield_until_fd_readable(comp_channel->fd);
1526 } else {
1527 /* This is the source side, we're in a separate thread
1528 * or destination prior to migration_fd_process_incoming()
1529 * after postcopy, the destination also in a separate thread.
1530 * we can't yield; so we have to poll the fd.
1531 * But we need to be able to handle 'cancel' or an error
1532 * without hanging forever.
1534 while (!rdma->error_state && !rdma->received_error) {
1535 GPollFD pfds[2];
1536 pfds[0].fd = comp_channel->fd;
1537 pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1538 pfds[0].revents = 0;
1540 pfds[1].fd = rdma->channel->fd;
1541 pfds[1].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1542 pfds[1].revents = 0;
1544 /* 0.1s timeout, should be fine for a 'cancel' */
1545 switch (qemu_poll_ns(pfds, 2, 100 * 1000 * 1000)) {
1546 case 2:
1547 case 1: /* fd active */
1548 if (pfds[0].revents) {
1549 return 0;
1552 if (pfds[1].revents) {
1553 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1554 if (ret) {
1555 error_report("failed to get cm event while wait "
1556 "completion channel");
1557 return -EPIPE;
1560 error_report("receive cm event while wait comp channel,"
1561 "cm event is %d", cm_event->event);
1562 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
1563 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
1564 rdma_ack_cm_event(cm_event);
1565 return -EPIPE;
1567 rdma_ack_cm_event(cm_event);
1569 break;
1571 case 0: /* Timeout, go around again */
1572 break;
1574 default: /* Error of some type -
1575 * I don't trust errno from qemu_poll_ns
1577 error_report("%s: poll failed", __func__);
1578 return -EPIPE;
1581 if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1582 /* Bail out and let the cancellation happen */
1583 return -EPIPE;
1588 if (rdma->received_error) {
1589 return -EPIPE;
1591 return rdma->error_state;
1594 static struct ibv_comp_channel *to_channel(RDMAContext *rdma, uint64_t wrid)
1596 return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_comp_channel :
1597 rdma->recv_comp_channel;
1600 static struct ibv_cq *to_cq(RDMAContext *rdma, uint64_t wrid)
1602 return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_cq : rdma->recv_cq;
1606 * Block until the next work request has completed.
1608 * First poll to see if a work request has already completed,
1609 * otherwise block.
1611 * If we encounter completed work requests for IDs other than
1612 * the one we're interested in, then that's generally an error.
1614 * The only exception is actual RDMA Write completions. These
1615 * completions only need to be recorded, but do not actually
1616 * need further processing.
1618 static int qemu_rdma_block_for_wrid(RDMAContext *rdma,
1619 uint64_t wrid_requested,
1620 uint32_t *byte_len)
1622 int num_cq_events = 0, ret = 0;
1623 struct ibv_cq *cq;
1624 void *cq_ctx;
1625 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1626 struct ibv_comp_channel *ch = to_channel(rdma, wrid_requested);
1627 struct ibv_cq *poll_cq = to_cq(rdma, wrid_requested);
1629 if (ibv_req_notify_cq(poll_cq, 0)) {
1630 return -1;
1632 /* poll cq first */
1633 while (wr_id != wrid_requested) {
1634 ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1635 if (ret < 0) {
1636 return ret;
1639 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1641 if (wr_id == RDMA_WRID_NONE) {
1642 break;
1644 if (wr_id != wrid_requested) {
1645 trace_qemu_rdma_block_for_wrid_miss(wrid_requested, wr_id);
1649 if (wr_id == wrid_requested) {
1650 return 0;
1653 while (1) {
1654 ret = qemu_rdma_wait_comp_channel(rdma, ch);
1655 if (ret) {
1656 goto err_block_for_wrid;
1659 ret = ibv_get_cq_event(ch, &cq, &cq_ctx);
1660 if (ret) {
1661 perror("ibv_get_cq_event");
1662 goto err_block_for_wrid;
1665 num_cq_events++;
1667 ret = -ibv_req_notify_cq(cq, 0);
1668 if (ret) {
1669 goto err_block_for_wrid;
1672 while (wr_id != wrid_requested) {
1673 ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1674 if (ret < 0) {
1675 goto err_block_for_wrid;
1678 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1680 if (wr_id == RDMA_WRID_NONE) {
1681 break;
1683 if (wr_id != wrid_requested) {
1684 trace_qemu_rdma_block_for_wrid_miss(wrid_requested, wr_id);
1688 if (wr_id == wrid_requested) {
1689 goto success_block_for_wrid;
1693 success_block_for_wrid:
1694 if (num_cq_events) {
1695 ibv_ack_cq_events(cq, num_cq_events);
1697 return 0;
1699 err_block_for_wrid:
1700 if (num_cq_events) {
1701 ibv_ack_cq_events(cq, num_cq_events);
1704 rdma->error_state = ret;
1705 return ret;
1709 * Post a SEND message work request for the control channel
1710 * containing some data and block until the post completes.
1712 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1713 RDMAControlHeader *head)
1715 int ret = 0;
1716 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1717 struct ibv_send_wr *bad_wr;
1718 struct ibv_sge sge = {
1719 .addr = (uintptr_t)(wr->control),
1720 .length = head->len + sizeof(RDMAControlHeader),
1721 .lkey = wr->control_mr->lkey,
1723 struct ibv_send_wr send_wr = {
1724 .wr_id = RDMA_WRID_SEND_CONTROL,
1725 .opcode = IBV_WR_SEND,
1726 .send_flags = IBV_SEND_SIGNALED,
1727 .sg_list = &sge,
1728 .num_sge = 1,
1731 trace_qemu_rdma_post_send_control(control_desc(head->type));
1734 * We don't actually need to do a memcpy() in here if we used
1735 * the "sge" properly, but since we're only sending control messages
1736 * (not RAM in a performance-critical path), then its OK for now.
1738 * The copy makes the RDMAControlHeader simpler to manipulate
1739 * for the time being.
1741 assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1742 memcpy(wr->control, head, sizeof(RDMAControlHeader));
1743 control_to_network((void *) wr->control);
1745 if (buf) {
1746 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1750 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1752 if (ret > 0) {
1753 error_report("Failed to use post IB SEND for control");
1754 return -ret;
1757 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1758 if (ret < 0) {
1759 error_report("rdma migration: send polling control error");
1762 return ret;
1766 * Post a RECV work request in anticipation of some future receipt
1767 * of data on the control channel.
1769 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1771 struct ibv_recv_wr *bad_wr;
1772 struct ibv_sge sge = {
1773 .addr = (uintptr_t)(rdma->wr_data[idx].control),
1774 .length = RDMA_CONTROL_MAX_BUFFER,
1775 .lkey = rdma->wr_data[idx].control_mr->lkey,
1778 struct ibv_recv_wr recv_wr = {
1779 .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1780 .sg_list = &sge,
1781 .num_sge = 1,
1785 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1786 return -1;
1789 return 0;
1793 * Block and wait for a RECV control channel message to arrive.
1795 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1796 RDMAControlHeader *head, uint32_t expecting, int idx)
1798 uint32_t byte_len;
1799 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1800 &byte_len);
1802 if (ret < 0) {
1803 error_report("rdma migration: recv polling control error!");
1804 return ret;
1807 network_to_control((void *) rdma->wr_data[idx].control);
1808 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1810 trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1812 if (expecting == RDMA_CONTROL_NONE) {
1813 trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1814 head->type);
1815 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1816 error_report("Was expecting a %s (%d) control message"
1817 ", but got: %s (%d), length: %d",
1818 control_desc(expecting), expecting,
1819 control_desc(head->type), head->type, head->len);
1820 if (head->type == RDMA_CONTROL_ERROR) {
1821 rdma->received_error = true;
1823 return -EIO;
1825 if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1826 error_report("too long length: %d", head->len);
1827 return -EINVAL;
1829 if (sizeof(*head) + head->len != byte_len) {
1830 error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1831 return -EINVAL;
1834 return 0;
1838 * When a RECV work request has completed, the work request's
1839 * buffer is pointed at the header.
1841 * This will advance the pointer to the data portion
1842 * of the control message of the work request's buffer that
1843 * was populated after the work request finished.
1845 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1846 RDMAControlHeader *head)
1848 rdma->wr_data[idx].control_len = head->len;
1849 rdma->wr_data[idx].control_curr =
1850 rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1854 * This is an 'atomic' high-level operation to deliver a single, unified
1855 * control-channel message.
1857 * Additionally, if the user is expecting some kind of reply to this message,
1858 * they can request a 'resp' response message be filled in by posting an
1859 * additional work request on behalf of the user and waiting for an additional
1860 * completion.
1862 * The extra (optional) response is used during registration to us from having
1863 * to perform an *additional* exchange of message just to provide a response by
1864 * instead piggy-backing on the acknowledgement.
1866 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1867 uint8_t *data, RDMAControlHeader *resp,
1868 int *resp_idx,
1869 int (*callback)(RDMAContext *rdma))
1871 int ret = 0;
1874 * Wait until the dest is ready before attempting to deliver the message
1875 * by waiting for a READY message.
1877 if (rdma->control_ready_expected) {
1878 RDMAControlHeader resp_ignored;
1880 ret = qemu_rdma_exchange_get_response(rdma, &resp_ignored,
1881 RDMA_CONTROL_READY,
1882 RDMA_WRID_READY);
1883 if (ret < 0) {
1884 return ret;
1889 * If the user is expecting a response, post a WR in anticipation of it.
1891 if (resp) {
1892 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1893 if (ret) {
1894 error_report("rdma migration: error posting"
1895 " extra control recv for anticipated result!");
1896 return ret;
1901 * Post a WR to replace the one we just consumed for the READY message.
1903 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1904 if (ret) {
1905 error_report("rdma migration: error posting first control recv!");
1906 return ret;
1910 * Deliver the control message that was requested.
1912 ret = qemu_rdma_post_send_control(rdma, data, head);
1914 if (ret < 0) {
1915 error_report("Failed to send control buffer!");
1916 return ret;
1920 * If we're expecting a response, block and wait for it.
1922 if (resp) {
1923 if (callback) {
1924 trace_qemu_rdma_exchange_send_issue_callback();
1925 ret = callback(rdma);
1926 if (ret < 0) {
1927 return ret;
1931 trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
1932 ret = qemu_rdma_exchange_get_response(rdma, resp,
1933 resp->type, RDMA_WRID_DATA);
1935 if (ret < 0) {
1936 return ret;
1939 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1940 if (resp_idx) {
1941 *resp_idx = RDMA_WRID_DATA;
1943 trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
1946 rdma->control_ready_expected = 1;
1948 return 0;
1952 * This is an 'atomic' high-level operation to receive a single, unified
1953 * control-channel message.
1955 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1956 uint32_t expecting)
1958 RDMAControlHeader ready = {
1959 .len = 0,
1960 .type = RDMA_CONTROL_READY,
1961 .repeat = 1,
1963 int ret;
1966 * Inform the source that we're ready to receive a message.
1968 ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1970 if (ret < 0) {
1971 error_report("Failed to send control buffer!");
1972 return ret;
1976 * Block and wait for the message.
1978 ret = qemu_rdma_exchange_get_response(rdma, head,
1979 expecting, RDMA_WRID_READY);
1981 if (ret < 0) {
1982 return ret;
1985 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1988 * Post a new RECV work request to replace the one we just consumed.
1990 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1991 if (ret) {
1992 error_report("rdma migration: error posting second control recv!");
1993 return ret;
1996 return 0;
2000 * Write an actual chunk of memory using RDMA.
2002 * If we're using dynamic registration on the dest-side, we have to
2003 * send a registration command first.
2005 static int qemu_rdma_write_one(RDMAContext *rdma,
2006 int current_index, uint64_t current_addr,
2007 uint64_t length)
2009 struct ibv_sge sge;
2010 struct ibv_send_wr send_wr = { 0 };
2011 struct ibv_send_wr *bad_wr;
2012 int reg_result_idx, ret, count = 0;
2013 uint64_t chunk, chunks;
2014 uint8_t *chunk_start, *chunk_end;
2015 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
2016 RDMARegister reg;
2017 RDMARegisterResult *reg_result;
2018 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
2019 RDMAControlHeader head = { .len = sizeof(RDMARegister),
2020 .type = RDMA_CONTROL_REGISTER_REQUEST,
2021 .repeat = 1,
2024 retry:
2025 sge.addr = (uintptr_t)(block->local_host_addr +
2026 (current_addr - block->offset));
2027 sge.length = length;
2029 chunk = ram_chunk_index(block->local_host_addr,
2030 (uint8_t *)(uintptr_t)sge.addr);
2031 chunk_start = ram_chunk_start(block, chunk);
2033 if (block->is_ram_block) {
2034 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
2036 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2037 chunks--;
2039 } else {
2040 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
2042 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2043 chunks--;
2047 trace_qemu_rdma_write_one_top(chunks + 1,
2048 (chunks + 1) *
2049 (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
2051 chunk_end = ram_chunk_end(block, chunk + chunks);
2054 while (test_bit(chunk, block->transit_bitmap)) {
2055 (void)count;
2056 trace_qemu_rdma_write_one_block(count++, current_index, chunk,
2057 sge.addr, length, rdma->nb_sent, block->nb_chunks);
2059 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2061 if (ret < 0) {
2062 error_report("Failed to Wait for previous write to complete "
2063 "block %d chunk %" PRIu64
2064 " current %" PRIu64 " len %" PRIu64 " %d",
2065 current_index, chunk, sge.addr, length, rdma->nb_sent);
2066 return ret;
2070 if (!rdma->pin_all || !block->is_ram_block) {
2071 if (!block->remote_keys[chunk]) {
2073 * This chunk has not yet been registered, so first check to see
2074 * if the entire chunk is zero. If so, tell the other size to
2075 * memset() + madvise() the entire chunk without RDMA.
2078 if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2079 RDMACompress comp = {
2080 .offset = current_addr,
2081 .value = 0,
2082 .block_idx = current_index,
2083 .length = length,
2086 head.len = sizeof(comp);
2087 head.type = RDMA_CONTROL_COMPRESS;
2089 trace_qemu_rdma_write_one_zero(chunk, sge.length,
2090 current_index, current_addr);
2092 compress_to_network(rdma, &comp);
2093 ret = qemu_rdma_exchange_send(rdma, &head,
2094 (uint8_t *) &comp, NULL, NULL, NULL);
2096 if (ret < 0) {
2097 return -EIO;
2101 * TODO: Here we are sending something, but we are not
2102 * accounting for anything transferred. The following is wrong:
2104 * stat64_add(&mig_stats.rdma_bytes, sge.length);
2106 * because we are using some kind of compression. I
2107 * would think that head.len would be the more similar
2108 * thing to a correct value.
2110 stat64_add(&mig_stats.zero_pages,
2111 sge.length / qemu_target_page_size());
2112 return 1;
2116 * Otherwise, tell other side to register.
2118 reg.current_index = current_index;
2119 if (block->is_ram_block) {
2120 reg.key.current_addr = current_addr;
2121 } else {
2122 reg.key.chunk = chunk;
2124 reg.chunks = chunks;
2126 trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2127 current_addr);
2129 register_to_network(rdma, &reg);
2130 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
2131 &resp, &reg_result_idx, NULL);
2132 if (ret < 0) {
2133 return ret;
2136 /* try to overlap this single registration with the one we sent. */
2137 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2138 &sge.lkey, NULL, chunk,
2139 chunk_start, chunk_end)) {
2140 error_report("cannot get lkey");
2141 return -EINVAL;
2144 reg_result = (RDMARegisterResult *)
2145 rdma->wr_data[reg_result_idx].control_curr;
2147 network_to_result(reg_result);
2149 trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2150 reg_result->rkey, chunk);
2152 block->remote_keys[chunk] = reg_result->rkey;
2153 block->remote_host_addr = reg_result->host_addr;
2154 } else {
2155 /* already registered before */
2156 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2157 &sge.lkey, NULL, chunk,
2158 chunk_start, chunk_end)) {
2159 error_report("cannot get lkey!");
2160 return -EINVAL;
2164 send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2165 } else {
2166 send_wr.wr.rdma.rkey = block->remote_rkey;
2168 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2169 &sge.lkey, NULL, chunk,
2170 chunk_start, chunk_end)) {
2171 error_report("cannot get lkey!");
2172 return -EINVAL;
2177 * Encode the ram block index and chunk within this wrid.
2178 * We will use this information at the time of completion
2179 * to figure out which bitmap to check against and then which
2180 * chunk in the bitmap to look for.
2182 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2183 current_index, chunk);
2185 send_wr.opcode = IBV_WR_RDMA_WRITE;
2186 send_wr.send_flags = IBV_SEND_SIGNALED;
2187 send_wr.sg_list = &sge;
2188 send_wr.num_sge = 1;
2189 send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2190 (current_addr - block->offset);
2192 trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2193 sge.length);
2196 * ibv_post_send() does not return negative error numbers,
2197 * per the specification they are positive - no idea why.
2199 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2201 if (ret == ENOMEM) {
2202 trace_qemu_rdma_write_one_queue_full();
2203 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2204 if (ret < 0) {
2205 error_report("rdma migration: failed to make "
2206 "room in full send queue! %d", ret);
2207 return ret;
2210 goto retry;
2212 } else if (ret > 0) {
2213 perror("rdma migration: post rdma write failed");
2214 return -ret;
2217 set_bit(chunk, block->transit_bitmap);
2218 stat64_add(&mig_stats.normal_pages, sge.length / qemu_target_page_size());
2220 * We are adding to transferred the amount of data written, but no
2221 * overhead at all. I will asume that RDMA is magicaly and don't
2222 * need to transfer (at least) the addresses where it wants to
2223 * write the pages. Here it looks like it should be something
2224 * like:
2225 * sizeof(send_wr) + sge.length
2226 * but this being RDMA, who knows.
2228 stat64_add(&mig_stats.rdma_bytes, sge.length);
2229 ram_transferred_add(sge.length);
2230 rdma->total_writes++;
2232 return 0;
2236 * Push out any unwritten RDMA operations.
2238 * We support sending out multiple chunks at the same time.
2239 * Not all of them need to get signaled in the completion queue.
2241 static int qemu_rdma_write_flush(RDMAContext *rdma)
2243 int ret;
2245 if (!rdma->current_length) {
2246 return 0;
2249 ret = qemu_rdma_write_one(rdma,
2250 rdma->current_index, rdma->current_addr, rdma->current_length);
2252 if (ret < 0) {
2253 return ret;
2256 if (ret == 0) {
2257 rdma->nb_sent++;
2258 trace_qemu_rdma_write_flush(rdma->nb_sent);
2261 rdma->current_length = 0;
2262 rdma->current_addr = 0;
2264 return 0;
2267 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2268 uint64_t offset, uint64_t len)
2270 RDMALocalBlock *block;
2271 uint8_t *host_addr;
2272 uint8_t *chunk_end;
2274 if (rdma->current_index < 0) {
2275 return 0;
2278 if (rdma->current_chunk < 0) {
2279 return 0;
2282 block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2283 host_addr = block->local_host_addr + (offset - block->offset);
2284 chunk_end = ram_chunk_end(block, rdma->current_chunk);
2286 if (rdma->current_length == 0) {
2287 return 0;
2291 * Only merge into chunk sequentially.
2293 if (offset != (rdma->current_addr + rdma->current_length)) {
2294 return 0;
2297 if (offset < block->offset) {
2298 return 0;
2301 if ((offset + len) > (block->offset + block->length)) {
2302 return 0;
2305 if ((host_addr + len) > chunk_end) {
2306 return 0;
2309 return 1;
2313 * We're not actually writing here, but doing three things:
2315 * 1. Identify the chunk the buffer belongs to.
2316 * 2. If the chunk is full or the buffer doesn't belong to the current
2317 * chunk, then start a new chunk and flush() the old chunk.
2318 * 3. To keep the hardware busy, we also group chunks into batches
2319 * and only require that a batch gets acknowledged in the completion
2320 * queue instead of each individual chunk.
2322 static int qemu_rdma_write(RDMAContext *rdma,
2323 uint64_t block_offset, uint64_t offset,
2324 uint64_t len)
2326 uint64_t current_addr = block_offset + offset;
2327 uint64_t index = rdma->current_index;
2328 uint64_t chunk = rdma->current_chunk;
2329 int ret;
2331 /* If we cannot merge it, we flush the current buffer first. */
2332 if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2333 ret = qemu_rdma_write_flush(rdma);
2334 if (ret) {
2335 return ret;
2337 rdma->current_length = 0;
2338 rdma->current_addr = current_addr;
2340 qemu_rdma_search_ram_block(rdma, block_offset,
2341 offset, len, &index, &chunk);
2342 rdma->current_index = index;
2343 rdma->current_chunk = chunk;
2346 /* merge it */
2347 rdma->current_length += len;
2349 /* flush it if buffer is too large */
2350 if (rdma->current_length >= RDMA_MERGE_MAX) {
2351 return qemu_rdma_write_flush(rdma);
2354 return 0;
2357 static void qemu_rdma_cleanup(RDMAContext *rdma)
2359 int idx;
2361 if (rdma->cm_id && rdma->connected) {
2362 if ((rdma->error_state ||
2363 migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2364 !rdma->received_error) {
2365 RDMAControlHeader head = { .len = 0,
2366 .type = RDMA_CONTROL_ERROR,
2367 .repeat = 1,
2369 error_report("Early error. Sending error.");
2370 qemu_rdma_post_send_control(rdma, NULL, &head);
2373 rdma_disconnect(rdma->cm_id);
2374 trace_qemu_rdma_cleanup_disconnect();
2375 rdma->connected = false;
2378 if (rdma->channel) {
2379 qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2381 g_free(rdma->dest_blocks);
2382 rdma->dest_blocks = NULL;
2384 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2385 if (rdma->wr_data[idx].control_mr) {
2386 rdma->total_registrations--;
2387 ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2389 rdma->wr_data[idx].control_mr = NULL;
2392 if (rdma->local_ram_blocks.block) {
2393 while (rdma->local_ram_blocks.nb_blocks) {
2394 rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2398 if (rdma->qp) {
2399 rdma_destroy_qp(rdma->cm_id);
2400 rdma->qp = NULL;
2402 if (rdma->recv_cq) {
2403 ibv_destroy_cq(rdma->recv_cq);
2404 rdma->recv_cq = NULL;
2406 if (rdma->send_cq) {
2407 ibv_destroy_cq(rdma->send_cq);
2408 rdma->send_cq = NULL;
2410 if (rdma->recv_comp_channel) {
2411 ibv_destroy_comp_channel(rdma->recv_comp_channel);
2412 rdma->recv_comp_channel = NULL;
2414 if (rdma->send_comp_channel) {
2415 ibv_destroy_comp_channel(rdma->send_comp_channel);
2416 rdma->send_comp_channel = NULL;
2418 if (rdma->pd) {
2419 ibv_dealloc_pd(rdma->pd);
2420 rdma->pd = NULL;
2422 if (rdma->cm_id) {
2423 rdma_destroy_id(rdma->cm_id);
2424 rdma->cm_id = NULL;
2427 /* the destination side, listen_id and channel is shared */
2428 if (rdma->listen_id) {
2429 if (!rdma->is_return_path) {
2430 rdma_destroy_id(rdma->listen_id);
2432 rdma->listen_id = NULL;
2434 if (rdma->channel) {
2435 if (!rdma->is_return_path) {
2436 rdma_destroy_event_channel(rdma->channel);
2438 rdma->channel = NULL;
2442 if (rdma->channel) {
2443 rdma_destroy_event_channel(rdma->channel);
2444 rdma->channel = NULL;
2446 g_free(rdma->host);
2447 g_free(rdma->host_port);
2448 rdma->host = NULL;
2449 rdma->host_port = NULL;
2453 static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2455 int ret, idx;
2458 * Will be validated against destination's actual capabilities
2459 * after the connect() completes.
2461 rdma->pin_all = pin_all;
2463 ret = qemu_rdma_resolve_host(rdma, errp);
2464 if (ret) {
2465 goto err_rdma_source_init;
2468 ret = qemu_rdma_alloc_pd_cq(rdma);
2469 if (ret) {
2470 ERROR(errp, "rdma migration: error allocating pd and cq! Your mlock()"
2471 " limits may be too low. Please check $ ulimit -a # and "
2472 "search for 'ulimit -l' in the output");
2473 goto err_rdma_source_init;
2476 ret = qemu_rdma_alloc_qp(rdma);
2477 if (ret) {
2478 ERROR(errp, "rdma migration: error allocating qp!");
2479 goto err_rdma_source_init;
2482 qemu_rdma_init_ram_blocks(rdma);
2484 /* Build the hash that maps from offset to RAMBlock */
2485 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2486 for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2487 g_hash_table_insert(rdma->blockmap,
2488 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2489 &rdma->local_ram_blocks.block[idx]);
2492 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2493 ret = qemu_rdma_reg_control(rdma, idx);
2494 if (ret) {
2495 ERROR(errp, "rdma migration: error registering %d control!",
2496 idx);
2497 goto err_rdma_source_init;
2501 return 0;
2503 err_rdma_source_init:
2504 qemu_rdma_cleanup(rdma);
2505 return -1;
2508 static int qemu_get_cm_event_timeout(RDMAContext *rdma,
2509 struct rdma_cm_event **cm_event,
2510 long msec, Error **errp)
2512 int ret;
2513 struct pollfd poll_fd = {
2514 .fd = rdma->channel->fd,
2515 .events = POLLIN,
2516 .revents = 0
2519 do {
2520 ret = poll(&poll_fd, 1, msec);
2521 } while (ret < 0 && errno == EINTR);
2523 if (ret == 0) {
2524 ERROR(errp, "poll cm event timeout");
2525 return -1;
2526 } else if (ret < 0) {
2527 ERROR(errp, "failed to poll cm event, errno=%i", errno);
2528 return -1;
2529 } else if (poll_fd.revents & POLLIN) {
2530 return rdma_get_cm_event(rdma->channel, cm_event);
2531 } else {
2532 ERROR(errp, "no POLLIN event, revent=%x", poll_fd.revents);
2533 return -1;
2537 static int qemu_rdma_connect(RDMAContext *rdma, bool return_path,
2538 Error **errp)
2540 RDMACapabilities cap = {
2541 .version = RDMA_CONTROL_VERSION_CURRENT,
2542 .flags = 0,
2544 struct rdma_conn_param conn_param = { .initiator_depth = 2,
2545 .retry_count = 5,
2546 .private_data = &cap,
2547 .private_data_len = sizeof(cap),
2549 struct rdma_cm_event *cm_event;
2550 int ret;
2553 * Only negotiate the capability with destination if the user
2554 * on the source first requested the capability.
2556 if (rdma->pin_all) {
2557 trace_qemu_rdma_connect_pin_all_requested();
2558 cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2561 caps_to_network(&cap);
2563 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2564 if (ret) {
2565 ERROR(errp, "posting second control recv");
2566 goto err_rdma_source_connect;
2569 ret = rdma_connect(rdma->cm_id, &conn_param);
2570 if (ret) {
2571 perror("rdma_connect");
2572 ERROR(errp, "connecting to destination!");
2573 goto err_rdma_source_connect;
2576 if (return_path) {
2577 ret = qemu_get_cm_event_timeout(rdma, &cm_event, 5000, errp);
2578 } else {
2579 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2581 if (ret) {
2582 perror("rdma_get_cm_event after rdma_connect");
2583 ERROR(errp, "connecting to destination!");
2584 goto err_rdma_source_connect;
2587 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2588 error_report("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2589 ERROR(errp, "connecting to destination!");
2590 rdma_ack_cm_event(cm_event);
2591 goto err_rdma_source_connect;
2593 rdma->connected = true;
2595 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2596 network_to_caps(&cap);
2599 * Verify that the *requested* capabilities are supported by the destination
2600 * and disable them otherwise.
2602 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2603 ERROR(errp, "Server cannot support pinning all memory. "
2604 "Will register memory dynamically.");
2605 rdma->pin_all = false;
2608 trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2610 rdma_ack_cm_event(cm_event);
2612 rdma->control_ready_expected = 1;
2613 rdma->nb_sent = 0;
2614 return 0;
2616 err_rdma_source_connect:
2617 qemu_rdma_cleanup(rdma);
2618 return -1;
2621 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2623 int ret, idx;
2624 struct rdma_cm_id *listen_id;
2625 char ip[40] = "unknown";
2626 struct rdma_addrinfo *res, *e;
2627 char port_str[16];
2628 int reuse = 1;
2630 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2631 rdma->wr_data[idx].control_len = 0;
2632 rdma->wr_data[idx].control_curr = NULL;
2635 if (!rdma->host || !rdma->host[0]) {
2636 ERROR(errp, "RDMA host is not set!");
2637 rdma->error_state = -EINVAL;
2638 return -1;
2640 /* create CM channel */
2641 rdma->channel = rdma_create_event_channel();
2642 if (!rdma->channel) {
2643 ERROR(errp, "could not create rdma event channel");
2644 rdma->error_state = -EINVAL;
2645 return -1;
2648 /* create CM id */
2649 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2650 if (ret) {
2651 ERROR(errp, "could not create cm_id!");
2652 goto err_dest_init_create_listen_id;
2655 snprintf(port_str, 16, "%d", rdma->port);
2656 port_str[15] = '\0';
2658 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2659 if (ret < 0) {
2660 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2661 goto err_dest_init_bind_addr;
2664 ret = rdma_set_option(listen_id, RDMA_OPTION_ID, RDMA_OPTION_ID_REUSEADDR,
2665 &reuse, sizeof reuse);
2666 if (ret) {
2667 ERROR(errp, "Error: could not set REUSEADDR option");
2668 goto err_dest_init_bind_addr;
2670 for (e = res; e != NULL; e = e->ai_next) {
2671 inet_ntop(e->ai_family,
2672 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2673 trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2674 ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2675 if (ret) {
2676 continue;
2678 if (e->ai_family == AF_INET6) {
2679 ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs, errp);
2680 if (ret) {
2681 continue;
2684 break;
2687 rdma_freeaddrinfo(res);
2688 if (!e) {
2689 ERROR(errp, "Error: could not rdma_bind_addr!");
2690 goto err_dest_init_bind_addr;
2693 rdma->listen_id = listen_id;
2694 qemu_rdma_dump_gid("dest_init", listen_id);
2695 return 0;
2697 err_dest_init_bind_addr:
2698 rdma_destroy_id(listen_id);
2699 err_dest_init_create_listen_id:
2700 rdma_destroy_event_channel(rdma->channel);
2701 rdma->channel = NULL;
2702 rdma->error_state = ret;
2703 return ret;
2707 static void qemu_rdma_return_path_dest_init(RDMAContext *rdma_return_path,
2708 RDMAContext *rdma)
2710 int idx;
2712 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2713 rdma_return_path->wr_data[idx].control_len = 0;
2714 rdma_return_path->wr_data[idx].control_curr = NULL;
2717 /*the CM channel and CM id is shared*/
2718 rdma_return_path->channel = rdma->channel;
2719 rdma_return_path->listen_id = rdma->listen_id;
2721 rdma->return_path = rdma_return_path;
2722 rdma_return_path->return_path = rdma;
2723 rdma_return_path->is_return_path = true;
2726 static RDMAContext *qemu_rdma_data_init(const char *host_port, Error **errp)
2728 RDMAContext *rdma = NULL;
2729 InetSocketAddress *addr;
2731 if (host_port) {
2732 rdma = g_new0(RDMAContext, 1);
2733 rdma->current_index = -1;
2734 rdma->current_chunk = -1;
2736 addr = g_new(InetSocketAddress, 1);
2737 if (!inet_parse(addr, host_port, NULL)) {
2738 rdma->port = atoi(addr->port);
2739 rdma->host = g_strdup(addr->host);
2740 rdma->host_port = g_strdup(host_port);
2741 } else {
2742 ERROR(errp, "bad RDMA migration address '%s'", host_port);
2743 g_free(rdma);
2744 rdma = NULL;
2747 qapi_free_InetSocketAddress(addr);
2750 return rdma;
2754 * QEMUFile interface to the control channel.
2755 * SEND messages for control only.
2756 * VM's ram is handled with regular RDMA messages.
2758 static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2759 const struct iovec *iov,
2760 size_t niov,
2761 int *fds,
2762 size_t nfds,
2763 int flags,
2764 Error **errp)
2766 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2767 RDMAContext *rdma;
2768 int ret;
2769 ssize_t done = 0;
2770 size_t i, len;
2772 RCU_READ_LOCK_GUARD();
2773 rdma = qatomic_rcu_read(&rioc->rdmaout);
2775 if (!rdma) {
2776 error_setg(errp, "RDMA control channel output is not set");
2777 return -1;
2780 CHECK_ERROR_STATE();
2783 * Push out any writes that
2784 * we're queued up for VM's ram.
2786 ret = qemu_rdma_write_flush(rdma);
2787 if (ret < 0) {
2788 rdma->error_state = ret;
2789 error_setg(errp, "qemu_rdma_write_flush returned %d", ret);
2790 return -1;
2793 for (i = 0; i < niov; i++) {
2794 size_t remaining = iov[i].iov_len;
2795 uint8_t * data = (void *)iov[i].iov_base;
2796 while (remaining) {
2797 RDMAControlHeader head = {};
2799 len = MIN(remaining, RDMA_SEND_INCREMENT);
2800 remaining -= len;
2802 head.len = len;
2803 head.type = RDMA_CONTROL_QEMU_FILE;
2805 ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2807 if (ret < 0) {
2808 rdma->error_state = ret;
2809 error_setg(errp, "qemu_rdma_exchange_send returned %d", ret);
2810 return -1;
2813 data += len;
2814 done += len;
2818 return done;
2821 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2822 size_t size, int idx)
2824 size_t len = 0;
2826 if (rdma->wr_data[idx].control_len) {
2827 trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2829 len = MIN(size, rdma->wr_data[idx].control_len);
2830 memcpy(buf, rdma->wr_data[idx].control_curr, len);
2831 rdma->wr_data[idx].control_curr += len;
2832 rdma->wr_data[idx].control_len -= len;
2835 return len;
2839 * QEMUFile interface to the control channel.
2840 * RDMA links don't use bytestreams, so we have to
2841 * return bytes to QEMUFile opportunistically.
2843 static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2844 const struct iovec *iov,
2845 size_t niov,
2846 int **fds,
2847 size_t *nfds,
2848 int flags,
2849 Error **errp)
2851 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2852 RDMAContext *rdma;
2853 RDMAControlHeader head;
2854 int ret = 0;
2855 ssize_t done = 0;
2856 size_t i, len;
2858 RCU_READ_LOCK_GUARD();
2859 rdma = qatomic_rcu_read(&rioc->rdmain);
2861 if (!rdma) {
2862 error_setg(errp, "RDMA control channel input is not set");
2863 return -1;
2866 CHECK_ERROR_STATE();
2868 for (i = 0; i < niov; i++) {
2869 size_t want = iov[i].iov_len;
2870 uint8_t *data = (void *)iov[i].iov_base;
2873 * First, we hold on to the last SEND message we
2874 * were given and dish out the bytes until we run
2875 * out of bytes.
2877 len = qemu_rdma_fill(rdma, data, want, 0);
2878 done += len;
2879 want -= len;
2880 /* Got what we needed, so go to next iovec */
2881 if (want == 0) {
2882 continue;
2885 /* If we got any data so far, then don't wait
2886 * for more, just return what we have */
2887 if (done > 0) {
2888 break;
2892 /* We've got nothing at all, so lets wait for
2893 * more to arrive
2895 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2897 if (ret < 0) {
2898 rdma->error_state = ret;
2899 error_setg(errp, "qemu_rdma_exchange_recv returned %d", ret);
2900 return -1;
2904 * SEND was received with new bytes, now try again.
2906 len = qemu_rdma_fill(rdma, data, want, 0);
2907 done += len;
2908 want -= len;
2910 /* Still didn't get enough, so lets just return */
2911 if (want) {
2912 if (done == 0) {
2913 return QIO_CHANNEL_ERR_BLOCK;
2914 } else {
2915 break;
2919 return done;
2923 * Block until all the outstanding chunks have been delivered by the hardware.
2925 static int qemu_rdma_drain_cq(RDMAContext *rdma)
2927 int ret;
2929 if (qemu_rdma_write_flush(rdma) < 0) {
2930 return -EIO;
2933 while (rdma->nb_sent) {
2934 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2935 if (ret < 0) {
2936 error_report("rdma migration: complete polling error!");
2937 return -EIO;
2941 qemu_rdma_unregister_waiting(rdma);
2943 return 0;
2947 static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
2948 bool blocking,
2949 Error **errp)
2951 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2952 /* XXX we should make readv/writev actually honour this :-) */
2953 rioc->blocking = blocking;
2954 return 0;
2958 typedef struct QIOChannelRDMASource QIOChannelRDMASource;
2959 struct QIOChannelRDMASource {
2960 GSource parent;
2961 QIOChannelRDMA *rioc;
2962 GIOCondition condition;
2965 static gboolean
2966 qio_channel_rdma_source_prepare(GSource *source,
2967 gint *timeout)
2969 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2970 RDMAContext *rdma;
2971 GIOCondition cond = 0;
2972 *timeout = -1;
2974 RCU_READ_LOCK_GUARD();
2975 if (rsource->condition == G_IO_IN) {
2976 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
2977 } else {
2978 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
2981 if (!rdma) {
2982 error_report("RDMAContext is NULL when prepare Gsource");
2983 return FALSE;
2986 if (rdma->wr_data[0].control_len) {
2987 cond |= G_IO_IN;
2989 cond |= G_IO_OUT;
2991 return cond & rsource->condition;
2994 static gboolean
2995 qio_channel_rdma_source_check(GSource *source)
2997 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2998 RDMAContext *rdma;
2999 GIOCondition cond = 0;
3001 RCU_READ_LOCK_GUARD();
3002 if (rsource->condition == G_IO_IN) {
3003 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3004 } else {
3005 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3008 if (!rdma) {
3009 error_report("RDMAContext is NULL when check Gsource");
3010 return FALSE;
3013 if (rdma->wr_data[0].control_len) {
3014 cond |= G_IO_IN;
3016 cond |= G_IO_OUT;
3018 return cond & rsource->condition;
3021 static gboolean
3022 qio_channel_rdma_source_dispatch(GSource *source,
3023 GSourceFunc callback,
3024 gpointer user_data)
3026 QIOChannelFunc func = (QIOChannelFunc)callback;
3027 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3028 RDMAContext *rdma;
3029 GIOCondition cond = 0;
3031 RCU_READ_LOCK_GUARD();
3032 if (rsource->condition == G_IO_IN) {
3033 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3034 } else {
3035 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3038 if (!rdma) {
3039 error_report("RDMAContext is NULL when dispatch Gsource");
3040 return FALSE;
3043 if (rdma->wr_data[0].control_len) {
3044 cond |= G_IO_IN;
3046 cond |= G_IO_OUT;
3048 return (*func)(QIO_CHANNEL(rsource->rioc),
3049 (cond & rsource->condition),
3050 user_data);
3053 static void
3054 qio_channel_rdma_source_finalize(GSource *source)
3056 QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
3058 object_unref(OBJECT(ssource->rioc));
3061 static GSourceFuncs qio_channel_rdma_source_funcs = {
3062 qio_channel_rdma_source_prepare,
3063 qio_channel_rdma_source_check,
3064 qio_channel_rdma_source_dispatch,
3065 qio_channel_rdma_source_finalize
3068 static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
3069 GIOCondition condition)
3071 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3072 QIOChannelRDMASource *ssource;
3073 GSource *source;
3075 source = g_source_new(&qio_channel_rdma_source_funcs,
3076 sizeof(QIOChannelRDMASource));
3077 ssource = (QIOChannelRDMASource *)source;
3079 ssource->rioc = rioc;
3080 object_ref(OBJECT(rioc));
3082 ssource->condition = condition;
3084 return source;
3087 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel *ioc,
3088 AioContext *read_ctx,
3089 IOHandler *io_read,
3090 AioContext *write_ctx,
3091 IOHandler *io_write,
3092 void *opaque)
3094 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3095 if (io_read) {
3096 aio_set_fd_handler(read_ctx, rioc->rdmain->recv_comp_channel->fd,
3097 io_read, io_write, NULL, NULL, opaque);
3098 aio_set_fd_handler(read_ctx, rioc->rdmain->send_comp_channel->fd,
3099 io_read, io_write, NULL, NULL, opaque);
3100 } else {
3101 aio_set_fd_handler(write_ctx, rioc->rdmaout->recv_comp_channel->fd,
3102 io_read, io_write, NULL, NULL, opaque);
3103 aio_set_fd_handler(write_ctx, rioc->rdmaout->send_comp_channel->fd,
3104 io_read, io_write, NULL, NULL, opaque);
3108 struct rdma_close_rcu {
3109 struct rcu_head rcu;
3110 RDMAContext *rdmain;
3111 RDMAContext *rdmaout;
3114 /* callback from qio_channel_rdma_close via call_rcu */
3115 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu *rcu)
3117 if (rcu->rdmain) {
3118 qemu_rdma_cleanup(rcu->rdmain);
3121 if (rcu->rdmaout) {
3122 qemu_rdma_cleanup(rcu->rdmaout);
3125 g_free(rcu->rdmain);
3126 g_free(rcu->rdmaout);
3127 g_free(rcu);
3130 static int qio_channel_rdma_close(QIOChannel *ioc,
3131 Error **errp)
3133 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3134 RDMAContext *rdmain, *rdmaout;
3135 struct rdma_close_rcu *rcu = g_new(struct rdma_close_rcu, 1);
3137 trace_qemu_rdma_close();
3139 rdmain = rioc->rdmain;
3140 if (rdmain) {
3141 qatomic_rcu_set(&rioc->rdmain, NULL);
3144 rdmaout = rioc->rdmaout;
3145 if (rdmaout) {
3146 qatomic_rcu_set(&rioc->rdmaout, NULL);
3149 rcu->rdmain = rdmain;
3150 rcu->rdmaout = rdmaout;
3151 call_rcu(rcu, qio_channel_rdma_close_rcu, rcu);
3153 return 0;
3156 static int
3157 qio_channel_rdma_shutdown(QIOChannel *ioc,
3158 QIOChannelShutdown how,
3159 Error **errp)
3161 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3162 RDMAContext *rdmain, *rdmaout;
3164 RCU_READ_LOCK_GUARD();
3166 rdmain = qatomic_rcu_read(&rioc->rdmain);
3167 rdmaout = qatomic_rcu_read(&rioc->rdmain);
3169 switch (how) {
3170 case QIO_CHANNEL_SHUTDOWN_READ:
3171 if (rdmain) {
3172 rdmain->error_state = -1;
3174 break;
3175 case QIO_CHANNEL_SHUTDOWN_WRITE:
3176 if (rdmaout) {
3177 rdmaout->error_state = -1;
3179 break;
3180 case QIO_CHANNEL_SHUTDOWN_BOTH:
3181 default:
3182 if (rdmain) {
3183 rdmain->error_state = -1;
3185 if (rdmaout) {
3186 rdmaout->error_state = -1;
3188 break;
3191 return 0;
3195 * Parameters:
3196 * @offset == 0 :
3197 * This means that 'block_offset' is a full virtual address that does not
3198 * belong to a RAMBlock of the virtual machine and instead
3199 * represents a private malloc'd memory area that the caller wishes to
3200 * transfer.
3202 * @offset != 0 :
3203 * Offset is an offset to be added to block_offset and used
3204 * to also lookup the corresponding RAMBlock.
3206 * @size : Number of bytes to transfer
3208 * @pages_sent : User-specificed pointer to indicate how many pages were
3209 * sent. Usually, this will not be more than a few bytes of
3210 * the protocol because most transfers are sent asynchronously.
3212 static int qemu_rdma_save_page(QEMUFile *f, ram_addr_t block_offset,
3213 ram_addr_t offset, size_t size)
3215 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3216 RDMAContext *rdma;
3217 int ret;
3219 if (migration_in_postcopy()) {
3220 return RAM_SAVE_CONTROL_NOT_SUPP;
3223 RCU_READ_LOCK_GUARD();
3224 rdma = qatomic_rcu_read(&rioc->rdmaout);
3226 if (!rdma) {
3227 return -EIO;
3230 CHECK_ERROR_STATE();
3232 qemu_fflush(f);
3235 * Add this page to the current 'chunk'. If the chunk
3236 * is full, or the page doesn't belong to the current chunk,
3237 * an actual RDMA write will occur and a new chunk will be formed.
3239 ret = qemu_rdma_write(rdma, block_offset, offset, size);
3240 if (ret < 0) {
3241 error_report("rdma migration: write error! %d", ret);
3242 goto err;
3246 * Drain the Completion Queue if possible, but do not block,
3247 * just poll.
3249 * If nothing to poll, the end of the iteration will do this
3250 * again to make sure we don't overflow the request queue.
3252 while (1) {
3253 uint64_t wr_id, wr_id_in;
3254 ret = qemu_rdma_poll(rdma, rdma->recv_cq, &wr_id_in, NULL);
3256 if (ret < 0) {
3257 error_report("rdma migration: polling error! %d", ret);
3258 goto err;
3261 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3263 if (wr_id == RDMA_WRID_NONE) {
3264 break;
3268 while (1) {
3269 uint64_t wr_id, wr_id_in;
3270 ret = qemu_rdma_poll(rdma, rdma->send_cq, &wr_id_in, NULL);
3272 if (ret < 0) {
3273 error_report("rdma migration: polling error! %d", ret);
3274 goto err;
3277 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3279 if (wr_id == RDMA_WRID_NONE) {
3280 break;
3284 return RAM_SAVE_CONTROL_DELAYED;
3285 err:
3286 rdma->error_state = ret;
3287 return ret;
3290 static void rdma_accept_incoming_migration(void *opaque);
3292 static void rdma_cm_poll_handler(void *opaque)
3294 RDMAContext *rdma = opaque;
3295 int ret;
3296 struct rdma_cm_event *cm_event;
3297 MigrationIncomingState *mis = migration_incoming_get_current();
3299 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3300 if (ret) {
3301 error_report("get_cm_event failed %d", errno);
3302 return;
3305 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
3306 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
3307 if (!rdma->error_state &&
3308 migration_incoming_get_current()->state !=
3309 MIGRATION_STATUS_COMPLETED) {
3310 error_report("receive cm event, cm event is %d", cm_event->event);
3311 rdma->error_state = -EPIPE;
3312 if (rdma->return_path) {
3313 rdma->return_path->error_state = -EPIPE;
3316 rdma_ack_cm_event(cm_event);
3317 if (mis->loadvm_co) {
3318 qemu_coroutine_enter(mis->loadvm_co);
3320 return;
3322 rdma_ack_cm_event(cm_event);
3325 static int qemu_rdma_accept(RDMAContext *rdma)
3327 RDMACapabilities cap;
3328 struct rdma_conn_param conn_param = {
3329 .responder_resources = 2,
3330 .private_data = &cap,
3331 .private_data_len = sizeof(cap),
3333 RDMAContext *rdma_return_path = NULL;
3334 struct rdma_cm_event *cm_event;
3335 struct ibv_context *verbs;
3336 int ret = -EINVAL;
3337 int idx;
3339 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3340 if (ret) {
3341 goto err_rdma_dest_wait;
3344 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3345 rdma_ack_cm_event(cm_event);
3346 ret = -1;
3347 goto err_rdma_dest_wait;
3351 * initialize the RDMAContext for return path for postcopy after first
3352 * connection request reached.
3354 if ((migrate_postcopy() || migrate_return_path())
3355 && !rdma->is_return_path) {
3356 rdma_return_path = qemu_rdma_data_init(rdma->host_port, NULL);
3357 if (rdma_return_path == NULL) {
3358 rdma_ack_cm_event(cm_event);
3359 ret = -1;
3360 goto err_rdma_dest_wait;
3363 qemu_rdma_return_path_dest_init(rdma_return_path, rdma);
3366 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3368 network_to_caps(&cap);
3370 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3371 error_report("Unknown source RDMA version: %d, bailing...",
3372 cap.version);
3373 rdma_ack_cm_event(cm_event);
3374 ret = -1;
3375 goto err_rdma_dest_wait;
3379 * Respond with only the capabilities this version of QEMU knows about.
3381 cap.flags &= known_capabilities;
3384 * Enable the ones that we do know about.
3385 * Add other checks here as new ones are introduced.
3387 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3388 rdma->pin_all = true;
3391 rdma->cm_id = cm_event->id;
3392 verbs = cm_event->id->verbs;
3394 rdma_ack_cm_event(cm_event);
3396 trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3398 caps_to_network(&cap);
3400 trace_qemu_rdma_accept_pin_verbsc(verbs);
3402 if (!rdma->verbs) {
3403 rdma->verbs = verbs;
3404 } else if (rdma->verbs != verbs) {
3405 error_report("ibv context not matching %p, %p!", rdma->verbs,
3406 verbs);
3407 ret = -1;
3408 goto err_rdma_dest_wait;
3411 qemu_rdma_dump_id("dest_init", verbs);
3413 ret = qemu_rdma_alloc_pd_cq(rdma);
3414 if (ret) {
3415 error_report("rdma migration: error allocating pd and cq!");
3416 goto err_rdma_dest_wait;
3419 ret = qemu_rdma_alloc_qp(rdma);
3420 if (ret) {
3421 error_report("rdma migration: error allocating qp!");
3422 goto err_rdma_dest_wait;
3425 qemu_rdma_init_ram_blocks(rdma);
3427 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
3428 ret = qemu_rdma_reg_control(rdma, idx);
3429 if (ret) {
3430 error_report("rdma: error registering %d control", idx);
3431 goto err_rdma_dest_wait;
3435 /* Accept the second connection request for return path */
3436 if ((migrate_postcopy() || migrate_return_path())
3437 && !rdma->is_return_path) {
3438 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3439 NULL,
3440 (void *)(intptr_t)rdma->return_path);
3441 } else {
3442 qemu_set_fd_handler(rdma->channel->fd, rdma_cm_poll_handler,
3443 NULL, rdma);
3446 ret = rdma_accept(rdma->cm_id, &conn_param);
3447 if (ret) {
3448 error_report("rdma_accept returns %d", ret);
3449 goto err_rdma_dest_wait;
3452 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3453 if (ret) {
3454 error_report("rdma_accept get_cm_event failed %d", ret);
3455 goto err_rdma_dest_wait;
3458 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3459 error_report("rdma_accept not event established");
3460 rdma_ack_cm_event(cm_event);
3461 ret = -1;
3462 goto err_rdma_dest_wait;
3465 rdma_ack_cm_event(cm_event);
3466 rdma->connected = true;
3468 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
3469 if (ret) {
3470 error_report("rdma migration: error posting second control recv");
3471 goto err_rdma_dest_wait;
3474 qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3476 return 0;
3478 err_rdma_dest_wait:
3479 rdma->error_state = ret;
3480 qemu_rdma_cleanup(rdma);
3481 g_free(rdma_return_path);
3482 return ret;
3485 static int dest_ram_sort_func(const void *a, const void *b)
3487 unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3488 unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3490 return (a_index < b_index) ? -1 : (a_index != b_index);
3494 * During each iteration of the migration, we listen for instructions
3495 * by the source VM to perform dynamic page registrations before they
3496 * can perform RDMA operations.
3498 * We respond with the 'rkey'.
3500 * Keep doing this until the source tells us to stop.
3502 static int qemu_rdma_registration_handle(QEMUFile *f)
3504 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3505 .type = RDMA_CONTROL_REGISTER_RESULT,
3506 .repeat = 0,
3508 RDMAControlHeader unreg_resp = { .len = 0,
3509 .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3510 .repeat = 0,
3512 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3513 .repeat = 1 };
3514 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3515 RDMAContext *rdma;
3516 RDMALocalBlocks *local;
3517 RDMAControlHeader head;
3518 RDMARegister *reg, *registers;
3519 RDMACompress *comp;
3520 RDMARegisterResult *reg_result;
3521 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3522 RDMALocalBlock *block;
3523 void *host_addr;
3524 int ret = 0;
3525 int idx = 0;
3526 int count = 0;
3527 int i = 0;
3529 RCU_READ_LOCK_GUARD();
3530 rdma = qatomic_rcu_read(&rioc->rdmain);
3532 if (!rdma) {
3533 return -EIO;
3536 CHECK_ERROR_STATE();
3538 local = &rdma->local_ram_blocks;
3539 do {
3540 trace_qemu_rdma_registration_handle_wait();
3542 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
3544 if (ret < 0) {
3545 break;
3548 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3549 error_report("rdma: Too many requests in this message (%d)."
3550 "Bailing.", head.repeat);
3551 ret = -EIO;
3552 break;
3555 switch (head.type) {
3556 case RDMA_CONTROL_COMPRESS:
3557 comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3558 network_to_compress(comp);
3560 trace_qemu_rdma_registration_handle_compress(comp->length,
3561 comp->block_idx,
3562 comp->offset);
3563 if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3564 error_report("rdma: 'compress' bad block index %u (vs %d)",
3565 (unsigned int)comp->block_idx,
3566 rdma->local_ram_blocks.nb_blocks);
3567 ret = -EIO;
3568 goto out;
3570 block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3572 host_addr = block->local_host_addr +
3573 (comp->offset - block->offset);
3575 ram_handle_compressed(host_addr, comp->value, comp->length);
3576 break;
3578 case RDMA_CONTROL_REGISTER_FINISHED:
3579 trace_qemu_rdma_registration_handle_finished();
3580 goto out;
3582 case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3583 trace_qemu_rdma_registration_handle_ram_blocks();
3585 /* Sort our local RAM Block list so it's the same as the source,
3586 * we can do this since we've filled in a src_index in the list
3587 * as we received the RAMBlock list earlier.
3589 qsort(rdma->local_ram_blocks.block,
3590 rdma->local_ram_blocks.nb_blocks,
3591 sizeof(RDMALocalBlock), dest_ram_sort_func);
3592 for (i = 0; i < local->nb_blocks; i++) {
3593 local->block[i].index = i;
3596 if (rdma->pin_all) {
3597 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3598 if (ret) {
3599 error_report("rdma migration: error dest "
3600 "registering ram blocks");
3601 goto out;
3606 * Dest uses this to prepare to transmit the RAMBlock descriptions
3607 * to the source VM after connection setup.
3608 * Both sides use the "remote" structure to communicate and update
3609 * their "local" descriptions with what was sent.
3611 for (i = 0; i < local->nb_blocks; i++) {
3612 rdma->dest_blocks[i].remote_host_addr =
3613 (uintptr_t)(local->block[i].local_host_addr);
3615 if (rdma->pin_all) {
3616 rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3619 rdma->dest_blocks[i].offset = local->block[i].offset;
3620 rdma->dest_blocks[i].length = local->block[i].length;
3622 dest_block_to_network(&rdma->dest_blocks[i]);
3623 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3624 local->block[i].block_name,
3625 local->block[i].offset,
3626 local->block[i].length,
3627 local->block[i].local_host_addr,
3628 local->block[i].src_index);
3631 blocks.len = rdma->local_ram_blocks.nb_blocks
3632 * sizeof(RDMADestBlock);
3635 ret = qemu_rdma_post_send_control(rdma,
3636 (uint8_t *) rdma->dest_blocks, &blocks);
3638 if (ret < 0) {
3639 error_report("rdma migration: error sending remote info");
3640 goto out;
3643 break;
3644 case RDMA_CONTROL_REGISTER_REQUEST:
3645 trace_qemu_rdma_registration_handle_register(head.repeat);
3647 reg_resp.repeat = head.repeat;
3648 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3650 for (count = 0; count < head.repeat; count++) {
3651 uint64_t chunk;
3652 uint8_t *chunk_start, *chunk_end;
3654 reg = &registers[count];
3655 network_to_register(reg);
3657 reg_result = &results[count];
3659 trace_qemu_rdma_registration_handle_register_loop(count,
3660 reg->current_index, reg->key.current_addr, reg->chunks);
3662 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3663 error_report("rdma: 'register' bad block index %u (vs %d)",
3664 (unsigned int)reg->current_index,
3665 rdma->local_ram_blocks.nb_blocks);
3666 ret = -ENOENT;
3667 goto out;
3669 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3670 if (block->is_ram_block) {
3671 if (block->offset > reg->key.current_addr) {
3672 error_report("rdma: bad register address for block %s"
3673 " offset: %" PRIx64 " current_addr: %" PRIx64,
3674 block->block_name, block->offset,
3675 reg->key.current_addr);
3676 ret = -ERANGE;
3677 goto out;
3679 host_addr = (block->local_host_addr +
3680 (reg->key.current_addr - block->offset));
3681 chunk = ram_chunk_index(block->local_host_addr,
3682 (uint8_t *) host_addr);
3683 } else {
3684 chunk = reg->key.chunk;
3685 host_addr = block->local_host_addr +
3686 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3687 /* Check for particularly bad chunk value */
3688 if (host_addr < (void *)block->local_host_addr) {
3689 error_report("rdma: bad chunk for block %s"
3690 " chunk: %" PRIx64,
3691 block->block_name, reg->key.chunk);
3692 ret = -ERANGE;
3693 goto out;
3696 chunk_start = ram_chunk_start(block, chunk);
3697 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3698 /* avoid "-Waddress-of-packed-member" warning */
3699 uint32_t tmp_rkey = 0;
3700 if (qemu_rdma_register_and_get_keys(rdma, block,
3701 (uintptr_t)host_addr, NULL, &tmp_rkey,
3702 chunk, chunk_start, chunk_end)) {
3703 error_report("cannot get rkey");
3704 ret = -EINVAL;
3705 goto out;
3707 reg_result->rkey = tmp_rkey;
3709 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3711 trace_qemu_rdma_registration_handle_register_rkey(
3712 reg_result->rkey);
3714 result_to_network(reg_result);
3717 ret = qemu_rdma_post_send_control(rdma,
3718 (uint8_t *) results, &reg_resp);
3720 if (ret < 0) {
3721 error_report("Failed to send control buffer");
3722 goto out;
3724 break;
3725 case RDMA_CONTROL_UNREGISTER_REQUEST:
3726 trace_qemu_rdma_registration_handle_unregister(head.repeat);
3727 unreg_resp.repeat = head.repeat;
3728 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3730 for (count = 0; count < head.repeat; count++) {
3731 reg = &registers[count];
3732 network_to_register(reg);
3734 trace_qemu_rdma_registration_handle_unregister_loop(count,
3735 reg->current_index, reg->key.chunk);
3737 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3739 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3740 block->pmr[reg->key.chunk] = NULL;
3742 if (ret != 0) {
3743 perror("rdma unregistration chunk failed");
3744 ret = -ret;
3745 goto out;
3748 rdma->total_registrations--;
3750 trace_qemu_rdma_registration_handle_unregister_success(
3751 reg->key.chunk);
3754 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3756 if (ret < 0) {
3757 error_report("Failed to send control buffer");
3758 goto out;
3760 break;
3761 case RDMA_CONTROL_REGISTER_RESULT:
3762 error_report("Invalid RESULT message at dest.");
3763 ret = -EIO;
3764 goto out;
3765 default:
3766 error_report("Unknown control message %s", control_desc(head.type));
3767 ret = -EIO;
3768 goto out;
3770 } while (1);
3771 out:
3772 if (ret < 0) {
3773 rdma->error_state = ret;
3775 return ret;
3778 /* Destination:
3779 * Called via a ram_control_load_hook during the initial RAM load section which
3780 * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks
3781 * on the source.
3782 * We've already built our local RAMBlock list, but not yet sent the list to
3783 * the source.
3785 static int
3786 rdma_block_notification_handle(QEMUFile *f, const char *name)
3788 RDMAContext *rdma;
3789 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3790 int curr;
3791 int found = -1;
3793 RCU_READ_LOCK_GUARD();
3794 rdma = qatomic_rcu_read(&rioc->rdmain);
3796 if (!rdma) {
3797 return -EIO;
3800 /* Find the matching RAMBlock in our local list */
3801 for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3802 if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3803 found = curr;
3804 break;
3808 if (found == -1) {
3809 error_report("RAMBlock '%s' not found on destination", name);
3810 return -ENOENT;
3813 rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3814 trace_rdma_block_notification_handle(name, rdma->next_src_index);
3815 rdma->next_src_index++;
3817 return 0;
3820 static int rdma_load_hook(QEMUFile *f, uint64_t flags, void *data)
3822 switch (flags) {
3823 case RAM_CONTROL_BLOCK_REG:
3824 return rdma_block_notification_handle(f, data);
3826 case RAM_CONTROL_HOOK:
3827 return qemu_rdma_registration_handle(f);
3829 default:
3830 /* Shouldn't be called with any other values */
3831 abort();
3835 static int qemu_rdma_registration_start(QEMUFile *f,
3836 uint64_t flags, void *data)
3838 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3839 RDMAContext *rdma;
3841 if (migration_in_postcopy()) {
3842 return 0;
3845 RCU_READ_LOCK_GUARD();
3846 rdma = qatomic_rcu_read(&rioc->rdmaout);
3847 if (!rdma) {
3848 return -EIO;
3851 CHECK_ERROR_STATE();
3853 trace_qemu_rdma_registration_start(flags);
3854 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3855 qemu_fflush(f);
3857 return 0;
3861 * Inform dest that dynamic registrations are done for now.
3862 * First, flush writes, if any.
3864 static int qemu_rdma_registration_stop(QEMUFile *f,
3865 uint64_t flags, void *data)
3867 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3868 RDMAContext *rdma;
3869 RDMAControlHeader head = { .len = 0, .repeat = 1 };
3870 int ret = 0;
3872 if (migration_in_postcopy()) {
3873 return 0;
3876 RCU_READ_LOCK_GUARD();
3877 rdma = qatomic_rcu_read(&rioc->rdmaout);
3878 if (!rdma) {
3879 return -EIO;
3882 CHECK_ERROR_STATE();
3884 qemu_fflush(f);
3885 ret = qemu_rdma_drain_cq(rdma);
3887 if (ret < 0) {
3888 goto err;
3891 if (flags == RAM_CONTROL_SETUP) {
3892 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3893 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3894 int reg_result_idx, i, nb_dest_blocks;
3896 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3897 trace_qemu_rdma_registration_stop_ram();
3900 * Make sure that we parallelize the pinning on both sides.
3901 * For very large guests, doing this serially takes a really
3902 * long time, so we have to 'interleave' the pinning locally
3903 * with the control messages by performing the pinning on this
3904 * side before we receive the control response from the other
3905 * side that the pinning has completed.
3907 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3908 &reg_result_idx, rdma->pin_all ?
3909 qemu_rdma_reg_whole_ram_blocks : NULL);
3910 if (ret < 0) {
3911 fprintf(stderr, "receiving remote info!");
3912 return ret;
3915 nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3918 * The protocol uses two different sets of rkeys (mutually exclusive):
3919 * 1. One key to represent the virtual address of the entire ram block.
3920 * (dynamic chunk registration disabled - pin everything with one rkey.)
3921 * 2. One to represent individual chunks within a ram block.
3922 * (dynamic chunk registration enabled - pin individual chunks.)
3924 * Once the capability is successfully negotiated, the destination transmits
3925 * the keys to use (or sends them later) including the virtual addresses
3926 * and then propagates the remote ram block descriptions to his local copy.
3929 if (local->nb_blocks != nb_dest_blocks) {
3930 fprintf(stderr, "ram blocks mismatch (Number of blocks %d vs %d) "
3931 "Your QEMU command line parameters are probably "
3932 "not identical on both the source and destination.",
3933 local->nb_blocks, nb_dest_blocks);
3934 rdma->error_state = -EINVAL;
3935 return -EINVAL;
3938 qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3939 memcpy(rdma->dest_blocks,
3940 rdma->wr_data[reg_result_idx].control_curr, resp.len);
3941 for (i = 0; i < nb_dest_blocks; i++) {
3942 network_to_dest_block(&rdma->dest_blocks[i]);
3944 /* We require that the blocks are in the same order */
3945 if (rdma->dest_blocks[i].length != local->block[i].length) {
3946 fprintf(stderr, "Block %s/%d has a different length %" PRIu64
3947 "vs %" PRIu64, local->block[i].block_name, i,
3948 local->block[i].length,
3949 rdma->dest_blocks[i].length);
3950 rdma->error_state = -EINVAL;
3951 return -EINVAL;
3953 local->block[i].remote_host_addr =
3954 rdma->dest_blocks[i].remote_host_addr;
3955 local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
3959 trace_qemu_rdma_registration_stop(flags);
3961 head.type = RDMA_CONTROL_REGISTER_FINISHED;
3962 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3964 if (ret < 0) {
3965 goto err;
3968 return 0;
3969 err:
3970 rdma->error_state = ret;
3971 return ret;
3974 static const QEMUFileHooks rdma_read_hooks = {
3975 .hook_ram_load = rdma_load_hook,
3978 static const QEMUFileHooks rdma_write_hooks = {
3979 .before_ram_iterate = qemu_rdma_registration_start,
3980 .after_ram_iterate = qemu_rdma_registration_stop,
3981 .save_page = qemu_rdma_save_page,
3985 static void qio_channel_rdma_finalize(Object *obj)
3987 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
3988 if (rioc->rdmain) {
3989 qemu_rdma_cleanup(rioc->rdmain);
3990 g_free(rioc->rdmain);
3991 rioc->rdmain = NULL;
3993 if (rioc->rdmaout) {
3994 qemu_rdma_cleanup(rioc->rdmaout);
3995 g_free(rioc->rdmaout);
3996 rioc->rdmaout = NULL;
4000 static void qio_channel_rdma_class_init(ObjectClass *klass,
4001 void *class_data G_GNUC_UNUSED)
4003 QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
4005 ioc_klass->io_writev = qio_channel_rdma_writev;
4006 ioc_klass->io_readv = qio_channel_rdma_readv;
4007 ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
4008 ioc_klass->io_close = qio_channel_rdma_close;
4009 ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
4010 ioc_klass->io_set_aio_fd_handler = qio_channel_rdma_set_aio_fd_handler;
4011 ioc_klass->io_shutdown = qio_channel_rdma_shutdown;
4014 static const TypeInfo qio_channel_rdma_info = {
4015 .parent = TYPE_QIO_CHANNEL,
4016 .name = TYPE_QIO_CHANNEL_RDMA,
4017 .instance_size = sizeof(QIOChannelRDMA),
4018 .instance_finalize = qio_channel_rdma_finalize,
4019 .class_init = qio_channel_rdma_class_init,
4022 static void qio_channel_rdma_register_types(void)
4024 type_register_static(&qio_channel_rdma_info);
4027 type_init(qio_channel_rdma_register_types);
4029 static QEMUFile *rdma_new_input(RDMAContext *rdma)
4031 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4033 rioc->file = qemu_file_new_input(QIO_CHANNEL(rioc));
4034 rioc->rdmain = rdma;
4035 rioc->rdmaout = rdma->return_path;
4036 qemu_file_set_hooks(rioc->file, &rdma_read_hooks);
4038 return rioc->file;
4041 static QEMUFile *rdma_new_output(RDMAContext *rdma)
4043 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4045 rioc->file = qemu_file_new_output(QIO_CHANNEL(rioc));
4046 rioc->rdmaout = rdma;
4047 rioc->rdmain = rdma->return_path;
4048 qemu_file_set_hooks(rioc->file, &rdma_write_hooks);
4050 return rioc->file;
4053 static void rdma_accept_incoming_migration(void *opaque)
4055 RDMAContext *rdma = opaque;
4056 int ret;
4057 QEMUFile *f;
4058 Error *local_err = NULL;
4060 trace_qemu_rdma_accept_incoming_migration();
4061 ret = qemu_rdma_accept(rdma);
4063 if (ret) {
4064 fprintf(stderr, "RDMA ERROR: Migration initialization failed\n");
4065 return;
4068 trace_qemu_rdma_accept_incoming_migration_accepted();
4070 if (rdma->is_return_path) {
4071 return;
4074 f = rdma_new_input(rdma);
4075 if (f == NULL) {
4076 fprintf(stderr, "RDMA ERROR: could not open RDMA for input\n");
4077 qemu_rdma_cleanup(rdma);
4078 return;
4081 rdma->migration_started_on_destination = 1;
4082 migration_fd_process_incoming(f, &local_err);
4083 if (local_err) {
4084 error_reportf_err(local_err, "RDMA ERROR:");
4088 void rdma_start_incoming_migration(const char *host_port, Error **errp)
4090 int ret;
4091 RDMAContext *rdma;
4093 trace_rdma_start_incoming_migration();
4095 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4096 if (ram_block_discard_is_required()) {
4097 error_setg(errp, "RDMA: cannot disable RAM discard");
4098 return;
4101 rdma = qemu_rdma_data_init(host_port, errp);
4102 if (rdma == NULL) {
4103 goto err;
4106 ret = qemu_rdma_dest_init(rdma, errp);
4107 if (ret) {
4108 goto err;
4111 trace_rdma_start_incoming_migration_after_dest_init();
4113 ret = rdma_listen(rdma->listen_id, 5);
4115 if (ret) {
4116 ERROR(errp, "listening on socket!");
4117 goto cleanup_rdma;
4120 trace_rdma_start_incoming_migration_after_rdma_listen();
4122 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
4123 NULL, (void *)(intptr_t)rdma);
4124 return;
4126 cleanup_rdma:
4127 qemu_rdma_cleanup(rdma);
4128 err:
4129 if (rdma) {
4130 g_free(rdma->host);
4131 g_free(rdma->host_port);
4133 g_free(rdma);
4136 void rdma_start_outgoing_migration(void *opaque,
4137 const char *host_port, Error **errp)
4139 MigrationState *s = opaque;
4140 RDMAContext *rdma_return_path = NULL;
4141 RDMAContext *rdma;
4142 int ret = 0;
4144 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4145 if (ram_block_discard_is_required()) {
4146 error_setg(errp, "RDMA: cannot disable RAM discard");
4147 return;
4150 rdma = qemu_rdma_data_init(host_port, errp);
4151 if (rdma == NULL) {
4152 goto err;
4155 ret = qemu_rdma_source_init(rdma, migrate_rdma_pin_all(), errp);
4157 if (ret) {
4158 goto err;
4161 trace_rdma_start_outgoing_migration_after_rdma_source_init();
4162 ret = qemu_rdma_connect(rdma, false, errp);
4164 if (ret) {
4165 goto err;
4168 /* RDMA postcopy need a separate queue pair for return path */
4169 if (migrate_postcopy() || migrate_return_path()) {
4170 rdma_return_path = qemu_rdma_data_init(host_port, errp);
4172 if (rdma_return_path == NULL) {
4173 goto return_path_err;
4176 ret = qemu_rdma_source_init(rdma_return_path,
4177 migrate_rdma_pin_all(), errp);
4179 if (ret) {
4180 goto return_path_err;
4183 ret = qemu_rdma_connect(rdma_return_path, true, errp);
4185 if (ret) {
4186 goto return_path_err;
4189 rdma->return_path = rdma_return_path;
4190 rdma_return_path->return_path = rdma;
4191 rdma_return_path->is_return_path = true;
4194 trace_rdma_start_outgoing_migration_after_rdma_connect();
4196 s->to_dst_file = rdma_new_output(rdma);
4197 migrate_fd_connect(s, NULL);
4198 return;
4199 return_path_err:
4200 qemu_rdma_cleanup(rdma);
4201 err:
4202 g_free(rdma);
4203 g_free(rdma_return_path);